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Pigeonhole Principle
Kin-Yin Li

What in the world is the pigeonhole

principle? Well. this famous principle
states that if n+ 1 objects (pigeons) are

taken from n boxes (pigeonholes), then at

least two of the objects will be from the

same box. This is clear enough that it does

not require much explanation. A problem

solver who takes advantage of this

principle can tackle certain combinatorial

problems in a manner that is more elegant

and systematic than case-by-case. To show

how to apply this principle, we give a few

examples below.

Note that the two examples look alike,

however the boxes fornled are quite

different. By now, the readers must have

observed that forming the right boxes is

the key to success. Often a certain amount

of experience as well as clever thinking

are required to solve such problems. The

additional examples below will help

beginners becomefarniliar with this useful

principle.

Olympiad Corner

The 35th International Mathematical

Olympiad was held in Hong Kong last

summer. The following are the six

problems given to the contestants. How

many can you solve? (The country names

inside the parentheses are the problem

proposers.) -Editors

Problem 1. (France)

Let m and n be positive integers. Let aI, a2,

..., am be distinct elements of {I, 2, ..., n}

such that whenever at + aJ ~ n for some i,j,

1 ~ i ~ j ~ m, there exists k, 1 ~ k ~ m, with
at + aJ = at. Prove that

al+~+'..+am n+l~-
m 2

Example 3. Show that aInQng any nine

distinct real numbers, there are two, say a

and b, such that

Example 1. Suppose 51 numbers are
chosen from 1, 2, 3, ...,99, 100. Show
that there are two which do not have any
common prime divisor.

0 < (a-b)! (1 +ab) <.J2 -1.

Solution. The middle expression (a-

b)/(I+ab) reminds us of the fonnula for

tan(x-y). So we proceed as follow. Divide

the interval (-1&12,1&12] into 8 intervals

(-1&/2,-31&/8], (-31&/8,-1&14], ..., (1&14,31&18],

(31&/8,1&12]. Let the numbers be ap a2, ...,

agandletxj=arctanaj, i=I,2,...,9. By

the pigeonhole principle, two of the x/s,

say Xj and Xk with xi> Xk' must be in one of

the 8 subintervals. Then we have 0 < Xj -Xk

< 1&/8, so 0 < tan(Xj-xJ = (aj-aJ/(1 +aJaJ

< tan(1&/8) = Ii -1.

Solution. Let us consider the 50 pairs of

consecutive numbers (1,2), (3,4), ...,

(99,100). Since 51 numbers are chosen,

the pigeonhole principle tells us that there

will be a pair (k, k+l) among them. Now

if a prime number p divides k+ 1 and k,

thenp will divide (k+ 1) -k = 1, which is a

contradiction. So, k and k+ 1 have no

common prime divisor.

Problem 2. (Armenia/Australia)

ABC is an isosceles triangle with AB = AC.

Suppose that

(i) M is the midpoint of BC and 0 is the

point on the line AM such that OB is

perpendicular to AB;

(ii) Q is an arbitrary pOint on the segment

BC different from Band C;

(iii) E lies on the line AB and F lies on the

line AC such that E, Q and F are

distinct and collinear.

Prove that OQ is perpendicular to EF if and
only if QE = QF.

(continued on page 4)

Example 2. Suppose 51 numbers are

chosen from 1, 2, 3, ..., 99, 100. Show

that there are two such that one divides the

other.

Example 4. Suppose a triangle can be

placed inside a square of unit area in such

a way that the center of the square is not

inside the triangle. Show that one side of

the triangle has length less than 1. (This

example came from the XLI Mathematical

Olympiad in Poland.)
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Solution. Consider the 50 odd numbers 1,

3, 5, ..., 99. For each one, form a box

containing the number and all powers of 2

times the number. So the first box contains

1,2,4,8, 16, ...and the next box contains

3,6,12,24,48, ...and so on. Then among

the 51 numbers chosen, the pigeonhole

principle tells us that there are two that

are contained in the same box. They must

be of the form 2mk and 2nk with the same

odd number k. So one will divide the

other.

Solution. Through the center C of the
square, draw a line L) parallel to the
closest side of the triangle and a second
line ~ perpendicular to L) at C. The lines
L) and ~ divide the square into four
congruent quadrilaterals. Since C is not

(continued on page 2)
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Pigeonhole Principle
(continued from page 1) The Game of "Life"

Tsz-Mei Koinside the triangle, the triangle can lie in at

most two (adjacent) quadrilaterals. By the

pigeonhole principle, two of the vertices of

the tiiangle must belong to the same

quadrilateral. Now the furthest distance

between two points in the quadrilateral is

the distance between two of its opposite

vertices, which is at most 1. So the side of

the triangle with two vertices lying in the

same quadrilateral must have length less

than 1.

The game of "ljfe" was flfst introduced

by John Conway, a mathematician and a

game hobbyist currently working at

Princeton University. The game is played

on an infinite chessboard, where each cell

has eight neighboring cells. Initially, an

arrangement of stones is placed on the

board (the live cells) as the flfSt generation.

Each new generation is determined by two

simple generic rules:

respectively (Death Rule). The empty cells

marked b will become live cells in the next

generation (Birth Rule). The second

generation is shown in Figure 2.

What will happen in the third, fourth,

and nth generation? Is there an initial

generation that will grow infinitely?

Below we provide some exercises for
the active readers.

The Death Rule: Consider a live cell

(occupied by a stone). If it has 0 or 1 live

neighbors (among the eight neighboring

cells), then it dies from isolation. If it has 4

or more live neighbors, then it dies from

overcrowding. If it has 2 or 3 live

neighbors, then it survives to the next

generation.

1. Eleven numbers are chosen from 1, 2,
3, ..., 99, 100. Show that there are two
nonempty disjoint subsets of these eleven
numbers ~hose elements have the same
sum.

2. Suppose nine points with integer

coordinates in the three dimensional space

are chosen. Show that one of the segments

with endpoints selected from the nine

points must contain a third point with

integer coordinates.

The Birth Rule: Consider a dead

(unoccupied) cell. If it has exactly 3 live

neighbors, then it becomes a live cell (with

a stone placed on it) in the next generation.

Here is an example. The six circles in

Figure 1 indicate the live cells in the first

generation. Those marked i and c will die

due to isolation and overcrowding

3. Show that among any six people, either
there are three who know each other or
there are three, no pair of which knows
each other.

!GIQII,
Figure 2

4. In every 16-digit number, show that

there is a string of one or more consecutive

digits such that the product of these digits

is a perfect square. [Hint: The exponents

of a factorization of a perfect square into

prime numbers are even.] (This problem

is from the 1991 Japan Mathematical

Olympiad.)

Proof Without Words

kth Power of a Natural Number n as the S~
of n Consecutive Odd Numbers (k = 2,3, ...)

(Answers can be found on page 3.)

,

~ k-l ~14 n .,
n -n

n

nk = (nk-I-n+l)+(nk-l-n+3)+ooo +(nk-I-n+2n-l)
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Problem Corner

We welcome readers to submit

solutions to the problems posed below for

publication consideration. Solutions
should be preceeded by the solver's name,

address and school affiliation. Please send

submissions to Dr. Kin r: Li, Department

of Mathematics, Hong Kong University of
Science and Technology, Clear Water

Bay, Kowloon. The deadline for submitting

solutions is January 31st, 1995.

Problem 1. The sum of two positive

integers is 2310. Show that their product

is not divisible by 2310.

color c. Otherwise, all edges of T are

colored opposite to c. In both cases, there

is a triangle with all edges the same color.

4. Let d1, d2, ..., dl6 be the digits ofa 16-

digit number. H one of the digits of the

sixteen digits is either 0 or 1 or 4 or 9, then

the problem is solved. So, we may assume

each of the digits is 2, 3, 5, 6=2x3, 7 or
8=23. Let Xo = 1 and Xi be the product of d J'

d2,...,difori=I,2,...,16. Now each Xi =

~'x3qlx5"x7" fori=O, 1,2, ..., 16. Each

of the Pi' qi' rj, $t is either even or odd. So
there are 24 = 16 possible parity patterns.

By the pigeonhole principle, the Pi' qt, rj, $j

for two of the seventeen x/s, say Xj and Xk

with j < k, must have the same parity

pattern. Then dj+1 x ...X dk = X~Xj is a

perfect square.

Problem 2. Given N objects and B(~2)

boxes, find an inequality involving N and B

such that if the inequality is satisfied, then

at least two of the boxes have the same

number of objects. Mathematical Application: Pattern Design

Roger NgProblem 3. Show that for every positive
integer n, there are polynomials P(x) of
degree n and Q(x) of degree n-l such that
(P(x)f- 1 = (r-l)(Q(x)f.

Mathematics is by far the most

poweiful tool that human race has

created. We invite articles which can

share with us different areas of

applications in mathematics. We wish that

this column will inspire students to study

mathematics. -Editors

Problem 4. If the diagonals of a

quadrilateral in the plane are

perpendicular. show that the midpoints of

its sides and the feet of the perpendiculars

dropped from the midpoints to the opposite

sides lie on a circle.

Problem 5. (1979 British Mathematical

Olympiad) Let ai' a2, ..., an be n distinct

positive odd integers. Suppose all the

differences la/-ail are distinct, I ~ i <j ~ n.

Prove that a1 + ~ + ...+ an ~ n(n2+2)/3.

Answers to Exercises

"Pigeonhole Principle"
in

1. The set of eleven numbers have 211_2 =

2046 nonempty subsets with less than

eleven elements, and the maximal sum of

the elements in any of these subsets is 91 +

92 + ...+ 99 + 100 = 955. So, by the

pigeonhole principle, there are two

rionempty subsets with the same sum. If

they have common elements, then remove

them from both subsets and we will get two

nonempty disjoint subsets with the same
sum.

CO ~---

Same Slope

T~=:~~
1

C
2. For the nine points, each of the three

coordinates is either even or odd. So, there
are 23=8 parity patterns for the coordinates.

Figure 1

By the pigeonhole principle, two of the

nine points must have the same parity

coordinate patterns. Then their midpoint

must have integer coordinates.

3. Let the six people correspond to the six

vertices of a regular hexagon. If two

people know each other, then color the

segment with the associated vertices red,

otherwise blue. SolVing the problem is

equivalent to showing that a red triangle or
a blue triangle exists.

Take any vertex. By the pigeonhole

principle, of the five segments issuing from

this vertex, three have the same color c.

Consider the three vertices at the other

ends of these segments and the triangle T

with these vertices. If T has an edge

colored c, then there is a triangle with
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Olympiad Corner
(continued from page 1) From Fermat Primes to Constructible Regular Polygons

Tsz-Mei Ko

Pierre de Fermat (1601-1665), an

amateur mathematician, once guessed that

all numbers in the form 22" + 1 are prime

numbers. If we try the fIrst five n's (n = 0,

1,2,3,4), they are in fact all primes:

decided to devote his life to mathematics.

After his death, a bronze statue in memory

of him standing on a regular 17-gon

pedestal was erected in Brauschweig-the

hometown of Gauss.

Problem 3. (Romania)

For any positive integer k, let f( k) be the

number of elements in the set {k+l, k+2,

..., 2k} whose base 2 representation has

precisely three 1 s.

(a) Prove that, for each positive integer m,

there exists at least one positive

integer k such thatf(k)=m.

(b) Determine all positive integers m for

which there exists exactly one k with

f(k)=m.

22" + 1
Which regular polygons are

constructible? From Gauss's result, we

know that the regular triangle, pentagon,

17-gon, 257-gon and 65537-gon are
constructible. (How?) We also know that
regular polygons with 7, 11, 13, 19, ...

sides are not constructible since they are

primes but not Fermat primes. In addition,

we know how to bisect an angle and thus

regular polygons with 4,8,16,32, ...or 6,

12, 24,48, ...sides are also constructible.

What about the others? Is a regular 15-gon

constructible? The answer turns out to be
yes since 1/15 = 2/5 -1/3 and thus we can

divide a circle into 15 equal parts. What

about a regular 9-gon? It can be proved

that a regular 9-gon is not constructible.

Can you find a general theorem on which

regular polygons are constructible?

0

1

2

3

4

3

5

17

257

65537

Problem 4. (Australia)
Detennine all ordered pairs (m,n) of
positive integers such that

n3 +1

mn -1

is an integer.

It was later discovered by Leonhard Euler

(1707-1783) in 1732 that the next Fermat
number (n = 5) can be factored as

s
22 + 1 = 641 x 6700417

and thus not a prime. The story would have

ended here if without an ingenious

discovery by Carl Friedrich Gauss (1777-

1855).

In 1794, at the age of seventeen, Gauss

found that a regular 'p-gon" (a polygon

with p sides), where p is a prime, is

constructible (i.e., using only ruler and

compass) if and only if p is a "Fermat

prime" (a prime number in the foim22" + 1).
He proved this by considering the solutions

of certain algebraic equations. (The

interested reader may refer to the book,

"What Is Mathematics?" written by

Courant and Robbins, Oxford University

Press.) The young Gauss was so

overwhelmed by his discovery that he then

Problem 5. (United Kingdom)

Let S be the set of real numbers strictly

greater than -1. Find all functions/." S -+ S

satisfying the two conditions:
(i) f(x + f(y) + xf(y)) = y + f(x) + yf(x) for

all x and y in S;

(ii) f(x)/x is strictly increasing on each of

the intervals -1 < x < 0 and 0 < x.

Are there any other constructible p-

gons (where p is a prime) besides the five

mentioned? This question is equivalent to

asking whether there are any other Fermat

primes. To date, no other Fermat number

has been shown to be prime, and it is still

not known whether there are more than

five Fermat primes. Perhaps you can

discover a new Fermat prime and make a

note in the history of mathematics.

Problem 6. (Finland)

Show that there exists a set A of positive

integers with the following property: For

any infinite set S of primes there exist two

positive integers mEA and n $" A each of

which is a product of k distinct elements of

S for some k ? 2.

([)

0

Right: A photo of the six members of the Hong Kong

Team and one of the editors (far right) taken at the

Shatin Town Hall after the closing ceremony of the

35th International Mathematical Olympiad.

From left to right are: SueD Yun-Leung, Chu Hoi-

Pan, Tsui Ka-Hing, Wong Him- Ting, Ho Wing-Yip.

Poon Wai-Hoi Bobby, and Li Kin- Yin.



March -April, 1995Volume 1, Number 2

Olympiad Corner

The following are the six problems

from the two-day Final Selection Examfor

.the 1994 Hong Kong Mathematical

Olympiad Team. Would you like to try

these problems to see if you could have

qualified to be a Hong Kong team

member? -Editors

Fractal Game of Escape

RogerNg

Consider the following scenario. John,
a secret agent, is being held captive in

terrorists' headquarters. He has found an

escape route, and knows it follows the
quadratic equation Zn+1 = Zn2 + c if the floor

map is encoded as a complex z-plane (i.e.,

each point (x,y) is represented by a

complex number X+YI). However, John

does not know the value of the complex

cOnstant c. John only knows that he ~hould
start from the origin with Zo = 0 -+- Oi. For

which values of c, will John have not even

a chance for a successful escape?

values for c (the black area) that would

keep Zn bounded, i.e., the Mandelbrot set.

N ow if we modify our story slightly-

assume that John knows the constant c but

not the starting point Zo, this will lead us to

the definition of Julia sets-named after the

mathematician Gaston Julia (1893-1978).

For any given complex number c, some

initial points Zo generate divergent
sequences Zn+1 = Zn2 + c while others

generate nondivergent sequences. The
Julia set is the boundary that separates the

set of "diverging" starting points from the

set of "nondiverging" starting points.

Insb"uctions (the same insb"uctions were

given on both days): Answer all three

questions. Each question carries 35 points.

Time allowed is 411z hours.

First DaI

Question 1. In a triangle ~ABC, L C=2LB.

P is a point in the interior of ~ABC
satisfying thatAP= AC and PB = PC. Show

that AP trisects the angle LA.

Question 2. In a table-tennis tournament of

10 contestants, any two contestants meet

only once. We say that there is a winning

triangle if the following s~tuation occurs: ith

contestant defeated jth contestant, jth

contestant defeated kth contestant, and kth

contestant defeated ith contestant. Let Wi

and Li be respectively the number of games

won and lost by the ith contestant. Suppose

Li + Wj ? 8 whenever the ith contestant wins

{continued on page 4)

To help John to answer the above

question, it is natural to first try c = 0 and

see what will happen. The recursion

becomes Zn+l = zn2 and thus Zn = 0 for all n.

That is, John will be going nowhere but

staying at the origin!

If we try other values of c, there are

three possible outcomes: (1) the sequence

zn converges to a fIXed 'point; (2) the

sequence Zn repeats in a finite cycle of

points and thus becomes a periodic

sequence; or (3) the sequence .zn diverges

from the origin, i.e., John may have a

chance to escape successfully.

Here is a simple example. For c = 0,

the equation is Zn+l = Zn2. If the starting

point lies within a distance of 1 from the

origin, the subsequent points will get

closer and closer to the origin. If the intial

point is more than a distance of 1 from the

origin, the subsequent points will get

farther and farther away from the origin.

The unit circle separate~ these two sets of

starting points. This boundary is the Julia
set correspOnding to c = O.

(continued on page 2)
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The above story is a dramatization for

the definition of a fractal called the

Mandelbrot set. (The word "fractal" was

coined by Benoit Mandelbrot to describe

sets with self-similarity, i.e., they look the

same if you magnify a portion of them.)

The Mandelbrot set can be defined as the

set of complex numbers c for which the
sequence Z.+I = Z,,2 + c is bounded (i.e.,

does not diverge) when the starting point

Zo is the origin (0,0). Figure I shbWS the

asymptotic behaviour of Z. for real c's that

generate bounded sequences (i;e.,

outcomes I and 2). The number of points

on a vertical line indicates the period of the

asymptotic sequence. Figure 2 shows the

The editors welcome contributions from all students.
With your submission, please include your name,
address, school, email address, telephone and fax
numbers (if available). Electronic submissions,
especially in TeX, MS Word and WordPerfect, are
encouraged. The deadline for receiving material for
the next issue is March 31, 1995. Send all
correspondence to:

Dr. Li, Kin-Yin
Department of Mathematics

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon

Hong Kong

Fax: 2358-1643
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Fractal Game of Escape
{continued from page 1)

Pythagorean Triples
Kin- Yin Li

By varying c, we will obtain an infinite
number of different pictures of Julia sets.

Sorne,examples are shown in the figures on

this page. However, no matter what cis,

we observe that there are basically two

major types of Julia sets. Either all the

points Zo are connected in one piece, or

these points are broken into a number of

pieces (in fact, an infinite number of pieces
to fomi something called a Cantor set).

In geometry, we often encounter
triangles whose sides are integers. Have

you ever thought about how to produce

many nonsimilar triangles of this kind

without guessing? For this, we first define

Pythagorean triples to be triples (a, b, c)
of positive integers satisfying a2 + b2 = ~.

For example, (3,4, 5) and (5, 12, 13) are

Pythagorean triples. Clearly, if a2 + b2 = ~ ,

then (ad)2 + (bd)2 = (cd)2 for any positive

integer d. So, solutions of a2 + b2 = C2 with

a, b, c relatively pri~e (i.e., having no

common prime divisors) are important.

These are called primitive solutions.

Below we will establish a famous theorem

giving all primitive solutions.

a common prime divisor p, then the
equation will imply all three have p as a
common divisor and p ., 2. It will also
follow that(c- a)/2 =U2 and (c + a)/2 = v
are integers with p as a common divisor.
This will contradict u, v being relatively
prime. So a, b, c must be relatively prime.

We may ask ourselves an interesting

question. For which values of c, will the

corresponding Julia set be connected?

This seems to be a very hard problem. It

seems that we need to look at all Julia sets

to find out which one is connected, and it

would take an eternity to compile this huge

amount of data. But mathematicians John

Hubbard and Adrien Douady found a quick

way to carry out this task. They proved that

a Julia set is connected if the sequence Zn+1
= Zn2 + C is bounded when the starting point

?o is the origin (0,0). That is, if c belongs

to the Mandelbrot set, then its

corresponding Julia set will be connected!

Thus the Mandelbrot set is known as the

table of contents for all Julia sets.

For the second statement, we introduce

modulQ arithmetic. If r, s are integers

having die same remainder upon division

by a positive integer m, then we say r is

congruent to s modulo m and let us denote
this by r = s (mod m). For example, r = 0

or 1 {mod 2) depending on whether r is

even or odd. From the definition, we see

that congruence is an equivalence relation

between rand s. Also, if r = s (mod m)

and r' = s' (mod m), then r + r' = s + s'

(mod m), r- j' = s -s' (mod m), rr' = ss'

(mod m) and r!c = I (mod m) for any

positive integer k.

Theorem. If u, v are relatively prime

positive integers, u > v and one is odd, the
other even, then a = u2- vl, b = 2uv, e = U2

+ v2 give a primitive solution of a2 + b2 =

c2. Conversely, every primitive solution is

of this form, with a possible permutation of

a and b. In working with squares, modulo 4 is

often considered. This comes from the

observation that r2 = 0 or 1 (mod 4)

depending on ris even or odd. Now, if a2
+ b2 == C2, then a2 + b2 = 0 or 1 (mod 4).

For example, u = 2, v = I corresponds

toa=3, b=4, C = 5. Now let us try to see

why the theorem is true. For the flfst

statement, simple algebra shows a2 + b2 =

u4 + 2U2v2 + v4 = cZ. If two of a, b, C have

Besides this interesting relationship and

the fascinating pictures, the Julia set and

many other fractals provide us insight into

many physical phenomenon. As an

example, the JuJia Set is directly related to
the equipotential field lines of an

electrostatic circular metal rod. The

interested reader may refer to the book

"Chaos and Fractals: New Frontiers of

Science," written by H.G. Peitgen, H.

JUrgens, and D. Saupe (Springer Verlag,

1992).

(continued on page 4)

Julia Sets for Various Values ofc

Due to the self-similarity of fractals,

one usually needs only a few lines of

computer programming to generate a
fractal image. (Would you like to try?)

There is also a free computer software

FRACfINT (developed by the Stone Soup

Group) that can generate many popular

fractal images. If you would like to get a

copy of this computer software, send a

stamped self-addressed envelope and a PC-

formatted high-density diskette to the

author at the following address: Roger Ng,

Institute of Textile and Clothing, Hong

Kong Polytechnic University, Hung Horn,
Kowloon. There are over a hundred fractal

images for your investigation.

~-'9 ..
~ .:~- ~~"'2. ~~~
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Sum (HKUST), W. H. FOK (Homantin

Government Secondary School), and HO

Wing Yip (Clementi Secondary School).

Problem Corner

We welcome readers to submit

solutions to the problems posed below for

publication consideration. Solutions
should be preceded by the solver's name,

address and school affiliation. Please send

submissions to Dr. Kin Y. Li, Department

o/Mathematics, Hong Kong University of
Science and Technology, Clear Water

Bay, Kowloon. Solutions to the following

problems should be submitted by March

31,1995.

= 2310. So x2 -2310x:f- 2310n = O. It

follows the discriminant ~ = 231O:Z -

4(2310n)=22x3x5x7x 11 x(1155-
2n) must be a perfect square. Then for

some positive integer k, 1155 -2n == 3 x 5

x 7 x 11 x ~ = 1155~ ~ 1155, which is a

contradiction. So xy is not divisible by

2310.

Comments: A similar problem appeared

in the magazine Quantum, Sept.fOct.

1993, p. 54, published by Springer- Verlag.

Other commended solvers: AU Kwok Nin

(Tsung Tsin College), HO Wing Yip

(Clementi Secondary School), POON Wai
Hoi Bobby (St. Paul's College) and SZE

Hoi Wing (St. Paul's Co-ed College).

Problem 6. For quadratic polynomials
P(x) = ar + bx .f. c with real coefficients

satisfying I P(x) I s 1 for -'I s x ~ 1, find the

maximum possible values of b and give a

polynomial attaining the maximal b
coefficient.

Problem 7. If positive integers a, b, C
satisfy a2 + b2 = C2, show that there are at

least three noncongruent right triangles

with integer sides having hypotenuses all

equal to d.

Problem 8. (1963 Moscow Mathematical
Olympiad) Let a, = a2 = 1 and a" = (a".12 +

2)/an-2 for n = 3. 4. Show that an is an

integer for n = 3, 4.

Problem 3. Show that for every positive

integer n, there are polynomials P(x) of

degree n and Q( x) of degree n-1 such that
(P(x))2-1 = (r-1)(Q(x))2.

Solution: POON Wai Hoi Bobby, St.

Paul's College.

For k = 1,2, .'., define Pt(x), Qt(x) by

P1(x) =x, QJx) = 1, Pt+I(X) =xPt(x) + (r-

1) Qt(x) and Qt+l(X) = Pt(x) + xQ/x). We

can check that the degree of P n is n and the

degree of Qn is n-1 by showing inductively
thatP n(x) = 2n-lx" + ...and Qn(x) = 2n-lx"-1 +

For the problem, when n = 1, P1(X)2-
1 = r- 1 = (K-1)QJx)2. Suppose the case

n = k holds. Then

Pt+l(X)2 -1= [xP/x) + (r-1)Q/x)f-1
= (r-1)[P/x)2 + 2xP/x)Q/x)

+ (r-1)Q/x)2] + P/X)2- 1
= (r-1)[P/x)2 + 2xP/x)Q/x)

+ (r-1)Q/x)2] + (r-l)Qk(x)2
= (r-1)Qt+J(x)2.

Comments: The solvers mainly observed
that if we substitute x = cos 8, then P / cos 8)

= cos kOand Q/cos8) = sin kOf sinO. The

recurrence relations for Pt+1 and Qt+1 are

just the usual identities for cos(kO + 8) and

sin(kO + 8). The polynomials P t, Qk are

(continued on page 4)

Problem 9. On sides AD and BC of a

convex quadrilateral ABCD with AB < CD,

locate points F and E, respectively, such
that AF/FD = BE/EC =AB/CD. Suppose

EF when extended beyond F meets line BA

at P and meets line CD at Q. Show that
LBPE = L CQE.

Problem 2. Given N objects and B(?2)

boxes, find an inequality involving Nand B

such that if the inequality is satisfied, then

at least two of the boxes have the same
number o! objects. .

Solution: POON Wai Hoi Bobby, St.

Paul's College.

Denote the number of objects in the kth

box by Nt" Suppose no two boxes have the

same number of objects. ThenN = NJ + N2

+ ...+ NB ? 0 + 1+ 2 + ...+ (B-1) = B (B-

I )/2. So if N < B (B-I)/2, then at least two

of the boxes have the same number of

objects.

Other commended solvers: CHAN Wing

Construction Without Words:
Inscribe a Regular Pentagon in a Unit Circle

Problem 10. Show that every integer k >

1 has a multiple which is less than k4 and

can be written in base 10 with at most four

different digits. [Hint: First consider

numbers with digits 0 and 1 only.] (This

was a problem proposed by Poland in a

past IMO.)

*****************
Solutions

Problem 1. The sum of two positive
integers is 2310. Show that their product
is not divisible by 2310.

Solution: W. H. FOK, Homantin
Government Secondary School.

Let x, y be two positive integers such
that x + y = 2310. Suppose xy is divisible

by 2310, then xy = 2310n for some

positive integer n. We get x + (2310n/x)

How would you construct a regular 17-gon inscribed in a given circle?
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that AP = 2(u2-v)/(U2+V) and BP =

4UV/(U2+V), where u, v are as in the
theorem. Since Ap2 + Bp2 = AB2, all such

P's are on the unit circle. Using similar

triangles, we find the coordinates of P is
(x,y), where x = (AP2/2) -1 and y =

;tAP.BP/2 are both rational. Let 0= LBOP
= 2LBAP. Then cos( 0/2) = (1 +x)/AP and

sin(0/2) = lyl/AP are rational. Finally, for

two such points P and P', pp' =
21 sin( 8- tl)/21 = 21 sin( 0/2)cos( 0'/2) -

cos( 0/2) sin( 0'/2) 1 is rational.

Problem Corner
(continued from page 3)

Chung Ming Secondary School), W. H.

FOK (Homantin Government Secondary

School) and HO Wing Yip (Clementi

Secondary School).

Without loss of generality, suppose a(
< ~ < :.. < an. For k = 2, 3, .~., n, since the

differences are distinct, at = at + (a2 -au +

...+ (at -at.u ~ 1 +(2 + 4 + ...+ 2(k-l)) =

1 + t2 -k. Summing from k = 1 to n, we

get a, + a2 + ...+ an ? n (n2 + 2)/3.

Comments: Ho Wing Yip proved the result

by induction on n, which did not require

the formula for summing t2 in the last step.

Pythagorean Triples
{continued from page 2)

Example 3. Find all positive integral

solutions of3x + 4)1 = 5'. (cf. W. Sierpinski,

On the Equation 3X + 4)1 = 5' (polish),

Wiadom. Mat.(1955/56), pp. 194-5.)

Solution. We will show there is exactly

one solution set, namely x = y = z = 2. To

simpl~ the equation, we consider

modulo 3. Wehavel=O+I)1= 3x+4)1=

5' = (-1)' (mod 3). It follows that z must be

even, say z = 2w. Then 3X = 5' -4)1 = (5W

+ 2Y)(5W- 2Y). Now 5w + 2)1 and 5W -2)1 are

not both divisible by 3, since their sum is

not divisible by 3. So, 5w + 2)1 = 3x and 5w-

2Y = 1. Then, (-I)W + (~I))I = 0 (mod 3) and

(-l)W -(-1))1 = 1 (mod 3). Consequently,

w is odd and y is even. If y > 2, then 5= 5w

+ 2Y = 3x = 1 or 3 (mod 8), a contradiction.

So y = 2. Then 5W -2)1 = 1 implies w = 1

and z = 2. Finally, we get x = 2.

So, if a, b, c are also relatively prime, then

one of a or b is odd and the other is even.

Let us say a is odd and b is even. Then c is
odd and it follows m : (c -a)/2 and n =

(c + a)/2 are positive integers. Note a

(: m-n) and c (: m+n) relatively prime

implies m, n cannot have a common' prime

divisor. Now considering the prime

factorization of (b/2f, which equals mn, it

follows that both m and n are perfect

squares with no common prime divisors.
Let us say m = U2 and n = y2. Then a = U2-

y2, b = 2uv and c = U2 + y2.

called Chebychev polynomials and have

many interesting properties.

We thank Professor Andy Liu

(University of Alberta, Canada) for

informing us that his colleague Professor

Murray Klamkin located this problem in

Goursat-Hedrick's "A Course in

Mathematical Anaysis", vol. 1, p. 32,

published by Ginn and Company in 1904.

Professor Klamkin has a calculus solution,

first showing Q divides p', then obtaining
Q = nP' and solving a differential equation

in P to get P(x) = cos(n arccos x).

Professor liu also forwarded an alternative

recurrence approach by Byung-Kyu Chun,

a Korean-Canadian secondary school
student He observed that P n(x) = 2xP n-'(x)

-P.-z{x) and Q.(x) = 2xQn-I(X) -Qn-2(X)

and showed by simultaneous induction that
P n(X)P n~I(X) -X = (~- l)Qn(X)Q.-l(X) and

P n(X)2 -1 = (~ -1 )Qn(X)2.

Other commended solver: 80 Wing Yip

(Clementi Secondary School).

Example 1. Show that there are exactly

three right triangles whose sides are

integers while the area is twice the

perimeter as numbers. (This was a

problem on the 1965 Putnam Exam, a

North American Collegiate Competition.)

Solution: For such a triangle, the sides are
of the fonna = (U2- y2)d, b = 2uvd and c =

(U2 + y2)d, where u, v are relatively prime,

u > v, one is odd, the other even and d is

the greatest common divisor of the three
sides. The condition ab/2 = 2(a+b+c)

expressed in tenDS of u, v, d can be
simplified to (u-v)vd = 4. It follows that

u -v being odd must be I. Then v = 1,2

or 4; u = 2, 3 or 5; d = 4, 2 or I

corresponding to the 12-16-20, 10-24-26

and 9-40-41 triangles.

Example 2. Show that there are infinitely

many points on the unit circle such that the

distance between any two of them is

rational. (This was essentially a problem

in the 1975 International Mathematical

Olympiad).

Solution: Let A = (-1, 0), B = (1, 0) and 0

be the origin. Consider all points P such

Olympiad Corner
(continued from page 1)

the jth contestant. Prove that there are
exactly 40 winning triangles in this
tournament.

Question 3. Find all the non-negative
integers x, y. and z satisfying that 7x + 1 =

3Y + 5z.

Problem 4. If the diagonals of a

quadrilateral in the plane are

perpendicular, show that the midpoints of

its sides and the feet of the perpendiculars

dropped from the midpoints to the opposite

sides lie on a circle.

Solution: Independent solution by W. H.

FOK (Homantin Government Secondary

School) and POON Wai Hoi Bobby (St.

Paul's College).

Let ABCD be a quadrilateral such that

AC is perpendicular to BD. Let E, F, G, H

be the midpoints of AB, BC, CD, DA,

respectively. By the midpoint theorem,

EH, BD, FG are parallel to each other and

so are EF,AC, HG. Since AC and BD are

perpendicular, EFGH is a rectangle.

Hence E.. F, G, Hare concyclic.

Let M be the foot of the perpendicular
fromEto CD, then LEMG = LEFG= 90°.

SoH, F, M, G, H lie on a circle. Similarly,

the other feet of perpendiculars are on the

same circle.

Problem 5. (1979 British Mathematical

Olympiad) Let ai, a2' ..., an be n distinct

positive odd integers. Suppose all the

differences I a(ajl are distinct, 1 oS i <j oS n.

Prove that a, + a2 + ...+ an ~ n(n2+2)/3.

Solution: Independent solution by Julian

CHAN Chun Sang (Lok Sin Tong Wong

Second Da):

Question 4. Suppose that yz + zx + xy =

1 andx,y, and z?; O. Prove thatx(l-f)(I-

i) + y(l-i)(I-r) + z(l-r)(I-f) .s 4,fj/9.

Question 5. Given that a function f<n)

defined on natural numbers satisfies the
conditions:f<n) = n -12 if n > 2000, and

f<n) =fij{n+16)) ifn.s 2000.

(a) Findf<n).
(b) Find all solutions tof<n) = n.

Question 6. Let m and n be positive

integers where m has d digits in base ten

and d s n. Find the sum of all the digits

(in base ten) of the product (10" -l)m.
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Similar Triangles via Complex Numbers
Kin- Yin Li

(W3-Wt>/(W2-Wt> = -<1>2. (Note that -<1>2 =

:f:(cos 60° + i sin 60°).) This equation can

be simplified to Zt+<I>Z2+<I>2Z3 = 0 by

utilizing 1 +<1>+<1>2=0. Therefore, a triangle

L1Zt~~ is equilateral if and only if

ZI + <l>Z2+<I>2Z3= O. Here <I> = (-1 + i,fj)/2

when 21, ~, ~ are in counterclockwise

direction and <I> = (-1 -i,fj)/2 when 21,

~, ~ are in clockwise direction.

Similar triangles are familiar to

students who studied geometry. Here we

would like to look at an algebraic way of

describing similar triangles by complex

numbers. Recall that every point Z on the

coordinate plane corresponds to a complex
number z = r(cose + i sine), where r = Izi

and e = argz are the polar coordinates of

z. (From now on, we will use capital

letters for points and small letters for the

corresponding complex numbers.) ,

Olympiad Corner

The Seventh Asian Pacific Mathematics

Olympiad was held on March 18. 1995.

Thefive problems given in this contest are

listed below for you to try. Time allowed

wasfour hours. -Editors

Question 1. Determine all sequences of

real numbers al'~' ..., al995 which satisfy:

2yaft ...: (n-l) ~ an-I -(n-l)

for n = 1,2, "', 1994, and

2val995 -1994 ~ aj + 1.

In general, there are two possible cases

for similar triangles. Two triangles are

said to be directly similar if one can be

obtained by translating and rotating the

other on the plane, then scaling up or

down. (Note a triangle is not directly

similar to its reflection unless it is

isosceles or equilateral.) Suppose

AZI~~ is directly similar to A WI W2W3"

Then~l/~1 = W2W1IW3W1 and L~ZI~

= L W2 WI W3. These two equations are

equivalent to Iz2-zIVlz3-zll = IW2-W1Vlw3-WII

and arg«Z2-zJI(Z3-ZJ) == arg«w2-wJI

(W3-WJ), which say exactly that

~ = W2-WI

Example 1. (Napolean Triangle Theorem)

Given ~ABC. Draw equilateral triangles

DBA, ECB, FAC on the opposite sides of

AB, BC, CA as ~ABC, respectively. Let

G, H, I be the centroids of ~DBA, ~ECB,

~FAC, respectively. Show that ~GHI is

equilateral.

Solution. Since d + <.>b+ <.>2a = 0, e + <'>C

+ <.>2b = 0,1 + <.>a + <.>2C = 0 and <.>3 = 1,

we have

g + <.>h + <.>2i

= (a+d+b)/3+<.>(b+e+c)/3+<.>2(c+l+a)/3

= [(d+<.>b+<.>2a) + <.>(e+<.>c+<.>2~)

+ <.>2(f+<.>a+<.>2c)]/3 = O.

Question 2. Let ai, ~, "', an be a

sequence of integers with values between 2

and 1995 such that:

i) any two of the a;s are relatively prime.

ii) each aj is either a prime or a product of

different primes.

Determine the smallest possible value of n

to make sure that the sequence will contain

a prime number.

Question 3. Let PQRS be a cyclic

quadrilateral (i.e., P, Q; R, S all lie on a

circle) such that the segments PQ and RS

are not parallel. Consider the set of circles

through P and Q, and the set of circles

through R and S. Determine the set A of

points of tangency of circles in these two

sets. .
(contmued on page 4)
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Ng, Keng Po Roger, lTC, HKPU

Artist: Yeung, Sau- Ying Camille, Fine Arts Dept, CU

Acknowledgment: Thanks to Martha A. Dahlen,

Technical Writer, HKUST. {or her cornrnents.

%3 -%1 W3 -WI

Reversing steps, we see that the equation

implies the triangles are directly similar,

For the case 6.ZI~ directly similar to the

reflection of 6. WI W2 W3, the equation is
--

~ = W2 -WI--
%3 -%1 W3 -WI

because ~ ' W;, W; provide a reflection of

WI' W2' W3'

Let 6. WI W2W3 be the equilateral

triangle with vertices at 1, w, w2 (= /;)"),

where w = (-1 :t i..j3)/2 is a cube root of
unity, We observe that WI+WW2+W2W3 =

1 +W2+W4 = O. One can show that this

equation is satisfied by any equilateral
triangle in general. A triangle 6.ZI~ is
equilateral if and only if (Z3-ZJ/(Z2-ZJ = (continued on page 4)

The editors welcome contributions from all teachers
and students. With your submission, please include
your name, address, school, email address; telephone
and fax numbers (if available). Electronic
submissions, especially in TeX, MS Word and
WordPerfect, are encouraged. The deadline for
receiving material for the next issue is June 10,1995.
Send all correspondence to:

Dr. Li, Kin- Yin
Department of Mathematics

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon

Hong Kong

Fax: 2358-1643
Email: makyli@uxmail.ust.hk

Example 2. Given an acute triangle

AIA~3' let HI, H2, H3 be the feet of the

altitudes dropped from AI, A2, A3,

respectively. Show that each of the

triangles AIH2H3, A2HPI' A3HIH2 is

similar to l1AI A2 AJ.

Solution. Set up coordinates so that Al =

(0,0), A2 = (t,O) and A3 = (x,y), i.e., a( = 0,

a2 = t, aJ = x+iy. Observe that AIH2 =

A1A2 COS LAl = tx/.[;9. Thus h2 =

(tx/.[;9)(aJ/laJI) = ~(x+iy)/(~+f).

Also, hJ = x. Now

~ = ~ = -..!.-- = ~.
h, -a\ X2+y2 x-iy ~ -a;

So, in fact, l1A\H2H3 is similar to (the

reflection of) l1A1A~J. By changing
indices, we also get similarity for the other

two triangles.
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From The Editors' Desk:

Cryptarithms and Alphametics
Tsz-Mei Ko

y--
A cryptarithm or alphametic is a puzzle

to find the original digits in an encrypted

equation which is made by substituting
distinct letters for distinct digits in a simple

arithmetic problem. Here is an example.

Consider the alphametic

AT
+ A

TEE

We may check our solution that it is

arithmetically correct and each letter
indeed represents a distinct digit (with

A=9.. E=O and T=l). Also, from our

reasoning, we see that the solution for this

puzzle is unique.

.,,

,-~

:.

There are many amusing alphametics
that make sense in English or some
language. Here is one with a unique
solution. Do you think you can solve it?

FORTY
TEN

+ TEN
SIXTY

in which each letter represents a distinct
digit. The puzzle is to find the original
digits each letter represents so that the
result is arithmetically correct.

This is the last issue for the 94-95

academic year. Thanks for all the supports,

comments, suggestions, and especially the
elegant solutions for the Problem Corner.
We will give out a few book prizes to show

our appreciation. We are also planning a

Best Paper Award for articles to be

submitted in the next academic year.

Details will be given in the September

issue. Meanwhile, we encourage our

readers to spend some spare time writing

intriguing articles for the Mathematical

Excalibur?

To solve this puzzle, we may reason a$

follows. Since T is the "carry" from the

"tens" column, T must be equal to I and

thus we get

How about this cryptarithm in which

the phrase "Qui Trouve Ceci" means "Who

can solve this?" Each letter represents a

distinct digit and each # represents any

digit (not necessary to be distinct).

Al
+ A

lEE
I CECI

QUI} TROUVE

.ill
###
.ill

###
!ll

###

.ill
V

Now, on the tens column, since A;t E,
there must be a carry from the umts
column, i.e., A+l = lO+E. Thus A=9 and
E=O. Therefore, the solution should be

*****************

For the 95-96 academic year, we plan

to have five issues to be delivered on Sept.

Nov, Jan, Mar and May. If you would like
to receive your personal copy directly, send

five stamped self-addressed envelopes to

Dr. Tsz-Mei Ko, Hong Kong University of

Science and Technology, Department of

Electrical and Electronic: Engineering,

Clear Water Bay, Kowloon. Please write

"Math Excalibur 95-96" at the lower left

comer on all five envelopes.

91
+ 9

100

Mathematical Thumbnotes:

~ , oio t~ i!, 1 (lI Df.f.
Pto «<~ ~

~

~

*****************
We have sent out the computer

program FRACTINT to all interested
readers. If you have requested but not yet
received the software, contact Roger Ng.

/ ~-:«- ~~~~~~I;'

coU'l.I:+Ll.p,!

o~-1:r-~ ~o~
0

.!J:o J: ti.e~

rt.1&"',II-rh&."&"' .

?;>
"?

~~.t!.

f

i\~ 

~'-"

~

(--0.~
*****************

Are you interested in math or in

winning a math olympiad gold medal?

The Preliminary Selection Exam for the l(4toV! il.t.I\/t-:
1996 Hong Kong Math Olympiad Team 'tl.\~_AE,~ \,)

will be held in Hong Kong Polytechnic L6AE."CAPI(

University on May 27, 1995, You may ask

your math teacher for further information if

you are interested in participating in this

exam, The 1996IMO will be held in India.

~,t(~Ot
h"tP. n~1\-
&~{ib. UT.~

~~!,

~~ ) ~
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Problem Corner Paul's College), SZE Hoi WING (St.

Paul's Co-ed College) and WONG Chun

Keung (St. Paul's Co-ed College).

Since b == (P(I) -P(-I))/2 ~ 2/2 = 1,

the maximum possible values of b is at

most 1. Now the polynomial P(x) = Jil/2 +
x -1/2 = (x + 1)2/2 -1 satisfy the condition

I p(x) I ~ 1 for -1~x~ 1 because 0 ~ x+l ~ 2.

So the maximum of b is 1.

Without loss of generality, assume

a ~ b. The first triangle comes from (~f ==

(a2+b2)c4 == (a(:2)2 + (bC2)2. The second

triangle comes from (~)2 == (a2 + b2)2~ ==

(a4 -2a2b2 + b4 + 4a2b2)~ == [(a2-b2)cf +

[2abcf. The third triangle comes from (~)2

== (~+b2)3 == (a6 -6a4b2 + 9a2b4) + (9a4b2 -

6a2b4 + b6) == [ala2-3b2lf + [b(3a2-b2)f.

We welcome readers to submit
solutions to the problems posed below for

publication consideration. Solutions
should be preceded by the solver's name,
address and school afftliation. Please send
submissions to Dr. Kin Y: Li, Department

of Mathematics, Hong Kong llniversity of
Science and Technology, Clear Water
Bay, Kowloon. Solutions to the following
problems should be submitted by June 1O,
1995.

For the first and second triangles.
2abc = ac2 or bC2 implies c = 2b or 2a.

Substitute c = 2b or 2a into a2 + b2 = C

will lead to the contradiction .;3 = alb or

bla. So these two triangles cannot be

congruent.

Comments: With -1 ~ x ~ 1 replaced by

0 ~ x ~ 1, the problem appeared in the

1968 Putnam Exam.

Other commended solyers: CHAN Wing

Sum (HKUST), CHEUNG Kwok Koon

(S.KH. Bishop Mok Sau Tseng Secondary

School), W. H. FOK (Hornantin

Government Secondary School), Michael

LAM Wing Young (St. Paul's College),

UN Kwong Shing (University of Illinois)

and LIU Wai Kwong (pui Tak Canossian

College).

Problem 11. Simplify

1995

L tan(n)tan(n+ 1).
n=!

Similarly, for the fIrst and third
triangles, since b(3a2-b2) = a~ or bC2 will

lead to /2 = (a+b)/a or da by simple

algebra, these two triangles cannot be

congruent.

(There is an answer with two terms
involving tan 1, tan 1996 and integers.)

Problem 12. Show that for any integer
n > 12, there is a right triangle whose
sides are integers and whose area is
between n and 2n. (Source: 1993 Korean
Mathematical Olympiad.)

Finally, for the
triangles, b(3a2-b2) =

lead to v'5 = (c-b)/b

simple algebra). So
cannot be congruent.

Problem 7. If positive integers a" b, C
satisfy a2 + b2 = e, show that there are at

least three noncongruent right triangles

with integer sides having hypotenuses all

equal to C3.
Comments: Au Kwok Nin obtained the
same triangles systematically by writing
C6 = (~cosne)2 + (~sinne)2 for n = 1,2,3

and expressed cos ne, sin ne in terms of
cos e = alc, sin e = blc. Cheung Kwok

(continued on page 4)

Solution: Independent solution by LIN

Kwong Shing (University oflllinois) and
LIU Wai Kwong (Pui Tak Canossian

College).

Problem 13. Suppose Xk' Yk (k = 1,2, ..',

1995) are positive and Xl + ~ + ...+ XI99S =
Yl + Y2 + ...+ YI99S = 1. Prove that

E _XkYk ~ .!.
k-l xk+Yk 2

Problem 14. Suppose ~ABC, ~A 'B'C'
are (directly) similar to each other and

~AA~", ~BB'B". ~CC'C" are also
(directly) similar to each other. Show that
~A "B"C" is (directly) similar to ~ABC. Proof Without Words

Problem 15. Is there an infinite sequence
ao- aI, a2, 000 of nonzero real numbers such

that for n = 1, 2, 3, 000, the polynomial P n(X)

= ao + a\x + a"x2 + 000 + a,.x" has exactly n

distinct real roots? (Source: 1990 Putnam

Exam.)

*****************
Solutions

Problem 6. For quadratic polynomials
P(x) = ar + bx + c with real coefficients

satisfying Ip(x) I s 1 for -1 s x s I, find the

maximum possible values of b and give a

polynomial attaining the maximal b

coefficient.

sin{x+y) = p = sin x cos y + cos x sin y
Solution: Independent solution by
KWOK Wing Yin (St. Clare's Girls'

School), Bobby POON Wai Hoi (St.

second and third

(a2-b2)c or 2abc will

or (c+a)/a (again by

these two triangles
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Problem Corner
(continued from page 3)

Solution: Bobby POON Wai Hoi, St.

Paul's College.

First construct parallelograms ABGF

and CDFH. Since BG, AD, CH are

parallel, LGBE = LHCE. Also, BG/CH =

AFIDF= AB/CD = BE/CE. So, ABGEis

similar to A CHE. Then G, E, H must be

collinear and GE/HE = AB/CD = GF/HF.

Therefore, LGFE=LHFEor LBPE=LCQE.

Koon observed that the greatest common
divisors of the sides of the triangles were
divisible by different powers of c, hence
the triangles could no! be congruent.

Other commended solvers: AU Kwok

Nin(Tsung Tsin College), C1:IAN Wing

Sum (HKUS1), CHEUNG Kwok Koon

(S.KH. Bishop Mok Sau Tseng Secondary

School) andFUNG Tak Kwan & POON

Wing Chi (La Salle College).

Other commended solvers: CHEUNG
Kwok Koon (S.K..H. Bishop Mok Sau

Tseng Secondary School), W. H. FOK
(Homantin Government Secondary
School), Michael LAM Wing Young (St.
Paul's College) and LIU Wai Kwong (Pui
Tak Canossian College).

ProblemS. (1963 Moscow Mathematical
Olympiad) Let at = a2 = 1 and an = (an.? +

2)/an-2 for n = 3, 4, "'. Show that an is an

integer for n = 3, 4, '.'.

Solution. We have Pk+l-ak+1 = <L>(pk-ak+.)'

where cu = cosI20o-isinI20o=(-I-iv'3)/2.

Adding proper multiples of these equations

(so as to cancel all p;s) , we consider

(p \ 986-a 1986)+CU(P 1985-a 1 98S)+ CU 2(p 1984-a 1984)

1985/~ )+ ...+ CU \l'1-al

= CU(P198S -a1986) + CU2(P1984 -a198S)

3/~ ) 1986(p )+ CU \1'1983 -a1984 + ...+ CU 0 -al .

Cancelling common terms on both sides,

.1986 th . noting CU Po = Po = PI986' en transposmg

all terms on the left side to the right, we get

0 = (l-cu )(al986+cual98S+cu2aI984+...+cuI98Sa.)

= 662(I-cu)(a3+cua2+cu2a.)

by the definition ofak and the fact cu3 = 1.

Since cu * 1, 6.A1A~3 is equilateral.

Olympiad Corner
(continued from page 1)

Problem 10. Show that every integer k>1

has a multiple which is less than k4 and can

be written in base 10 with at most four

different digits. [Hint: First consider

numbers with digits 0 and 1 only.] (This

was a problem proposed by Poland in a

past IMO.)

Question 4. Let C be a circle with

radius R and center 0, and S a fixed point

in the interior of C. Let AA' and BB' be

perpendicular chords through S. Consider
the rectangles SAMB, SBN:4', SA'M'B',

andSB'NA. Fmd the set of all points M, N',

M', andN when A moves around the whole

circle.

Solution: Independent solution by CHAN

Chi Kin (pak Kau English School),

Michael LAM Wing Young and Bobby

POON Wai Hoi (St. Paul's College).

Since at~; a2 = 1 and anan-2 = an-( + 2

for all integer n ~ 3, we have an * 0 and
anan-2 -an-( = 2 = an+tan-l -an2 for n ~ 3.

We obtain (an+t+an-Jlan = (an+an-Jlan-t by

rearranging terms. Hence, the value of

(an+an-Jlan-t is constant for n ~ 3. Since
(a3.f-aJla2 = 4, we have (an+an-2)lan-l =4,

i.e., an = 4an-t -an-2 for n ~ 3. This shows

that an is in fact an odd integer for all n ~ 1.

Question 5. Find the minimum positive

integer k such that there exists a function!

from the set Z of all integers to {I, 2, .", k}

with the property that.f(x)..f(y) whenever

Ix-yl E {5, 7, .I2}.
Comments: Most solvers observed that an

depends on an-I and an.2, and thus guessed

that an can be expressed as ran-l + San-2 for

some r, s. They went on to find r = 4 and
s = -1 by setting n = 3, 4, then confirmed

the guess by mathematical induction.

*****************
Olympiad News:

Congratulations to CHEUNG Kwok
Koon (p. 7, SKH Bishop Mok Sau Tseng

Secondary School), HO Wing Yip (p. 6,
Clementi Secondary School)~ MOK Tze

Tao (p. 5, Queen's College), POON Wai

Hoi Bobby (p.- 6, St. Paul's College),

WONG Him Ting (p. 7, Salesian English

School) and YU Chun ling (p. 6, Ying Wa

College) for being selected as the 1995

Hong Kong Mathematical Olympiad Team
Members. The selection was based on their

outstanding performances in the Hong
Kong Math Olympiad Training Program.

They will represent Hong Kong to

participate in the 36th International

Mathematical Olympiad (IMO) to be held
in Toronto, Canada this summer. Hong

Kong was ranked 16 among 69

participating teams in 1994.

Solution: Official IMO solution.

Choose n such that 2ft-I ~ k < 2ft. Let S

be the set of nonnegative integers less than

10ft that can be written with digits 0 or 1

only. Then S has 2ft elements and the

largest number m in S is composed of n

ones. Since 2ft > k, by the pigeonhole

principle, there are two numbers x, y in S

which have the same remainder Upon

division by k, i.e., x = y (mod k). Then Ix-yl

is a multiple of k and

Ix-yl ~ m < 10ft-I x 1.2 < 16ft-I ~ k4.

Finally, considering the cases of

subtracting a 0,1 digit by another 0,1 digit

with possible carries, we see that Ix -yl can

be written with digits 0,1,8,9 only.

Other commended solvers: CHAN Wi~g

Sum (HKUS1), CHEUNG Kwok Koon

(S.KH. Bishop Mok Sau Tseng Secondary

School), HUI Vue Hon Bernard

(HKUS1), UN Kwong Shing (University

of lllinois), LIU Wai Kwong (pui Tak

Canossian College) and Alex MOK Chi

Chiu (Homantin Government Secondary

School).

Similar Triangles ...

(continued from page 1)

Example 3. A triangle A1A~3 and a point

Po are given in the plane. For s ~ 4, define
A. = A..3. For k ~ 0, defme Pk+1 to be the

image of P k under rotation with center at

Ak+1 through angle 1200 clockwise. Prove
that if P1986 = Po, then llA,A~3 is

equilateral. (This was a problem on the

1986IMO.)

Problem 9. On sides AD and BC of a

convex quadrilateral ABCD with AB < CD,

locate points F and E, respectively, such
thatAF/FD = BE/EC =AB/CD. Suppose

EF when extended beyond F meets line BA

at P and meets line CD at Q. Show that
LBPE = L CQE.
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Olympiad Corner
Solution by Linear Combination

Fourth Mathematical Olympiad of
Taiwan:

Kin-Yin Li

In mathematics, often we are
interested in fmding a solution to
equations. Consider the following two

problems:

factor mj omitted. ConsideiPj, 2Pj, ...,

m?j. Upon division by m;, no two of
these will have the same remainder
because the difference of any two of
them is not divisible by m;- So one of
these, say c?j, has remainder I. Let Vj=
c?j,thenv;= I (modmjandv;=O(Iriod
mk) for k * i because P j = 0 (mod mJ.

First Day

Taipei, April 13, 1995

Problem 1. Let P(x) = ao + alx + ...+

all-lx,-1 + a"x" be a polynomial with

complex coefficients. Suppose the roots

ofP(x) are ai, a2, ..., all with jaIl> I,

la21> I, ..., lafi > I, and laj+)! ~ I, .",

lalll ~ 1. Prove:

fila;! ~ 1~o12 +iaJ2+...:'anf

;=1

Problem 1. Given real numbers ml, m2,

..., fnn (all distinct) and aI' a2, ..., an,
fmd a polynomial v(x) such that
v(mJ = aI, v(mJ = a2, ..., v(mJ = an.

Finally to solve problem I or 2 in

general, we use the special case
solutions VI' V2, ..., v" to form V = alVj +

a2v2 + ...+ a"v". It is now easy to check

that the expression V solves both

problems I and 2.

l j- .

Problem 2. Given a sequence of

integers Xl' X2,X], X4, XS' X6, X7, Xg, One

constructs a second sequence 1x2 -xII,

Ix] -x21, 1x4 -x]l, Ixs -x41, IX6 ...: xsl, 1x7 -x61,

IXg -x71, Ix I -Xgl.. Such a process is called

a single op~ration. Find all the 8-tenns

integral sequences having the following

property: after finitely many single

operations it becomes an integral

sequence with all tenns equal.

Ian 

I

(continued on page 4)

"." ." a ""'1"11'1"'" ..la. "'all uc

applied to both problems. The idea is to

solve first the special cases, where

exactly one of the a;,s is 1 and all others O.

For problem 1, this is easily solved by
defming (for i = 1, 2, ..., n) the

polynomial PAx) to be (x-mJ(x-mJ...

(x-mJ with the factor (x-m;) omitted,

i.e.,

The expression of v, involving a sum

of multiples of VI' V2, ..., V"' is so

common in similar problems that it is

now come to be called a linear

combination ofv\, V2, ..., v". In passing,

note that the a/s are numbers. However,

the Vi'S are polynomials in problem I and

numbers in problem 2. Like vectors

expressed in coordinates, the v/s are

objects that may take on different values

at different positions. So functions

corresponding to solutions of equations
are often viewed as vectors (with

infinitely many coordinates). Concepts
like these are the foundation of Linear

n

l}(x)=il(x-mj),
j=l
j~i

and v;(x) = P;(x)/P;(mJ. Then v,{mJ = 1
and v,{mk) = 0 for k * ibecause P;(mJ =

0 (for k * i).

For problem 2, this is solved similarly
by first defining (for i = 1,2, ..., n) the

integer Pi to be m.m2 ...mn with the (continued on page 2)

Problem 2. Given positive integers ml,

mz, ..., mn (pairwise relatively prime)
and integers ai, az, ..., an, fmd an integeJ

v such that v = al (mod mJ, v = az (mod

mz), ..., v = an (mod mn).

Problem I comes up first in algebra and

analysis (later in engineering and

statistics). It is an interpolation problem,

where we try to fit the values a; at m;

(i.e., to fmd a polyno~ial whose graph

passes through the points (mJoaJ,

(mz,az), ..., (mn,an». Problem 2 comes
up in number theory. It is a congruence

problem, where we try to count objects

by inspecting the remainders (i.e., to

find a number which has the same

remainder as a; upon division by mJ.

Th~..~ ;c, ~ +a~I.~:~..a +I.n+ ---1.-

For problem ),

~(x) Pn(x)
v(x)=a) + ...+an

~(ml) Pn(mn)

is called Lagrange's interpolation

formula. For problem 2, although the c)s
may be tedious to find, we know a
solution v = alc1P1 + ...+ anc"Pn exists.

This is the assertion of the Chinese
remainder theorem. Note also that if we
add to v any multiple of (x-m J(x-mJ ...

(x-mJ in problem 1 or any multiple of

mlm2...mn in problem 2, we get other
solutions.
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Solution by Linear Combination:

(continuedfrom page 1)

Algebra, which studies the properties of
solutions of these kind of problems in an
abstract manner.

¥B*-ifI
w~f4fX*~~~*

:{£ rp m[¥j ~ t~~~~ /1X;~1!l: ~*~$
(~T.*~) rp , ~-mT"'i!i;g~ '

;gm [!J'jjJ::f5;[jIf!:] r~'~~

Example 1. If .f{x) is a polynomial of
degree at most n and .f{k) = (n+I-

k)/(k+l) fork= 0, I, ..., n, find.f{n+l).

r..' : 4-':fifi¥JJ1'~~I!I:'::=.::=.~zllf
='1i1ilfl:zJJi::=.,-t::;-t::;lfI:zJJi
= ' rl:l"¥JJ~ffiJ?

:i§:EI: =+.=-

~A*~~r~~~ ' r~~~*M$*~~

[f*.y~] '~-~1i~N

.=.A~ff-t;+~
1i~:f:t;tt-tt
-f::..yIllIfiI1E*J'3
~s~1i-OO~~

fflJJi.~.A~~~

N =70X2+21 x3+ISX2-IOSx2=23

*M~~~~)t:tX7.wS~/j}ffl:l!{'m
E~3~1 ' ~:I!{~70 ; ~lIt ' 70X2

1!;t;;3ji2o~1J:J.tt!? '21~7.w3~~'ffl:Wi '

fflEI!;t;;Sjil 'ffrP),21 X31!;t;;S~3 ; ~~
IS X21!;t;;~3.wS ' ~7~2 0 ~.=.I!i:~~

~'~~7pH~f~f~; ~r&' ~~3

.wSW7~/i.';:ffl:l!{'~N~m~,fEffr~
~f~~5/J\IE~:Wi 0 ~~~llipHfI~

~o

Solution 1. Applying Lagrange's

interpolation formula, we define Pix) =

x(x-l) ...(x-n) with the factor (x-k)

omitted. Then Pin+l) = (n+l)!/(n+l-

f), Pit) = (-l)'l-kk!(n-k)! and

( )"+I~ ( l )k+1 (n+I)! -
( I)"J(n+I)= -I k~- (k+I)!(n-k)'- -illr..'M~~~~~iOO.JJ;;J:: , :t£tp~~

where ~~1 ~sed the binomial expansion ra'~.mE{$' :t£g§nl!l:¥~LfJ!im~

of (1-1) mthe last step. [tpm*,Jtii5E.~] 0 tlD*mm~l!I:~

.~~*~ff;; [f*Tr..'M] , R1r:IrnB
Solution 2. The polynomial g(x) = ~~ftJ:

(x+llf{x) -(n+I-x) has degree at most

n+1.Wearegiventhatg(O)=g(I)='" N=2 (mod3) ;

= g(n) = O. So g(x) = Cx(x-l)oo-(x-n). N=3 (modS) ;

TofindC, wesetx=-l and get g(-l) N=2 (mod?)

= -(n+2) = C(-I)n+I(n+I)! .Therefore, 0 .-s- e C = (-If(n+2)/(n+I)! and g(n+l) = *~/J\a91E~I!I:N ~fiE 00 ~IRJ

(n+2lf{n+ I) = (-I)"(n+2), which implies.

./(n+ I) = (-1)1/. ","'" -"

75-i1.~~~~ -

I,f!)t, )it ~~Q.Bj

~~'Oj~~ A~I

9'.:.F~

'C'.Mt:. CA-M)).l:t
~ 1;:-\ ~ I-'" .A.m

c:fiJ A.1. , -m ~ I'Y\.A

! .5 1W. ~-1ti. ~~
I ~':.~ ~IS

~~(ft&;, ~ flJ'(J

Example 2. Prove that for each positive
integer n there exist n consecutive
positive integers, none of which is an
integral power of a prime number.
(Source: 1989 IMO.)

nt}

Solution. LetPl'pZ' ."'P2n be 2n distinct

prime numbers and consider the

congruence problem v = -1 (mod PIPJ,

v = -2 (mod P3P4), ..., v = -n (mod

P2II-IP2n)' Since PIPz, P3P4' ..., P2n-IP2n are

pairwise relatively prime, by the

Chinese remainder theorem, there is a

positive integer solution v. Then each of

the n consecutive numbers v+ 1, v+2, ...,

v+n is divisible by more than one prime

number. So each is not a power of a

prime number.

~e-; ~-
~-=ij:--

= v' :-r;q- ~ ) ~

!~

I~
~ (~-'),A.

~
Z-

r:;A::t1~~~ A > t J ~'D"
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~. -~'=.
\ ~"- -¥- .If
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Problem 22. An acute-angled triangle
ABC is given in the plane. The circle
with diameter AB intersects altitude CE
and its extension at points M and N, and
the circle with diameter AC intersects

altitude BD and its extension at P and Q.
Prove that the pointsM, N, P, Q lie on a
common circle. (Source: 1990 USA
Mathematical Olympiad).

Problem Corner *****************

Solutions
*****************

We welcome readers to submit solutions
to the problems posed below for

publication consideration. Solutions
should be preceded by the solver's

name, address, school affiliation and
grade level. Please send submissions to
Dr. Kin- Yin Li, Dept of Mathematics,

Hong Kong University of Science and
Technology, Clear Water Bay,
Kowloon. The deadline for submitting
solutions is February 28, 1996.

Problem 21. Show that if a polynomial
P(x) satisfies

~
2

p(2X2 -1) =

it must be constant.

Solution 1: Independent solution by
LIU Wai Kwong (Pui Tak Canossian

College) and YUNG Fai (CUHK).

Problem 26. Show that the solutions of Construct a sequence Ul= I, U2 = -land

the equation COS1tX = t are all irrational = J¥Un-t + I
ti > 3u" or n -.

numbers. (Source: 1974 Putnam Exam.) 2

Un < U,.+l < I for n ?; 2 and P(un) =

(P(u,.+u2/2) -1 for n ?; I. Note that

P(un) * 0 for n ?; I (otherwise P(un) = 0

would imply P(Un.U, P(U".J, ..., P(UU

are rational, but P(I) = l:t J3.)

Differentiating the functional equation

! for P, we get 4xP'(2r-I) = P(x)P'(x).
I~

Since P(l) * 4, we get P'(UU = P'(l) = O.

This implies 0 = P'(uJ = P'(UJ) = C Therefore, P'(x) is the zero polynomial

and so P(x) is constant.

We 

have

Solution: William CHEUNG Pok
Man (S. T.F .A. Leung Kau Kui

College).

Problem 27. Let ABCD be a cyclic
quadrilateral and let lA, IB, lc, ID be the
incenters of ABCD, MCD, MBD,

MBC, respectively. Show that lAIJclD
is a rectangle.

If 1\1; N; P, Q are concyclic, then A must
be the center because it is the

intersection of the perpendicular
bisectors of PQ and MN. So it suffices to
show AP = AM.

D

Considering the similar triangles ADP
and APC, we get ADIAP = APIAC, i.e.,
Ap2 = ADxAC. Similarly, AJ.1l =

AExAB. Since LBEC =LBDC, points B,
C, D, E are concyclic. Therefore,
ADxAC = AExAB and so AP = AM.

Comments: This problem was from the
1991 USSR Math Winter Camp. Below
we will provide a solution without

calculus.

1
C -I

D

A ",,~~~~==~~==:::7 -B
Solution 2: Suppose P(x) = al)X" + alX'.1

+ ...+ an is such a polynomial with

degree n ~ I. Then

ao(2x2 -1)n +al(2x2 _1)n-1 + ...+an

( n n-1 )2= aox +alx + ...+an -1.

2

Comparing the coefficients of x2Il, we

find a02n = ao2/2, so ao = 2'1+1. Suppose aD,

ai, ..., ak are known to be rational.

Comparing the coefficients of ~l-k-l, the

left side yields a rational number

involving aD, ..., ako but the right side

yields a number of the form aOak+l plus a

rational number involving ao, ..., ak. So

ak+1 is also rational. Hence aD, aI, ..., an

are all rational. Then P(I) = ao + a1 + + an is rational. However, P(l) =

(P(1)2/2) -1 forces P(l) = l:t J3, a

contradiction. Therefore P(x) must be

constant.

Problem 28. The positive integers are
separated into two subsets with no
common elements. Show that one of
these two subsets must contain a three
term arithmetic progression.

i

Problem 29. Suppose P(x) is a

non constant polynomial with integer

coefficients and all coefficients are
greater than or equal to -1. If P(2) = 0,

show that P(l) :;t O.

Problem 30. For positive integer n > I,

define ./(n) to be I plus the sum of all

prime numbers dividing n multiplied by
their exponents, e.g.,./(40) =./(23 X 51) =
1+ (2x3 + 5xl) = 12. Show that ifn > 6,

the sequence n,./(n),fiJ{n»,fij{/(n»), ...

must eventually be repeating 8, 7, 8, 7,

8,7,

.l.mn=o
. I a 1 < lim 2 211m an -nl -n~(X)m +n

n~(X)

Other commended solver: William
CHEUNG Pok Man (S.T.F.A. Leung
Kau Kui College). (continued on page 4)

Other commended solvers: HO Wing

Yip (Clementi Secondary School), LIU
Wai Kwong (Pui Tak Canossian

College), Edmond MOK Tze Tao

(Queen's College), WONG Him Ting
(HKU) and YU Chun Ling (Ying Wa

College).

Problem 23. Determine all sequences
{at,a2,...} such that al = 1 and Ian-ami

~ 2mn/(m2 + n2) for all positive integers
m and n. (Source: Past IMO problem

proposed by Finland).

Solution: Independent solution by
CHAN Wing Sum (HKUST), LIU Wai

Kwong (Pui Tak Canossian College)
and YUNG Fai (CUHK).

For fixed m,
A



Mathematical Excalibur, ~o/. 2, No. 1, Ja~eb, 96
Page 4

Problem Corner

(contmuedfrom page 3)

So for all m,

(For this solution, log means loglo')
Observe that

9000 possible choices. In particular, one
of these is 1995.

.
1 1 1 1996

(1) 0 < og ak ~ og a30000 < og-

1995
fork= 1,2, ...,30000;

-

Olympiad Corner
(continuedfrom page I)

anI = lim an ,
n-+«J

It follows that all teTDlsare equal (to al
= 1.)

Problem 3. Suppose n persons meet in a

meeting, every one among them is
familiar with exactly 8 other participants
of that meeting. Furthermore suppose
that each pair of two participants who
are familiar with each other have 4

acquaintances in common in that
meeting, and each pair of two
participants who are not familiar with
each other have only 2 acquaintances in
common. What are the possible values
ofn?

Problem 24. In a party, n boys and n
girls are paired. It is observed that in
each pair, the difference in height is less
than 10 cm. Show that the difference in
height of the k-th tallest boy and the k-th
tallest girl is also less than 10 cm for k =

1,2, ..., n.

30000

(n) }::Ioga j > 15000(logal + loga30000) > I.
j=1

Note the distance between {logI995}
and {logI996} is log(1996/1995). Now

bo, bl, ..., b3oooo is increasing and

b3oooo -bo > 1 (by (ii»,

but

19960 < b"J -b. < log
J') 1995

So there is a k ~ 30000 such that

(by (i)).
Solution: Independent solution by HO

Wing Yip (Clementi Secondary School)
and YU Chun Ling (Ying Wa College).

{log 1995} < {bk} < {log 1996}

*****************

Second Day

Taipei, April 15, 1995

Probiem 4. Given n (where n ~ 2)

distinct integers ml, m2, ..., mil' Prove
that there exist a polynomial .f{x) of
degree n and with integral coefficients
which satisfies the following conditions:

(i) .f{m)=-l,foralll ~i~n.

(ii).f{x) cannot be factorized into a
product of two nonconstant
polynomials with integral
coefficients.

Let bl ;?: b~;?: ...;?:bn be the heights of the

boys andg} ;?:g2;?: ...;?:g" be those of the

girls. Suppose for some k, Ibk -gkl ;?: 10.

In the case bk-&;?: 10, we have bi-~;?:10

for 1 ~ i ~ k and k ~j ~ n. Consider the

boys of height bi (1 ~ i ~ k) and the girls

ofheightgj(k~j:S n). By the pigeonhole

principle, two of these n+ 1 must be

paired originally. However, bi -gj;?: 10
contradicts the hypothesis. (The case

gk -bk;?: 10 is handled similarly.) So
Ibk -gkl < 10 for all k.

Comments: This was a problem from the

1984 Tournament of the Towns, a

competition started in 1980 at Moscow

and Kiev and is now participated by

students in dozens of cities in different

continents.

Problem 5. Let P be a point on the
circumscribed circle of MJA~J' Let H
be the orthocenter of MIA~J. Let B1

(B2, BJ respectively) be the point of
intersection of the perpendicular from P
to A~J (AJAlj AJA2 respectively). It is
known that the three points B" Bz, BJ are
colinear. Prove that the line BIB2BJ
passes through the midpoint of the line

segment PH.

Other commended solvers: CHAN
Wing Sum (HKUST), William
CHEUNG Pok Man (S.T.F.A. Leung
Kau Kui College, KU Yuk Lun
(HKUST), LIU Wai Kwong (Pui Tak
Canossian College) and WONG Him

Ting (HKU).

Problem 25. Are there any positive
integers n such that the first four digits
from the left side of n! (in base 10

representation) is 1995?

Solution 1: LIU Wai Kwong (Pui Tak
Canossian College).

Let [x] be the greatest integer not
exceeding x and {x} =x -[x]. Also, let
a. = I +J"x10'& b = log 1081 and b.=:J , 0 .J

log 10&! + (log a) + ...+ log aj) forj> O.

Problem 6. Let a, b, c, d be integers
such that ad -bc = k> 0, (a,b) = 1, and
(c,d) = 1. Prove that there are exactly k

ordered pairs of real numbers (Xt,xJ
satisfying 0 ~ Xl' X2 < 1 and both axt +
bX2 and CXl + dx2 are integers.

Now

logIO8!+ L~=IIOgaj = log(l08 + k)!~ 8k

implies

{log1995} <{log(108+k)!} <{logI996}.

Adding [log1995] = [log1996] =3, we

have

log1995 < log(108+k)! -m < logI.996

for m = [log (108+k)!] -3. Therefore,

1995x10'" < (108+k)! < 1996x10m.

Consequently, the number (108+k)!

begins with 1995.

Comments: With 1995 replaced by
1993, this problem appeared in the 1993
German Mathematical Olympiad.
Below we will provide the (modified)
official solution.

Solution 2: Let m = 1000100000. If k <

99999 and (m+k)! =abcd... (in base 10
representation), then (m+k+1)! =
abcd... x 10001... = efgh..', where efgh

equals abcd or the first four digits of
abcd+ 1. So, the first four digits of each

of(m+l)!, (m+2)!, ..., (m+99999)! must
be the same as or increase by 1

compared with the previous factorial.
Also, because the fifth digit of m+k (k <
99999) is 1, the fifth digit of (m+k)! will
be added to the first digit of (m+k)! in

computing (m+k+1)!. So, in any ten
consecutive factorials among (m+1)!,

(m+2)!, ..., (m+99999)!, there mus~ be
an increase by 1 in the first four digits.
So the first four digits of (m+1)!,

(m+2)!, ..., (m+99999)! must take on all
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Problem 2. For any nonempty set S of fiiJ~WJ. 0

real numbers, let a(S) denote the sum of
the elements of S. Given a set A of n
positive integers, consider the collection -.
of all distinct sums a(S) as S ranges over
the nonempty subsets of A. Prove tbat
this collection of sums can be partitioned
into n classes so that in each class, the
ratio of the largest sum to the smallest
sum does not exceed 2. B

Problem 3. Let ABC be a ttiangle.
Prove that there is a line 1 (in the plane
of triangle ABq such that the
intersection of the interior of
triangle ABC and the interior of its
reflection A' B' C' in I h~ area more than
2/3 the area of triangle ABC.

&
AF

FB

Area of MCP

Area of ABCP

~ .l:. jzI!;'=-~.1:\ ~ 1JI.!J;f§ * ~O ~ ~ CJ M
ftm.:fJtfrlj:$'r.~~:PJ~tt'g-flM¥[fij":m:

~tt'g'l1.W~~ : AF BD CE
=1 0

FB DC EA

~ ~ JJ. ~ ~ * iflJ A "@"][ (Giovanni
Ceva)1£+-t;-tlt*C~a~fI'i1 ' ffrPJf&
A fi Z ~ r"@"][ (Ceva) ~ JJ. j 0 "@"
][~JJ."CJm~lPJlJ~m~)! , f.§.-.t~

m~):5~:tiP.ifIJm T m"III~OOtRffi
~fI'i1:=f:.~ ' f~ff**mm 0

c

(II-)

!il-~moo':='~~:;FJ/;}#~AD'
~irJ~~~~ ' ~!l:t

Area of MBD BD=-0
DCArea of MDC

g§][~:@.~~$Q~~{t?~Vi?m
m~$Q,tt.~re~$Q~~*.ff
~°tt.g§][~:@.*~'~~~$Q
~:

~.=.~ ~ABC~g§][~ (Cevians) [~
rn~:¥.Jj;iJ;~~~]AD" BE~CF~
Jf:. ~ fIt-

(continued on page 4) A
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(continued from page 1) Error Correcting Codes (Part I)

Tsz-Mei Ko.l:t~ (*):fa (**)"DJ~

AF AG-=-
Suppose one would like to transmit a

message, say "HELLO.. .", from one
computer to another. One possible way
is to use a table to encode the message
into binary digits. Then the receiver
would be able to decode the message
with a similar table. One such table is
the American Standard Code for

Information Interchange (ASCII) shown
in Figure 1. The letter H would be

encoded as 1001000, the letter E would
be encoded as 1000101, etc. ~igure 2).

A 1000001 S 1010011 1100001 1110011

1000010 1010100 1100010 1110100
1000011 10101011100011 1110101
1000100 1010110 1100100 1110110

1000101 1010111 11001011110111
1000110 1011000 11qO110 l1l1000
1000111 1011001 1100111 l1l1001
1001000 1011010 1101000 l1l1010
1001001 '0110000 1101001 0101110
1001010 0110001 11101010 0101100

1001011 0110010 Ic 1101011 0ll1111
1001100 0110011 1 1101100 0101001

M 1001101 0110100 '~1101101 l1l1011
N 1001110 0110101 1101110 010l1l1
J 100l1l1, 0110110 110l1l1 0100110
'" 1010000 I 011011111110000 I

I 0101011
1010001 0111000 c:r 1110001 0101101
1~10010 0111001 r 1110010 0l1l101

FB GB

~Jl:tFWG~ABJ::~IffJ-1!i 0

:gg-][:iE~fII\]~:iE~~{PJ.~~ .f.§:$
.L~.t87E-~Wfll\]E-i'lm~'~...: 

E-I=P *1 (medians) # I!i' E-~

(altitudes) # I!i' E- $j- ~ *1 (angle-
bisectors) ~ I!i 0 ~ E- i'l1!i $j- 7J tl ;:g t£

m'L' (centroid)' ~ 'L' (orthocentre)~D
rf'\JWIiI'L'(incentre) 0

=- ~.#l!im -.w-ar PJ.~H~~i1!?
~-gg-][::iE:JJ.£J'iJ~::iE:JJ.tf.m'rRJ~frj
m~~o **£-arjfrJffl#jf=-~~
~OO~~'f*' ~m (::I:/L\re~..$t
JjX,pjij~~~2:1£J'iJ.~) m-~:!6'!1.
ft"o

=-~#1!i1l:t'~'1fijJ;fIJ m Ja~ =-~~
3Ift~=-~~"'I;~~~.m'{tl.
f3J~rI1J~irJ~a~~o

ij, '--I-.E,'...,."

Figure 4. Even parity code

Is there an encoding method so that the
receiver would be able to correct
transmission errors? Figure 5 shows one
such method by arranging the bit

sequence (e.g., 1001) into a rectangular
block and add parity bits to both rows
and columns. For the example shown,
1001 would be encoded as 10011111 (by
fIrst appending the row parities and then
the column parities). If there is an error

during transmission, say at position 2,
the receiver can similarly arrange the
received sequence 11011111 into a
rectangular block and detect that there is
an error in row 1 and column 2.

=-~~(l{j5j-~~::fif-@M.ffijm~
~.~~:

A

Figure 1. ASCII code

B cD

(/I)~)

Figure 2. Two computers talking

The receiver will be able to decode the

message correctly if there is no error
during transmission. However, if there
are transmission errors, the receiver may
decode the message incorrectly. For
example, the letter H (1001000) would
be received as J (1001010) if there is an
error at position 6.

~1I:t.

~??)BD AB-=-0
DC AC

-=- 9J- flj ;f,m # I!i.:;l- ~ '/1 ijJ m 11}] JJ:t ~

.J:\~ilio

~

'I)( 0 I I ,/

I I

,Ix
*°1 0 I 1

I I(f~.)
Figure 5. A code that can correct 1 error.

Figure 3. Error at position 6.

One possible way to detect transmission
errors is to add redundant bits, i.e.,

append extra bits to the original

The above method can be used to correct
one error but rather costly. For every
four bits, one would need to transmit an
extra four redundant bits. Is there a
better way to do the encoding? In 1950,
Hamming found an ingenious method to

(continued on page 4)

message. For an even parity code, a 0 or
1 is appended so that the total number of
1's is an even number. The letters Hand
E would be represented by 10010000
and 10001011 respectively. With an
even parity code, the receiver can detect
one transmission error, but unable to
correct it. For example, if 10010000 (for
the letter H) is received as 10010100, the
receiver knows that there is at least one
error during transmission since the
received bit sequence has an odd parity,
i.e., the total number of l' s is an odd
number.
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Problem Corner

We welcome readers to submit solutions

to the problems posed below for

publication consideration. Solutions
should be preceded by the solver's name,

address, school affiliation and grade
level. Please send submissions to Dr.

Kin-Yin li, Dept of Mathematics, Hong

Kong University of Science and
Technology, Clear Water Bay, Kowloon.

The deadline for submitting solutions is

Ian 31, 1997.

Problem 46. For what integer a does

X2 -x +a divide Xl3 + x + 90?

Problem 47. If x, y, z are real numbers

such that X2 + y2 + Z2 = 2, then show that

x + y + z ~ xyz + 2.

Problem 48. Squares ABDE and BCFG

are drawn outside of triangle ABC.

Prove that triangle ABC is isosceles if

DG is parallel to AC.

Problem 49. Let UI, U2, U3, ...be a

sequence of integers such that UI = 29,

U2 = 45 and Un+2 = Un+? -Un for n = 1, 2,

3, Show that 1996 divides infinitely

many terms of this sequence. (Source:

1986 Canadian Mathematical Olympiad

with modification)

Problem 42. What are the possible

values of oJ X2 + x + 1 -.J;2 ~ as x
ranges over all real numbers?

Solution: William CHEUNG Pot-man

(STFA Leung KauKui College, Form 6).

Problem 50. Four integers are marked
on a circle. On each step we

simultaneously replace each number by
the difference between this number and
next number on the circle in a given
direction (that is, the numbers a, b, c, d
are replaced by a -b, b -c, c -d, d -

a). Is it possible after 1996 such steps to
have numbers a, b, c, d such that the

numbers Ibc -adl, lac -bdl, lab-
cd I are primes? (Source: unused

problem in the 1996 IMO.)

Problem 44. For an acute triangle ABC,
let H be the foot of the perpendicular
from A to BC. Let M, N be the feet of
the perpendiculars from H to AB, AC,
respectively. Define LA to be the line
through A perpendicular to MN and
similarly define LB and Lc. Show that
LA, LB and Lc pass through a common
point O. (This was an unused problem
proposed by Iceland in a past IMO.)

Let A=(x,O), B=(-t,~), c=(t,~).

The expression.J X2 + x + 1 -j;2=-;1

is just AB -AC. As x ranges over all
real numbers, A moves along the real
axis and the triangle inequality yields

-1 =-BC<AB-,.AC< BC= 1.

All numbers on the intergal (-1,1) are

possible.

Other commended solvers: CHAN Ming
Chiu (La Salle College, Form 6),
CHENG Wing Kin (S.K.H. Lam Woo
Memorial Secondary School, FOrm 5),
LIU Wai Kwong (Poi Tak Canossian

College), POON Wing Chi (La Salle
College, FOrm 7), YU Chon Ling
(HKU) and YUNG Fai (CUHK).

Solution: William CHEUNG Pok-man
(STFA Leung KauKui College, F0ffil6).*****************

Solutions
***************** Let LA interSect the circumcircle of

MBC at A and E. Since LAMH = 900 =

LANH, A, M, H, N are concyclii::. So
LMAH = LMNH = 90° -LANM =
LNAE = LCBE. Now LABE = LCBE

+ LABC= LMAH + LABC = 90°. So
AE is a dianleter of the circumcircle and

Problem 41. Find all nonnegative
integers x, y satisfying (xy -7Y = x2- +

2-

y.
Problem 43. How many 3-elemen't
subse~ of the setX= {I, 2, 3, ..., 20} are
there such that the product of the 3
numbers in the subset is diVisible by 4?

Solution: Gary NG Ka Wing (STFA
Leung Kau Kui College, Form 4).

(continued on page 4)

Suppose x, y are nonnegative integers
such that (xy -7)2 = r + y2. Then (xy -
6)2 + 13 = (x + y)2 by algebra. So

13 = [(x+y) + (xy-6)][(x+y) -(xy-6)].

Since 13 is prime, the factors on the

right side can only be :tl or :t13. There
are four possibilities yielding (x,y) =

(0,7), (7,0), (3,4), (4,3).

Other commended solvers: CHAN Ming
Chin (La Salle College. Form 6),
CHENG Wing Kin (S.K.H. Lam Woo
Memorial Secondary School, Form 5),
William CHEUNG Pok-man (S.T.F.A.
Leung Kau Kui College, Form 6), Yves
CHEUNG Yui Ho(S.T.F.A. Leung Kau
Kui College, Form 5), CHING Wai

Hung (S.T.F.A. Leung Kau Kui College,
Form 5), CHUI Yuk Man (Queen
Elizabeth School, Form 7), LIU Wai

Kwong (pui Tak Canossian College),
POON Wing Chi (La Salle College,
Form 7), TING Kwong Chi & David
GIGGS (SKH Lam Woo Memorial

Secondary School, Form 5), YU Chon
Ling (HKU) and YUNG Fai (CUHK).

Solution: CHAN Ming ChiD (La Salle

College, Form 6), CHAN Wing Sum
(HKUST), CHENG Wing Kin (S.K.H.
Lam Woo Memorial Secondary School,
Form 5), CHEUNG Cheuk Lun

(S.T.F.A. Leung Kau Kui College, Form
6), William CHEUNG Pok-man
(S.T.F.A. Leung Kau Kui College, Form
6), Yves CHEUNG Yui Ho (S.T.F.A.

Leung Kau Kui College, Form 5), CHUI
Yuk Man (Queen Elizabeth School,

Form 7), FUNG Tak K wan (La Salle
College, Form 7), LEUNG Wing Lon
(STFA Leung Kau Kui College, Form
6), LIU Wai Kwong (Poi Tak
Canossian College), Henry NG Ka
Man (STFA Leung Kau Kui College,

Form 6), Gary NG Ka Wing (STFA
Leung Kau Kui College, Form 4),
POON Wing Chi (La Salle College,
Form 7), TSANG Sai Wing (Valtorta

College, Form 6), YU Chon Ling
(HKU), YUEN Chu Ming (Kiangsu-

Chekiang College (Shatin), Form 6) and
YUNG Fai (CUHK).

There are C;O = 1140 3-element subsets

of X. For a 3-element subset whose 3
numbers have product not divisible by 4,
the numbers are either all odd (there are

cjO = 120 such subsets) or two odd and

one even, but the even one is not

divisible by 4 (therc are C~O x5=225

such subsets). So the answer to the
problem is 1140 -120 -225 = 795.
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point P such that LPAB = 10°, LPBA =
20°, LPCA = 30°, LPAC = 40°. Prove

that triangle ABC is isosceles.

Problem Corner
(continued from page 3)

LA passes through the circumcenter O.
Similarly, LB and Lc will pass
through O.

: ~0 , , Co
6

)(

Problem 6. Determine (with proof)

whether there is a subset X of the

integers with the following property: for

any integer n there is exactly one
solution of a + 2b = n with a, b E X.

~'""DC><::5~--

Error Correcting Codes (part I)
(continued from page 2)

add the redundancy. To encode a four-

bit. sequence PIP1P3P4 (say 1001), one

would first draw three intersecting

circles A, B, C and put the information

bits Pl, Pl, PJ, P4 into the four overlapping

regions AnB, AnC, BnC and AnBnC

(Figure 6). Then three parity bits Ps, P6,

P1 are generated so that the total number

of l's in each circle is an even number.

For the example shown, 1001 would be

encoded as 1001001.

Other commended solvers: Calvin
CHEUNG Cheuk Lon (STFA Leung
Kau Kui College, FOrin 5), LIU Wai
Kwong (Pui Tak Canossian College),
POON Wing Chi (La Salle College,
Foml 7) and YU Chon Ling (HKU).

Figure 6. Hamming code

Problem 45. Let a, b, c> 0 and abc=l

Show that

ab bc ca""
l+ +~

as+bs+ab bs+cs+bc cs+as+ca

(This was an unused problem in

IMO96.)

Solution: YUNG Fai (CUHK) ,

Expanding (a3 -b3)(a2 -b1 ~ 0, we get
a5 + b5 ~ a2b2(a+b). So using this and
abc = 1, we get

ab ab C2x-
2

C

c.ti:;t: J:.tt3)

as + b5 + ab

()f')

~

,~~

t> A~'~"" j-a

'\~~
t> ~i~

a+b+c
Adding 3 such inequalities, we get the
desired inequality. In fact, equality can
occur if and only if a = b = c = I.

-
....

Other commended solvers: POON Wing
Chi (La Salle College, Form 7) and YU
Chon Ling (HKU).

~~, /jl}.~t'
.i ??

~--~""c:>C><:5" ~

Olympiad Corner
(continued from page 1)

~
Part n (lpm-4pm, May 2, 1996)

Problem 4. An n-term sequence (Xl' X2,
..., xn) in which each term is either 0 or
1 is called a binary sequence of length n.
Let an be the number of binary sequences
of length n containing no three
consecutive terms equal to 0, 1, 0 in that
order. Let bn be the number of binary
sequences of length n that contain no
four consecutive terms equal to 0, 0, 1, 1
or 1, 1, 0, 0 in that order. Prove that
bn+l =2an for all positive integers n.

.-" ~t yotl.~ A Xyz

Igo. 1~~lv1'~ ~A8c.'; 
/r ". Y. z ~:fJ f3 c,

C~.R8 "~1'D'~,.
L). )C Y z. 1m j 1£4t £1 /fe-c. -'I@ ~

A )( Y z. -iff) h :JtJ" ~~ ~ FtBc.1~

Co;'" ColA'" c.~nt,.t. 0

~'~1'f1 G ~ 1/':", ~ £). ABc.
..&iJ.-:1ji." ,go -, r}f";" o. f-r. H
{iiJ--1li,~~l,~A o~::~H = /=2.

o!.! ! iJ.' 9~A'f ~ ..), ~~ .A X Y z.!j: I~~

50 Yo ,:tt ISOD , l<~ fJ L). X Yz. p~~
Cir-c.umC£l:Itr~ N , ~ GN : 0& : GrH

--= 1 ~ 2.. ""

'1'.'Z. .
~~

Problem 5. Triangle ABC has the
following property: there is an interior

~).. N ~ "of/v'
"!1 ~A. -:s: ~'f!1

,.V. ~S. T (HA. 1-18. 11c.
I N t..t: '04. ~ AASc. ~'ft. ".."e

point

If there is one error during transmission,
say 1001001 received as 1011001, the
receiver can check the parities of the
three circles to find that the error is in
circles B and C but not in A. This (7,4)
Hamming code (the notation (7,4) means
that every 4 information bits are encoded
as a 7 bit sequence) can be generalized.
For example, one may draw 4
intersecting spheres in a three-
dimensional space to obtain a (15,11)
Hamming code. Hamming has also
proved that his coding method is
optimum for single error correction.

(... to be continued)

R~h ~ IJ'1-e-!&\
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~~tJi:(Euler) 0 f&~~':(£=+~~

!f;fB~§~aJI ' {g.~gj]!c:£*~
~~~ ' ~ftRM 0 ~~J:~Ij)~

:@. ..i}A:fD.1J;l;t.i)~fm~:fJ1. ..majj
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1997 Chinese Mathematical °.zympiad:

Part I (8:00-12:30, January 13, 1997)

Problem 1~ Let ;XI, X2, ..., X1997 be real

numbers &atisfying th~ following two
conditions: -

1 -

(1) -~~Xi ~J3 (i= 1, 2, ..., 1997);
-v3

(2) XI +X2+ ...+X1997 = -318J3~

Find the maximum value of

12 12 12
XI +xz +"'+XI997'

stfl.ii ' AH:fa A 'O51.8U ~ffi {~~~

%ABC;f[]A'B'C'~J;J~~ ' mPj,

AH:A'0=BC:B'C'=2:1

f'tiJ:5t1!? ' :l;.JL\ G -tl?reJt:l~ AA' 9f.fjX,

AG:A'G=2:1

1E11I:t. ' =- ~ % HAG;f[] OA'G ffi ~ 0

8311: t.:Ift ~
~-ff~~.:=.~~ ABC, ;;:m~E~
.:=. ..iif1'9 ~~ (mid-poinJS),A" B' ~D
c' $t;8tl1~ m~.:=. ~jj~.¥ iR Sf, $t ~
(perpendicular bisectors) 0 ~1r}~rn :

~.:=...¥iRSf,:i1-~mx~~~I!i'
llPIII-~15 0 0 ~15 0 ~~.:=.~~

ABC ~'J}~IIJL\ (circumcentre)' rn

}J.mfg**B~;;Ho
A

Problem 2. Let AIBI C1D1 be an
arbitrary convex quadrilateral. Let P be
a point inside the quadrilateral such that
the segments from P to each vertex form
acute angles with the two sides through
the vertex. Recursively define Ak.Bk. Ck
and Dk as the points symmetric to P with

respect to the lines Ak-1Bk-l. Bk-lCk-l.

Ck-'IDk-l and Dk-lAk-l. respectively

(k=2.3 ).

LHGA = LOGA'

mJ.-.1 0 ' G' H JjJ(.-~~ ' mm~lli

~, ~ROG:GH= 1:2 0

A

B C, (III.=.)", r'I B~..."

~m~OH~~l5m1'i¥-}L,'E~
:I=::g~ fL IS iii (Nine-point circle) ~
IiI/L' 0 m~1L!!i1il~1~-OO;;m~=.

:;llj ~ ABC ~ =.~ ~~!!i A', B',
c', =.~~.¥.ff:. D' E' FPJ&=.m
~;fO.¥/L,r~ ~ ~ IS K' L' M ~ III
(liJlZ9) 0

(continued onpag(! 4)

/ ' '0-

,~ '"~'-+-:~. ~
L-r "~;,-~

B / ," :A" c (II-)

.
~-1iOO ~ .=-;:I1!J7f;:;i A'B'C';fDABC:;;p

{gffifJ'), , ffij1i.f;JLI!.if~1'J 0 ~{I.if

~./j\~~rI"J.=-;:I1!J7f;:;iA'B'C' fim.=-
;:I1!J 7f;:;i ABC rI"J ~ I!i .=- ;:I1!J 7f;:;i (medial
triangle) 0 E rI"J .=- f~;@j (altitudes) I;n

tlfi,t~.:t£ OA' , DB' :fa OC'L ' I!I JJ:t

0 l!it!?ffi~7 ~1!i.=-;:I1!J7f;:;i A'B'C' rI"J

¥;JL' (orthocentre);:I1!J@ (111=) 0

([lJIZY)

:fiI ~ ~fL 15 m ~ ~ # 11/ a';J::7f; ~ m aJj
~~¥~W.~tl (Poncelet) ~ 1821
~§Jt.t(tIili a';J , f&~ A', B', C',
K, L, M ~155}J3X".R:fiIm:m:lZYl!im
1i!i ' ~ f& m aJj ~ 'fIm m 1i!i a';J IZY I!i # iii
, ~;fIJffl~.=. 'fImm-g-a';Jm:m:11maJj

~.=. 'fIm fil. 'N L ~ ~ -'fIm fil ' JWi: 1:&
maJj D , E, F-&:(£~IIIL 0 .~'frJ

~~f&a';Jm~:

<111-=:

~ 1ft ~ ~J1. ff: 1iiJ .=. :frj ~ ~ 7i- ~ 1;1
IL\ (0) ..m/L\ (G) :fD~/L\ (H) #~ '

$~maJj:!lIJT (III.=.) :

m ~.=.:frj ~ ABC ~ ~ AH :fa jf BC
~~~s:rz:.$t~ OA's:rz:fi ' lEI!i:t

LHAG = LOA'G

:$'c.::?!;.I.I. B' , C', L , M ~ ~ (!liE) 0

(continued on page 2)
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~ Bijj ~ IX tt'J ~ W (.=>
(continued from page 1) .J2 :;I;.J.I.a9~1I1I~

:wm*~~~*
.X5!li

:t£=.:fiJ ~ ABH J:t:1 ' c' f[) L:St.8tl ~

.if AB f[) HB (I/;J J:t:11!i ' 1!l1l:t. C'L SJZ fT
AH 0 rm:tJ. ' :t£ =. :fiJ ~ ACH J:t:1 '

B'M SJZfT AH 0 ffl Pj, C'L SJZfT B'M 0

W ~ 1.:1. =.::fiJ ~ ABC f[] HBC , flJ m
rm fl (I/;J J:t:11!i ~:tJ. ' DJ:;I;:D B'C' SJZ fj
ML f[) CB 0 EI3 ~ AD ~ ~ BC, 1!l1l:t.

B'C'LM~OO;;§~ 0 ;;g~(l/;Jml!i'M"~

#[;]0

r 1lofiiJml3J3 .J2 ~_$II:IVE? J

r B~ji71'?ff~ I ~ .J2=m/n , "iiJ"iI m

fa n 1'~~fMII: 0 Ei:I* m2 = 2n2, m ~\

~fM:fi ' ~f~ 2k, ~U 4t2 = 2n2, 2k2 =

n2 , n:Ic n /J)' ~fMI'i. ' ~ J§ I J

J::jzI!;~aj3 , Rmitl~.f~'r:I:.~ ' *~B~
"5Jfi~ Q 52.m.:t~~ (ARISTOTLE)

f£1}ftBfj 330 ~~;fJre'E (PJ.~fPJ~
~) a~*, m{~&~~~~~'"5J~
f£~~1I~~3i@J$B~~ffl~~T Q ~

., ~E!:j~~~JJ}3~:fl[]IltMiJ? ' m~fx:~!J!.
*~f§{~~~:;;r\"~~@J*~~~~~ ' [ffi

ma~ff~~~~A'C'KMfDA'B'KL ~ r *f!fLJJ}3 J ~m~ Q
"CJ~~~fr~-tt:?~~§~ ' lZlJ!:t/if"Ztl#
iii Q f.§.~-=-flW~~~:::fj#~ti~ f£~OO~JJ}3~, 2 ?~~trM~3U ' ~T
~ ' RnJ;t~liJ(circumclrcle)~~r~ ~g-1I~:fI.' rP].~,~,~17J"5J~m,
(III-'-) Q 9-~¥J~~{~'r:I:.~~W:.~ ' .:@miU~/'\ [!J-1-PfE-.)tm'r:I:.~ Q :jIj::ftf.IIi/j/WF ' ~~

~ijg~~JJ}3::e: PI ' ..., P s ~ s 1I~rP]~

~:fI. ' ~U ~-:::-P; ~;4!\1;;~. Q [!JIlt, ::e:

H:;;r\"~:J\:=;~~1J' ~u.JH~;4!\I;;~fx:Q~
.' :fl[]*l!j.~.~:i:lm~f!1-1-PfE-.)tm
'r:I:.~' ~~g-1I~JJ}31h$~' ~P~.-
:fI. m2 = Hn2 m'~~~.[!J-1-te~~-*

fx:'-~-1M'~J§I

A

B n c: (rilE)

~* ' ~f&.r"I:Jitl'Ea"J~fPJ~~ ' jiOO

~fPJ~~'~~~~~=T~~~~.
fi.~*jj:m~jj~a"Jti~ ~fD.iI~ ~PJ
1}~.a"J~~~! ~PJ1}~., ~1~~
ff;(£-1}#~. ' ~Jj~~fD.iI~~~

~1}#~.a"J~T~fi.ffi'~~~~,
.J2 ~ ~~~fi. 0 (PJ. ~~,ZI!;. , ~;j:t~

H. EVES a"J::I=f~ "ANINTRODUcrION
TO THE ffiSTORY OF MA11ffiMATICS"
a"J~ 3 .' 3rd edition, 1969 0 ) ;(£~

IIII=P~AP~~15~a"Jf;j~~ACfa.il
AB a"J1}#~:m ' RP~AC=jAP fa AB
= kAP 0 .f~ BICI ~ BICI.¥;lR~AC,
~ff CB = CBI 0 ~.~m BCI = BICI
= ABI ' rtlJJ:t.

ACI=AB -ABI = AB -(AC-AB)
= ME -AC= (2k- flAP,

ABI = AC -AB = (j -k)AP 0

?!~ : ACI fD ABI ~-OO~/J\a"J~jj~
a"Jf;j~~fD.iI ' ~~OO~/J\a"J~jj~a"J-iI
ABI/J\~}g:~jj~a"J-iI AB a"J-~ 0 ~
JJ:t.7Ji~m~~~ ' ~\~itl-OOff:.~/j\a"J
~jj:Jf:;i; , 'Ea"J-iI ABt IJ\~ AP, f'§' ABt

W17Jf&~ AP a"J~T~fi.ffi ' ~;jF~

~I (~@fi.¥~*~mE~~.fi.~
*~{£IIJj::J.JJ:tjj~~~~PJ 1}~:m~ ~
, ;f:§"¥;~{£IIJjj:~~*mf~~5tfi.~OO

~a"J~~oPJm"¥;~a"Jfi.~*~~m~
'~~~r*~~~~';(£E~.fi.~

~::I= <Ii: ~ m. ~ JB *> (EUCLID'S
ELEMENTS) a"J~wr~f:tcmPJ~ I )

A

B D C (111:;;"\)

:;r\"~tJ"1fi1:;r\"DJ~g::'Fif#~~f~ ' ~!i:t
A', B', C', K, L, M~m#iI 0 ~
-1500 ' LA'DK~~~(III[g) , iliJ

A'K~MjlI!;~miltJ"1~f~ ' ~!i:tD
{t!. :(£!i:t ~ I!i 1111: 0 ~ ~, E:fO F {t!.

:(£!i:t~~fil1: ' fifrP)'fL~#fiI 0

.ft~*~m=1I~SJ3 0 ~.JH = m/n

, "PI'i" m fD n ~/;}#I!IT 0 EB~ m2 =

Hn2 = n(Hn) , n ~\~~ 1 ~ -1 ,~p~

NH~1I%~~$' ~~ I ~1ImSJ3m
FJUm1lmSJ3:fi -l!i~.f§ /PJ ' ~tgmIJ::¥.
~-m.'it:A/;J'~R ' mSJ3T :E=:fi~fIl.~f\:fIl.
~fIl. ' ~U~~\~~fIl. 0 (f\:fIl.~fIl.~t~

~-~fIl.*fIl.~~.J:\$m 1'+CN-lx""-l+ ...

+c.x+co=O A/;Jm ' f9lJllD.JH ~ ;- -H =0

A/;Jmo~~~~~fim~~@$~o)

fLl5li] :fa ~ :tV. ~ ::Iff ~)if 11m f* ?

*~~tfj*IBJL\.tt~mOO rn 1S~:(£fL
I!i III 1:.. ~ .=. f!!J % A 'B'C' :fa KIM (iii
-t;) 0 E8~ KA' , LB':fa MC' ~fLlS

Ii] at ~ 1~ ' lE11l:t.=. f!!J % KIM m. fL

15 iii ~ iii JL\ ~" 1800 "6J ~ .=. ffJ ]f;::;
A 'B'C' 0 .=..ffJ]f;::; ABC ~ ~:tV.~ OH m

Hiffl1~ tSlE $t 8tl ~ .=. f!!J ]f;::; A 'B'C' :fa

KIM~~JL\ ("6J~~IiI=&IiIIZY) ,

lE11l:t~~~.=.f!!J]f;::; A'B'C':fO KIM ~

JJL1!I5'E'fr:IJ~I=PI5:§tt.~fLl5li]~
iii JL\ 0

c

pV'"
A D

~?-1g : AC1IAB1 = (2k -j)/(j -k) , ffij"

m = j -k :IE~t-*.Wr~~ ~m/J\mt~ma)3

~ ~ m 0 [!l:m AC1IAB1 =.J2 ' f£ ~

(2k -fllm =.J2 ' ~p~ m.J2 = 2k- j ~

~f;;T o"lifJ(;1MT~t-*.Wr~~ma)3~~
~~~W~~ ' ~~~p)re~m~~m

:;"\1Wma)3 : ;:S:.J2 = jlk ~MlM~ :StfJI:~

, ~u~.J2 = (2k -fll(j -k) (:Ii~[!l:m

j.J2 -k.J2 = 2k -j) , f.§. k < j < 2k

(~:m 1 <.J2<2) , ~2k-j<jfD

j-k<k,3:tWjfDk~~:ijX~flil

~1£~*-1I+5J-M~(J'g~aJ3 : ~.J2
~:f:f:JM1Il. ' ~fi/J\.IE§;1Il. k ~ k.J2 ~§;

Ill. , ~U m =k.J2-k=k(.J2-1)~-1I

~ k £/J\a"Jl£§;1Il. ' fg m.J2 = 2k -k.J2

~~§;IIl.'~~ka"J~~~~1 <m2
~f~-1I?F:1G~:sv.15 H , ~{P.1.a"J~aJ3ji
fflo)A

/\

J:;;ztt.majj~II:~W*~Wr~~
( THEODOR ESTERMANN) ;(£ 1975

:1f--~um)'(aI;J P-1~ ' )::Ijt!!})ftfi~ ' ~ffij~
Z 0 ~*~A.S : r ~D~rfr~m*~
~ ' -~t~tI:\~pajjD;r;~ ' fg~@m*
~ :iij W ~ ~ ill $ ~ ~ ill. wr
(pYTHAGORAS) = T ~:1f- ~::j'- ~ t~ tI:\
* I J ~D*~1M~IIJ~~~DfiiJ3X~ m aI;J

8'
./"',- I

/...

~3~~-~ .~W~~~n~ma~ .
~~~n~~~~~a~u.~ ? ~~n~m
~~ma~ll'B?

RL '\":A¥= / \C <1II-t)

~tft~~:if'M. ' ~-~~rn,t:.' , ~
~~=-~~~-w~-I!i{il.:if'~f.9to
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Solution: CHEUNG Tak Fai (Valtortll

College, Form 6) and Gary NG Ka

Wing (STFA Leung Kau Kui College,
Form 4).

Problem 48. Squares ABDE and BCFG
are drawn outside of triangle ABC.
Prove that triangle ABC is isosceles if
DG is parallel to AC.

Problem Corner

We welcome readers to submit solutions
to the problems posed below for

publication consideration. Solutions
should be preceded by the solver's name,
address; school affiliation and grade
level. Please send submissions to Dr.
Kin-Yin Li, Dept of Mathematics, Hong

Kong University of Science and
Technology, Clear Water Bay, Kowloon.
The deadline tor submitting solutions is

Apr. 5, 1997.

Solution: Henry NG Ka Man (S1FA

Leung Kau Kui College, Form 6), Gary
NG Ka Wing {S1FA Leung Kau Kui

College, Form 4) and YUNG Fai

(CUHK).

From B, draw a perpendicular line to AC
(and hence also perpendicular to DG.)
Let it intersect AC at X and DG at Y.
Since LABX = 900 -LDBY = LBDY
and AB = BD, the right triangles ABX

and BDY are congruent and AX = BY.
Similarly, the right triangles CBX and
BGYare congruent and BY = CX. So AX
= CX, which impliesAB = CR.

Suppose

X13 + x + 90= (~ -x + a)q(x),

where q(x) is a polynomial with integer
coefficients. Taking x = -1, 0, 1, we get

88 = (2+a)q(-1),
90 = aq(O)

and 92 = aq(l).

Since a divides 90, 92 and a+2

divides 88, a can only be 2 or -1.. Now
X2 -X -1 has a positive root, but
X13 + x + 90 cannot have a positive root.
So a can only be 2. We can check by

long division that ~ -x + 2 divides
X13 + x + 90 or observe that if w is any of

the two roots of x2 -x + 2, then
..J-=w-2, W4 = -3w+ 2, W8 = -3w- 14,
W12 = 45w-46 andw13 + w+ 90 = O.

Problem 51. Is there a positive integer n
r--r--

Problem 52. Let a, b, c be distinct real
numbers such that a3 = 3(b2+c1 -25,
b3 = 3(c2+a1 -25, C3 = 3(a2+b1 -25.

Find the value of abc.

Problem 53. For MBC, define A' on
BC so that AB + BA' = AC + CA' and

similarly define B' on CA and C' on AB.
Show thatAA', BB', CC' are concurrent.

(The point of concurrency is called the
Nagel point of MBC.)

Other commended solvers: CHANMing
Chiu (La Salle College, Form 6), CHAN

Wing Sum (HKUST) and William
CHEUNG Pok-man (S.T.F.A. Leung
Kau Kui College, Fonn 6).

Problem 47. If x, y, z are real numbers
such that x2 + y2 + i = 2, then show that
x + y + z ~ xyz + 2.

Problem 54. Let R be the set of real

numbers. Find all func~ons f: R -+ R

such that

f(j{x+y» = .f{x+y) + .f{x)fl.y) -xy

for all x. Y E R. (Source: 1995 Byelorussian

Mathematical Olympiad (Final Round»

Solution: CHAN Ming Chiu (La Salle

College, Form 6).

Comments: This was a problem on the
1988 Leningrad Mathematical

Olympiad. Most solvers gave solutions

using pure geometry or a bit of
trigonometry. The editor will like to
point out there is also a simple vector
solution. Set the origin 0 at the

-+ -+
midpoint of AC. Let OC = m, OB = n
and k be the unit vector perpendicular to

-+ -+
the plane. Then AB = n + m, CB = n -m,

-+ -+

BD= -(n + m) x k, BG= (n -m) x k
-+ -+ -+

and DG= BG- BD = 2n x k. IfDG is

parallel to AC, then n x k is a multiple of
-+ -+

m and so m = OC and n = OB are

perpendicular. Therefore, triangle ABC
is isosceles.Problem 55. In the beginning, 65

beetles are placed at different squares of

a 9 x 9 square board. In each move,

every beetle creeps to a horizontal or

vertical adjacent square. If no beetle

makes either two horizontal moves or

two vertical moves in succession, show

that after some moves, there will be at

least two beetles in the same square.

(Source: 1995 Byelorussian Mathematical

Olympiad (Fmal Round»

If one of x, y, z is nonpositive, say z, then

l+xyz-x- y-z = (l-x-y)-z(l-xy) ~O

because Other commended solvers: CHAN
Wing Chiu (La Salle College, Form 4),
Calvin CHEUNG Cheuk Lon (S.T.F.A.
Leung Kau Kui College, Form 5),
William CHEUNG Pok-man (S.T.F.A.

Leung Kau Kui College, Form 6), Yves
CHEUNG Yui Ho (S.T.F.A. Leung Kau
Kui College, Form 5), CHING Wai

Hung (S.T.F.A. Leung Kau Kui College,
Form 5), Alan LEUNG Wing Lun
(STF A Leung Kau Kui College, Form
5), .OR Fook Sing & WAN Tsz Kit

(Valtorta College, Form 6), TSANG Sai

Wing (Valtorta College, Form 6),
WONG Hau Lun (STFA Leung Kau
Kui College, Form 5), Sam YUEN Man

Long (STFA Leung Kau Kui Coll~ge,
Form 4).

x+y~ ~2(X2+y2)~2

and

xy ~ (X2 + Y1/2 ~ 1

*****************
Solutions

*****************

So we may assume x, y, z are positive,

sayO<x~y~z. Ifz~l,then

2+xyz-x-y-z
= (l-x)(l-y) + (l-z)(l-xy) ~ O.

Ifz> 1, then

(x + y) + z ~~2(x+ y)2 +Z2)

= 2j";i+i ~ xy + 2 ~ xyz + 2.

Problem 46. For what integer a does

X2 -x + a divide X13 + x + 90? (Source:

1963 Putnam Exam.)

Comments: This was an unused problem
in the 1987 IMO and later appeared as a
problem on the 1991 Polish
Mathematical Olympiad. (continued on page 4)

such that ..jn-l +..jn+l is a rational

number?
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c = 2(y -,. 2z + 3w -2x),

d= 2(z-2w+ 3y -2z).

From that point on, a, b, c, d will always

be even, so Ibc-adl, lac-bdl, lab-cdl

will always be divisible by 4.

Part II (8:00-12:30. January 14, 1997)

Problem 4. Let quadrilateral ABCD be
inscribed in a circle. Suppose lines AB
and DC intersect atP and lines AD and
BC intersect at Q. From Q, construct the
two tangents QE and QF to the circle
where E and F are the points of

tangency. Prove that the three points P,
E, F are collinear.

Problem Corner
(continued from page 3)

Problem 49. Let Ul, U2, U3~ ...be a

sequence of integers such that Ul = 29,
Uz = 45 and Un+2 = Un+i2 -Un for n= 1,2,

3, Show that 1996 divides infini~ly

many terms of this sequence. (Source:

1986 Canadian Mathematical Olympiad

with modification)

Solution 2: Official Solution.

Solution: William CHEUNG Pok-man

(STFA LeungKau Kui College, Form 6)
and YUNG Fai (CUHK).

17}

After n ?; 1 steps, the sum of the integers

will be O. So d = -a -b -c. Then

bc -ad = bc +a(a + b + c)

= (a + b) (a + c).

Similarly,

Problem 5. Let A = {I, 2, 3, ...,

For a mapping f: A -+ A, denote

fllJ(X) =f(x) ,

flk+lJ(X) = fV1kJ(X)) (k = 1,2,3,

Consider one-to-one mappings f from A
to A satisfying the condition: there exists
a natural number M such that

(1) for m < M, 1 $ i $ 16,

f[m](i+ 1)- f[m](i) ~:tl (mod 17),

f[m](I)- f[m](17) ~:tI (mod 17);

Let Un be the remainder of Un upon

division by 1996, i.e.,

Un = Un (mod 1996).

Consider the sequence of pairs (Un,Un+V.

There are at most 19962 distinct pairs.

So let (Up,Up+V = (Uq,Uq+J be the first

repetition with p < q. If p > 1, then the

recurrence relation implies (UP"'-l,Up} =

(Uq-l,Uq) resulting in an earlier

repetition. So p= 1 and the sequence of

pairs (Un,Un+V is periodic with period q

-1. Since U3 = 1996, we have 0 = U3 =

U3+.1:(q:--l) and so 1996divid.es U3+.1:(q-l) for
every positive integer k. --

(2) tor 1 ~ i ~ 16;

f[M](i+.1)-f[M](i) =1oc-1 (moo 17),

f[M](1)-f[M]<.i7)=1oc-1 (moot?).

For all mappings f satisfying the above
condition, determine the largest possible
value of the corresponding M's.Other commended solvers; CHAN Ming

Chiu (La Salle College, Form 6), C~

Wing Sum (HKUST) and Gary NG K:a

Wing (STFA Leung Kau Kui College,
Form 4).

Olympiad Corner
(continued from page 1) Problem 6. Consider a sequence of

nonnegative real numbers a.l. a2. ...
satisfying the condition

Problem SO. Four integers are marked
on a circle. On. each" step we

simultaneously replace each number by
the difference between this number and
next number on the circle in a given
direction (that is, the numbers a, b, c, d
are replaced by a -b, b -c, c~ d, d -

a). Is it possible after 1996 such steps to
have numbers a, b, c, d such that the

numbers Ibc -adl, lac -bdl, lab-
cd I are primes? (Source: unused
problem in the 1996 !MO.)

Consider the s~uence of quadrilaterals

AftjCPj (j = 1, 2,--,).

(1) Determine which of the first 12
quadrilaterals are similar to the
1997th quadrilateral.

(2) If the 1997th quadrilateral is cyclic,
determine which of the first 12
quadrilaterals are cyclic.

Problem 3. Prove that there are infinitely

many natural numbers n such that

1,2, ..., 3n

can be put into an axray
Solution 1: Henry NG Ka Man (STFA
Leung Kau Kui College, Form 6) and
Gary NG Ka Wing (STFA Leung Kau
Kui College, Fo11Il 4).

al a2 ...an

b1 b2 ...bn

Cl C2 ...Cn

satisfying the following two conditions:If. the initial numbers are a = w, b = x,
c= y, d = z, then after 4 steps, the

numbers win be

a = 2(w -2x + 3y -2z),

b = 2(x -2y + 3z -2w),

(1) al+b1+Cl = a2+~+C2 = ...= an+bn+cn

and the sum is a multiple of6;

(2) al~+" ""+a" = ~+b2+. ".+bn = Cl+Czt.. .+Cn

and the sum is a multiple of 6.

ac -bd = (a + b)(b + c)

and
ab -cd = (a + c)(b + c).

Finally !bc-adl, lac-:-bd!, lab-cd!

cannot all be prime ~ause their

product is the square of (a+b ) (a+c )(b+c).

Other commended solvl}rs: Calvin

CHEUNG Cheuk Lon (S.T.F.A. Leung

Kau Kui College, Form 5) and Willia~

~HEU~G Pok-man (S1FA Leung KaU

KuiCollege, Form 6).

,---~'"'D<:::><:5"'r ~
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Olympiad Corner
Error Correcting Codes (Part II)

Tsz-Mei Ko
The 38'h International Mathematical

Olympiad, Mar del Plata, Argentina:

First day (July 24, 1997)
Each problem is worth 7 points.

Time Allowed: 4t hours.

Problem 1. In the plane the points with

integer coordinates are the vertices of
unit squares. The squares are coloured

alternately black and white (as on a
chessboard). For any pair of positive
integers m and n, consider a right-angled
triangle whose vertices have integer
coordinates and whose legs, of lengths m
and n, lie along edges of the squares.
Let S! be the total area of the black part
of the triangle and Sz be the total area of
the white part. Let

.f(m,n) = IS! -Szl.

(a) Calculate .f(m,n) for all positive
integers m and n which are either
both even or both odd.

(b) Prove that f(m,n)~tmax{m,n} for

all m and n.

(c) Show that there is no constant C such
that.f(m,n) < C for all m and n.

is 0101101. The first 6 bits form the
ordered triple (01, 01, 10) = (1, 1, 2).
We observe that a straight line passing

through (1,1) and (2,1) should pass
through (3,1). That is (1,1), (2,1) and
(3,2) do not lie on a straight line and
thus there is a transmission error. For
the (7,4) Hamming code which is

capable of correcting one error, we

0 1 2 3 0 1 2 3+-
0

1
2
3

(continued on page 4)
x

~
0 1 2 3 0 1 0 0 0 0

1 0 3 2 1,0 1 2 3

2 3 0 1 2 1 0 2 3 1

3 2 1 0 310 3 1 2

Figure 2. Arithmetic Tables roc a 4- Element Field.

-, ~ --.~~. .~.., -~ ~ ~-

arithmetic system called a 4-element
field (Figure 2), we observe something

interesting: the three points (1, P1Pz),
(2, P3P4) and (3, PsP6) form a straight
line! For example, the first 6 bits of the
codeword 0100101 forms the ordered
triple (01, 00, 10) = (1, 0, 2) and (1,1),

(2,0), (3,2) are three consecutive points
on the straight line .l(x) = 2x + 3 since

.1(1) = 2(1) + 3 = 2 + 3 = 1;

.1(2) = 2(2) + 3 = 3 + 3 = 0;

.1(3) = 2(3) + 3 = 1 + 3 = 2;

by using the addition and multiplication
tables given in Figure 2. This fact is
also true for the other 15 codewords and
their corresponding straight lines.l(x) are
listed in Figure 3.

This "straight line" property can be
utilized for decO<ling. As an example,
assume that the received sequence

In Part I, we introduced the family of

Hamming codes. In particular, the (7,4)

Hamming code en~ 4-bit messages

P1PlP!lJ4 into 7 -bit C(X)e\\n"ds P1PlP!lJ4J~flJ7

by appending three parity bits

Ps =Pl +P2 + P4 (mod 2),

P6 =Pl +P3 + P4 (mod 2),

P7 = pz + P3 + P4 (mod 2),

to the original message. Figure 1 shows

the 16 possible <;:odewords for the (7,4)

Hamming code. To convey the message

0100, as an example, the sender would

send 0100101. If there is a transmission

error in position 4 so that the received

sequence becomes 0101101, the receiver

would still be able to recover the error by

decoding the received sequence as the

closest codeword. (Note that 0100101 is

different from 0101101 in only one

position while all other codewords are

different from 0101101 in more than one

position.)

Now, if we group the first six bits of a

(7,4) Hamming codeword into two-bit

pairs (01D?-, 0-..04., 0<0,,) and use an

Figure 1. The (7,4) Hamming Code.

Figure 3. The (7,4) Hamming Codewocds

fOml Straight Lines/(x).
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"polynomials" instead of "straight
lines". Suppose we would like to
transmit a message that contains k

symbols SIS2'..S1. We may use these k
symbols to form a kth degree polynomial
ft.x) such that ft.i) = Sj (1 ~ i ~ k). To

construct a code that can correct 1 errors,
we may append 21 symbols ft.k + 1),
ft.k + 2), ..., ft.k + 21) to the original

message so that the encoded sequence
contains k + 21 symbols corresponding to
k + 21 consecutive points on a kth degree

polynomial (Figure 4). If there are less
than or equal to 1 errors during

transmission, at least. k + 1 symbols
would be received cOrrectly. Then the
receiver may simply check which k + 1
symbols lie on a kth degree polynomial
to decode the received sequence.

We use a (21,9) double error correcting
code to illustrate the idea. Assume we
would like to send a 9 bit message, say

101010100. We may first group the
information bits into 3-bit symbols as
(101, 010, 100) = (5, 2, 4). (In general,
we may group the information bits into
m-bit symbols where m cannot be too
small. Otherwise, we cannot construct
the polynomial ft.x). Why? Also m

should not be too large to reduce the

assume that only one of the three points
is incorrect. That is, the original

"straight line" ..t{x) should pass through
(1,1) and (2,1); (1,1) and (3,2); or (2,1)
and (3,2) corresponding to .f(x) = 1; .f(x)
= 2x + 3; or .f(x) = 3x respectively. Then

the f1f~t 6 bits for the original codeword
should be 010101,010010 or 110110.
Among these three possible solutions,
only 010010 satisfies the equation for the
last parity bit P1 = P2 + P3 + P4 (mod 2).
Thus we decode the received sequence
0101101 as 0100101 corresponding to
the message 0100.

The above decoding procedure seems to
be quite complicated. However, it can be

generalized to construct (and decode)
multinle-error c.orrp~tini! crop-~ hv I1Q;nD

+01234567 xO1234567

001234567 000000000

110325476 101234567

223016745 202463175

332107654 303657412

4145670123 404376251
5 '5 4 7 6 1 0 3 2 5 0 5 1 4 2 7 3 6

667452301 606715324

776543210 707521643

Figure 5. Arithmetic Tables for an 8-Element Field.

!f(x)<"7~- ""'"'"
information \

symbols v...e-.e.-

a,

../

!I ; ~ ; ~ ~ ~ ~ 10 !1 I :t

Figure 4. A Polynomial Code.

Now suppose we would like to construct

a code that can correct two errors. We

can append

.f(4) = 42 + 7(4) + 3 = 6 + 1 + 3 = 4;

.f(5) = 52 + 7(5) + 3 = 7 + 6 + 3 = 2;

.f(6) = 62 + 7(6) + 3 = 2 + 4 + 3 = 5;

.f(7) = 72 + 7(7) + 3 = 3 + 3 + 3 = 3;

to the message symbols. That is, we would

transmit a 21 bit sequence (5,2,4,4,2,5,3)
= 101010100100010101011. If there are

transmission errors, say at positions 5

and 15, the received sequence becomes

101000100100011101011 = (5,0,4,4,3,5,3).

(This code is actually capable of

correcting two symbol errors instead of

two bit errors.) Then the receiver would

search for the 5 received symbols that

are not corrupted. Among the ( ~ ) = 21

cases, only j(1) '7= 5, .f(3) = 4, .f(4) = 4,
.f(6) = 5, .f(7) = 3, form a second degree

polynomial. So the receiver uses these
five points to reconstructj(x) = r + 7x + 5

and decode the received message as

(f(1),.f(2),.f(3» = (5, 2, 4) = 101010100.

The above idea, using polynomials to

construct codes, was first proposed by

Reed and Solomon in 1960. It is now

widely used in electronics and

communication systems including our

compact discs.

For the first time in history, the

International Mathematical Olympiad
(IMO) was held in the southern

hemisphere. Teams representing a
record 82 countries and regions

participated in the event at Mar del
Plata, Argentina this year from July 18
to 31. The site was at a resort area
bordered by the beautiful Atlantic
Ocean. All through the period, the
weather was nice and cool.

The Hong Kong team, like many
southeast Asia teams, had to overcome

thirty plus hours of flight time to arrive
Argentina. With two short days of rest,
the team members wrote the exams with

jet lag. This year the team consisted of

Chan Chung Lam (Bishop Hall Jubilee School)

Cheung PokMan (51FALeung KauKui College)

Lau Lap Ming (St. Paul'.s College)

Leung Wmg Chung (Queen Elizabeth School)
Mok Tze Tao (Queen' .s College)

Yu Ka Chun (Queen'.s College)

brought home 5 bronze medals and came
in one mark behind Canada and one
mark ahead of France. The top team
was China with 6 gold, followed by

Hungary, Iran, USA and Russia. As
usual, problem 6 was the most difficult
with 73% of the contestants getting zero,
90% getting less than half of the score
for the problem.

The excursions were good. The

hospitality was superb!!! The team
members had a wild time playing the
indoor games the day before the closing

ceremony. One member of the team
even admitted it was the best he has
participated in three years. There were
many fond memories.

There was a surprise ending on the way
back. Due to the typhoon weather in

Hong Kong, the team was stranded in
Los Angeles for a day. Yes, the team
took full advantage to tour the city,

Hollywood, Beverly Hills, Rodeo Drive,
in particular. The next day the team was

stranded again in Taipei. It was

unbelievably fortunate to have a chance
to see these cities. What a bonus for a

year's hard work!

number of parity bits.) Then we use the
three message symbols (5, 2, 4) to form a
second degree polynomial ft.x) such that
ft.l) = 5,ft.2) = 2 andft.3) = 4. That is

f( ) -S(x-2)(x-3) 2(x-1)(x-3) 4(x-1)(x-2)x -+ + .
(1-2)(1-3) (2-1)(2-3) (3-1)(3-2)

Note that we have 8 kinds of symbols

(since we group the bits into 3-bit
symbols) and thus we need an 8~element
field for our arithmetic. (Basically, a
field is an arithmetic system that allows
us to add, subtract, multiply and divide.)

By using the 8-element field given in
Figure 5, we can simplify ft.x) to obtain

ft.x) = ~ + 7x + 5.

Note that ft.l) = 5, ft.2) = 2 and ft.3) = 4
as desired.
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for

publication consideration. Solutions
should be preceded by the solver's

name,- address, school affiliation and
grade level. Please send submissions to
Dr. Kin-Yin Li, Dept of Mathematics,

Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions is

September 30, 1997.

Problem 61. Find the smallest positive
integer which can be written as the sum
of nine, the sum of ten and the sum of
eleven consecutive positive integers.

Problem 62. Let ABCD be a cyclic

quadrilateral and let P and Q be points
on the sides AB and AD respectively
such thatAP = CD andAQ = BC. LetM

be the point of intersection of AC and
PQ. Show that M is the midpoint of PQ.
(Source: 1996 Australian Mathematical

Olympiad.)

for real

Solution: Official Solution.

Let Y be the midpoint of AC. Since
LOFP = LOYP = 90°, points F, P, Y, 0

lie on a circle r 1 with center at the
midpoint Q of OP. Now the nine point
circle rz of MBC also passes through F
and Y and has center at the midpoint N
of OH. So FY is perpendicular to NQ.
Since NQ is parallel to HP by the
inidpoint theorem, FY is perpendicular
to HP. Then LFHP = 90° -LYFH =
90° -LYCH = LBAC.

Solution 1: Note that

Problem 63. Show that for n ~ 2, there is

apermumtional,a2, ...,anofl,2, ...,n
such that lak-kl = lal- 11 ~ 0 for k = 2,

3, ..., n if and only ifnis even.

Problem 64. Show that it is impossible

to place 1995 different positive integers

along a circle so that for every two

adjacent numbers, the ratio of the larger

to the smaller one is a prime number.

In place of x, y, similar inequalities for
y, z and z, x can be obtained. Adding
these inequalities give the desired
inequality .

Problem 65. All sides and diagonals of
a regular 12-gon are painted in 12 colors

(each segment is painted in one color).
Is it possible that for any three colors
there exist three vertices which are
joined with each other by segments of
these colors?

Problem 59. Let n be a positive integer
greater than 2. Find all real number

solutions (Xl' X2, .", Xn) to the equation

(l-Xlf + (XI-Xz)2 + ...

2 2 1
+ (Xn-l~Xn) + Xn = -

n+l

(Source:
Olympiad)

1975 

British Mathematical

*****************
Solutions

*****************
The Cauchy-Schwarz inequality asserts
that

( 2 2 2x 2 2 2)al +Qi + ...+ak hi +b2 + ...+bk

~(aA +~~ + ...+akbk)
Problem 56. Find all prime numbers p
such that 2!' + p2 is also prime.

Solution: CHAN Lung Chat (St.
Paul's Co-ed. College, Form 4), CHAN
Wing Sum (HKUST), LAW Ka Ho

(Queen Elizabeth School, Form 4), Gary
NG Ka Wing (STFA Leung Kau Kui

College, Form 4), POON Man Wai (St.

Adding the above n + 1 equations, we
get

with equality if and only if aibj = a.;bi for

all i,j such that 1 ~ i <j ~ k. Taking k= 3,

al =.J-;-+Y, ~ = .JY+;, a3 = ,J;'+; ,

x y zht = I:""':-"::" ' b2 = ~' b3 = r-:-:::-'
vx+y vy+z 'Vz+x

2:1 + 2:2 + ...+ 2:n+1 = O.

(continued on page 4)

Paul's College, Form 4), TAM Siu

Lung (Queen Elizabeth School, Form 4),
WONG Chon Wai (SKH Kei Hau

Secondary School, Form 4), Alan
WONG Tak Wai (University of

Waterloo, Canada), WONG Sui Kam
(Queen Elizabeth School, Form 4) and
Sam YUEN Man Long (STF A Leung
Kau KuiCollege, Form 4).

For P = 2, 2P + p2 = 8 is not prime. For
p = 3, 2P + p2 = 17 is prime. For prime
p = 3n :t 1 > 3; we see that

2P + p2 = (3 -If + (3n :t If

is divisible by 3 (after expansion) and is
greater than 3. So p = 3 is the only such

prime.

then dividing both sides by 2(x + y + z),
we get the desired inequality.

Other commended solvers: CHAN

Wing Sum (HKUST), Alex CHUENG

King Chung (po Leung Kuk 1983
Board of Director's College, Form 6),
Yves CHEUNG Yui Ho (STFA Leung

Kau Kui College, Form 5), TAM Siu

Lung (Queen Elizabeth School, Form 4),
and Sam YUEN Man Long (STFA
Leung Kau Kui College, Form 4).

Problem 58. Let ABC be an acute-

angled triangle with BC > CA. Let 0 be
its circumcenter, Hits orthocenter, and
F the foot of its altitude CH. Let the

perpendicular to OF at F meet the side
CA at P. Prove that LFHP = LBAC.

(Source: unused problem in the 1996

IMO.)

SolutionZ: Venus CHU Choi Yam (St.
Paul's Co-ed. College, Form 6), Gary
NG Ka Wing (STFA Leung Kau Kui

College, Form 4), POON Man Wai (St.
Paul's College, Form 4), Alan WONG
Tak Wai (University of Waterloo,

Canada).





















Olympiad Corner 

Tenth Asian Pacific Mathematics 

Olympiad, March, 1998: 

Each question is worth 7 points. 

Problem 1.   Let F be the set of all 
n-tuples (A1, A2,..., An) where each Ai, i = 
1, 2, ..., n is a subset of {1,2,...,1998}.  
Let |A| denote the number of elements of 
the set A.  Find the number 

( )
∑ ∪∪

nAAA

nAAA

,,,

21

21 K

K . 

 

Problem 2.   Show that for any positive 

integers a and b, (36a+b) (a+36b) cannot 

be a power of 2. 
 

Problem 3.   Let a, b, c be positive real 

numbers.  Prove that 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
+≥⎟

⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ +

3
12111

abc

cba

a

c

c

b

b

a
 

 

Problem 4.   Let ABC be a triangle and D 

the foot of the altitude from A.  Let E and 

F be on a line passing through D such 

that AE is perpendicular to BE, AF is 

perpendicular to CF, and E and F are 

different from D.  Let M and N be the 

midpoints of the line segments BC and 

EF, respectively.  Prove that AN is 

perpendicular to NM. 

 (continued on page 4) 

In topology, there are many abstractions of 

geometrical ideas, such as continuity and 

closeness. ‘Topology’ is derived from the 

Greek words τοποσ , a place and λογοσ , 

a discourse. It was introduced in 1847 by 

Johann Benedict Listing (1808-1882), 

who was a student of Carl Friedrich Gauss 

(1777-1855). In the early days, people 

called it analysis situs, that is, analysis of 

position. Rubber-sheet geometry is a 

rather descritpive term to say what it is. 

(Just think of properties of objects drawn 

on a sheet of rubber which are not changed 

when the sheet is being distorted.) Hence, 

topologists could not distinguish a triangle 

from a rectangle and they may even 

consider a basketball as a ping-pong ball.  

 

Topologists consider two objects to be the 

same (homeomorphic) if one can be 

continuously deformed to look like the 

other. Continuous deformations include 

bending, stretching and squashing without 

gluing or tearing points.  

 

Example 1. The following are 

homeomorphic: (See Figure 1.) 

 

Example 2. The following are 

non-homeomorphic: (See Figure 2.) 

 

In practise, continuous deformations may 

not be easy to carry out. In fact, there is a 

simple method to see two objects are 

non-homeomorphic, by seeking their 

Poincaré-Euler characteristics, (in short, 

Euler numbers). In order to see what the 

Euler number is, we need to introduce the 

concept of subdivision on an n-manifold 

(here 2≤n throughout).  (An n-manifold 

is roughly an n dimensional object in 

which each point has a neighborhood 

homeomorphic to an open interval (if n = 1) 

or an open disk (if n = 2).  For example, a 

circle is a 1-manifold and a sphere is a 

2-manifold.) 

 

Basically, we start with an n manifold and 

subdividing it into a finite number of 

vertices, edges and faces. A vertex is a 

point. An edge is a curve with endpoints 

that are vertices. A face is a region with 

boundary that are edges.  

Here are typical pictures of vertex, edge 

and face, (see Figure 3.) 

 

The Euler number )(χ of a compact 

(loosely speaking, bounded) 1-manifold is 

defined to be the number of vertices(v) 

minus the number of edges(e), and for a 

compact 2-manifold (surface), it is defined 

to be the number of vertices(v) minus the 

number of edges (e) plus the number of 

 

 

 

 

 

 

 

Volume 4, Number 2 March, 1998 - December, 1998

A Taste of Topology 

Wing-Sum Chan 

Beauty is the first test: there is no permanent place in the world for ugly mathematics. 

(G. H. Hardy )

 

Editors:    (CHEUNG Pak-Hong), Curr. Studies, HKU 

    (KO Tsz-Mei), EEE Dept, HKUST 

    (LEUNG Tat-Wing), Appl. Math Dept, HKPU 

    (LI Kin-Yin), Math Dept, HKUST 

    (NG Keng Po Roger), ITC, HKPU 

Artist:    (YEUNG Sau-Ying Camille), MFA, CU 

Acknowledgment: Thanks to Elina Chiu, Math Dept, 

Catherine NG, EEE Dept, HKUST and Tam Siu Lung for 

general assistance. 

On-line: http://www.math.ust.hk/mathematical_excalibur/ 

 

The editors welcome contributions from all teachers and 

students.  With your submission, please include your name, 

address, school, email, telephone and fax numbers (if 

available). Electronic submissions, especially in MS Word, 

are encouraged.  The deadline for receiving material for the 

next issue is December 31, 1998. 

For individual subscription for the three remaining issues 

for the 98-99 academic year, send us three stamped 

self-addressed envelopes. Send all correspondence to: 

Dr. Kin-Yin Li 

Department of Mathematics 

Hong Kong University of Science and Technology 

Clear Water Bay, Kowloon, Hong Kong 

Fax: 2358-1643 

Email: makyli@uxmail.ust.hk   

 



 

faces (f) (see Figure 4.)  The following 

theorem is a test to distinguish 

non-homeomorphic objects.  
 

Theorem 1.  If two n-manifolds are 

homeomorphic, then they have the same 

Euler number.  
 

So figure 4 and theorem 1 imply the sphere 

and the torus are not homeomorphic, i.e. 

the sphere cannot be continuously 

deformed to look like the torus and vice 

versa. 
 

Here are two terms we need before we can 

state the next theorem.  A connected 

manifold is one where any two points on 

the manifold can be connected by a curve 

on the manifold. The manifold is 

orientable if it has 2 sides, an inside and an 

outside. 

 

Theorem 2.  Two connected orientable 

n-manifolds )2( ≤n  with the same 

number of boundary components are 

homeomorphic if and only if they have the 

same Euler number.  
 

Here are some important results that tell us 

the general pictures of one and two 

manifolds.  
 

Classification I.  Any connected compact 

one-manifold is either homeomorphic to 

an open interval or a circle.  
 

Classification II. Any connected, 

orientable and compact two-manifolds is 

homeomorphic to one of the followings:  

(see Figure 5.) 
 

Finally, we mention a famous open 

problem (the Poincaré conjecture), which 

is to show that every compact, simply 

connected three-manifold is homeomorphic 

to a three-sphere, where simply connected 

means any circle on the manifold can be 

shrunk to a point on the manifold. 

 

有一類關於求陰影部分面積的問題，我

們可根據題意適當設元，通過一次方程

組求得結果。這種

數形結合，將幾何

面積問題轉化為

解一次方程組代

數問題的方法，由

於方法新穎、思路

清晰，因而頗受師

生重視。現舉三例

分析說明如下： 

 

一﹒列二元一次方程組求陰影面積 

 

例一：如上圖，O 為正三角形 ABC 的中

心， cm38=AB ，則 AOB 、 BOC 、

COA 所圍成的陰影部分的面積是ˍˍ
2cm 。 (1996 年陝西省中考題) 

 

分析：上圖中含有形狀不同的兩類圖

形，分別為 x 和 y，由圓形特徵得知，2

個 x 和 1 個 y 組成一個圓心角為 °120 的

弓形，而 3 個 x 和 3 個 y 組成一個正三

角形 ABC。由於正三角形 ABC 的高

1238
2

3 =×= ，又 O 為正三角形 ABC

的中心，故 MBBO ==×= 912
3
2 。 

MBCMBC SSyx ∆−=+∴ 扇形2
 

316
3

64
438

2

1

360

8120 2

−
π

=××−
⋅π

=
 

3481238
2
1 =××=  

解下列方程組 

⎪⎩

⎪
⎨
⎧

=+

−
π

=+

)2(34833

)1(316
3

64
2

LLL

LLL

yx
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，得 393643 −π=x 。這就是所求陰影

部分的面積。 

 

二﹒列三元一次方程組求陰影面積 

 

例 2：如下圖，在正方形 ABCD 中，有

一個以正方形的中心

為圓心，以邊長一半

為半徑的圓。另分別

以 A、B、C、D 為圓

心，以邊長一半為半

徑畫四條弧。若正方形的邊長為 2a，求

所圍成的陰影部分的面積。（1997 年泰

州市中考模擬題） 

 
分析：圖中含有形狀不同三類圖形，分

別為 x、y、z。由圖形特徵得知：4 個 x

和 1 個 y 組成一個圓；1 個 x 和 1 個 z

組成一個以 a 為半徑、圓心角為直角的

的扇形；4 個 x、4 個 z 和 1 個 y 組成一

個正方形。 

 

故此，可列出方程組 

⎪
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⎪
⎨

⎧

=++

π=+
π=+

)3(444

)2(

)1(4

2

2

4
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LLL

azyx
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)1()3( − 得 2

4
1 )4( az π−=  

再代入 )2( 得 2

2
)1( ax −= π 。 

2)42(4 axS −π==∴ 陰影 。 

 

三﹒列四元一次方程組求陰影面積 

例 3：如左圖，菱形 ABCD 的兩條對角

線長分別為 a、b，分別以每邊為直徑向

形 內 作

半圖。求

4 條 半

圓 弧 圍

成 的 花

瓣 形 面

積（陰影

部分的面積）。（人教版九年義務教材

初中《幾何》第三冊 P. 212） 

 

分析：圖中含有形狀不同的四類圖形，

分別為 x、y、z、u，則由圖形特徵得知：

2x、2y、z、u 組成一個以邊長為直徑的

半圓；x、z、u 組成直角三角形 BOC。 
解:設 x、y、z、u 如圖所示，則依題意

得 
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(2) – (1) 再乘 4 得 

 

（續於第四頁） 

巧列一次方程組     妙解陰影面積題 
于志洪 

江蘇泰州橡膠總廠中學
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Problem Corner 
We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceeded by the solver’s 

name, home address and school 

affiliation.  Please send submissions to 

Dr. Kin Y. Li, Department of 

Mathematics, Hong Kong University of 

Science and Technology, Clear Water 

Bay, Kowloon.  The deadline for 

submitting solutions is Dec 31, 1998. 

 

Problem 76.  Find all positive integers N 

such that in base 10, the digits of 9N is 

the reverse of the digits of N and N has at 

most one digit equal 0.  (Source: 1977 

unused IMO problem proposed by 

Romania) 

 

Problem 77.  Show that if ∆ ABC 

satisfies 
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coscoscos

sinsinsin
222

222

=
++

++
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then it must be a right triangle.  (Source: 

1967 unused IMO problem proposed by 

Poland) 

 

Problem 78.  If c1, c2,…, cn (n ≥2) are 

real numbers such that 

 

,)...(

)...)(1(

2
21

22
2

2
1

n

n

ccc

cccn

+++=

+++−
 

show that either all of them are 

nonnegative or all of them are 

nonpositive.  (Source: 1977 unused IMO 

problem proposed by Czechoslovakia) 

 

Problem 79.  Which regular polygons 

can be obtained (and how) by cutting a 

cube with a plane?  (Source: 1967 

unused IMO problem proposed by Italy) 

 

Problem 80.  Is it possible to cover a 

plane with (infinitely many) circles in 

such a way that exactly 1998 circles pass 

through each point?  (Source:  Spring 

1988 Tournament of the Towns 

Problem) 

 

***************** 

Solutions 
***************** 

 

Problem 71.  Find all real solutions of 

the system 

 

.)1log(

,)1log(

,)1log(

2

2

2

xzzz

zyyy

yxxx

=+++

=+++

=+++

 

 

(Source: 1995 Israel Math Olympiad) 
 

Solution: CHOI Fun Ieng (Pooi To 
Middle School (Macau), Form 5). 
 

If x < 0, then 110 2 <++< xx .  So 

0)1log( 2 <++ xx , which implies y < x 

< 0.  Similarly, we get z < y < 0 and x < z < 

0, yielding the contradiction x < z < y < x. 

If x > 0, then 112 >++ xx .  So 

0)1log( 2 >++ xx , which implies y > x 

> 0.  Similarly, we get z > y > 0 and x > z > 

0, yielding the contradiction x > z > y > x. 

If x = 0, then x = y = z = 0 is the only 

solution. 
 
Other commended solvers: AU Cheuk 
Yin (Ming Kei College, Form 5).  
CHEUNG Kwok Koon (HKUST), 
CHING Wai Hung (STFA Leung Kau 
Kui College, Form 6), HO Chung Yu 
(Ming Kei College, Form 6), KEE Wing 
Tao Wilton (PLK Centenary Li Shiu 
Chung Memorial College, Form 6), KU 
Wah Kwan (Heep Woh College, Form 7), 
KWOK Chi Hang (Valtorta College, 
Form 6), LAM Yee (Valtorta College, 
Form 6), LAW Ka Ho (Queen Elizabeth 
School, Form 5), Gary NG Ka Wing 
(STFA Leung Kau Kui College, Form 5), 
TAM Siu Lung (Queen Elizabeth School, 
Form 5), WONG Chi Man (Valtoria 
College, Form 3) and WONG Hau Lun 
(STFA Leung Kau Kui College, Form 6). 

 

Problem 72.  Is it possible to write the 

numbers 1,2,…,121 in an 11x11 table so 

that any two consecutive numbers be 

written in cells with a common side and 

all perfect squares lie in a single column?  

(Source: 1995 Russian Math Olympiad) 
 

Solution: Gary NG Ka Wing (STFA 

Leung Kau Kui College, Form 5). 
 

Suppose such a table exists.  The table 

would be divided into 2 parts by the 

single column of perfect squares, with 

one side 11n )50( ≤≤ n  cells and the 

other side 110 - 11n cells. Note that 

numbers between 2 successive perfect 

squares, say a2, 2)1( +a , lie on one side 

since they cannot cross over the perfect 

square column, and those between 
2)1( +a , 2)2( +a  lie on opposite side.  

Now the number of integers (strictly) 

between 1, 4, 9, 16, K , 100, 121 is 2, 4, 

6, 8, K , 20, respectively.  So one side 

has 2 + 6 + 10 + 14 + 18 = 50 numbers 

while the other side has 4 + 8 + 12 + 16 + 

20 = 60 numbers.  Both 50 and 60 are not 

multiple of 11, a contradiction. 
 
Other commended solvers: CHEUNG 
Kwok Koon (HKUST), HO Chung Yu 
(Ming Kei College, Form 6), LAI Chi 
Fung Brian (Queen Elizabeth School, 
Form 4), LAW Ka Ho (Queen Elizabeth 
School, Form 5), TAM Siu Lung 
(Queen Elizabeth School, Form 5), 
WONG Hau Lun (STFA Leung Kau 
Kui College, Form 6) and WONG Shu 
Fai (Valtorta College, Form 6). 

 

Problem 73.  Prove that if a and b are 

rational numbers satisfying the equation 
2255 2 baba =+ , then ab−1  is the 

square of a rational number.  (Source: 

26th British Math Olympiad) 
 

Solution:  CHAN Wing Sum (City U). 
 

If 0=b , then 211 =− ab .  If 0≠b , then 
2356 2 baaba =+ . So 4236 2 bbaa +−   

)1(454 abbabb −=−= . Therefore, ab−1  
44236 )2( bbbaa +−=  is the square of 

the rational number 223 )( bba − . 
 
Other recommended solvers: CHING 
Wai Hung (STFA Leung Kau Kui 
College, Form 6), CHOI Fun Ieng (Pooi 
To Middle School (Macau), Form 5), KU 
Wah Kwan (Heep Woh College, Form 7) 
and Gary NG Ka Wing (STFA Leung 
Kau Kui College, Form 5). 

 

Problem 74.  Points A2, B2, C2 are the 

midpoints of the altitudes AA1, BB1, CC1 of 

acute triangle ABC, respectively.  Find the 

sum of 212 CAB∠ , 212 ABC∠  and 

212 BCA∠ .  (Source:  1995 Russian Math 

Olympiad) 
 
Solution: LAM Po Leung (Ming Kei 
College, Form 5) 
 

Let 3A , 3B , 3C be the midpoints of BC, 

CA, AB, respectively, and H be the 

orthocenter of ABC∆ .  Since 33 AC  is 

parallel to AC, so °=∠ 9032 AHB  

31AHA∠= , which implies H, B2, A3, A1 

are concyclic.  So HABHAB 3212 ∠=∠ .  

Since 33 AB  is parallel to AB, so 
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22 abba
zyx

−π+π
=++ 。 

這就是所求陰影部分的面積。 

 

綜上所述可知：一般的陰影圖形大多

是由多種規則圖形組成的，所以利用

方程式組解決這類問題時，首先要根

據圖形的特徵（尤其是對稱性）把圖

形分成幾類，用字母表示各類圖形的

面積；其次要仔細觀察圖形的組成，

分析圖形中各部分之間及各部分與整

體圖形的關係，通過規則圖形面積公

式列出方程組；最後解方程求出陰影

面積。 

 

附練習題 

１﹒如右圖，已知一塊正方形的地瓷

磚邊長為 a，瓷磚上

的圖案是以各邊為

直徑在正方形內畫

圓所圍成的（陰影部

分），那麼陰影部分

的 面 積 是 多 少 ？

（1997 年寮夏回族自治區中考題） 

 

２﹒如右圖，已知圓形

O 的半徑為 R，求圖中

陰 影 部 分 的 面 積 。

（1998 年泰州市中考

模擬題） 

 

３﹒如右圖，正方形的邊長為 a，分別

以正方形的四個

頂點為圓心，邊長

為半徑，在正方形

內畫弧，那麼這四

條弧所圍成的陰

影部分的面積是

多少？（1994 年安

徽省中考題） 
 

４﹒ 如右圖，圓 O 內切於邊長為 a 的

正 三 角

形，分別以

三 角 形 的

三 頂 點 為

圓心，
2
a 為

半 徑 畫 弧

相交成圓中所示的陰影，求陰影部分

的面積。（1996 年泰州市中考模擬題）
 

參考資料 

1. 《陰影部分面積的幾種解法》 

  《初中生數學園地》 

安義人(華南師大主辦)  1997 年 3 月

2. 《列一次方程組解陰影面積題》 

  《中小學數學》 

于志洪(中國教育學會主辦)1997年11

月 

 

練習題答案: 

1. 2

2
)1( a−π      2. 22 332 RR −π  

3. 2

3
)31( aπ+−   4. 2

24

365 a−π  

3132 90 AHAAHC ∠=°=∠ , which 

implies H, C2, A3, A1 are concyclic.  So 

HACHAC 3212 ∠=∠ . Then 212 CAB∠  

HACHABHACHAB 32321212 ∠+∠=∠+∠=  

BACBAC ∠=∠= 333  (because 

333 CBA∆  is similar to ABC∆ ). 

Similarly, 212 ACB∠  BCA∠=  and 

ABCCBA ∠=∠ 212 . Therefore, the sum 

of 212 CAB∠ , 212 ABC∠ , 212 CBA∠  is 

180o. 

 

Other commended solvers: HO Chung 

Yu (Ming Kei College, Form 6). 

 

Problem 75.  Let P(x) be any 

polynomial with integer coefficients 

such that P(21) = 17, P(32) = -247, 

P(37) = 33.  Prove that if P(N) = N + 51 

for some integer N, then N = 26.  

(Source: 23rd British Math Olympiad) 

 

Solutions: HO Chung Yu (Ming Kei 

College, Form 6). 

 

If P(N) = N + 51 for some integer N, 

then P(x) – x – 51 = (x - N)Q(x) for some 

polynomial Q(x) by the factor theorem.  

Note Q(x) has integer coefficients 

because P(x) – x – 51 = P(x) – P(N) – 

(x – N) is a sum of )( ii
i Nxa −  terms 

(with ia ’s integer).  Since Q(21) and 

Q(37) are integers, P(21) – 21 – 51 = 

-55 is divisible by 21 – N and P(3) – 

37 – 51 = -55 is divisible by 37 – N is 16, 

we must have N = 26 or 32.  However, if 

N = 32, then we get -247 = P(32) = 32 + 

51, a contradiction.  Therefore N = 26. 

 
Other commended solvers: CHEUNG 
Kwok Koon (HKUST), KU Wah Kwan 
(Heep Who College, Form 7), TAM Siu 
Lung (Queen Elizabeth School, Form 5) 
and WONG Shu Fai (Valtorta College, 
Form 6). 

 

 
 

Olympiad Corner 

(continued from page 1) 

Problem 5.  Determine the largest of all 

integers n with the property that n is 

divisible by all positive integers that are 

less than .3 n  

 

 
 

(Hong Kong team to IMO 98: (from left to right) Lau Wai Tong (Deputy 
Leader), Law Ka Ho, Chan Kin Hang, Choi Ming Cheung, Lau Lap Ming, 
Cheung Pok Man, Leung Wing Chung, Liu Kam Moon (Leader).) 
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Olympiad Corner 
 

39
th

 International Mathematical 

Olympiad, July 1998: 

Each problem is worth 7 points. 

Problem 1.  In the convex quadrilateral 

ABCD, the diagonals AC and BD are 

perpendicular and the opposite sides AB 

and DC are not parallel.  Suppose that the 

point P, where the perpendicular 

bisectors of AB and DC meet, is inside 

ABCD.  Prove that ABCD is a cyclic 

quadrilateral if and only if the triangles 

ABP and CDP have equal areas. 
 

Problem 2.  In a competition, there are a 

contestants and b judges, where b ≥  3 is 

an odd integer.  Each judge rates each 

contestant as either "pass" or "fail".  

Suppose k is a number such that, for any 

two judges, their ratings coincide for at 

most k contestants.  Prove that 

b

b

a

k

2

1−
≥ . 

 

Problem 3.  For any positive integer n, 

let d(n) denote the number of positive 

divisions of n (including 1 and n itself).  
 

(continued on page 4) 

The rearrangement inequality (or the 

permutation inequality) is an elementary 

inequality and at the same  time a  

powerful inequality.  Its statement is as 

follow.  Suppose naaa ≤≤≤ �21  and 

nbbb ≤≤≤ �21 .  Let us call  

A = nnbababa +++ �2211  

 the ordered sum of the numbers and  

B = 1121 bababa nnn +++ − �  

 the reverse sum of the numbers.  If 

nxxx ,...,, 21  is a rearrangement (or 

permutation) of the numbers nbbb ,...,, 21  

and if we form the mixed sum 

,2211 nn xaxaxaX +++= �  

then the rearrangement inequality asserts 

that A ≥  X ≥  B.  In the case the ia 's are 

strictly increasing, then equality holds if 

and only if the ib 's are all equal. 

 

We will look at A ≥  X first.  The proof is 

by mathematical induction.  The case n = 

1 is clear.  Suppose the case n = k is true.  

Then  for  the case n = k + 1, let  

ik xb =+1  and jk bx =+1 .  Observe that 

0))(( 11 ≥−− ++ jkik bbaa .  We get 

jkkikkji babababa 1111 ++++ +≥+ . 

So in X, we may switch ix  and 1+kx  to 

get a possibly larger sum.  After switching, 

we can apply the case n = k to the first k 

terms to conclude that A ≥  X.  The 

inequality X ≥  B follows from A ≥  X 

using 11 bbb nn −≤≤−≤− − �  in place of 

nbbb ≤≤≤ �21 . 

 

Now we will give some examples. 

 

Example 1.  (Chebysev's Inequality)  Let 

A and B be as in the rearrangement 

inequality, then 

( )( )
.11 B

n

bbaa
A nn ≥

++++
≥

��
 

Proof.  Cyclically rotating the ib 's, we get 

n mixed sums  

+++ �2211 baba  ,nnba  

,13221 bababa n+++ �  

..., 

nba1 + 112 −++ nnbaba � . 

 
By the re-arrangement inequality, each of 
these  is  between A and B, so their  
average is also between A and B.  This 
average is just the expression given in the 
middle of Chebysev's inequality. 
 

Example 2.  (RMS-AM-GM-HM 

In-equality)  Let .0,...,, 21 ≥nccc   The 

root mean square (RMS) of these 

numbers is 1/2 22
1 ]/)[( ncc n++� , the 

arithmetic mean (AM) is 

nccc n /)( 21 +++ �  and the geometric 

mean (GM) is ( ) n
nccc

/1
21 � .  We have 

RMS ≥  AM ≥  GM.  If the numbers are 

positive, then the harmonic mean (HM) is 

( ) ( )[ ]nccn /1/1 1 ++� .  We have GM ≥  

HM. 

 

Proof.  Setting iii cba ==  in the left half 

of Chebysev's inequality, we easily get 

RMS ≥  AM.  Next we will show AM ≥  

GM.  The case GM = 0 is clear.  So 

suppose GM > 0.  Let ,/11 GMca =  

2
212 /GMcca = , ..., nn ccca �21=  

1/ =
nGM  and 1/1 +−= ini ab  for i = 1, 

2, ... n.  (Note the ia 's may not be 

increasing, but the ib 's will be in the 

reverse order as the ia 's).  So the mixed 

sum 
=+++ 2211 bababa nn �  

GMcGMcGMc n /// 21 +++ �  

is greater than or equal to the reverse sum 

.11 nbaba nn =++�   The AM-GM 

inequality follows easily.  Finally GM ≥  

HM follows by applying AM ≥  GM to the 

numbers ncc /1 ..., ,/1 1 . 
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Example 3.  (1974 USA Math Olympiad)  

If a, b, c > 0, then prove that 

3/)()( cbacba abccba ++
≥ . 

Solution.  By symmetry, we may assume 

cba ≤≤ , then ln cba lnln ≤≤ .  By 

Chebysev's inequality, 

ccbbaa lnlnln ++  

.
3

)lnln)(ln( cbacba ++++
≥  

The desired inequality follows from 

exponentiation. 
 

Example 4.  (1978 IMO)  Let 1c , 2c , ..., 

nc  be distinct positive integers.  Prove 

that 

nn

cc
c n 1

2

1
1

4 2
2

1 +++≥+++ �� . 

Solution.  Let 1a , 2a , ..., na  be the ic 's 

arranged in increasing order.  Since ia 's 

are distinct positive integers, iai ≥ .  

Since 2/1...4/11 n>>> , by the 

re-arrangement inequality, 

2

2
1

4 n

cc
c n+++ �  

2

2
1

4 n

aa
a n+++≥ �  

n

1

2

1
1 +++≥ � . 

Example 5.  (1995 IMO)  Let a, b, c > 0 

and abc = 1.  Prove that  

+
+

+
+ )(

1

)(

1

33
acbcba 2

3

)(

1

3
≥

+ bac
. 

Solution.  (HO Wing Yip, Hong Kong 

Team Member)  Let x = bc = 1/a, y = ca = 

1/b, z = ab = 1/c.  The required inequality 

is equivalent to 

2

3
222

≥
+

+
+

+
+ xy

z

zx

y

yz

x
. 

By symmetry, we may assume x ≤ y ≤ z, 

then 222 zyx ≤≤  and 1/(z + y) ≤  1/(x + 

z) ≤  1/(y + x).  The left side of the 

required  inequality is  just the ordered 

sum A of the numbers.  By the 

rearrangement inequality, 

zx

z

yz

y

xy

x
A

+
+

+
+

+
≥

222

, 

yz

z

xy

y

zx

x
A

+
+

+
+

+
≥

222

. 
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Intersecting Chords Theorem.  Let two 

lines through a point P not on a circle 

intersect the inside of the circle at chords 

AA' and BB', then  PA ×  PA'  = PB ×  

PB'. (When P is outside the circle, the 

limiting case A = A' refers to PA tangent 

to the circle.) 
 

This theorem follows from the 

observation that triangles ABP and A'B'P 

are similar and the corresponding sides 

are in the same ratio.  In the case P is 

inside the circle, the product PA ×  PA' 

can be determined by taking the case the 

chord  AA'  passes through P and the 

center O.  This gives PA ×  PA' = 
22 dr − , where r is the radius of the  

circle and  d  = OP.  In the case P is 

outside the circle, the product PA ×  PA' 

can be determined by taking the limiting 

case PA is tangent to the circle.  Then PA 

×  PA'  = 22 rd − . 

 

The power of a point P with respect to a 

circle is the number 22 rd −  as 

mentioned above.  (In case P is on the 

circle, we may define the power to be 0 for 

convenience.)  For two circles 1C  and 

2C  with different centers 1O  and 2O , 

the points whose power with respect to 

1C  and 2C  are equal form a line 

perpendicular to line 1O 2O .   (This can 

be shown by setting coordinates with line 

1O 2O  as the x-axis.)  This line is called 

the radical axis of the two circles.  In the 

case of  the three circles 1C , 2C , 3C  

with noncollinear centers 1O , 2O , 3O , 

the three radical axes of the three pairs of 

circles intersect at a point called the 

radical center of  the three circles.  (This 

is because the intersection point of any 

two of these radical axes has equal power 

with respect to all three circles, hence it is 

on the third radical axis too.) 
 

If two circles 1C  and 2C  intersect, their 

radical axis is the line through the 

intersection point(s) perpendicular to the 

line of the centers.  (This is because the 

intersection point(s) have 0 power with 

respect to both circles, hence they are on 

the radical axis.)  If the two circles do not 

intersect, their radical axis can be found 

by taking a third circle 3C  intersecting  

 

 

 

 
 
both 1C  and 2C .  Let the radical axis of  

1C , 3C  intersect the radical axis of 2C , 

3C  at P.  Then the radical axis of 1C , 2C  

is the line through P perpendicular to the 

line of centers of 1C , 2C . 

We will illustrate the usefulness of the 

intersecting chords theorem, the concepts 

of power of a point, radical axis and 

radical center in the following examples. 

 

Example 1.  (1996 St. Petersburg City 

Math Olympiad)  Let BD be the angle 

bisector of angle B in triangle ABC with D 

on side AC.  The circumcircle of triangle 

BDC meets AB at E, while the 

circumcircle of triangle ABD meets BC at 

F.  Prove that AE = CF. 

 

Solution.  By the intersecting chords 

theorem, AE ×  AB = AD ×  AC and CF 

×  CB = CD ×  CA, so AE/CF = 

(AD/CD)(BC/AB).  However, AB/CB = 

AD/CD by the angle bisector theorem.  So 

AE = CF. 

 

Example 2.  (1997 USA Math Olympiad)  

Let ABC be a triangle, and draw isosceles 

triangles BCD, CAE, ABF externally to 

ABC, with BC, CA, AB as their respective 

bases.  Prove the lines through A, B, C, 

perpendicular to the lines EF, FD, DE, 

respectively, are concurrent. 

 

Solution.  Let 1C  be the circle with center 

D and radius BD, 2C  be the circle with 

center E and radius CE, and 3C  be the 

circle with center F and radius AF.  The 

line through A perpendicular to EF is the 

radical axis of 2C , 3C , the line through B 

perpendicular to FD is the radical axis of 

3C , 1C  and the line through C 

perpendicular to DE is the radical axis of 

1C , 2C .  These three lines concur at the 

radical center of the three circles. 

 

Example 3.  (1985 IMO)  A circle with 

center O passes through vertices A and C 

of triangle ABC and intersects side AB at 

K and side  BC at  N.  Let  the 

circumcircles of triangles ABC and KBN 

intersect at B and M.  Prove that OM is 

perpendicular to BM. 
 

(continued on page 4) 
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Power of Points Respect to Circles 
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Problem Corner 
 

We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceeded by the solver’s 

name, home address and school 

affiliation.  Please send submissions to 

Dr. Kin Y. Li, Department of 

Mathematics, Hong Kong University of 

Science and Technology, Clear Water 

Bay, Kowloon.  The deadline for 

submitting solutions is April 30, 1999. 

 

Problem 81.  Show, with proof, how to 

dissect a square into at most five pieces 

in such a way that the pieces can be 

reassembled to form three squares no two 

of which have the same area.  (Source: 

1996 Irish Mathematical Olympiad) 
 

Problem 82.   Show that if  n is an  

integer greater than 1, then nn 44
+  

cannot be a prime number.  (Source: 

1977 Jozsef Kurschak Competition in 

Hungary) 
 

Problem 83.  Given an alphabet with 

three letters a, b, c, find the number of 

words of n letters which contain an even 

number of a's.  (Source: 1996 Italian 

Mathematical Olympiad) 
 

Problem 84.  Let M and N be the 

midpoints of  sides AB  and  AC of 

∆ ABC, respectively.  Draw an arbitrary 

line through A.  Let Q and R be the feet  

of the perpendiculars from B and C to 

this line, respectively.  Find the locus of 

the intersection P of the lines QM and RN 

as the line rotates about A. 
 

Problem 85.  Starting at (1, 1), a stone is 

moved in the coordinate plane according 

to the following rules: 

(a) From any point (a, b), the stone can 

be moved to (2a, b) or (a, 2b). 

(b) From any point (a, b), the stone can 

be moved to (a - b, b) if a > b, or to 

(a, b - a) if a < b. 

For which positive integers x, y, can the 

stone  be  moved  to (x, y)?  (Source: 

1996 German Mathematical Olympiad) 

 

***************** 

Solutions 
***************** 

 

Problem 76.  Find all positive integers   

N such that in base 10, the digits of 9N    

is the reverse of the digits of N and N    

has at most one digit equal 0.  (Source:  

1977 unused IMO problem proposed by 

Romania) 
 

Solution.  LAW Ka Ho (Queen  

Elizabeth School, Form 6) and Gary NG 

Ka Wing (STFA Leung Kau  Kui  

College, Form 6). 

 

Let ] ... [ 21 naaa  denote N in base 10 with 

.01 ≠a   Since 9N has the same number of 

digits as N, we get 1a = 1 and na  = 9.  

Since 9 ≠×19 91, n > 2.  Now 2[ 9 a  ... 

1−na ] + 8 = [ 1−na  ... 2a ].  Again from 

the number of digits of both sides, we get 

≤2a  1.  The case 2a  = 1 implies 9 1−na  

+ 8 ends in 2a  and so 1−na  = 7, which is 

not possible because 9[1 ... 7] + 8 > [7 ... 

1].  So 2a  = 0 and 1−na  = 8.  Indeed, 

1089 is a solution by direct checking.  For 

n > 4, we now get ]  [ 9 23 −naa �  + 8 = 

[8 2−na ... 3a ].  Then 3a ≥  8.  Since 

9 2−na  + 8 ends in 3a , 3a  = 8 will imply 

2−na  = 0, causing another 0 digit.  So 3a  

= 9 and 2−na  = 9.  Indeed, 10989 and 

109989 are solutions by direct checking.  

For n > 6, we again get ]  [ 9 34 −naa �  + 8 

= [8 3−na ... 4a ].  So 4a  = ... = 3−na  = 9.  

Finally direct checking shows these 

numbers are solutions. 
 

 

Other recommended solvers:  CHAN Siu 

Man (Ming Kei College, Form 6), 

CHING Wai Hung (STFA Leung Kau 

Kui College, Form 7), FANG Wai Tong 

Louis (St. Mark's School, Form 6), KEE 

Wing Tao Wilton (PLK Centenary Li 

Shiu Chung Memorial College, Form 7), 

KWOK Chi Hang (Valtorta College, 

Form 7), TAM Siu Lung (Queen 

Elizabeth School, Form 6), WONG Chi 

Man  (Valtorta  College, Form 4), 

WONG Hau Lun (STFA Leung Kau Kui 

College, Form 7) and WONG Shu Fai 

(Valtorta College, Form 7). 
 

 

Problem 77.  Show that if ∆ ABC 

satisfies 

,2
cos  coscos

sinsinsin

222

222

=
++

++

CBA

CBA
 

then it must be a right triangle.  (Source: 

1967 unused IMO problem proposed by 

Poland) 
 

Solution.  (All solutions received are 
essentially the same.) 

Using 2/)2cos1(sin2 xx −=  and 

x2cos = (1 + cos 2x)/2, the equation is 

equivalent to 

.012cos2cos2cos =+++ CBA  

This yields cos(A + B) cos(A - B) + cos
2
 

C = 0.  Since cos(A + B) = -cosC, we get 

cosC (cos(A - B) + cos(A + B)) = 0.  This 

simplifies to cosC cosA cosB = 0.  So one 

of the angles A, B, C is 90
0
. 

 

Solvers:  CHAN Lai Yin, CHAN Man 

Wai, CHAN Siu Man, CHAN Suen 

On, CHEUNG Kin Ho, CHING Wai 

Hung, CHOI Ching Yu, CHOI Fun 

Ieng, CHOI Yuet Kei, FANG Wai 

Tong Louis, FUNG Siu Piu, HUNG 

Kit, KEE Wing Tao Wilton, KO Tsz 

Wan, KWOK Chi Hang, LAM Tung 

Man, LAM Wai Hung, LAM Yee, 

LAW Ka Ho, LI Ka Ho, LING Hoi 

Sheung, LOK Chan Fai, LUNG Chun 

Yan, MAK Wing Hang, MARK Kai 

Pan, Gary NG Ka Wing, OR Kin, 

TAM Kwok Cheong, TAM Siu Lung, 

TSANG Kam Wing, TSANG Pui Man, 

TSANG Wing Kei, WONG Chi Man, 

WONG Hau Lun, YIM Ka Wing and 

YU Tin Wai. 
 

 

Problem 78.  If )2( ..., ,, 21 ≥nccc n  are 

real numbers such that 

=+++− ))(1( 22
2

2
1 ncccn �  

, )( 2
21 nccc +++ �  

show that either all of them are non- 

negative or all of them are non-positive.  

(Source: 1977 unused IMO problem 

proposed by Czechoslovakia) 

 

Solution.  CHOY Ting Pong (Ming Kei 

College, Form 6). 

Assume the conclusion is false.  Then 

there are at lease one negative and one 

positive numbers, say kccc ≤≤≤ �21  

nk cc ≤≤<≤ + �10  with 1 ≤  k < n, 

satisfying the condition.  Let w = 1c + ... 

+ kc , x = nk cc +++ �1 , y = ++�
2
1c  

2
kc  and z = 22

1 nk cc +++ � .  Expanding 
2w  and 2x  and applying the inequality 

,2
22

abba ≥+  we get ky 2w≥  and (n - 

k) z 2x≥ .  So 

+≥+−=+ kyzynxw ))(1()( 2  

22)( xwzkn +≥− . 

Simiplifying, we get ,0    ≥wx  

contradicting w < 0 < x. 
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Other commended solvers:  CHAN Siu 
Man (Ming Kei College, Form 6), 
FANG Wai Tong Louis (St. Mark's 
School, Form 6), KEE Wing Tao 
Wilton (PLK Centenary Li Shiu Chung 
Memorial College, Form 7), Gary NG 
Ka Wing (STFA Leung Kau Kui 
College, Form 6), TAM Siu Lung 
(Queen Elizabeth School, Form 6), 
WONG Hau Lun (STFA Leung Kau 
Kui College, Form 7) and YEUNG Kam 
Wah (Valtorta College, Form 7). 
 

Problem 79.  Which regular polygons 
can be obtained (and how) by cutting a 
cube with a plane?  (Source: 1967 unused 
IMO problem proposed by Italy) 

Solution.  FANG Wai Tong Louis (St. 

Mark's school, Form 6), KEE Wing Tao 

(PLK Centenary Li Shiu Chung 

Memorial School, Form 7), TAM Siu 

Lung (Queen Elizabeth School, Form 6) 

and YEUNG Kam Wah (Valtorta 

College, Form 7). 

 

Observe that if two sides of a polygon is 

on a face of the cube, then the whole 

polygon lies on the face.  Since a cube 

has 6 faces, only regular polygon with 3, 

4, 5 or 6 sides are possible.  Let the 

vertices of the bottom face of the cube be 

A, B, C, D and the vertices on the top face 

be A', B', C', D' with A' on top of A, B' on 

top of B and so on.  Then the plane 

through A, B', D' cuts an equilateral 

triangle.  The perpendicular bisecting 

plane to edge AA' cuts a square.  The 

plane through the mid-points of edges 

AB, BC, CC', C'D', D'A', A'A cuts a 

regular hexagon.  Finally, a regular 

pentagon is impossible, otherwise the 

five sides will be on five faces of the cube 

implying two of the sides are on parallel 

planes, but no two sides of a regular 

pentagon are parallel. 

 

Problem 80.  Is it possible to cover a 

plane with (infinitely many) circles in 

such a way  that  exactly 1998 circles 

pass through each point?  (Source: 

Spring 1988 Tournament of the Towns 

Problem) 

 

Solution.  Since no solution is received, 

we will present the modified solution of 

Professor Andy Liu (University of 

Alberta, Canada) to the problem. 

 

First  we solve the simpler problem 

where 1998 is replaced by 2.  Consider 

the lines y = k, where k is an integer, on 

the coordinate plane.  Consider every 

circle of diameter 1 tangent to a pair of 

these lines.  Every point (x, y) lies on 

exactly two of these circles.  (If y is an 

integer, then (x, y) lies on one circle on 

top of it and one below it.  If y is not an 

integer, then (x, y) lies on the  right half 

of one circle and on the left half of 

another.)  Now for the case 1998, repeat 

the argument above 998 times (using 

lines of the form y = k + (j /999) in the 

j-th time, j = 1, 2, ..., 998.) 

 

 
 

Olympiad Corner 

(continued from page 1) 
 

 

Determine all positive integers k such 

that 

k
nd

nd
=

)(

)(
2

 

for some n. 

 

Problem 4.  Determine all pairs (a, b) of 

positive integers such that 2ab + b + 7 

divides baba ++
2 . 

 

Problem 5.  Let I be the incentre of 

triangle ABC.  Let the incircle of ABC 

touch the sides BC, CA and AB at K, L 

and M, respectively.  The line through B 

parallel to MK meets the lines LM and LK 

at R and S, respectively.  Prove that 

RIS∠ is acute. 

 

Problem 6.  Consider all functions f from 

the set N of all positive integers into itself 

satisfying 

22 ))(())(( tfssftf = , 

for all s and t in N.  Determine the least 

possible value of f (1998). 

 

 
 

Rearrangement Inequality 

(continued from page 2) 

So  















+

+
+

+

+
+

+

+
≥

zx

zx

yz

yz

xy

xy
A

222222

2

1
. 

Applying the RMS-AM inequality 

,2/)( 222 srsr +≥+  the right side is at 

least ,2/)( zyx ++  which is at least 

2/32/)(3 3/1
=xyz  by the AM-GM 

inequality. 

 
 

Power of Points Respect to Circles 

(continued from page 2) 
 

Solution.   For the three circles 

mentioned, the radical axes of the three 

pairs are lines AC, KN and BM.  (The 

centers are noncollinear because two of 

them are on  the perpendicular  bisector 

of  AC, but  not the third.)  So the axes 

will concur at  the  radical center P.  

Since ∠ PMN = ∠ BKN = ∠ NCA, it 

follows  that P, M, N, C are concyclic.  

By power of a point, BM ×  BP = BN ×  

BC = 22 rBO −  and PM ×  PB = PN ×  

PK = 22 rPO − , where r is  the  radius  

of the circle through A, C, N, K.  Then 

−=−=−
222 )( PMBMPMBPBOPO

.2BM  This implies OM is perpendicular 

to BM.  (See remarks below.) 

 

Remarks.  By coordinate  geometry, it 

can be shown that the locus of points X 

such that 22 BOPO −  = 22 BXPX −  is 

the line through O perpendicular to line 

BP.  This is a useful fact. 

 

Example 4.  (1997 Chinese Math 

Olympiad)  Let quadrilateral ABCD be 

inscribed in a circle.  Suppose lines AB 

and DC intersect at P and lines AD and 

BC intersect at Q. From Q, construct the 

tangents QE and QF to the circle, where 

E and F are the points of tangency.  Prove 

that P, E, F are collinear. 

 

Solution.  Let M be a point on PQ such 

that .ADCCMP ∠=∠  Then QMCD ,,,  

are concyclic and also, PMCB ,,,  are 

concyclic.  Let 1r be the radius of the 

circumcircle 1C  of ABCD and 1O be the 

center of 1C . By power of a point, 2
1PO  

PQPMPDPCr ×=×=−
2

1  and 2
1QO - 

.2
1 PQQMQBQCr ×=×=   Then 2

1PO  

,)( 222
1 QMPMPQQMPMQO −=−=−

which implies .1 PQMO ⊥   The circle  

2C  with 1QO  as diameter passes 

through FEM ,,  and intersects 1C  at 

., FE   If 2r  is the radius of 2C  and 2O  

is the center of 2C , then 

PMrPO =−
2

1
2
1  .2

2
2
2 rPOPQ −=×   So 

P lies on the radical axis of 1C , 2C , 

which is the line EF. 
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Olympiad Corner 
 

11
th

 Asian Pacific Mathematical 

Olympiad, March 1999: 

Time allowed: 4 Hours 

Each problem is worth 7 points. 

Problem 1.  Find the smallest positive 
integer n with the following property:  
There does not exist an arithmetic 
progression of 1999 terms of real 
numbers containing exactly n integers. 
 

Problem 2.  Let 21  , aa , ... be a sequence 

of real numbers satisfying 

jiji aaa +≤+  for all i, j = 1, 2, ... .  

Prove that 

n
n a

n

aaa
a ≥++++ �

32

32
1  

for each positive integer n. 
 

Problem 3.  Let 1Γ  and 2Γ  be two 

circles interecting at P and Q.  The 

common tangent, closer to P, of 1Γ  and 

2Γ  touches 1Γ  at A and 2Γ  at B.  The 

tangent of 1Γ  at P meets 2Γ  at C, which 

is different from P and the extension of 

AP meets BC at R.  Prove that the 

circumcircle of triangle PQR is tangent 

to BP and BR. 
 

(continued on page 4) 
 

大約在 1637 年，當法國業餘數學
家費馬 (Pierre de Fermat, 1601-1665) 閱 
讀古希臘名著《算術》時，在書邊的空
白地方，他寫下了以下的一段說話：「將
個立方數分成兩個立方數，一個四次冪
分成兩個四次冪，或者一般地將一個高
於二次冪的數分成兩個相同次冪，這是
不可能的。 我對這個命題有一個美妙
的證明，這裏空白太小，寫不下。」換
成現代的數學術語，費馬的意思就即
是：「當整數 n > 2 時，方程 x

n
 + y

n
 = z

n  

沒有正整數解。」 
 

費馬當時相信自己已發現了對以
上命題的一個數學證明。 可惜的是，
當費馬死後，他的兒子為他收拾書房
時，並沒有發現費馬的「美妙證明」。
到底，費馬有沒有證實這個命題呢？又
或者，費馬這個命題是否正確呢？ 

 

費馬這個命題並不難理解，如果大
家用計算機輸入一些數字研究一下，
（注意：費馬的時代並未發明任何電子
計算工具，）那麼就會「相信」費馬這
個命題是正確的。由於 費馬在生時提
出的其他數學命題，都逐步被證實或否
定，就祇剩下這一個看似正確，但無法
證明的命題未能獲證，所以數學家就稱
它為「費馬最後定理」。 
 

說也奇怪，最先對「費馬最後定理」
的證明行出第一步的人，就是費馬本
人！有人發現，在費馬的書信中，曾經
提及方程 x

4
 + y

4
 = z

4 無正整數解的證
明。費馬首先假設方程 x4

 + y
4
 = z

2 是有
解的， 即是存在 三個正整數 a、b 和 c，
並且 a

4
 + b4 剛好等於 c

2。 然後他通過
「勾股數組」的通解，構作出另外三個
正整數 e、f 和 g，使得 e

4
 + f

 4
 = g

2 並且

c > g。 費馬指出這是不可能的，因為
如果這是正確的，那麼重覆他的構作方
法，就可以構造出一連串遞降的數字，
它們全都滿足方程 x4

 + y
4
 = z

2。 但是 c 

是一個有限數， 不可能如此無窮地遞
降下去！ 所以前文中假設方程 x

4
 + y

4
 = 

z
2 有解這個想法不成立，亦即是說方程

x
4
 + y

4
 = z

2 無整數解。 
 

又由於方程 x
4
 + y

4
 = z

2 是無解的， 
方程 x

4
 + y

4
 = z

4 亦必定無解。 否則 將
後者的解寫成 x

4
 + y

4
 = (z

2
)

2 就會 變成
前一個方程的解，從而導出矛盾。 由
此可知，當 n = 4 時，「費馬最後定理」
成立。 
 

為「費馬最後定理」踏出另一步的
人，是瑞士大數學家歐拉（Leonhard 

Euler, 1707-1783）。他利用了複數 a + 

b 3− 的性質，證實了方程 x
3
 + y

3
 = z

3

無解。但由於歐拉在他的證明中，在沒
有足夠論據的支持下，認為複數 a + 

b 3− 的立方根必定可以再次寫成 a + 

b 3−  的形式， 因此他的證明 未算圓
滿。 歐拉證明的缺憾，又過了近半個
世 紀 ， 才 由 德 國 數 學 家 高 斯 （ Carl 

Friedrich Gauss, 1777-1855） 成 功地補
充。 同時，高斯更為此而引進了「複
整數」的概念，即形如 a + b k− 的複
數，其中 k 為正整數，a 和 b 為整數。 
 

1823 年，七十一歲高齡的法國數

學家勒讓德（Adrien Marie Legendre, 

1752 - 1833）提出了「費馬最後定理」

當 n = 5 時的證明。 1828 年，年青的德

國 數 學 家 狄 利 克 雷 （ Peter Gustav 

Lejeune Dirichlet, 1805 -1859）亦獨立地 
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Pierre Fermat 

 

 

Leonhard Euler 

 

 

Carl Friedrich Gauss 

 

 

Lejeune Dirichlet 

 

證得同樣的結果。 其後，在 1832 年，

狄利克雷更證明當 n = 14 時，「費馬最

後定理」成立。 

 

1839 年 ， 另 一 位 法 國 人 拉 梅

（Gabriel Lamé, 1795 -1870）就證到 n = 

7。 1847 年，拉梅更宣稱他已完成了「費

馬最後定理」的證明。  

 

 拉梅將 x
n
 + y

 n 分解成 (x + y)(x + ζ 

y)(x + ζ 2
y)…(x + ζ n−1

y)，其中 ζ = cos( 2 

π/n) + i sin(2 π/n) ，即方程 r n
 = 1 的複

數根。  如果 x
n
 + y

n
 = z

n，那麼拉梅認為

每一個 (x + ζk 
y) 都會是 n 次冪乘以一

個複數單位，從而可導出矛盾，並能證

明「費馬最後定理」成立。 不過，拉

梅的證明很快便證實為無效，這是因為

拉梅所構作的複數，並不一定滿足「唯

一分解定理」。 

 

甚麼是「唯一分解定理」呢？ 在

一般的整數中，每一個合成數都祇可能

被分解成一種「質因數連乘式」。 但

在某些「複整數」中，情況就未必相同。 

例 如 ： 6 = 2 ×  3 = (1 + 5− ) ×  

)51( −− ，而在 a + b 5− 的複整數

中，2、3、(1 + 5− ) 和 )51( −− 都是

互不相同的質數。換句話說，形如 a + 

b 5− 的複整數，並不符合「唯一分解

定理」。 

 

如果能夠滿足「唯一分解定理」，

那麼當 z
n
 = ab 時，我們就確信可以找到

兩個互質的整數 u 和 v ，使得 a = u
n
和

b = v
n 
了。 但如果未能滿足「唯一分解

定理」，以上的推論就不成立了。例如：

26  = 2 ×  3 ×  (1 + 5− ) ×  

)51( −− ，但右方的四個數，都並非

是一個平方數，故此，當 6
2
 = ab 時，

我們就不能肯定 a 和 b 是不是平方數

了！ 這一點，亦正好是拉梅證明的一

大漏洞！ 

 

為了解決未能滿足「唯一分解定

理」所帶來的問題，德國數學家庫默爾

（Ernst Edward Kummer, 1810 -1893）

就提出了「理想數」的想法。 
 

已知 n 為一個質數。 假設ζ = cos 

(2π /n) + i sin(2π /n)，即方程 rn
 = 1 的

複數根，則稱  

1
1210

−
−++++ n

naaaa ζζζ �     

為「分圓整數」，其中 ai 為整數。 並

非每一個分圓整數集合都滿足「唯一分

解定理」，但如果能夠加入一個額外的

「數」，使到該分圓整數集合滿足「唯

一分解定理」，則稱該數為「理想數」。

庫默爾發現，當 n 為一些特殊的質數

時，（他稱之為「正規質數」，）就可

以利用「理想數」來證明「費馬最後定

理」在這情況下成立。 

 

由此，庫默爾證明了當 n < 100

時，「費馬最後定理」成立。 

 

德 國 商 人 沃 爾 夫 斯 凱 爾 （ Paul 

Friedrich Wolfskehl, 1856 - 1908）在他

的遺囑上訂明，如果有人能夠在他死後

一百年內證實「費馬最後定理」，則可

以獲得十萬馬克的獎金。自此，「費馬

最後定理」就吸引到世上不同人仕的注

意，不論是數學家或者是業餘學者，都

紛紛作出他們的「證明」。在 1909 至

1934 年間，「沃爾夫斯凱爾獎金」的評

審委員會，就收到了成千上萬個「證

明」，可惜的是當中並沒有一個能夠成

立。自從經過了兩次世界大戰之後，該

筆獎金的已大幅貶值，「費馬最後定理」

的吸引力和熱潮，亦慢慢地降低了。 

 

其實，研究「費馬最後定理」有甚

麼好處呢？首先，就是可以滿足人類的

求知慾。「費馬最後定理」是一道簡單

易明的命題，但是它的證明卻並非一般

人所能理解，這已經是一個非常之有趣

的事情。其次，在證明該定理的過程之

中，我們發現了不少新的數學現象，產

生了不少新的數學工具，同時亦豐富了

我們對數學，特別是數論的知識。有數

學家更認為，「費馬最後定理」就好像

一隻會生金蛋的母雞，由它所衍生出來

的數學理論，例如：「唯一分解定理」、

「分圓整數」、「理想數」……等等，

都是人類思想中最珍貴的產物。 
 

(to be continued next issue) 
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Problem Corner 
 

We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceeded by the solver’s 

name, home address and school 

affiliation.  Please send submissions to 

Dr. Kin Y. Li, Department of 

Mathematics, Hong Kong University of 

Science and Technology, Clear Water 

Bay, Kowloon.  The deadline for 

submitting solutions is October 1, 1999. 
 

Problem 86.  Solve the system of 

equations: 

2
1

1 3 =








+
+

yx
x  

.24
1

1 7 =








+
+

yx
y  

(Source: 1996 Vietnamese Math Olympiad) 

 

Problem 87.  Two players play a game 

on an infinite board that consists of 11×  

squares.  Player I chooses a square and 

marks it with an O.  Then, player II 

chooses another square and marks it with 

X.  They play until one of the players 

marks a row or a column of 5 consecutive 

squares, and this player wins the game.  If 

no player can achieve this, the game is a 

tie.  Show that player II can prevent 

player I from winning.  (Source: 1995 

Israeli Math Olympiad) 
 

Problem 88.  Find all positive integers n 

such that 11 53 −− + nn  divides nn 53 + . 

(Source: 1996 St. Petersburg City Math 

Olympiad) 
 

Problem 89.  Let O and G be the 

circumcenter and centroid of triangle 

ABC, respectively.  If R is the 

circumradius and r is the inradius of ABC, 

then show that .)2( rRROG −≤   

(Source: 1996 Balkan Math Olympiad) 
 

Problem 90.  There are n parking spaces 

(numbered 1 to n) along a one-way road 

down which n drivers nddd  ..., , , 21  in 

that order are traveling.  Each driver has 

a favorite parking space and parks there 

if it is free; otherwise, he parks at the 

nearest free place down the road. (Two 

drivers may have the same favorite 

space.)  If there is no free space after his 

favorite, he drives away.  How many lists 

naaa  ..., , , 21  of favorite parking spaces 

are there which permit all of the drivers 

to park?  Here ia  is the favorite parking 

space number of id . (Source: 1996 St. 

Petersburg City Math Olympiad) 
 

***************** 

Solutions 

***************** 

Problem 81.  Show, with proof, how to 

dissect a square into at most five pieces 

in such a way that the pieces can be 

reassembled to form three squares no two 

of which have the same area. (Source: 

1996 Irish Math Olympiad) 
 

Solution.  SHAM Wang Kei (St. Paul's 

College, Form 4). 

In the following diagram, A and B can be 

reassembled to form a 2020 ×  square and 

E and F can be reassembled to form a 

1212 ×  square. 
 

 
 

Other recommended solvers:  CHAN 

Man Wai (St. Stephen's Girls' College, 

Form 4). 
 

Problem 82.  Show that if n is an integer 

greater than 1, then n
n 44 +  cannot be a 

prime number. (Source: 1977 Jozsef 

Kurschak Competition in Hungary). 
 

Solution.  Gary NG Ka Wing (STFA 

Leung Kau Kui College, Form 6) and NG 

Lai Ting (True Light Girls' College, 

Form 6). 

For even n, n
n 44 +  is an even integer 

greater than 2, so it is not a prime.  For 

odd 1>n , write 12 −= kn  for a 

positive integer 1>k .  Then n
n 44 + = 

)22(2)2( 22122
nnnn

knnn −+=−+ +

)22( 2
nn

kn ++ .  Since the smaller 

factor +−=−+ − 212 )2(22 kkn
nnn  

nk
n 4 ,12

422 +>−
 cannot be prime. 

Other recommended solvers: FAN Wai 

Tong (St. Mark's School, Form 6), LAW 

Ka Ho (Queen Elizabeth School, Form 6), 

SHAM Wang Kei (St. Paul's College, 

Form 4), SIU Tsz Hang (STFA Leung 

Kau Kui College, Form 4) and TAM Siu 

Lung (Queen Elizabeth School, Form 6). 
 

Problem 83.  Given an alphabet with 
three letters a, b, c, find the number of 
words of n letters which contain an even 
number of a's. (Source: 1996 Italian Math 

Olympiad). 
 

Solution I.  CHAO Khek Lun Harold 
(St. Paul's College, Form 4) and Gary 
NG Ka Wing (STFA Leung Kau Kui 
College, Form 6). 
 

For a nonnegative even integer nk ≤2 , 

the number of n letter words with k2  a's 

is knn
kC 2

2 2 − .  The answer is the sum of 

these numbers, which can be simplified 

to 2/))12()12(( nn −++  using 

binomial expansion. 

Solution II.  TAM Siu Lung (Queen 

Elizabeth School, Form 6). 

Let nS  be the number of n letter words 

with even number of a's and nT  be the 

number of n letter words with odd 

number of a's.  Then nS + nT = n3 .  

Among the nS  words, there are 1−nT  

words ended in a and 12 −nS  words 

ended in b or c.  So we get nS = 

11 2 −− + nn ST .  Similarly += −1nn ST  

12 −nT .  Subtracting these, we get 

nS - 11 −− −= nnn TST .  So 

nS - nT = 1S - 1T = 2 - 1 = 1.  Therefore, 

.2/)13( += n
nS  

 

Problem 84.  Let M and N be the 
midpoints of sides AB and AC of ,ABC∆  
respectively.  Draw an arbitrary line 
through A.  Let Q and R be the feet of the 
perpendiculars from B and C to this line, 
respectively.  Find the locus of the 
intersection P of the lines QM and RN as 
the line rotates about A. 
 

Solution.  CHAO Khek Lun Harold 
(St. Paul's College, Form 4). 

Let S be the midpoint of side BC.  From 

midpoint theorem, it follows MSN∠ = 

.BAC∠   Since M is the midpoint of the 

hypotenuse of  right triangle AQM, we 

get .AQMBAQ ∠=∠  Similarly, CAR∠  

= .ARN∠  

If the line intersects side BC, then either 

QPRMPN ∠=∠   or QPRMPN ∠+∠  = 

�180 .  In the former case, �180=∠MPN  

PRQPQR ∠−−∠  =  AQM∠−�180  - 
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BACARN ∠−=∠ �180 .   So MPN∠   + 

�180=∠MSN  .  Then, M, N, S, P are 

concyclic.  In the later case,  =∠MPN  

PRQPQR ∠+∠  = ARNAQM ∠+∠  = 

BAC∠  = MSN∠ .  So again M, N, S, P 

are concyclic.  Similarly, if the line does 

not intersect side BC, there are 2 cases 

both lead to M, N, S, P concyclic.  So the 

locus is on the circumcircle of M, N, S. 

Conversely, for every point P on this 

circle, draw line MP and locate Q on line 

MP so that QM = AM.  The line AQ is the 

desired line and QM, RN will intersect at 

P. 

Comments:  The circle through M, N, S is 

the nine point circle of .ABC∆   As there 

are 4 cases to deal with, it may be better 

to use coordinate geometry. 
 

Other commended solvers:  FAN Wai 
Tong (St. Mark's School, Form 6) and 
TAM Siu Lung (Queen Elizabeth 
School, Form 6). 

 

Problem 85.  Starting at )1 ,1( , a stone is 

moved in the coordinate plane according 

to the following rules: 

(a) Form any point (a, b), the stone can 

be moved to (2a, b) or (a, 2b). 

(b) From any point (a, b), the stone can 

be moved to ),( bba −  if a > b, or 

to ),( aba −  if a < b. 

For which positive integers x, y, can the 
stone be moved to (x, y)?  (Source: 1996 

German Math Olympiad) 
 

Solution.  Let gcd(x, y) be the greatest 

common divisor (or highest common 

factor) of x and y.  After rule (a), the gcd 

either remained the same or doubled.  

After rule (b), the gcd remain the same.  

So if (x, y) can be reached from (a, b), 

then gcd (x, y) = n2  gcd(a, b) for a 

nonnegative integer n.  If a = b = 1, then 

gcd(x, y) = n2 . 
 

Conversely, suppose gcd(x, y) = n2 .  Of 

those points (a, b) from which (x, y) can 

be reached, choose one that minimizes 

the sum a + b.  If a or b is even, then (x, y) 

can be reached from (a/2, b) or (a, b/2) 

with a smaller sum.  So a and b are odd.  

If a > b (or a < b), then (x, y) can be 

reached from ((a + b)/2, b) (or (a, (a + 

b)/2)) with a smaller sum.  So a = b.  

Since n2  = gcd(x, y) is divisible by a = 

gcd(a, b) and a is odd, so a = b = 1.  Then 

(x, y) can be reached from (1, 1). 

 
 

Olympiad Corner 

(continued from page 1) 
 

Problem 4.  Determine all pairs (a, b) of 

integers with the property that the 

numbers ba 42 +  and ab 42 +  are both 

perfect squares. 
 

Problem 5.  Let S be a set of 12 +n  

points in the plane such that no three are 

collinear and no four concyclic.  A circle 

will be called good if it has 3 points of S 

on its circumference, 1−n  points in its 

interior and 1−n  in its exterior.  Prove 

that the number of good circles has the 

same parity as n. 
 

 
 

Equation 444
zyx =+  

 

Recall the following theorem, see 

Mathematical Excalibur, Vol. 1, No. 2, pp. 

2, 4 available at the web site 

www.math.ust.hk/mathematical_excalibur/ 
 

Theorem.  If u, v are relatively prime 

positive (i.e. u, v have no common prime 

divisor), vu >  and one is odd, the other 

even, then 22
vua −= , ,2uvb =  

22
vuc +=  give a primitive solution of 

222
cba =+  (i.e. a solution where a, b, c 

are relatively prime).  Conversely, every 

primitive solution is of this form, with a 

possible permutation of a and b. 
 

Using this theorem, Fermat was able to 

show 444
zyx =+  has no positive 

integral  solutions.  We  will  give  the 

details below. 
 

It is enough to show the equation 
244

wyx =+  has no positive integral 

solutions.  Suppose 244
wyx =+  has 

positive integral solutions.  Let ,ax =  

,by =  cw =  be a positive integral 

solution with c taken to be the least among 

all such solution.  Now a, b, c are 

relatively prime for otherwise we can 

factor a common prime divisor and reduce 

c to get contradiction.  Since 
22222 )()( cba =+ , by the theorem, 

there are relatively prime positive integers 

u, v (one is odd, the other even) such that 
222 vua −= , uvb 22 = , .22 vuc +=   

Here u is odd and v is even for otherwise 

12 −≡a (mod 4), which is impossible.  

Now 222 uva =+  and a, u, v are 

relatively prime.  By the theorem again, 

there are relatively prime positive integers 

s, t such that ,
22

tsa −=  ,2stv =  

.22 tsu +=   Now == uvb 22  

).(4 22 tsst +   Since 
2222

 , , tsts +  are 

relatively prime, we must have ,
2

es =  

2222 , gtsft =+=  for some positive 

integers e, f, g.  Then 244 gfe =+  with 

.2222 cuutsgg <≤=+=≤   This 

contradicts the choice c being least.  

Therefore, 244 wyx =+  has no positive 

integral solutions. 
 

 
 

IMO1999 
 

This year the International Mathematical 

Olympiad will be held in Romania.  Based 

on their performances in qualifying 

examinations, the following students are 

selected to be Hong Kong team members: 
 

Chan Ho Leung (Diocesan Boys’ School, 

Form 7) 

Chan Kin Hang (Bishop Hall Jubilee 

School, Form 5) 

Chan Tsz Hong (Diocesan Boys’ School, 

Form 7) 

Law Ka Ho (Queen Elizabeth School, 

Form 6) 

Ng Ka Wing (STFA Leung Kau Kui 

College, Form 6) 

Wong Chun Wai (Choi Hung Estate 

Catholic Secondary School, Form 6) 
 

Both Chan Kin Hang and Law Ka Ho 

were Hong Kong team members last year.  

This year the team leader is Dr. Tam Ping 

Kwan (Chinese University of Hong Kong) 

and the deputy leader will be Miss Luk 

Mee Lin (La Salle College). 
 

 
 

Corrections 

In the last issue of the Mathematical 
Excalibur, the definition of power 
given in the article Power of Points 
Respect to Circles should state "The 
power of a point P with respect to a 

circle is the number 
22 rd −  as 

mentioned above."  In particular, the 
power is positive when the point is 
outside the circle.  The power is 0 when 
the point is on the circle.  The power is 
negative when the point is inside the 
circle. 
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Olympiad Corner 
 

40
th

 International Mathematical 

Olympiad, July 1999: 

Time allowed: 4.5 Hours 

Each problem is worth 7 points. 

Problem 1.  Determine all finite sets S of 
at least three points in the plane which 
satisfy the following condition: for any 
two distinct points A and B in S, the 
perpendicular bisector of the line 
segment AB is an axis of symmetry for S. 
 

Problem 2.  Let n be a fixed integer, with 

2≥n . 

(a) Determine the least constant C such 

that the inequality  

   ( )
4

1 1

22∑ ∑
≤<≤ ≤≤









≤+

nji ni
ijiji xCxxxx  

 holds for all real numbers 1x , 2x , 

…, .0≥nx  

(b) For this constant C, determine when 

equality holds. 
 

Problem 3.  Consider an n × n square 

board, where n is a fixed even positive 

integer.  The board is divided into 2
n  

unit squares.  We say that two different 

squares on the board are adjacent if they 

have a common side. 

(continued on page 4) 

在「數論」的研究之中，有一

門分枝不可不提，它就是「橢圓曲

線」(Elliptic Curve) bxaxxy ++=
232  

c +  ( 見 page 2 附錄 )。 
 

「橢圓曲線」並非橢圓形，它

是計算橢圓周長時的一件「副產

品」。但「橢圓曲線」本身卻有著

一些非常有趣的數學性質，吸引著

數學家的注視。 
 

提到「橢圓曲線」，又不可不

提「谷山 - 志村猜想」了。 
 

1954年，志村五郎 (Goro Shimura) 

在東京大學結識了比他太一歲的谷

山 豊  （ Yutaka Taniyama, 1927 - 

1958），之後，就開始了二人對「模

形式」(modular form) 的研究。「模

形式」，起源於法國數學家龐加萊

（Henry Poincaré, 1854 - 1912）對「自

守函數」的研究。所謂「自守函數」，

可以說是「週期函數」的推廣，而

「模形式」則可以理解為在複平面

上的「週期函數」。 
 

1955年，谷山開始提出他的驚

人猜想。三年後，谷山突然自殺身

亡。其後，志村繼續谷山的研究，

總結出以下的一個想法：「每條橢

圓曲線，都可以對應一個模形式。」

之後，人們就稱這猜想為「谷山 - 志

村猜想」。 
 

起初，大多數數學家都不相信

這個猜想，但經過十多年的反覆檢

算後，又沒有理據可以將它推翻。

到了 70 年代，相信「谷山 - 志村

猜想」的人越來越多，甚至以假定

「谷山 - 志村猜想」成立的前提下

進行他們的論證。 
 

1984 年秋，德國數學家弗賴

（Gerhand Frey），在一次數學會議

上，提出了以下的觀點： 
 

首先，假設「費馬最後定理」

不成立。即能夠發現正整數 A、B、

C和 N，使得 A
N
 + B

N
 = C

N。於是利

用這些數字構作橢圓曲線：y
2
 = x(x - 

A
N
)(x + B

N
)。弗賴發現這條曲線有很

多非常特別的性質，特別到不可能

對應於任何一個「模形式」！換句

話說，弗賴認為：如果「費馬最後

定理」不成立，那麼「谷山 - 志村

猜想」也是錯的！但倒轉來說，如

果「谷山 - 志村猜想」成立，那麼

「費馬最後定理」就必定成立！因

此，弗賴其實是指出了一條證明「費

馬最後定理」的新路徑：這就是去

證明「谷山 - 志村猜想」！ 
 

可惜的是，弗賴在 1984年的研

究，並未能成功地證實他的觀點。

不過，美國數學家里貝特 (Kenneth 

Ribet )，經過多次嘗試後，終於在

1986年證實了有關的問題。 
 

       似乎，要證明「費馬最後定

理」，現在祇需要證明「谷山 -志 村

猜想」就可以了。不過自從該猜想 
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被提出以來，已經歷過差不多三十

年的時間，數學家對這個證明，亦

沒有多大的進展。不過，在這時候，

英國數學家懷爾斯就開始他偉大而

艱巨的工作。 
 

懷爾斯（Andrew Wiles），出生

於 1953年。10歲已立志要證明「費

馬最後定理」。1975 年，開始在劍

橋大學進行研究，專攻「橢圓曲線」

和「岩澤理論」。在取得博士學位

之後，就轉到美國的普林斯頓大學

繼續工作。當他知道里貝特證實了

弗賴的猜想後，就決定放棄當時手

上的所有研究，專心於「谷山 - 志

村猜想」的證明。由於他不想被人

騷擾，他更決定要秘密地進行此項

工作。 
 

經過了七年的秘密工作後，懷

爾斯認為他已證實了「谷山 - 志村

猜想」，並且在 1993 年 6 月 23 日，

在劍橋大學的牛頓研究所中，以「模

形式、橢圓曲線、伽羅瓦表示論」

為題，發表了他對「谷山 - 志村猜

想」重要部份（即「費馬最後定理」）

的證明。當日的演講非常成功，「費

馬最後定理」經已被證實的消息，

很快就傳遍世界。 
 

不過，當懷爾斯將他長達二百

頁的證明送給數論專家審閱時，卻

發現當中出現漏洞。起初，懷爾斯

以為很容易便可以將這個漏洞修

補，但事與願遺，到了 1993年的年

底，他承認他的證明出現問題，而

且要一段時間才可解決。 
 

到了 1994年的 9月，懷爾斯終

於突破了證明中的障礙，成功地完

成了一項人類史上的創舉，證明了

「費馬最後定理」。1995 年 5 月，

懷爾斯的證明，發表在雜誌《數學

年鑑》之中。到了 1997 年 6 月 27

日，懷爾斯更獲得價值五萬美元的

「沃爾夫斯凱爾獎金」，實現了他

的童年夢想，正式地結束了這個長

達 358年的數學證明故事。 
 

附錄附錄附錄附錄::::    橢圓曲線橢圓曲線橢圓曲線橢圓曲線    

「橢圓曲線」是滿足方程 y
2
 = x

3
 + ax

2
 

+ bx + c 的點所組成的曲線，其中 a, 

b, c 為有理數使 cbxaxx +++
23 有

不同的根。在曲線上定一個有理點

O。不難證明，當直線穿過兩個曲

線上的有理點 A, B後，該直線必定

與曲線再相交於第三個有理點 C。

由 C 和 O 再得一點 D 如下圖。

我們可以將曲線上的有理點以A + B     

=  D  為定義看成一個 「群」 (group)。

由於以上性質可以用來解答很多 

相關的問題，故此「橢圓曲線」就

成為數學研究的一個焦點。現時，

「橢圓曲線」的理論，主要應用於

現代編寫通訊密碼的技術方面。 
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http://www-history.mcs.st-and.ac.uk/~history/ 

          HistTopics/Fermat's_last_theorem.html 
 

http://www.ams.org/notices/199710/barner.pdf 
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Problem Corner 
 

We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceeded by the solver’s 

name, home address and school 

affiliation.  Please send submissions to 

Dr. Kin Y. Li, Department of 

Mathematics, Hong Kong University of 

Science and Technology, Clear Water 

Bay, Kowloon.  The deadline for 

submitting solutions is December 4, 

1999. 
 

Problem 91.  Solve the system of 

equations: 

2
1

1 3 =








+
+

yx
x  

24
1

1 7 =








+
−

yx
y . 

(This is the corrected version of problem 86.) 
 

Problem 92.  Let )3(  ..., , , 21 >naaa n  be 

real numbers such that 1a  + 2a  + … + 

nan ≥  and 2
1a  + 2

2a + … + 22 nan ≥ .  

Prove that max 2) ..., , ,( 21 ≥naaa .  

(Source: 1999 USA Math Olympiad) 
 

Problem 93. Two circles of radii R and r 

are tangent to line L at points A and B 

respectively and intersect each other at C 

and D.  Prove that the radius of the 

circumcircle of triangle ABC does not 

depend on the length of segment AB.  

(Source: 1995 Russian Math Olympiad) 
 

Problem 94.  Determine all pairs (m, n) 

of positive integers for which nm 32 +  is 

a square.  
 

Problem 95.  Pieces are placed on an 

nn ×  board.  Each piece “attacks” all 

squares that belong to its row, column, 

and the northwest-southeast diagonal 

which contains it.  Determine the least 

number of pieces which are necessary to 

attack all the squares of the board.  

(Source: 1995 Iberoamerican Math 

Olympiad) 

 

***************** 

Solutions 

***************** 

Problem 86.  Solve the system of 

equations: 

2
1

1 3 =








+
+

yx
x  

24
1

1 7 =








+
+

yx
y . 

(Source: 1996 Vietnamese Math Olympiad) 
 

Solution.  CHAO Khek Lun Harold (St. 

Paul's College, Form 5), FAN Wai Tong 

Louis (St. Marks’ School, Form 7), NG 

Ka Wing Gary (STFA Leung Kau Kui 

College, Form 7) and NG Lai Ting (True 

Light Girls’ College, Form 7). 

Clearly, x and y are nonzero.  Dividing the 

second equation by the first equation, we 

then simplify to get y = 24x/7.  So x + y = 

31x/7.  Substituting this into the first 

equation, we then simplifying, we get x – 

x )3/2(  + 7/31 = 0.  Applying the 

quadratic formula to find x , then 

squaring, we get .93/)3102  41( ±=x   

Then y = 24x/7 = (328 ,217/)31016 ±  

respectively.  By direct checking, we see 

that both pairs (x, y) are solutions. 
 

Other recommended solvers:  CHAN Hiu 

Fai Philip (STFA Leung Kau Kui College, 

Form 6), CHAN Kwan Chuen (HKSYC 

& IA Wong Tai Shan Memorial School, 

Form 4), CHUI Man Kei (STFA Leung 

Kau Kui College, Form 5), HO Chung 

Yu (HKU), LAW Siu Lun Jack (Ming 

Kei College, Form 5), LEUNG Yiu Ka 

(STFA Leung Kau Kui College, Form 4), 

KU Hong Tung (Carmel Divine Grace 

Foundation Secondary School, Form 6), 

SUEN Yat Chung (Carmel Divine Grace 

Foundation Secondary School, Form 6), 

TANG Sheung Kon (STFA Leung Kau 

Kui College, Form 5), WONG Chi Man 

(Valtorta College, Form 5), WONG 

Chun Ho Terry (STFA Leung Kau Kui 

College, Form 5), WONG Chung Yin 

(STFA Leung Kau Kui College), WONG 

Tak Wai Alan (University of Waterloo, 

Canada), WU Man Kin Kenny (STFA 

Leung Kau Kui College) and YUEN Pak 

Ho (Queen Elizabeth School, Form 6). 
 

Problem 87.  Two players play a game on 

an infinite board that consists of 11×  

squares.  Player I chooses a square and 

marks it with an O.  Then, player II 

chooses another square and marks it with 

X.  They play until one of the players 

marks a row or a column of 5 consecutive 

squares, and this player wins the game.  If 

no player can achieve this, the game is a 

tie.  Show that player II can prevent player 

I from winning.  (Source: 1995 Israeli  Math 

Olympiad). 
 

Solution.  CHAO Khek Lun Harold 

(St. Paul's College, Form 5). 
 

      

 

×  

  

×  

 

  

×  

 

×  

 

  

×  

   

 

  ×   
 

      

 

 Divide the board into 22×  blocks.  

Then bisect each 22×  block into two 

21×  tiles so that for every pair of blocks 

sharing a common edge, the bisecting 

segment in one will be horizontal and the 

other vertical.  Since every five 

consecutive squares on the board contain 

a tile, after player I choose a square, 

player II could prevent player I from 

winning by choosing the other square in 

the tile. 
 

Problem 88.  Find all positive integers n 

such that 11 53 −−
+

nn  divides nn 53 + . 

(Source: 1996 St. Petersburg City Math 

Olympiad). 
 

Solution.  CHAO Khek Lun Harold 

(St. Paul's College, Form 5), HO Chung 

Yu (HKU), NG Ka Wing Gary (STFA 

Leung Kau Kui College, Form 7), NG 

Lai Ting (True Light Girls’ College, 

Form 7), SHUM Ho Keung (PLK No.1 

W.H. Cheung College, Form 6) and TSE 

Ho Pak (SKH Bishop Mok Sau Tseng 

Secondary School, Form 5). 
For such an n, since  

),53(553)53(3 1111 −−−−
+<+<+

nnnnnn

so ).53(453 11 −−
+=+

nnnn  Cancelling, 

we get 15 −n  = 13 −n .  This forces n = 1.  
Since 2 divides 8, n = 1 is the only 
solution. 
 

Other recommended solvers:  CHAN 
Hiu Fai Philip (STFA Leung Kau Kui 
College, Form 6), CHAN Kwan Chuen 
(HKSYC & IA Wong Tai Shan 
Memorial School, Form 4), CHAN Man 
Wai (St. Stephen’s Girls’ College, Form 
5), FAN Wai Tong Louis (St. Mark's 
School, Form 7), HON Chin Wing (Pui 
Ching Middle School, Form 5), LAW
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Siu Lun Jack (Ming Kei College, Form 
5), LEUNG Yiu Ka (STFA Leung Kau 
Kui College, Form 4), NG Ka Chun 
(Queen Elizabeth School), NG Tin Chi 
(TWGH Chang Ming Thien College, 
Form 7), TAI Kwok Fung (Carmel 
Divine Grace Foundation Secondary 
School, Form 6), TANG Sheung Kon 
(STFA Leung Kau Kui College, Form 5), 
TSUI Ka Ho Willie (Hoi Ping Chamber 
of Commerce Secondary School, Form 
6), WONG Chi Man (Valtorta College, 
Form 5), WONG Chun Ho Terry 
(STFA Leung Kau Kui College, Form 5), 
WONG Tak Wai Alan (University of 
Waterloo, Canada), YU Ka Lok (Carmel 
Divine Grace Foundation Secondary 
School, Form 6) and YUEN Pak Ho 
(Queen Elizabeth School, Form 6). 
 

Problem 84.  Let O and G be the 

circumcenter and centroid of triangle 

ABC, respectively.  If R is the 

circumradius and r is the inradius of 

ABC, then show that OG )2( rRR −≤ .  

(Source: 1996 Balkan Math Olympiad) 
 

Solution I.  CHAO Khek Lun Harold 

(St. Paul's College, Form 5), FAN Wai 

Tong Louis (St. Mark's School, Form 7), 

NG Lai Ting (True Light Girls’ College, 

Form 7) and YUEN Pak Ho (Queen 

Elizabeth School, Form 6) 
 

Let line AG intersect side BC at 'A  and 

the circumcircle again at ''A .  Since 

,0'cos'cos =+ ACAABA  we can use the 

cosine law to get  

,4/) 2 2(' 2222
acbAA −+=  

where a, b, c are the usual side lengths of 

the triangle.  By the inter-secting chord 

theorem, 

.4/'''''' 2
aCABAAAAA =×=×  

Consider the chord through O and G 

interecting ''AA  at G.  By the 

intersecting chord theorem,  

 

''))(( GAGAOGROGR ×=−+  

)'''3/')(3/'2( AAAAAA +=  

.9/)( 222
cba ++=  

Then 

9/)( 2222 cbaROG ++−= . 

By the AM-GM inequality, 

 

    ≥++++ ))(( 222
cbacba  

      .9) 3( ) 3 (
3 2223 abccbaabc =  

Now the area of the triangle is (ab sin 

C)/2 = abc/(4R) (by the extended sine 

law) on one hand and (a + b + c)r/2 on 

the other hand.  So, a + b + c = 

abc/(2rR).  Using this, we simplify the 

inequality to get ( 222 cba ++ )/9 ≥  

2rR.  Then  

9/)(2 22222 cbaRrRR ++−≥−  

                     = OG. 
 

Solution II.  NG Lai Ting (True Light 

Girls’ College, Form 7) 
 

Put the origin at the circumcenter.  Let 

321  , , zzz  be the complex numbers 

corresponding to A, B, C, respectively on 

the complex plane.  Then 2OG  = 

( ) 2
321  3/ zzz ++ .  Using ωωω =

2
, 

we can check the right side equals (3
2

1z  

+ 3
2

2z + 3 −−−−−
2

32
2

21
2

3 zzzzz  

2
13 zz − )/9.  Since 1z  =  2z  = 3z  = 

R and czz =− 21 , azz =− 32 , 

13 zz −  = b, we get  

2OG  = (9 −−−
222 baR  .9/)2c  

The rest is as in solution 1. 
 

Problem 90.  There are n parking spaces 

(numbered 1 to n) along a one-way road 

down which n drivers nddd  ..., , , 21  in 

that order are traveling.  Each driver has 

a favorite parking space and parks there 

if it is free; otherwise, he parks at the 

nearest free place down the road.  (Two 

drivers may have the same favorite 

space.)  If there is no free space after his 

favorite, he drives away.  How many lists 

naaa  ..., , , 21  of favorite parking spaces 

are there which permit all of the drivers 

to park?  Here ia  is the favorite parking 

space number of id .  (Source: 1996 St. 

Petersburg City Math Olympiad). 
 

Solution:  Call a list of favorite parking 

spaces naaa  ..., , , 21  which permits all 

drivers to park a good list.  To each good 

list, associate the list , ..., ,2 nbb  where 

ib  is the difference (mod n + 1) between 

the number ia  and the number of the 

space driver 1−id  took.  Note from 1a  

and nbb  ..., ,2 , we can reconstruct 

. ..., ,2 naa   It follows that different good 

lists give rise to different lists of s'ib . 

Since there are n + 1 possible choices for 

each ib , there are 1)1( −
+

nn  possible 

lists of 2b , …, nb .  For each of these lists 

of the s,'ib  imagine the n parking spaces 

are arranged in a circle with an extra 

parking space put at the end.  Let 1d  

park anywhere temporarily and put 

)1( >idi  in the first available space after 

the space ib  away from the space taken 

by 1−id .  By shifting the position of 1d , 

we can ensure the extra parking space is 

not taken.  This implies the 

corresponding list of naaa  ..., , , 21  is 

good.  So the number of good lists is 
1)1( −

+
nn . 

Comments:  To begin the problem, one 

could first count the number of good lists 

in the cases n = 2 and n = 3.  This will 

lead to the answer 1)1( −
+

nn .  From the 

1+n  factor, it becomes natural to 

consider an extra parking space.  The 

difficulty is to come up with the 

one-to-one correspondence between the 

good lists and the ib  lists.  For this 

problem, only one incomplete solution 

with correct answer and right ideas was 

sent in by CHAO Khek Lun Harold (St. 

Paul's College, Form 5) 
 

 
 
Olympiad Corner 

(continued from page 1) 
 

Problem 3. (cont’d)   N unit squares on 

the board are marked in such a way that 

every square (marked or unmarked) on 

the board is adjacent to at least one 

marked square. 

Determine the smallest possible value of 

N. 
 

Problem 4.  Determine all pairs (n, p) of 

positive integers such that p is a prime, 

pn 2≤ , and np )1( − + 1 is divisible by 

1−pn . 
 

Problem 5.  Two circles 1Γ  and 2Γ  are 

contained inside the circle Γ , and are 

tangent to Γ  at the distinct points M and 

N, respectively.  1Γ  passes through the 

centre of 2Γ .  The line passing through 

the two points of intersection of 1Γ  and 

2Γ  meets Γ  at A and B, respectively.  

The lines MA and MB meet 1Γ  at C and 

D, respectively. 

Prove that CD is tangent to 2Γ . 
 

Problem 6.  Determine all functions f : R 

→  R such that +=− ))(())(( yffyfxf  

1)()( −+ xfyxf  for all x, y ∈  R. 
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Olympiad Corner 
 

8
th

 Taiwan (ROC) Mathematical 

Olympiad, April 1999: 

Time allowed: 4.5 Hours 

Each problem is worth 7 points. 

 

Problem 1.  Determine all solutions (x, y, 

z) of positive integers such that  

11 )2(1)1( ++ +=++ zy xx . 

 

Problem 2.  Let 199921  .., , , aaa  be a 

sequence of nonnegative integers such 

that for any integers i, j, with i + j 

1999≤ , 

1++≤≤+ + jijiji aaaaa . 

Prove that there exists a real number x 

such that ][nxan =  for each n = 1, 2, …, 

1999, where [nx] denotes the largest 

integer less than or equal to nx. 
 

Problem 3.  There are 1999 people 

participating in an exhibition.  Two of 

any 50 people do not know each other.  

Prove that there are at least 41 people, 

and each of them knows at most 1958 

people. 

 

(continued on page 4) 

Due to family situation, I missed the trip to the 

1999 IMO at Romania last summer.  

Fortunately, our Hong Kong team members 

were able to send me the problems by email.  

Of course, once I got the problems, I began to 

work on them.  The first problem is the 

following. 
 

Determine all finite sets S of at least three 

points in the plane which satisfy the following 

condition: for any two distinct points A and B 

in S, the perpendicular bisector of the line 

segment AB is an axis of symmetry of S. 
 

 

This was a nice problem.  I spent sometime on 

it and got a solution.  However, later when the 

team came back and I had a chance to look at 

the official solution, I found it a little beyond 

my expectation.  Below I will present my 

solution and the official solution for 

comparison. 

 

Here is the road I took to get a solution.  To 

start the problem, I looked at the case of three 

points, say 321  , , PPP , satisfying the 

condition.  Clearly, the three points cannot be 

collinear (otherwise considering the 

perpendicular bisector of the segment joining 

two consecutive points on the line will yield a 

contradiction).  Now by the condition, it 

follows that 2P  must be on the perpendicular 

bisector of segment 1P 3P .  Hence, 1P 2P  = 

2P 3P .  By switching indices, 3P  should be 

on the perpendicular bisector of 2P 1P  and 

so 2P 3P  = 3P 1P .  Thus, 1P , 2P , 3P  are 

the vertices of an equliateral triangle. 

 

Next the case of four points required more 

observations.  Again no three points are 

collinear.  Also, from the condition, none of 

the point can be inside the triangle having the 

other three points as vertices.  So the four 

points are the vertices of a convex 

quadrilateral.  Then the sides have equal 

length as in the case of three points.  

Considering the perpendicular bisector of any 

side, by symmetry, the angles at the other two 

vertices must be the same.  Hence all four 

angles are the same.  Therefore, the four 

points are the vertices of a square. 
 

After the cases of three and four points, it is 

quite natural to guess such sets are the vertices 

of regular polygons.  The proof of the general 

case now follows from the reasonings of the 

two cases we looked at.  First, no three points 

are collinear.  Next, the smallest convex set 

enclosing the points must be a polygonal 

region with all sides having the same length 

and all angles the same.  So the boundary of 

the region is a regular polygon.  Finally, one 

last detail is required.  In the case of four 

points, no point is inside the triangle formed 

by the other three points by inspection.  

However, for large number of points, 

inspection is not good enough.  To see that 

none of the points is inside the polygonal 

region takes a little bit more work. 
 

Again going back to the case of four points, it 

is natural to look at the situation when one of 

the point, say P, is inside the triangle formed 

by the other three points.  Considering the 

perpendicular bisectors of three segments 

joining P to the other three points, we see that 

we can always get a contradiction.   

 

Putting all these observations together, here is 

the solution I got: 

 

Clearly, no three points of such a set is 

collinear (otherwise considering the 

perpendicular bisector of the two furthest 

points of S on that line, we will get a 

contradiction).  Let H be the convex hull of 

such a set, which is the smallest convex set 

containing S.  Since S is finite, the boundary of 

H is a polygon with the vertices 1P , 

2P , nP...,  belonging to S.  Let iP  = jP  if 

ji ≡  (mod n).  For i = 1, 2, …, n,   the 
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condition on the set implies iP  is on the 

perpendicular bisector of 1−iP 1+iP .  So 

1−iP iP  = iP  1+iP .  Considering the 

perpendicular bisector of 1−iP 2+iP , we 

see that 1−∠ iP  iP 1+iP  = 21 ++∠ iii PPP .  

So the boundary of H is a regular polygon. 
 

Next, there cannot be any point P of S 

inside the regular polygon. (To see this, 

assume such a P exists.  Place it at the 

origin and the furthest point Q of S from P 

on the positive real axis.  Since the origin 

P is in the interior of the convex polygon, 

not all the vertices can lie on or to the right 

of the y-axis.  So there exists a vertex jP to 

the left of the y-axis.  Since the perpendicular 

bisector of PQ is an axis of symmetry, the 

mirror image of jP will be a point in S further 

than Q from P, a contradiction.)  So S is the set 

of vertices of some regular polygon.  

Conversely, such a set clearly has the required 

property. 
 

Next we look at the official solution, which is 

shorter and goes as follows: Suppose S = 

{ 1X , …, nX } is such a set.  Consider the 

barycenter of S, which is the point G such that 

n

OXOX
OG n

→→
→ ++

=
�1 . 

Note the barycenter does not depend on the 

origin.  To see this, suppose we get a point 'G  

using another origin 'O , i.e. 
→

''GO  is the 

average of 
→

iXO'  for i = 1, …, n.  Subtracting 

the two averages, we get 
→

OG -
→

''GO =
→

'OO .  

Adding 
→

''GO  to both sides, 
→

OG =
→

'OG , so 

G = 'G . 

By  the condition on S, after reflection 

with respect to the perpendicular bisector 

of every segment ji XX , the points of S 

are permuted only.  So G is unchanged, 

which implies G is on every such 

perpendicular bisector.  Hence, G is 

equidistant from all iX ’s.  Therefore, the 

iX ’s are concyclic.  For three con- 

secutive points of S, say kji XXX ,, , on 

the circle, considering the perpendicular 

bisector of segment ki XX , we have 

ji XX = kj XX .  It follows that the points 

of S are the vertices of a regular polygon 

and the converse is clear. 

 

 

 

 

Have you ever wondered why the 

volume of a sphere of radius r is given 

by the formula 3

3
4  rπ ?  The 3r  factor 

can be easily accepted because volume 

is a three dimensional measurement.  

The π  factor is probably because the 

sphere is round.  Why then is there 
3
4  in 

the formula? 
 

In school, most people told you it came 

from calculus.  Then, how did people get 

the formula before calculus was 

invented?  In particular, how did the 

early Egyptian or Greek geometers get it 

thousands of years ago? 
 

Those who studied the history of 

mathematics will be able to tell us more 

of the discovery.  Below we will look at 

one way of getting the formula, which 

may not be historically the first way, but 

it has another interesting application as 

we will see.  First, let us introduce 
 

Cavalieri’s Principle:  Two objects 

having the same height and the same 

cross sectional area at each level must 

have the same volume. 
 

To understand this, imagine the two 

objects  are very large, like pyramids 

that are built by piling bricks one level 

on top of another.  By definition, the 

volume of the objects are the numbers of 

111 ××  bricks used to build the objects.  

If at each level of the construction, the 

number of bricks used (which equals the 

cross sectional area numerically) is the 

same for the two objects, then the 

volume (which equals the total number 

of bricks used) would be the same for 

both objects. 
 

To get the volume of a sphere, let us 

apply Cavalieri’s principle to a solid 

sphere S of radius r and an object T 

made out from a solid right circular 

cylinder with height 2r and base radius r 

removing a pair of right circular cones 

with height r and base radius r having 

the center of the cylinder as the apex of 

each cone. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Both S and T have the same height 2r.  

Now consider the cross sectional area of 

each  at  a  level  x  units  from  the 

equatorial plane of S and T.  The cross 

section for S is a circular disk of radius 

22
xr −  by Pythagoras’ theorem, 

which has area )( 22 xr −π .  The cross 

section for T is an annular ring of outer 

radius r  and  inner  radius  x, which  has 

the same area 22   xr ππ − .  By 

Cavalieri’s principle, S and T have the 

same volume.  Since the volume of T is 

3

3
42

3
12   2)2( rrrrr πππ =×− , so the 

volume of S is the same. 

 

Cavalieri’s principle is not only useful in 

getting the volume of special solids, but 

it can also be used to get the area of 

special regions in a plane!  Consider the 

region A bounded by the graph of y = 
2x , the x-axis and the line x = c in the 

first quadrant. 

 

 

 

 

 

 

 

 

 

 

 

The area of this region is less than the 

area of the triangle with vertices at (0, 0), 

(c, 0), (c, 2c ), which is 3

2
1 c .  If you ask 

a little kid to guess the answer, you may 

get 3

3
1 c  since he knows 

2
1

3
1 < .  For 

those who know calculus, the answer is 

easily seen to be correct.  How can one 

explain this without calculus? 
 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceeded by the solver’s name, 

home address and school affiliation.  

Please send submissions to Dr. Kin Y. Li, 

Department of Mathematics, Hong Kong 

University of Science and Technology, 

Clear Water Bay, Kowloon.  The deadline 

for submitting solutions is March 4, 2000. 

 

Problem 96.  If every point in a plane is 

colored red or blue, show that there 

exists a rectangle all of its vertices are of 

the same color. 

 

Problem 97.  A group of boys and girls 

went to a restaurant where only big pizzas 

cut into 12 pieces were served.  Every boy 

could eat 6 or 7 pieces and every girl 2 or 

3 pieces.  It turned out that 4 pizzas were 

not enough and that 5 pizzas were too 

many.  How many boys and how many 

girls were there?  (Source: 1999 National 

Math Olympiad in Slovenia) 

 

Problem 98.  Let ABC be a triangle with 

BC > CA > AB.  Select points D on BC 

and E on the extension of AB such that 

BD = BE = AC.  The circumcircle of 

BED intersects AC at point P and BP 

meets the circumcircle of ABC at point 

Q.  Show that AQ + CQ = BP.  (Source: 

1998-99 Iranian Math Olympiad) 

 

Problem 99.  At Port Aventura there are 

16 secret agents.  Each agent is watching 

one or more other agents, but no two 

agents are both watching each other.  

Moreover, any 10 agents can be ordered 

so that the first is watching the second, 

the second is watching the third, etc., and 

the last is watching the first.  Show that 

any 11 agents can also be so ordered.  

(Source: 1996 Spanish Math Olympiad) 

 

Problem 100.  The arithmetic mean of a 

number of pairwise distinct prime 

numbers equals 27.  Determine the 

biggest prime that can occur among 

them.  (Source: 1999 Czech and Slovak 

Math Olympiad) 

 
 

***************** 

Solutions 

***************** 

Problem 91.  Solve the system of 

equations: 

2
1

1 3 =








+
+

yx
x  

24
1

1 7 =








+
−

yx
y . 

(This is the corrected version of problem 86.) 

 

Solution.  (CHENG Kei Tsi, LEE Kar 

Wai, TANG Yat Fai) (La Salle College, 

Form 5), CHEUNG Yui Ho Yves 

(University of Toronto), HON Chin 

Wing (Pui Ching Middle School, Form 5) 

KU Hong Tung (Carmel Divine Grace 

Foundation Secondary School, Form 6), 

LAU Chung Ming Vincent (STFA 

Leung Kau Kui College, Form 5), LAW 

Siu Lun Jack (Ming Kei College, Form 

5), Kevin LEE (La Salle College, Form 

4), LEUNG Wai Ying (Queen Elizabeth 

School, Form 5), MAK Hoi Kwan 

Calvin (Form 4), NG Chok Ming Lewis 

(STFA Leung Kau Kui College, Form 6), 

NG Ka Wing Gary (STFA Leung Kau 

Kui College, Form 7), NGAN Chung 

Wai Hubert (St. Paul’s Co-educational 

College, Form 7), SIU Tsz Hang (STFA 

Leung Kau Kui College, Form 4), TANG 

King Fun (Valtorta College, Form 5), 

WONG Chi Man (Valtorta College, 

Form 5) and WONG Chun Ho Terry 

(STFA Leung Kau Kui College, Form 5). 

(All solutions received were essentially 

the same.)  Clearly, if (x, y) is a solution, 

then x, y > 0 and  

xyx 3

21
1 =

+
+  

yyx 7

241
1 =

+
− . 

Taking the difference of the squares of 

both equations, we get 

yxyx 7

32

3

44
−=

+
. 

Simplifying this, we get 0 = 27 y - 38xy - 

224x = (7y + 4x)(y – 6x).  Since x, y > 0, y 

= 6x.  Substituting this into the first given 

equation, we get 2
7

1
13 =








+

x
x , 

which simplifies to +− xx 1437 3  = 

0.  By the quadratic formula, 

)37/()727( ±=x .  Then ±= 11(x  

)74 /21 and y = 6x = (22 78± )/7.  

Direct checking shows these are solutions. 

 

Comments:  An alternative way to get the 

answers is to substitute u = x , v = y , 

z = u + iv, then the given equations 

become the real and imaginary parts of the 

complex equation c
z

z =+
1

, where c = 

7

24

3

2
i+ .  Multiplying by z, we can 

apply the quadratic formula to get u + iv, 

then squaring u, v, we can get x, y. 

 

Problem 92.   Let )3( ..., , , 21 >naaa n  be 

real numbers such that +++ �21 aa  

nan ≥  and +++ �
2
2

2
1 aa 22 nan ≥ .  

Prove that max 2) ..., , ,( 21 ≥naaa .  

(Source: 1999 USA  Math Olympiad). 
 
Solution.  FAN Wai Tong Louis (St. 

Mark's School, Form 7). 
 

Suppose max 2) ..., , ,( 21 <naaa .  By 

relabeling the indices, we may assume 2 

> naaa ≥≥≥ �21 .  Let j be the largest 

index such that 0≥ja .  For i > j, let 

0>−= ii ab .  Then  

njj bbnaanj ++≥−++>− + �� 11 )(2 . 

So >− 2)2( nj  
22

1 nj bb +++ � .  Then  

>−+ 2)2(4 njj  222
1 naa n ≥++� , 

which implies j > n – 1.  Therefore, j = n 

and all 0≥ia .  This yields 

222
1   4 naan n ≥++> � , which gives the 

contradiction that n≥3 . 

Other recommended solvers:  LEUNG Wai 

Ying (Queen Elizabeth School, Form 5), 

NG Ka Wing Gary (STFA Leung Kau Kui 

College, Form 7), NGAN Chung Wai 

Hubert (St. Paul’s Co-educational College, 

Form 7) and WONG Wing Hong (La Salle 

College, Form 2). 

 

Problem 93.  Two circles of radii R and r 

are tangent to line L at points A and B 

respectively and intersect each other at C 

and D.  Prove that the radius of the 

circumcircle of triangle ABC does not 

depend on the length of segment AB. 

(Source: 1995 Russian Math Olympiad). 

 

Solution.  CHAO Khek Lun (St. Paul's 

College, Form 5). 
 

Let O, 'O  be the centers of the circles of 

radius R, r, respectively.  Let CAB∠=α  

= 2/AOC∠ and .2/'CBOCBA ∠=∠=β   

Then AC = 2R sinα  and BC = 2r sin β .  

The distance from C to AB is AC sinα  = 

BC sin β , which implies sinα  / sin β  = 

Rr / .  The  circumradius  of  triangle  
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ABC is 

Rr
RAC

==
β

α

β sin

sin

sin2
, 

which does not depend on the length of 

AB. 

 

Other recommended solvers: CHAN Chi 

Fung (Carmel Divine Grace Foundation 

Secondary School, Form 6), FAN Wai 

Tong Louis (St. Mark’s School, Form 7), 

LEUNG Wai Ying (Queen Elizabeth 

School, Form 5), NG Ka Chun 

Bartholomew (Queen Elizabeth School), 

NGAN Chung Wai Hubert (St. Paul’s 

Co-educational College, Form 7) and SIU 

Tsz Hang (STFA Leung Kau Kui 

College, Form 4). 
 

Problem 94.  Determine all pairs (m, n) 

of positive integers for which nm 32 +  is 

a square. 

 

Solution.  NGAN Chung Wai Hubert 

(St. Paul’s Co-educational College, Form 

7) and YEUNG Kai Sing (La Salle 

College, Form 3). 

Let 232 anm =+ .  Then a is odd and 
mnma )1(322 −≡+=  (mod 3).  Since 

squares are 0 or 1 (mod 3), m is even.  

Next 132)1( 2 ≡=+≡− anmn  (mod 4) 

implies n is even, say n = 2k, k ≥ 1.  Then 

)3)(3(2 kkm aa −+= .  So rka 23 =+ , 

ska 23 =−  for integers 0≥> sr  with r 

+ s = m.  Then srk 2232 −=⋅  implies s 

= 1, so kr 312 1 =−− .  Now mr =+1  
implies r is odd.  So  

 

( )12 2/)1( +−r  ( ) kr 312 2/)1( =−− . 

 
Since the difference of the factors is 2, 
not both are divisible by 3.  Then the 

factor 112 2/)1( =−−r .  Therefore, 
),2 ,4(    ) ,(  ,1  ,3 === nmkr  which is 

easily checked to be a solution. 

 

Other recommended solvers: CHAO 

Khek Lun (St. Paul’s College, Form 5), 

CHENG Kei Tsi (La Salle College, Form 

5), FAN Wai Tong Louis (St. Mark’s 

School, Form 7), KU Hong Tung 

(Carmel Divine Grace Foundation 

Secondary School, Form 6), LAW Siu 

Lun Jack (Ming Kei College, Form 5), 

LEUNG Wai Ying (Queen Elizabeth 

School, Form 5), NG Ka Chun 

Batholomew (Queen Elizabeth School), 

NG Ka Wing Gary (STFA Leung Kau 

Kui College, Form 7), NG Ting Chi 

(TWGH Chang Ming Thien College, 

Form 7) and SIU Tsz  Hang (STFA 

Leung Kau Kui College, Form 4). 
 

Problem 95.  Pieces are placed on an 

nn ×  board.  Each piece “attacks” all 

squares that belong to its row, column, 

and the northwest-southeast diagonal 

which contains it.  Determine the least 

number of pieces which are necessary to 

attack all the squares of the board.  

(Source: 1995 Iberoamerican Olympiad). 

 

Solution. LEUNG Wai Ying (Queen 

Elizabeth School, Form 5). 

 

Assign coordinates to the squares so (x, 

y) represents the square on the x-th 

column from the west and y-th row from 

the south.  Suppose k pieces are enough 

to attack all squares.  Then at least n – k 

columns, say columns knxx − ..., ,1 , and n 

– k rows, say knyy − ..., ,1 , do not contain 

any of the k pieces.  Consider the 2(n - k) 

– 1 squares ) ,( 11 yx , ) ,( 21 yx , …, ,( 1x  

)kny − , ) ,( 12 yx , ) ,( 13 yx , …, ,( knx −  

)1y .  As they are on different diagonals 

and must be attacked diagonally by the k 

pieces, we have 1)(2 −−≥ knk .  Solving 

for k, we get k ≥  .3/)12( −n Now let k be 

the least integer such that .3/)12( −≥ nk   

We will show k is the answer.  The case n 

= 1 is clear.  Next if n = 3a + 2 for a 

nonnegative integer a, then place k = 2a 

+ 1 pieces at (1, n), (2, n – 2), (3, n – 4), 

…, (a + 1, n – 2a), (a + 2, n – 1), (a + 3, 

n – 3), (a + 4, n – 5), …, (2a + 1, n – 2a + 

1).  So squares with ≤x  2a + 1 or y ≥  n 

– 2a are under attacked horizontally or 

vertically.  The other squares, with 2a + 2 

≤  x ≤  n and 1 ≤  y ≤  n – 2a – 1, have 

2a + 3 ≤  x + y ≤  2n – 2a – 1.  Now the 

sums x + y of the k pieces range from n – 

a + 1 = 2a + 3 to n + a + 1 = 2n – 2a – 1.  

So the k pieces also attack the other 

squares diagonally. 

Next, if n = 3a + 3, then k = 2a + 2 and we 

can use the 2a + 1 pieces above and add a 

piece at the southeast corner to attack all 

squares.  Finally, if n = 3a + 4, then k = 

2a + 3 and again use the 2a + 2 pieces in 

the last case and add another piece at the 

southeast corner. 

Other recommended solvers: (LEE Kar 

Wai Alvin, CHENG Kei Tsi Daniel, LI 

Chi Pang Bill, TANG Yat Fai Roger) 

(La Salle College, Form 5), NGAN 

Chung Wai Hubert (St. Paul’s 

Co-educational College, Form 7). 

 

Olympiad Corner 
(continued from page 1) 

 

Problem 4.  Let *P  denote all the odd 

primes less than 10000.  Determine all 

possible primes *Pp ∈  such that for 

each subset S of *P , say S = { 1p , 

2p , …, kp }, with k ≥  2, whenever 

Sp ∉ , there must be some q in *P , but 

not in S, such that q + 1 is a divisor of 

)1( 1 +p  )1( 2 +p  … )1( +kp . 
 

Problem 5.  The altitudes through the 

vertices A, B, C of an acute-angled 

triangle ABC meet the opposite sides at 

D, E, F, respectively, and AB > AC.  The 

line EF meets BC at P, and the line 

through D parallel to EF meets the lines 

AC and AB at Q and R, respectively.  N is 

a point on the side BC such that NQP∠  

+ �180<∠NRP .  Prove that BN > CN. 

 

Problem 6.  There are 8 different 

symbols designed on n different T-shirts, 

where n ≥  2.  It is known that each shirt 

contains at least one symbol, and for any 

two shirts, the symbols on them are not 

all the same.  Suppose that for any k 

symbols, 1 ≤  k ≤  7, the number of shirts 

containing at least one of the k symbols is 

even.  Find the value on n. 

 

 

Cavalieri 
(continued from page 2) 

To get the answer, we will apply 

Cavalieri’s principle.  Consider a solid 

right cylinder with height 1 and base 

region A.  Numerically, the volume of 

this solid equals the area of the region A.  

Now rotate the solid so that the 21 c×  

rectangular face becomes the base.  As 

we expect the answer to be 3

3
1 c , we 

compare this rotated solid with a solid 

right pyramid with height c and square 

base of side c. 

 

Both solids have height c.  At a level x 

units below the top, the cross section of 

the rotated solid is a 21 x×  rectangle.  

The cross section of the right pyramid is 

a square of side x.  So both solids have 

the same cross sectional areas at all 

levels.  Therefore, the area of A equals 

numerically to the volume of the 

pyramid, which is 3

3
1 c . 
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Olympiad Corner 
 

28
th

 United States of America 

Mathematical Olympiad, April 1999: 

Time allowed: 6 Hours 
 
Problem 1.  Some checkers placed on an 

nn ×  checkerboard satisfy the following 

conditions: 

(a) every square that does not contain a 

checker shares a side with one that 

does; 

(b) given any pair of squares that contain 

checkers, there is a sequence of 

squares containing checkers, starting 

and ending with the given squares, 

such that every two consecutive 

squares of the sequence share a side. 

Prove that at least 3/)2( 2
−n  checkers 

have been placed on the board. 
 

Problem 2.  Let ABCD be a cyclic 

quadrilateral.  Prove that 
 

.||2 |||| BDACBCADCDAB −≥−+−

 

Problem 3.  Let 2>p  be a prime and let 

a, b, c, d be integers not divisible by p, 

such that 

{ra/p}+{rb/p}+{rc/p}+{rd/p} = 2 

 

(continued on page 4) 

 

我們從小學開始就已經認識甚麼

是質數。一個大於 1 的整數，如果祇能

被 1 或自己整除，則我們稱該數為「質

數」。另外，我們叫 1 做「單位」，而

其他的數字做「合成數」。例如：2、3、

5、7 …等等，就是質數，4、6、8、9 …

等等就是合成數。但是除了這個基本的

定義之外，一般教科書中，就很少提到

質數的其他性質了。而本文就為大家介

紹一些與質數有關的人和事。 
 

有人相信，人類在遠古時期，就

經已發現質數。不過最先用文字紀錄質

數性質的人，就應該是古希臘時代的偉

大數學家歐幾里得 (Euclid) 了。 
 

歐幾里得，約生於公元前 330 年，

約死於公元前 275 年。他是古代亞歷山

大里亞學派的奠基者。他的著作《幾何

原本》，集合了平面幾何、比例論、數

論、無理量論和立體幾何之大成，一致

公認為數學史上的一本鉅著。 
 

《幾何原本》全書共分十三卷，

一共包含 465 個命題，當中的第七、

八、九卷，主要討論整數的性質，後人

又稱這學問為「數論」。第九卷的命題

20 和質數有關，它是這樣寫的：「預

先任意給定幾個質數，則有比它們更多

的質數。」 
 

歐幾里得原文的證明並不易懂，

但改用現代的數學符號，他的證明大致

如下： 

首先，假如 a、b、c … k 是一些質

數。那麼 abc ⋅⋅⋅ k + 1 或者是質數，或

者不是。如果它是質數，那麼就加添了

一個新的質數。如果它不是質數，那麼

這個數就有一個質因子 p。如果 p 是 a、

b、c … k 其中的一個數，由於它整除

abc ⋅⋅⋅ k，於是它就能整除 1。但這是不

可能的，因為 1 不能被其他數整除。因

此 p 就是一個新的質數。總結以上兩個

情況，我們總獲得一個新的質數。命題

得證。 
 

命題 20 提供了一個製造質數的方

法，而且可以無窮無盡地製造下去。由

此可知，命題 20 實際上是證明了質數

有無窮多個。 
 

到了十七世紀初，法國數學家默

森 (Mersenne)（1588 − 1648）提出了一

條計算質數的「公式」，相當有趣。 
 

因為 x
n
 − 1 = (x − 1)(x

n-1
 + x

n-2
 + … + 

x + 1)，所以如果 x
n
 − 1 是質數，x − 1

必定要等於 1。由此得 x = 2。另外，假

如 n = ab 並且 a ≤ b，又令 x = 2
a，則

2
n
 − 1 = (2

a
)

b
 = x

b
 − 1 = (x − 1)(x

b−1
 + x

b−2
 

+ … + x + 1)。所以，如果 2
n
 − 1 是質數，

那麼 x − 1 必定又要等於 1。由此得 2
a
 = 

2，即 a = 1，n 必定是質數。 
 

綜合上述結果，默森提出了一條

計算質數的公式，它就是 2
p
 − 1，其中

p 為質數。例如： 22
 − 1 = 3，2

3
 − 1 = 7，

2
5
 − 1 = 31 等等。 但默森的公式祇是計

算質數時的「必要」條件，並不是一個

「充分」條件；即是說，在某些情況下，

由 2
p
 − 1 計算出來的結果，未必一定是

質數。 例如：2
11

 − 1 = 2047 = 23 × 89，

這就不是質數了。 因此由默森公式計

算出來的數，其實也需要進一步的驗

算，才可以知道它是否真正是一個質

數。 
 

由於現代的電腦主要用二進數來

進行運算，而這又正好和默森公式配

合，所以在今天， 當人類找尋更大的

質數時，往往仍會用上默森的方法。

跟據互聯網上的資料，（網址為: 
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www.utm.edu/research/primes/largest.html），

現時發現的最大質數為 2
6972593

 − 1，它

是由三位數學家在 1999 年 6 月 1 日發

現的。 
 

默 森 的 好 朋 友 費 馬  (Fermat) 

(1601−1665) 亦提出過一條類似的質數

公式。 
 

設 n = ab 並且 b 是一個奇數。令 x 

= 2
a，則 2

n
 + 1 = (2

a
)

b
 + 1 = x

b
 + 1 = (x + 

1)(x
b−1

 − x
b−2

 + … − x + 1)。注意：祇有

當 b 為奇數時，上式才成立。很明顯，

2
n
 + 1 並非一個質數。故此，如果 2

n
 + 1

是質數，那麼 n 必定不能包含奇因子，

即 n 必定是 2 的乘冪。換句話說，費馬

的質數公式為 
n22 + 1。 

 

不難驗證，
022 + 1 = 3，

122 + 1 = 

5，
222 +1 = 17，

322 + 1 = 257，
422 + 1 

= 65537，它們全都是質數。問題是：

跟著以後的數字，又是否質數呢？由於

以後的數值增長得非常快，就連費馬本

人，也解答不到這個問題了。 
 

最先回答上述問題的人，是十八

世紀瑞士大數學家歐拉 (Euler)（1707 − 

1783）。 歐拉出生於一個宗教家庭，

17 歲已獲得碩士學位，一生都從事數

學研究，縱使晚年雙目失明，亦不斷工

作，可算是世上最多產的數學家。 歐

拉指出，
522 + 1 並非質數。 他的證明

如下： 
 

記 a = 2
7和 b = 5。 那麼 a − b

3
 = 3

而 1 + ab − b
4
 = 1 + (a − b

3
)b = 1 + 3b = 

2
4。 所以 

 2
32

 + 1 = (2a)
4
 + 1 

 = 2
4
a

4
 + 1 = (1 + ab − b

4
)a

4
 + 1 

 = (1 + ab)a
4
 + (1 − a

4
b

4
) 

 = (1 + ab)(a
4
 + (1 − ab)(1 + a

2
b

2
))， 

 

即 1 + ab = 641 可整除 2
32

 + 1，2
32

 + 1

並不是質數！ 
 

事實上，到了今天，祇要用一部

電子計算機就可以知道：2
32

 + 1 =  

4294967297 = 641 × 6700417。 同時，

跟據電腦的計算，當 n 大於 4 之後，由

費馬公式計算出來的數字，再沒有發現

另一個是質數了！ 不過，我們同時亦

沒有一個數學方法來證明，費馬質數就

祇有上述的五個數字。 

自從歐拉證實
522 + 1 並非質數之

後，人們對費馬公式的興趣也隨之大

減。 不過到了 1796 年，當年青的數學

家高斯發表了他的研究結果後，費馬質

數又一再令人關注了。 
 

高斯 (Gauss)（1777 − 1855），德

國人。一個數學天才。 3 歲已能指出父

親帳簿中的錯誤。 22 歲以前，已經成

功地證明了多個重要而困難的數學定

理。 由於他的天份，後世人都稱他為

「數學王子」。 
 

高斯在 19 歲的時候發現，一個正

質數多邊形可以用尺規作圖的充分和

必要條件是，該多邊形的邊數必定是一

個費馬質數！ 換句話說，祇有正三邊

形（即正三角形）、正五邊形、正十七

邊形、正 257 邊形和正 63357 邊形可以

用尺規構作出來，其他的正質數多邊形

就不可以了。（除非我們再發現另一個

費馬質數。） 高斯同時更提出了一個

繪畫正十七邊形方案，打破了自古希臘

時代流傳下來，最多祇可構作正五邊形

的紀錄。 
 

提到和質數有關的故事，就不可

不提「哥德巴赫猜想」了。 
 

哥德巴赫 (Goldbach) 是歐拉的朋

友。 1742 年，哥德巴赫向歐拉表示他

發現每一個不小於 6 的偶數，都可以

表示為兩個質數之和，例如： 8 = 3 + 

5、20 = 7 + 13、100 = 17 + 83 … 等。 

哥德巴赫問歐拉這是否一個一般性的

現象。 
 

歐拉表示他相信這是一個事實，

但他無法作出一個證明。 自此，人們

就稱這個現象為「哥德巴赫猜想」。 
 

自從「哥德巴赫猜想」被提出後，

經過了整個十九世紀，對這方面研究的

進展都很緩慢。 直到 1920 年，挪威數

學家布朗 (Brun) 證實一個偶數可以寫

成兩個數字之和，其中每一個數字都最

多祇有 9 個質因數。 這可以算是一個

重大的突破。 
 

1948 年，匈牙利的瑞尼 (Renyi) 證

明了一個偶數必定可以寫成一個質數

加上一個有上限個因子所組成的合成

數。 1962 年，中國的潘承洞證明了一

個偶數必定可以寫成一個質數加上一

個由 5 個因子所組成的合成數。 後來，

有人簡稱這結果為 (1 + 5)。 
 

1963 年，中國的王元和潘承洞分

別證明了 (1 + 4)。 1965 年，蘇聯的維

諾格拉道夫 (Vinogradov) 證實了 (1 + 

3)。 1966 年，中國的陳景潤就證明了 (1 

+ 2)。 這亦是世上現時對「哥德巴赫猜

想」證明的最佳結果。 
 

陳景潤（1933 − 1996），福建省

福州人。 出生於貧窮的家庭，由於戰

爭的關係，自幼就在非常惡劣的環境

下學習。 1957 年獲得華羅庚的提拔，

進入北京科學院當研究員。 在「文化

大革命」的十年中，陳景潤受到了批

判和不公正的待遇，使他的工作和健

康都大受傷害。 1980 年，他當選為中

國科學院學部委員。 1984 年證實患上

了「帕金遜症」，直至 1996 年 3 月 19

日，終於不治去世。 
 

其實除了對「哥德巴赫猜想」的

證明有貢獻外，陳景潤的另一個成

就，就是對「孿生質數猜想」證明的

貢獻。在質數世界中，我們不難發現

有時有兩個質數，它們的距離非常接

近，它們的差祇有 2，例如：3 和 5、5

和 7 、 11 和 13 …  10016957 和

10016959 … 等等。所謂「孿生質數猜

想」，就是認為這些質數會有無窮多

對。 而在 1973 年，陳景潤就證得：「存

在無窮多個質數 p，使得 p + 2 為不超

過兩個質數之積。」 
 

其實在質數的世界之中，還有很

多更精彩更有趣的現象，但由於篇幅和

個人能力的關係，未能一一盡錄。 以

下有一些書籍，內容豐富，值得對本文

內容有興趣的人士參考。 
 

參考書目參考書目參考書目參考書目    

《數學和數學家的故事》 

作者：李學數 出版社：廣角鏡 
 

《天才之旅》 

譯者：林傑斌 出版社：牛頓出版公司 
 

《哥德巴赫猜想》 

作者：陳景潤 出版社：九章出版社 
 
《素數》 

作者：王元 出版社：九章出版社 
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Problem Corner 
 

We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceeded by the solver’s 

name, home address and school 

affiliation.  Please send submissions to 

Dr. Kin Y. Li, Department of 

Mathematics, Hong Kong University of 

Science and Technology, Clear Water 

Bay, Kowloon.  The deadline for 

submitting solutions is May 20, 2000. 
 

Problem 101.  A triple of numbers 

) , ,( 321 aaa  = (3, 4, 12) is given.  We 

now perform the following operation: 

choose two numbers ia  and ja , )( ji ≠ , 

and exchange them by 0.6 ia  - 0.8 ja  and 

0.8 ia  + 0.6 ja .  Is it possible to obtain 

after several steps the (unordered) triple 

(2, 8, 10)?  (Source: 1999 National Math 

Competition in Croatia) 

 

Problem 102.  Let a be a positive real 

number and 1)( ≥nnx  be a sequence of 

real numbers such that ax =1  and 

∑
−

=

+ −+≥

1

1
1 )2(

n

k
knn kxxnx , for all 1≥n . 

Show that there exists a positive integer n 

such that nx > 1999!  (Source: 1999 

Romanian Third Selection Examination) 
 

Problem 103.  Two circles intersect in 

points A and B.  A line l that contains the 

point A intersects the circles again in the 

points C, D, respectively.  Let M, N be 

the midpoints of the arcs BC and BD, 

which do not contain the point A, and let 

K be the midpoint of the segment CD.  

Show that �90=∠MKN .  (Source: 1999 

Romanian Fourth Selection Examination) 
 

Problem 104.  Find all positive integers 

n such that n2 -1 is a multiple of 3 and 

( n2 -1)/3 is a divisor of 4m
2
 + 1 for some 

integer m.  (Source: 1999 Korean 

Mathematical Olympiad) 
 

Problem 105.  A rectangular 

parallelopiped (box) is given, such that 

its intersection with a plane is a regular 

hexagon.  Prove that the rectangular 

parallelopiped is a cube. (Source: 1999 

National Math Olympiad in Slovenia) 
 

***************** 

Solutions 
***************** 

Problem 96.  If every point in a plane is 

colored red or blue, show that there 

exists a rectangle all of its vertices are of 

the same color.  
 

Solution.  NG Ka Wing Gary (STFA 

Leung Kau Kui College, Form 7). 

Consider the points (x, y) on the co- 

ordinate plane, where x = 1, 2, …, 7 and y 

= 1, 2, 3.  In row 1, at least  4 of the 7 

points are of the same color, say color A.  

In each of row 2 or 3, if 2 or more of the 

points directly above the A-colored points 

in row 1 are also A-colored, then  there 

will  be a rectangle with A-colored 

vertices.  Otherwise, at least 3 of the 

points in each of row 2 and 3 are B- 

colored and they are directly above four 

A-colored points in row 1.  Then there will 

be a rectangle with B-colored vertices. 
 

Other recommended solvers:  CHENG Kei 
Tsi Daniel (La Salle College, Form 5), 
CHEUNG Chi Leung (Carmel Divine Grace 
Foundation Secondary School, Form 6), FAN 
Wai Tong (St. Mark’s School, Form 7), LAM 
Shek Ming Sherman (La Salle College), 
LEE Kar Wai Alvin, LI Chi Pang Bill, 
TANG Yat Fai Roger (La Salle College, 
Form 5), LEE Kevin (La Salle College, Form 
4), LEUNG Wai Ying, NG Ka Chun 
Bartholomew (Queen Elizabeth School, Form 
5), NG Wing Ip (Carmel Divine Grace 
Foundation Secondary School, Form 6), 
WONG Chun Wai (Choi Hung Estate 
Catholic Secondary School, Form 7), WONG 
Wing Hong (La Salle College, Form 2) and 
YEUNG Kai Sing Kelvin (La Salle College, 
Form 3). 
 

Problem 97.  A group of boys and girls 

went  to a  restaurant where only big 

pizzas cut into 12 pieces were served.  

Every boy could eat up to 6 or 7 pieces 

and every girl 2 or 3 pieces.  It turned out 

that 4 pizzas were not enough and that 5 

pizzas were too many.  How many boys 

and how many girls were there? (Source: 

1999 National Math Olympaid in Slovenia). 
 

Solution.  TSE Ho Pak (SKH Bishop Mok 

Sau Tseng Secondary School, Form 6). 
 

Let the number of boys and girls be x and 

y, respectively.  Then 7x + 3y ≤  59 and 

6x + 2y ≥  49.  Subtracting these, we get 

x + y ≤  10.  Then 6x + 2(10 - x) ≥  49 

implies x ≥  8.  Also, 7x + 3y ≤  59 

implies x ≤  8.  So x = 8.  To satisfy the 

inequalities then y must be 1. 
 
Other recommended solvers: AU Cheuk 
Yin Eddy (Ming Kei College, Form 7), 
CHAN Chin Fei (STFA Leung Kau Kui 
College,), CHAN Hiu Fai (STFA Leung Kau 
Kui College, Form 6), CHAN Man Wai (St. 
Stephen’s Girls’ College, Form 5), CHENG 
Kei Tsi Daniel (La Salle College, Form 5), 
CHUNG Ngai Yan (Carmel Divine Grace 

Foundation Secondary School, Form 6), 
CHUNG Wun Tung Jasper (Ming Kei 
College, Form 6), FAN Wai Tong (St. Mark’s 
School, Form 7), HONG Chin Wing (Pui 
Ching Middle School, Form 5), LAM Shek 
Ming Sherman (La Salle College), LEE Kar 
Wai Alvin, LI Chin Pang Bill, TANG Yat 
Fai Roger (La Salle College, Form 5), LEE 
Kevin (La Salle College, Form 4), LEUNG 
Wai Ying (Queen Elizabeth School, Form 5), 
LEUNG Yiu Ka (STFA Leung Kau Kui 
College, Form 5), LYN Kwong To (Wah Yan 
College, Form 6), MOK Ming Fai (Carmel 
Divine Grace Foundation Secondary School, 
Form 6), NG Chok Ming Lewis (STFA 
Leung Kau Kui College, Form 6), NG Ka 
Chun Bartholomew (Queen Elizabeth 
School, Form 5), NG Ka Wing Gary (STFA 
Leung Kau Kui College, Form 7), POON 
Wing Sze Jessica (STFA Leung Kau Kui 
College), SIU Tsz Hang (STFA Leung Kau 
Kui College, Form 4), WONG Chi Man 
(Valtorta College, Form 5), WONG Chun Ho 
(STFA Leung Kau Kui College), WONG 
Chun Wai (Choi Hung Estate Catholic 
Secondary School, Form 7), WONG So Ting 
(Carmel Divine Grace Foundation Secondary 
School, Form 6), WONG Wing Hong (La 
Salle College, Form 2) and YEUNG Kai Sing 
Kelvin (La Salle College, Form 3). 
 

Problem 98.  Let ABC be a triangle with 

BC > CA > AB.  Select points D on BC 

and E on the extension of AB such that BD 

= BE = AC.  The circumcircle of BED 

intersects AC at point P and BP meets the 

circumcircle of ABC at point Q.  Show 

that AQ + CQ = BP.  (Source: 1998-99 

Iranian Math Olympiad) 
 

Solution.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 5), NG Ka Wing 
Gary (STFA Leung Kau Kui College, Form 
7) and WONG Chun Wai (Choi Hung 
Estate Catholic Secondary School, Form 7). 
 

Since DEPCBQCAQ ∠=∠=∠      and 

�180  =∠AQC EPDABD ∠=∠−    , so 

AQC∆ ~ .EPD∆   By Ptolemy’s theorem, 

BP × ED = BD× EP + BE × DP.  So 

=×+×=
ED

DP
BE

ED

EP
BDBP  

.CQAQ
AC

CQ
AC

AC

AQ
AC +=×+×  

 
Other recommended solvers: AU Cheuk 
Yin Eddy (Ming Kei College, Form 7), 
CHENG Kei Tsi Daniel (La Salle 
College, Form 5), FAN Wai Tong Louis 
(St. Mark’s School, Form 7), LAM Shek 
Ming Sherman (La Salle College), LEE 
Kevin (La Salle College, Form 4), SIU 
Tsz Hang (STFA Leung Kau Kui 
College, Form 4) and YEUNG Kai Sing 
Kelvin (La Salle College, Form 3). 
 

Problem 99.  At Port Aventura there are 

16 secret agents.  Each agent is watching 

one or more other agents, but no two 

agents are both watching each other.  

Moreover, any 10 agents can be ordered 
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so that the first is watching the second, the 

second is watching the third, etc., and the 

last is watching the first.  Show that any 11 

agents can also be so ordered.  (Source: 

1996 Spanish Math Olympiad) 
 
Solution.  CHENG Kei Tsi Daniel (La 
Salle College, Form 5), LEUNG Wai 
Ying (Queen Elizabeth School, Form 5), 
NG Ka Chun Bartholomew (Queen 
Elizabeth School, Form 5) and WONG 
Chun Wai (Choi Hung Estate Catholic 
Secondary School, Form 7). 
 
If some agent watches less than 7 other 

agents, then he will miss at least 9 agents.  

The agent himself and these 9 agents will 

form a group violating the cycle 

condition.  So every agent watches at 

least 7 other agents.  Similarly, every 

agent is watched by at least 7 agents. 

(Then each agent can watch at most 15 –7 

= 8 agents and is watched by at most 8 

agents) 

Define two agents to be “connected” if 

one watches the other.  From above, we 

know that each agent is connected with at 

least 14 other agents.  So each is 

“disconnected” to at most 1 agent.  Since 

disconnectedness comes in pairs, among 

11 agents, at least one, say X, will not 

disconnected to any other agents.  

Removing X among the 11 agents, the 

other 10 will form a cycle, say  

. , ..., , , 1111021 XXXXX =  

Going around the cycle, there must be 2 

agents 1, +ii XX  in the cycle such that 

iX  also watches X and 1+iX  is watched 

by X.  Then X can be inserted to the cycle 

between these 2 agents. 
 
Other commended solvers:  CHAN Hiu 
Fai Philip, NG Chok Ming Lewis (STFA 
Leung Kau Kui College, Form 6) and NG 
Ka Wing Gary (STFA Leung Kau Kui 
College, Form 7). 

 

Problem 100.  The arithmetic mean of a 

number of pairwise distinct prime 

numbers equals 27.  Determine the 

biggest prime that can occur among 

them.  (Source: 1999 Czech and Slovak 

Math Olympiad) 

Solution.  FAN Wai Tong (St. Mark’s 
School, Form 7) and WONG Chun Wai 
(Choi Hung Estate Catholic Secondary 
School, Form 7) 

Let nppp <<< �21  be distinct primes 

such that nppp n 2721 =+++ � .  Now 

21 ≠p  (for otherwise nppp +++ �21  

- 27n will be odd no matter n is even or 

odd).  Since the primes less than 27 are 2, 

3, 5, 7, 11, 13, 17, 19, 23, so np = 27n - 

)( 11 −++ npp �  = 27 + (27 - 1p ) ++�  

(27 - 1−np ) ≤  27+(27-2)+(27-3) ++�  

(27 –23) = 145.  Since np  is prime, np  

≤  139.  Since the arithmetic mean of 2,  

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 139 is 

27.  The answer to the problem is 139. 
 

Other recommended solvers: CHENG 
Kei Tsi Daniel (La Salle College, Form 5), 
CHEUNG Ka Chung, LAM Shek Ming 
Sherman, LEE Kar Wai Alvin, TANG 
Yat Fai Roger, WONG Wing Hong, 
YEUNG Kai Sing Kelvin (La Salle 
College), LEUNG Wai Ying (Queen 
Elizabeth School, Form 5), and NG Ka 
Wing Gary (STFA Leung Kau Kui 
College, Form 7). 
 

 
 

Olympiad Corner 

(continued from page 1) 
 

Problem 3.  (cont’d) 

for any integer r not  divisible by p.  

Prove that at least two of the numbers 

a+b, a+c, a+d, b+c, b+d, c+d are 

divisible by p. (Note: {x} = x - [x] 

denotes the fractional part of x.) 
 

Problem 4.  Let )3( ..., , , 21 >naaa n  be 

real numbers such that 

naaa n ≥+++ �21  

and 
222

2
2
1 naaa n ≥+++ � . 

Prove that max .2) ..., , ,( 21 ≥naaa  

 

Problem 5.  The Y2K Game is played on 

a 20001×  grid as follows.  Two players 

in turn write either an S or an O in an 

empty square.  The first player who 

produces three consecutive boxes that 

spell SOS wins.  If all boxes are filled 

without producing SOS then the game is 

a draw.  Prove that the second player has 

a winning strategy. 
 

Problem 6.  Let ABCD be an isosceles 

trapezoid with CDAB || .  The inscribed 

circle ω  of triangle BCD meets CD at E.  

Let F be a point on the (internal) angle 

bisector of DAC∠  such that CDEF⊥ .  

Let the circumscribed circle of triangle 

ACF meet line CD at C and G.  Prove that 

the triangle AFG is isosceles. 
 

 
 

Interesting Theorems About Primes 
 
Below we will list some interesting 

theorem concerning prime numbers. 
 

Theorem (due to Fermat in about 1640)  

A prime number is the sum of two perfect 

squares if and only if it is 2 or of the form 

4n + 1.  A positive integer is the sum of 

two perfect squares if and only if in the 

prime factorization of the integer, primes 

of the form 4n + 3 have even exponents. 
 
Dirichlet’s Theorem on Primes in 

Progressions (1837)  For every pair of 

relatively prime integers a and d, there 

are infinitely many prime numbers in the 

arithmetic progression a, da + , da 2+ , 

da 3+ , …, (In particular, there are 

infinitely many prime numbers of the form 

4n + 1, of the form 6n + 5, etc.) 
 
Theorem  There is a constant C such that 

if 1p , 2p , …, np  are all the prime 

numbers less than x, then  

nppp
x

111
1)ln(ln

21

+++<− �  

)).ln(ln(ln)ln(ln xCx +<  

In particular, if 321  , , ppp , … are all the 

prime numbers, then 

.
111

321

∞=+++ �
ppp

 

(The second statement was obtained by 

Euler in about 1735.  The first statement 

was proved by Chebysev in 1851.) 
 
Chebysev’s Theorem (1852)  If 1>x , 

then there exists at least one prime 

number between x and 2x.  (This was 

known as Bertrand’s postulate because J. 

Bertrand verified this for x less than six 

million in 1845.) 
 
Prime Number Theorem (due to J. 

Hadamard and Ch. de la Vallée Poussin 

independently in 1896)  Let )(xπ  be the 

number of prime numbers not exceeding x, 

then 

.1
ln/

)(
 lim =

∞→ xx

x

x

π
 

If np  is the n-th prime number, then 

.1
ln

 lim =
∞→ nn

pn

x
 

(This was conjectured by Gauss in 1793 

when he was about 15 years old.) 
 
Brun’s Theorem on Twin Primes (1919)  

The series of reciprocals of the twin 

primes either is a finite sum or forms a 

convergent infinite series, i.e. 
 

.
13

1

11

1

7

1

5

1

5

1

3

1
∞<+








++








++








+ �  

As a general reference to these results, we 

recommend the book Fundamentals of 

Number Theory by William J. Le Veque, 

published by Dover. 

Mathematical Excalibur, Vol. 5, No. 2, Mar 00 – Apr 00 Page 4 
 



Olympiad Corner 
 

XII Asia Pacific Math Olympiad, March 

2000: 

Time allowed: 4 Hours 
 
 

Problem 1.  Compute the sum 

∑
= +−

=

101

0
2

3

331i ii

i

xx

x
S  for 

101

i
xi = . 

 

Problem 2.  Given the following 

triangular arrangement of circles: 

 

       
 

Each of the numbers 1,2,...,9 is to be 

written into one of these circles, so that 

each circle contains exactly one of these 

numbers and 

(i) the sums of the four numbers on each 

side of the triangle are equal; 

(continued on page 4) 

 When we do a geometry problem, we 

should first look at the given facts and the 

conclusion. If all these involve 

intersection points, midpoints, feet of 

perpendiculars, parallel lines, then there 

is a good chance we can solve the 

problem by coordinate geometry.  

However, if they involve two or more 

circles, angle bisectors and areas of 

triangles, then sometimes it is still 

possible to solve the problem by 

choosing a good place to put the origin 

and the x-axis.  Below we will give some 

examples.  It is important to stay away 

from messy computations ! 

 

 

Example 1. (1995 IMO) Let A, B, C 

and D be four distinct points on a line, in 

that order.  The circles with diameters AC 

and BD intersect at the points X and Y.  

The line XY meets BC at the point Z.  Let P 

be a point on the line XY different from Z.  

The line CP intersects the circle with 

diameter AC at the points C and M, and  

the line BP intersects the circle with 

diameter BD at the points B and N.  Prove 

that the lines AM, DN, and XY are 

concurrent. 

 

Z

X

Y

P

A B DC

M

Q  Q'

N

 
 

 (Remarks.  Quite obvious we should 

set the origin at Z. Although the figure is 

not symmetric with respect to line XY, 

there are pairs such as M, N and A, D and 

B, C that are symmetric in roles! So we 

work on the left half of the figure, the 

computations will be similar for the right 

half.) 

Solution. (Due to Mok Tze Tao, 

1995 Hong Kong Team Member) Set the 

origin at Z and the x-axis on line AD. Let 

the coordinates of the circumcenters of 

triangles AMC and BND be (x1, 0) and (x2, 

0), and the circumradii be r1 and r2, 

respectively.  Then the coordinates of A 

and C are (x1−r1, 0) and  (x1+ r1, 0), 

respectively. Let the coordinates of P be 

(0, y0). Since AM ⊥ CP and the slope of 

CP is −y0/(x1+ r1), the equation of AM 

works out to be (x1+ r1)x−y0y= 2
1

2
1 rx − . Let 

Q be the intersection of AM with XY, then 

Q has coordinates )/)( ,0( 0

2

1

2

1 yxr − .  

 

Similarly, let Q' be the intersection 

of DN with XY, then Q' has coordinates       

)/)(,0( 0

2

2

2

2 yxr − .    Since 22

1

2

1 ZXxr =−  

'2

2

2

2  so , QQxr =−= . 

 

 

Example 2. (1998 APMO) Let ABC 

be a triangle and D the foot of the altitude 

from A. Let E and F be on a line passing 

through D such that AE is perpendicular  

to BE, AF is perpendicular to CF, and E 

and F are different from D. Let M and N 

be the midpoints of the line segments BC 

and EF, respectively.  Prove that AN is 

perpendicular to NM. 

 

 

A

B

C
D

M

E FN
 

 

 

(Remarks. We can set the origin at D 

and the x-axis on line BC. Then  

computing the coordinates of E and F will 

be a bit messy. A better choice is to set the 

line through D,E.F horizontal.)

Coordinate GeometryCoordinate GeometryCoordinate GeometryCoordinate Geometry    
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Solution. (Due to Cheung Pok Man, 

1998 Hong Kong Team Member) Set the 

origin at A and the x-axis parallel to line 

EF. Let the coordinates of D, E, F be (d, b), 

(e, b), (f, b), respectively. The case b=0 

leads to D=E, which is not allowed. So we 

may assume b≠0. Since BE ⊥ AE and the 

slope of AE is b/e, so the equation of line 

BE works out to be ex+by=e
2
+b

2
. 

Similarly, the equations of lines CF and 

BC are fx+by=f
2
+b

2
 and dx+by=d

2
+b

2
, 

respectively. Solving the equations for BE 

and BC, we find B has coordinates (d+e, 

b-(de/b)). Similarly, C has coordinates 

(d+f, b−(df/b)). Then M has coordinates 

(d+(e+f)/2, b−(de+df)/(2b)) and N has 

coordinates ((e+f)/2, b). So the slope of 

AN is 2b/(e+f) and the slope of MN is 

−(e+f)/(2b). Therefore, AN ⊥ MN. 

 

 

Example 3. (2000 IMO) Two circles Γ1 

and Γ2  intersect at M and N. Let ��be the 

common tangent to Γ1 and Γ2  so that M is 

closer to ��than N is. Let ��touch  Γ1 at A 

and Γ2 at B. Let the line through M parallel 

to � meet the circle Γ1 again at C and the 

circle Γ2 again at D. Lines CA and DB 

meet at E; lines AN and CD meet at P; 

lines BN and  CD meet at Q. Show that 

EP=EQ. 

 

 

O1
O2

A B

M

C D

N

P Q

E

Γ

Γ

1

2

 
 

 (Remarks. Here if we set the x-axis on 

the line through the centers of the circles, 

then the equation of the line AB will be 

complicated. So it is better to have line AB 

on the x-axis.) 

 

Solution. Set the origin at A and the 

x-axis on line AB. Let B, M  have 

coordinates (b,0), (s,t), respectively. Let 

the centers  O1, O2 of Γ1, Γ2 be at (0, r1), (b, 

r2), respectively. Then C, D have 

coordinates (−s, t), (2b−s,t), respectively. 

Since AB, CD are parallel, CD=2b=2AB 

implies A, B are midpoints of CE, DE, 

respectively. So E is at (s, −t). We see EM 

⊥ CD. 

 

To get EP=EQ, it is now left to show M 

is the midpoint of segment PQ. Since O1 

O2 ⊥ MN and the slope  of  O1 O2 is       

(r2− r1)/b, the equation of line MN is 

bx+(r2−r1)y=bs+(r2−r1)t. (This line 

should pass through the midpoint of 

segment AB.) Since O2M=r2 and O1M=r1, 

we get 

 )()( 2

2

2

2

2
rtrsb =−+−   and 
2

1

2

1

2 )( rtrs =−+ . 

 

Subtracting these equations, we get 

b
2
/2=bs+(r2− r1)t, which implies (b/2, 0) 

is on line MN. Since PQ, AB are parallel 

and line MN intersects AB at its midpoint, 

then M must be the midpoint of segment 

PQ. Together with EM ⊥ PQ, we get 

EP=EQ. 
 
 

 Example 4. (2000 APMO) Let ABC be 

a triangle. Let M and N be the points in 

which the median and the angle bisector, 

respectively, at A meet the side BC. Let Q 

and P be the points in which the 

perpendicular at N to NA meets MA and 

BA, respectively, and O the point in which 

the perpendicular at P to BA meets AN 

produced. Prove that QO is perpendicular 

to BC. 
 

B

A N

M

P

O

Q

 
 
 (Remarks. Here the equation of the angle 
bisector is a bit tricky to obtain unless it is 
the x-axis. In that case, the two sides of the 
angle is symmetric with respect to the 
x-axis.) 
 

Solution. (Due to Wong Chun Wai, 
2000 Hong Kong Team Member) Set the 
origin at N and the x-axis on line NO. Let 
the equation of line AB be y=ax+b, then 
the equation of lines AC and PO are 
y=−ax−b and y=(−1/a)x+b, respectively. 
Let the equation of BC be y=cx. Then B 
has coordinates (b/(c−a), bc/(c−a)), C has 
coordinates (−b/(c+a), −bc(c+a)), M has 
coordinates (ab/(c

2
−a

2
), abc/(c

2
−a

2
)), A  

has coordinates (−b/a, 0), O has 
coordinates (ab, 0) and Q has coordinates 
(0, ab/c).  Then BC has slope c and QO 
has slope −1/c. Therefore, QO ⊥ BC. 

 

Example 5. (1998 IMO) In the convex 

quadrilateral ABCD, the diagonals AC and 

BD are perpendicular and the opposite 

sides AB and DC are not parallel. Suppose 

that the point P, where the perpendicular 

bisectors of AB and DC meet, is inside 

ABCD. Prove that ABCD is a cyclic 

quadrilateral if and only if the triangles 

ABP and CDP have equal areas. 
 

B

A

D

C
P

 
 
 (Remarks. The area of a triangle can be 

computed by taking the half length of the 
cross product. A natural candidate for the 
origin is P and having the diagonals 
parallel to the axes will be helpful.) 

 
Solution. (Due to Leung Wing Chung, 

1998 Hong Kong Team Member) Set the 
origin at P and the x-axis parallel to line 
AC. Then the equations of lines AC and 
BD are y=p and x=q, respectively. Let 
AP=BP=r and CP=DP=s. Then the 
coordinates of A, B, C, D are 

),( 22
ppr −− , ),( 22

qrq − , ),( 22
pps − , 

 

),,( 22
qsq −− respectively. Using the 

determinant formula for finding the area 
of a triangle, we see that the areas of  
triangles ABP and CDP are equal if and 
only if  
 

.
22222222

pqqspspqqrpr −−−−=−−−−

 
 
   Since f(x) = 22 px −− pqqx −−

22  is 

strictly decreasing when x ≥ |p| and |q|, 
equality of areas hold if and only if r=s, 
which is equivalent to A, B, C, D concyclic 
(since P being on the perpendicular 
bisectors of AB, CD is the only possible 

place for the center). 
 

After seeing these examples, we would 
like to remind the readers that there are 
pure geometric proofs to each of the 
problems.   For examples (1) and (3), there 
are proofs that only take a few lines.  We 
encourage the readers to discover these 
simple proofs. 

 
Although in the opinions of many 

people, a pure geometric proof is better 
and more beautiful than a coordinate 
geometric proof, we should point out that 
sometimes the coordinate geometric 
proofs may be preferred when there are 
many cases.  For example (2), the different 
possible orderings of the points D, E, F on 
the line can all happen as some pictures 
will show. The coordinate geometric 
proofs above cover all cases. 
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Problem Corner 
We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceded by the solver’s name, 

home address and school affiliation.  

Please send submissions to Dr. Kin Y. Li, 

Department of Mathematics, Hong Kong 

University of Science and Technology, 

Clear Water Bay, Kowloon.  The 

deadline for submitting solutions is 

October 10,  2000. 
 

 

 

Problem 106.  Find all positive integer 

ordered pairs (a,b) such that 

 

gcd(a,b)+lcm(a,b)=a+b+6, 

where gcd stands for greastest common 

divisor (or highest common factor) and 

lcm stands for least common multiple. 
 

 

Problem 107.  For a, b, c > 0, if abc=1, 

then show that 
 

.3 +++≥
+

+
+

+
+

cba
c

ba

b

ac

a

cb
 

 

 

Problem 108.  Circles C1 and C2 with 

centers O1 and O2 (respectively) meet at 

points A, B. The radii O1B and O2B 

intersect C1 and C2 at F and E. The line 

parallel to EF through B meets C1 and C2 

at M and N, respectively. Prove that 

MN=AE+AF. (Source: 17th Iranian 

Mathematical Olympiad) 
 

 

Problem 109.  Show that there exists an 

increasing sequence a1, a2, a3, ... of 

positive integers such that for every 

nonnegative integer k,the sequence k+a1, 

k+a2, k+a3 ... contains only finitely many 

prime numbers. (Source: 1997 Math 

Olympiad of Czech and Slovak 

Republics) 
 

 

Problem 110.  In a park, 10000 trees 

have been placed in a square lattice. 

Determine the maximum number of trees 

that can be cut down so that from any 

stump, you cannot see any other stump. 

(Assume the trees have negligible radius 

compared to the distance between 

adjacent trees.) (Source: 1997 German 

Mathematical Olympiad) 

 

 

Comments. You may think of the trees 

being placed at (x,y), where x, y = 0, 1, 2, 

..., 99. 

 

 

***************** 

Solutions 

***************** 

 

Problem 101.  A triple of numbers (a1, 

a2, a3)=(3, 4, 12) is given. We now 

perform the following operation: choose 

two numbers ai and aj, (i ≠ j), and 

exchange them by 0.6ai−0.8aj and 

0.8ai+0.6aj. Is it possible to obtain after 

several steps the (unordered) triple (2, 8, 

10) ? (Source: 1999 National Math 

Competition in Croatia) 

 

Solution.  FAN Wai Tong (St. Mark's 

School, Form 7), KO Man Ho (Wah Yan 

College, Kowloon, Form 6) and LAW 

Hiu Fai (Wah Yan College, Kowloon, 

Form 6). 

Since (0.6ai−0.8aj)
2
 + (0.8ai+0.6aj)

2   

= 22
ji aa + , the sum of the squares of the 

triple of numbers before and after an 

operation stays the same. Since 3
2 

+ 4
2 

+ 

12
2 

≠ 2
2 

+ 8
2 

+ 10
2
, so (2,8,10) cannot be 

obtained. 
 

Problem 102.  Let a be a positive real 

number and (xn)n≥1 be a sequence of real 

numbers such that x1=a and 
 

.1 allfor  ,)2(
1

1

1 ≥−+≥ ∑
−

=

+
nkxxnx

n

k

knn
 

Show that there exists a positive integer n 

such that xn > 1999! (Source: 1999 

Romanian Third Selection Examination) 

 

Solution.  FAN Wai Tong (St. Mark's 

School, Form 7). 

 

We will prove by induction that xj+1≥ 3xj  for 

every positive integer j. The case j=1 is true 

by  the given inequality. Assume the cases j 

=1, ...,  n−1 are true. Then xn ≥ 3xn−1 ≥ 9xn−2   

≥ ... and 
 

∑
−

=

+
−+≥

1

1

1 )2(
n

k n

k

n

n

x

kx
n

x

x  

 

        ∑
−

=

−

−
−+≥

1

1 3

1
)2(

n

k
kn

n
n  

 

        ...)
9

1

3

1
)(1()2( ++−−+≥ nn  

        =
2

5+n  

    ≥ 3. 
 

So the case j = n is also true. 
 
Since   a  >  0,  we can take    
 

n > 1+ log3 (1999!/a). 

Then xn ≥ 3
n−1

x1= 3
n−1

a >1999!. 

 

Problem 103.  Two circles intersect in 

points A and B. A line l that contains the 

point A intersects again the circles in the 

points C, D, respectively. Let M, N be the 

midpoints of the arcs BC and BD, which 

do not contain the point A, and let K be the 

midpoint  of  the  segment  CD. Show that  

∠ MKN=90°. (Source: 1999 Romanian 

Fourth Selection Examination) 

 

α

B

AC DK

M N

M' N'

 
 

Solution.  FAN Wai Tong (St. Mark's 

School, Form 7) 

 

Let M' and N' be the midpoints of chords BC 

and BD respectively. From the midpoint 

theorem, we see that BM'KN' is a 

parallelogram. Now 
 
 

.              

90              

90

MMK

BMK

BNKNNK

′∠=

+′∠=

+′∠=′∠

�

�

 

 

Let α = ∠ NDB =∠ NAB. Then 

 

α
α

 tan 
2

1
2

1

 tan 
BD

BC

DN

BM

NN

NK
=

′

′
=

′

′ . 

 

Now 

 

     CABMCBMCB ∠=∠=∠
2

1  

)180(
2

1
 DAB∠−=

�  

                 NAB∠−=
�90  

                 α−=
�90 . 
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So 

BD

BC

NB

MC

KM

MM

2

1

cot
2

1

cot
α

α
=

′

′
=

′

′ . 

 
Then KMMMNNNK ′′=′′ // . So triangles 

NNKKMM ′′ , are similar. Then  KMM ′∠  

NKN ′∠=  and 

 

KNNKMMNKMMKN ′∠−′∠−′′∠=∠  

             = )( KNNNKNDNK ′∠+′∠−′∠  

             =90
o 

Other commended solvers: WONG 

Chun Wai (Choi Hung Estate Catholic 

Secondary School, Form 7). 
 
Problem 104.  Find all positive integers 
n such that 2

n
−1 is a multiple of 3 and 

(2
n
−1)/3 is a divisor of 4m

2
+1 for some 

integer m. (Source: 1999 Korean 
Mathematical Olympiad)  
 
Solution. (Official Solution) 
 
(Some checkings should suggest n is a 
power of 2.) Now 2

n
−1 is a multiple of 3 

if and only if (−1)
n
≡2

n
≡(mod 3), that is n 

is even. Suppose for some even n, 
(2

n
−1)/3 is a divisor of 4m

2
+1 for some 

m. Assume n has an odd prime divisor d. 
Now 2

d
−1≡3 (mod 4) implies one of its 

prime divisor p is of the form 4k+3. Then 
p divides 2

d
−1, which divides 2

n
−1, 

which divides 4m
2
+1. Then p and 2m are 

relatively prime and so 
 

1≡(2m)
p−1

=(4m
2
)

2k+1
≡−1 (mod p), 

 
a contradiction. So n cannot have any 
odd prime divisor. Hence n=2

j
 for some 

positive integer j. 
 

Conversely, suppose n =2
j
. Let Fi=

i
22 + 1. 

Using the factorization 2
2b

−1= (2
b
−1)× 

(2
b
+1) repeatedly on the numerator, we 

get 

121
3

12
−

=
−

j

n

FFF � . 

 
Since Fi divides Fj−2 for i < j, the Fi’s 
are pairwise relatively prime. By the 
Chinese remainder theorem, there is a 
positive integer x satisfying the 
simultaneous equations x ≡ 0 (mod 2) and 

122
−

≡
i

x (mod Fi) for i=1, 2, …, j−1. 
Then x=2m for some positive integer m 
and 4m

2
+1= x

2
+1≡ 0 (mod Fi) for i=1, 

2,…j−1. So 4m
2
+1 is divisible by 

F1F2…Fj-1=(2
n
−1)/3. 

 
 
Problem 105. A rectangular 
parallelepiped (box) is given, such that 
its intersection with a plane is a regular 
hexagon.  Prove that the rectangular 
parallelepiped is a cube.  (Source: 1999 
National Math Olympiad in Slovenia) 

Solution. (Official Solution) 
 

D'

A'
B'

C'

Α Β

CD

X

Z

YO

N

P

K

M

L

 
 
As in the figure, an equilateral triangle 
XYZ is formed by extending three 
alternate sides of the regular hexagon. 
 

The right triangles XBZ and YBZ are 

congruent as they have a common side 

BZ and the hypotenuses have equal 

length. So BX=BY and similarly BX=BZ.  

As  the  pyramids  XBYZ  and OB′ NZ  are 

similar  and  XYON
3

1
= ,   it follows  B' Z 

BZ
3

1
= .  Thus we have BZBB

3

2
 =′  and 

similarly BXAB
3

2
= and BYCB

3

2
= . 

Since BX=BY=BZ, we get AB=BC=BB′. 
 
Other commended solvers: FAN Wai 
Tong (St. Mark’s School, Form 7). 
 

 
 

Olympiad Corner 

(continued from page 1) 
(ii) the sums of the squares of the four 

numbers on each side of the triangle are 

equal. 

Find all ways in which this can be done. 
 

Problem 3.  Let ABC be a triangle.  Let 

M and  N  be  the  points in  which  the 

median and the angle bisector, 

respectively, at A meet the side BC.  Let 

Q and P be the points in which the 

perpendicular at N to NA meets MA and 

BA, respectively, and O the point in 

which the perpendicular at P to BA meets 

AN produced. Proved that QO is 

perpendicular to BC. 

 

Problem 4.  Let n, k be given positive 

integers with n > k.  Prove that 

⋅

−

<
−

<

−

⋅
+ −− knk

n

knk

n

knk

n

knk

n

knk

n

n )()!(!

!

)(1

1

 

Problem 5.  Given a permutation (a0, a1, 

..., an) of the sequence 0,1,..., n.  A 

transposition of ai with aj is called legal 

if  i > 0, ai = 0 and ai−1 + 1 = aj. The 

permutation (a0, a1, ..., an) is called 

regular if after a number of legal 

transpositions it becomes (1,2, ...,n,0). 

For which numbers n is the permutation 

(1, n, n−1, ..., 3, 2, 0) regular ? 

 

 
 

2000 APMO and IMO 
 
In April this year, Hong Kong IMO 
trainees participated in the XII Asia 
Pacific Mathematical Olympiad. The 
winners were 
 
Gold Award 
 
Fan Wai Tong (Form 7, St Mark’s 
School)  
 
Silver Award 
 
Wong Chun Wai (Form 7, Choi Hung 
Estate Catholic Secondary School)  
Chao Khek Lun (Form 5, St. Paul’s 
College) 
 
Bronze Award 
 
Law Ka Ho (Form 7, Queen Elizabeth 
School)  
Ng Ka Chun (Form 5, Queen Elizabeth 
School)  
Yu Hok Pun (Form 4, SKH Bishop Baker 
Secondary School)  
Chan Kin Hang (Form 6, Bishop Hall 
Jubilee School)  
 
Honorable Mention 
 
Ng Ka Wing (Form 7, STFA Leung Kau 
Kui College)  
Chau Suk Ling (Form 5, Queen Elizabeth 
School) 
Choy Ting Pong (Form 7, Ming Kei 
College) 
 
Based on the APMO and previous test 
results, the following trainees were 
selected to be the Hong Kong team 
members to the 2000 International 
Mathematical Olympiad, which was held 
in July in South Korea. 
 
Wong Chun Wai (Form 7, Choi Hung 
Estate Catholic Secondary School) 
Ng Ka Wing (Form 7, STFA Leung Kau 
Kui College) 
Law Ka Ho (Form 7, Queen Elizabeth 
School) 
Chan Kin Hang (Form 6, Bishop Hall 
Jubilee School) 
Yu Hok Pun (Form 4, SKH Bishop Baker 
Secondary School) 
Fan Wai Tong (Form 7, St. Mark’s 
School) 
 

 



Olympiad Corner 
 

The 41
st
 International Mathematical 

Olympiad, July 2000: 

Time allowed: 4 hours 30 minutes 

Each problem is worth 7 points. 
 
Problem 1.  Two circles 1Γ  and 2Γ  

intersect at M and N.  Let  be the 

common tangent to 1Γ  and 2Γ  so that M 

is closer to  than N is.  Let  touches 1Γ  

at A and 2Γ  at B.  Let the line through M 

parallel to  meets the circle 1Γ  again at 

C and the circle 2Γ  at D.  Lines CA and 

DB meet at E; lines AN and CD meet at P; 

lines BN and CD meet at Q.  Show that EP 

= EQ. 
 

Problem 2.  Let a, b, c be positive real 

numbers such that abc = 1.  Prove that 

1)/11)(/11)(/11( ≤+−+−+− accbba  
 

Problem 3.  Let 2≥n  be a positive 

integer.  Initially, there are n fleas on a 

horizontal line, not all at the same point.  

For a positive real number λ , define a 

move as follows: 

Choose any two fleas, at points A and B, 

with A to the left of B; let the flea at A 

jump to the point C on the line to the line 

to the right of B with BC/AB = λ . 

(continued on page 4) 

In comparing two similar expressions, 

often they involve a common function.  

To see which expression is greater, the 

shape of the graph of the function on an 

interval is every important.  A function f 

is said to be convex on an interval I if for 

any two points ( 1x , f( 1x )) and ( 2x , 

f( 2x )) on the graph, the segment joining 

these two points lie on or above the graph 

of the function over [ 1x , 2x ].  That is, 

))1(( 21 txxtf +− )()( )1( 21 xtfxft +−≤  

for every t in [0, 1].  If f is continuous on I, 

then it is equivalent to have 

2

)()(

2

2121 xfxfxx
f

+
≤





 +

 

for every 1x , 2x  in I.  If furthermore f is 

differentiable, then it is equivalent to have 

a nondecreasing derivative.  Also, f is 

strictly convex on I if f is convex on I and 

equality holds in the inequalities above 

only when 1x  = 2x .  We say a function g 

is concave on an interval I if the 

function –g is convex on I.  Similarly, g is 

strictly concave on I if –g is strictly 

convex on I. 

The following are examples of strictly 

convex functions on intervals: 
px  on [0, ∞ ) for p > 1, 

px  on (0, ∞ ) for p < 0, 

xa  on ( −∞ , ∞ ) for a > 1, 

tan x on [0, )
2

π
. 

The following are examples of strictly 

concave functions on intervals: 
px  on [0, ∞ ) for 0 < p < 1, 

xalog  on (0, ∞ ) for a > 1, 

cos x on [ 2/  ,2/ ππ− ], 

sin x on [0, π ]. 

The most important inequalities 

con-cerning these functions are the 

following. 

Jensen’s Inequality.  If f is convex on an 

interval I and nxxx  ..., , , 21  are in I, then 






 +++

n

xxx
f n21  

n

xfxfxf n )()()( 21 +++
≤ . 

For strictly convex functions, equality 

holds if and only if nxxx === 21 . 

Generalized Jensen’s Inequality.  Let f 

be continuous and convex on an interval I.  

If nxx  ..., ,1  are in I and nttt  ..., , ,0 21<  < 

1 with 121 =+++ nttt , then 

)( 2211 nn xtxtxtf +++  

)()()( 2211 nn xftxftxft +++≤  

(with the same equality condition for 

strictly convex functions). 

Jensen’s inequality is proved by doing a 

forward induction to get the cases n = k2 , 

then a backward induction to get case n – 

1 from case n by taking nx  to be the 

arithmetic mean of 1x , 2x , …, 1−nx .  For 

the generalized Jensen’s inequality, the 

case all it ’s are rational is proved by 

taking common denominator and the other 

cases are obtained by using continuity of 

the function and the density of rational 

numbers. 

There are similar inequalities for concave 

and strictly concave functions by 

reversing the inequality signs. 

Example 1.  For a triangle ABC, show that 

sin A + sin B + sin C 
2

33≤  and 

determine when equality holds. 

Solution.  Since )(xf  = sin x is strictly 

concave on [0, π ], so 
 

  sin A + sin B + sin C 

 = )()()( CfBfAf ++  

 




 ++≤

3
3

CBA
f  

 = 3 sin 




 ++

3

CBA
 

 = 
2

33
. 
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Equality holds if and only if A = B = C = 

π /3, i.e. ABC∆  is equilateral. 

Example 2.  If a, b, c > 0 and 

a + b + c = 1, 

then find the minimum of 

101010
111






 ++





 ++





 +

c
c

b
b

a
a . 

Solution.  Note 0 < a, b, c < 1.  Let )(xf  

= 

10
1






 +

x
x  on I = (0, 1), then f is strictly 

convex on I because its second derivative 












 ++





−





 +

3

92

2

8
21

10
1

1
1

90
xx

x
xx

x

is positive on I.  By Jensen’s inequality, 

         




 ++=

3
3

3

10

9

10
cba

f  

      )()()(  cfbfaf ++≤  

   = 

1010
11






 ++





 +

b
b

a
a

10
1






 ++

c
c . 

So the minimum is 910 3/10 , attained 

when a = b = c = 1/3. 

Example 3.  Prove that AM-GM 

in-equality, which states that if 1a , 

2a , …, 0≥na , then 

n
n

n aaa
n

aaa
21

21     ≥
+++

. 

Solution.  If one of the ia ’s is 0, then the 

right side is 0 and the inequality is clear.  

If 1a , 2a , …, 0>na , then since )(xf  = 

log x is strictly concave on (0, ∞ ), by 
Jensen’s inequality, 

 




 +++

n

aaa n21log  

 
n

aaa nlogloglog 21 +++
≥  

 ( )n
naaa 21log= . 

Exponentiating both sides, we get the 

AM-GM inequality. 
Remarks.  If we use the generalized 
Jensen’s inequality instead, we can get the 
weighted AM-GM inequality.  It states 

that if 1a , …, 0>na  and 0 < 1t , …, nt  

< 1 satisfying 1t ++ nt = 1, then 1t 1a  

++ nt na nt
n

t
aa 1

1≥  with equality if 

and only if all ia ’s are equal. 

Example 4.  Prove the power mean 

inequality, which states that for 1a , 

2a , …, 0>na  and s < t, if 

r
r
n

rr

r
n

aaa
S

/1

21










 +++
= , 

then ts SS ≤ .  Equality holds if and only 

if 1a = 2a = na= . 

Remarks.  1S  is the arithmetic mean (AM) 

and 1−S  is the harmonic mean (HM) and 

2S  is the root-mean-square (RMS) of 1a , 

2a , na, .  Taking limits, it can be shown 

that ∞+S  is the maximum (MAX), 0S  is 

the geometric mean (GM) and ∞−S  is the 

minimum (MIN) of 1a , 2a , na, . 
 

Solution.  In the cases 0 < s < t or s < 0 < t, 

we can apply Jensen’s inequality to f(x) = 
stx / .  In the case s < t < 0, we let ib  = 

1/ ia  and apply the case 0 < -t < -s.  The 

other cases can be obtained by taking limit 

of the cases proved. 

Example 5.  Show that for x, y , z > 0, 

  555 zyx ++  

 
xy

z
z

zx

y
y

yz

x
x

2
5

2
5

2
5

  ++≤ . 

Solution.  Let a = x , b = y , c = z , 

then the inequality becomes 

abc

cba
cba

131313
101010

   
++≤++ . 

By the power mean inequality, 

    13
13

131313 3Scba =++  

 = 3
0

10
10

3
13

10
13  3   3 SSSS ≥  

 = ( )abccba  101010 ++ . 

Example 6.  Prove Hölder’s inequality, 

which states that if p, q > 1 satisfy 
qp

11 +  

= 1 and 1a , …, na , 1b , …, nb  are real 

(or complex) numbers, then 

qp qn

i
i

pn

i
i

n

i
ii baba

11

111
























≤ ∑∑∑

===
. 

(The case p = q = 2 is the Cauchy-Schwarz 

inequality.) 
 

Solution.  Let 
p

n
p

aaA ++=   1 . 

q
n

p
bbB ++=   1 . 

If A or B is 0, then either all ia ’s or all 

ib ’s are 0, which will make both sides of 

the inequality 0. 

So we need only consider the case A ≠  0 

and B ≠  0.  Let 1t  = 1/p and 2t  = 1/q, 

then 0 < 1t , 2t  < 1 and 1t  + 2t  = 1.  Let 

ix  = Aa
p

i /  and iy = Bb
q

i / , then 

,11 =++ nxx      11 =++ nyy . 

Since )(xf  = xe  is strictly convex on 

( −∞ , ∞ ), by the generalized Jensen’s 
inequality, 

)lnln( 21
/1/1

ii
q

i
p

i ytxtfyx +=  

q

y

p

x
yftxft ii

ii +=+≤ )(ln)(ln 21 . 

Adding these for i = 1, …, n, we get 

∑∑
==

=
n

i

q
i

p
i

n

i
qp

ii yx
BA

ba

1

/1/1

1
/1/1

||||
 

1
11

11

=+≤ ∑∑
==

n

i
i

n

i
i y

q
x

p
. 

Therefore, 

qp
n

i
ii BAba

/1/1

1

|||| ≤∑
=

 

q
n

i

q
i

p
n

i

p
i ba

/1

1

/1

1

|||| 











= ∑∑

==
. 

Example 7.  If a, b, c, d > 0 and 

32222 )( badc +=+ , 

then show that 

1
33

≥+
d

b

c

a
. 

Solution 1.  Let 

cax /3
1 = ,    dbx /3

2 = , 

acy =1 ,    bdy =2 . 

By the Cauchy-Schwarz inequality, 

    )(
33

bdac
d

b

c

a +









+  

 ( )( )2
2

2
1

2
2

2
1  yyxx ++=  

 2
2211 )( yxyx +≥  

 222 )( ba +=  

 ))(( 2222 dcba ++=  

 bdac +≥ . 

Cancelling ac + bd on both sides, we get 
the desired inequality. 
 

Solution 2.  Let 

3/23 )/( cax = ,    3/23 )/( dby = . 

By the p = 3, q = 3/2 case of Hölder’s 

inequality, 

    22 ba +  

 ydxc )()( 3/23/2 +=  

 3/22/32/33/122 )()( yxdc ++≤  

Cancelling 3/12222 )( dcba +=+  on 

both sides, we get 2/32/31 yx +≤  = 

)/()/( 33 dbca + . 
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Problem Corner 
 

We welcome readers to submit solutions 

to the problems posed below for 

publication consideration.  Solutions 

should be preceeded by the solver’s 

name, home address and school 

affiliation.  Please send submissions to 

Dr. Kin Y. Li, Department of 

Mathematics, Hong Kong University of 

Science & Technology, Clear Water Bay, 

Kowloon.  The deadline for submitting 

solutions is December 10, 2000. 
 

Problem 111.  Is it possible to place 100 

solid balls in space so that no two of them 

have a common interior point, and each 

of them touches at least one-third of the 

others?  (Source: 1997 Czech-Slovak 

Match) 
 

Problem 112.  Find all positive integers 

(x, n) such that 12 ++ nnx  is divisor of 

.12 11 ++ ++ nnx   (Source: 1998 Romanian 

Math Olympiad) 
 

Problem 113.  Let a, b, c > 0 and abc ≤  

1.  Prove that 

.  cba
b

c

a

b

c

a ++≥++  

(Hint: Consider the case abc = 1 first.) 
 

Problem 114.  (Proposed by Mohammed 

Aassila, Universite Louis Pasteur, 

Strasbourg, France)  An infinite 

chessboard is given, with n black squares 

and the remainder white.  Let the 

collection of black squares be denoted by 

G0.  At each moment t = 1, 2, 3, …, a 

simultaneous change of colour takes 

place throughout the board according to 

the following rule: every square gets the 

colour that dominates in the three square 

configuration consisting of the square 

itself, the square above and the square to 

the right.  New collections of black 

squares G1, G2, G3, … are so formed.  

Prove that Gn is empty. 
 

Problem 115.  (Proposed by Mohammed 

Aassila, Universite Louis Pasteur, 

Strasbourg, France)  Find the locus of the 

points P in the plane of an equilateral 

triangle ABC for which the triangle 

formed with lengths PA, PB and PC has 

constant area. 

 

***************** 

Solutions 
***************** 

Problem 106.  Find all positive integer 

ordered pairs (a, b) such that  

6) ,(lcm) ,gcd( ++=+ bababa , 

where gcd stands for greatest common 

divisor (or highest common factor) and 

lcm stands for least common multiple. 
 
Solution.  CHAN An Jack and LAW Siu 
Lun Jack (Mei Kei College, Form 6), 
CHAN Chin Fei (STFA Leung Kau Kui 
College), CHAO Khek Lun Harold (St. 
Paul’s College, Form 6), CHAU Suk Ling 
(Queen Elizabeth School, Form 6), 
CHENG Man Chuen (Tsuen Wan 
Government Secondary School, Form 7), 
FUNG Wing Kiu Ricky (La Salle College), 
HUNG Chung Hei (Pui Ching Middle 
School, Form 5), KO Man Ho (Wah Yan 
College, Kowloon, Form 7), LAM Shek 
Ming Sherman (La Salle College, Form 5), 
LAW Ka Ho (HKU, Year 1), LEE Kevin 
(La Salle College), LEUNG Wai Ying 
(Queen Elizabeth School, Form 6), MAK 
Hoi Kwan Calvin (La Salle College), OR 
Kin (SKH Bishop Mok Sau Tseng 
Secondary School), POON Wing Sze 
Jessica (STFA Leung Kau Kui College, 
Form 7), TANG Sheung Kon (STFA 
Leung Kau Kui College, Form 6), TONG 
Chin Fung (SKH Lam Woo Memorial 
Secondary School, Form 6), WONG Wing 
Hong (La Salle College, Form 3) and 
YEUNG Kai Shing (La Salle College, 
Form 4). 
 

Let m = gcd(a, b), then a = mx and b = my 

with gcd(x, y) = 1.  In that case, lcm(a, b) = 

mxy.  So the equation becomes m + mxy = 

mx + my + 6.  This is equivalent to m(x – 

1)(y – 1) = 6.  Taking all possible positive 

integer factorizations of 6 and requiring 

gcd(x, y) = 1, we have (m, x, y) = (1, 2, 7), 

(1, 7, 2), (1, 3, 4), (1, 4, 3), (3, 2, 3) and (3, 

3, 2).  Then (a, b) = (2, 7), (7, 2), (3, 4), (4, 

3), (6, 9) and (9, 6).  Each of these is easily 

checked to be a solution. 
 

Other recommended solvers:  CHAN Kin 
Hang Andy (Bishop Hall Jubilee School, 
Form 7) and CHENG Kei Tsi Daniel (La 
Salle College, Form 6). 
 

Problem 107.  For a, b, c > 0, if abc = 1, 

then show that 

.3+++≥+++++
cba

c

ba

b

ac

a

cb

 

Solution 1.  CHAN Hiu Fai Philip 
(STFA Leung Kau Kui College, Form 7), 
LAW Ka Ho (HKU, Year 1) and TSUI 
Ka Ho Willie (Hoi Ping Chamber of 
Commerce Secondary School, Form 7). 
 

By the AM-GM inequality and the fact 

abc = 1, we get  

≥+++++
c

ba

b

ac

a

cb
 











++

c
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b
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a
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+









++










+=

a
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c
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c
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b

ca
 

( )≥++≥









+ cba

b

ca

a

bc
2  

.336 +++=+++ cbaabccba
 
Solution 2.  CHAN Kin Hang Andy 
(Bishop Hall Jubliee School, Form 7), 
CHAO Khek Lun Harold (St. Paul’s 
College, Form 6), CHAU Suk Ling 
(Queen Elizabeth School, Form 6), 
CHENG Kei Tsi (La Salle College, Form 
6), CHENG Man Chuen (Tsuen Wan 
Government Secondary School, Form 7), 
LAW Ka Ho (HKU, Year 1) and 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6). 
 
Without loss of generality, assume 

cba ≥≥ .  Then cba /1/1/1 ≤≤ .  

By the rearrangement inequality, 

cba
c

c

b

b

a

a

c

a

b

c

a

b ++=++≥++  

Also, by the AM-GM inequality, 

.3≥++
c

b

b

a

a

c  

Adding these two inequalities, we get the 

desired inequality. 
 

Generalization:  Professor Murray S. 

Klamkin (University of Alberta, Canada) 

sent in a solution, which proved a 

stronger inequality and later generalized 

it to n variables.  He made the 

sub-stitutions ax =1 , bx =2 , 

cx =3  to get rid of square roots and let 

Sm = mx1  + mx2 + mx3  so that the inequality 

became 

.31
3

2
2

2
1

2

2
1

2
3

1

2
3

2
2 +≥+++++

S
x

xx

x

xx

x

xx
 

By the AM-GM inequality, ≥mS  

3
3213 mmm xxx = 3.  Since 2

12 )3/(3/ SS ≥  

3/1S≥  by the power mean inequality, 

we would get a stronger inequality by 

replacing S1 + 3 by 2S2.  Rearranging 

terms, this stronger inequality could be 

rewritten as S2(S-1 – 3) ≥  S1 – S2.  Now 

the left side is nonnegative, but the right 

side is nonpositive.  So the stronger 

inequality is true.  If we replace 3 by n 
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and assume ,11 =nxx  then as above, 

we will get mmm SSnSS −≥−− 11 )(  by 

the AM-GM and power mean 

inequalities.  Expanding and regrouping 

terms, we get the stronger inequality in n 

variables, namely 

.)1( 
1

1 m

n

i
m
i

m
im Sn

x

xS −≥−
∑
= −  

Other recommended solvers:  CHAN 
Chin Fei (STFA Leung Kau Kui College), 
LAM Shek Ming Sherman (La Salle 
College, Form 5), LAW Hiu Fai (Wah Yan 
College, Kowloon, Form 7), LEE Kevin 
(La Salle College, Form 5), MAK Hoi 
Kwan Calvin (La Salle College), OR Kin 
(SKH Bishop Mok Sau Tseng Secondary 
School) and YEUNG Kai Shing (La Salle 
College, Form 4). 
 

Problem 108.  Circles C1 and C2 with 

centers O1 and O2 (respectively) meet at 

points A, B.  The radii O1B and O2B 

intersect C1 and C2 at F and E.  The line 

parallel to EF through B meets C1 and C2 

at M and N, respectively.  Prove that MN = 

AE + AF.  (Source: 17
th

 Iranian 

Mathematical Olympiad) 
 

 
 

Solution.  YEUNG Kai Shing (La Salle 
College, Form 4). 
 

As the case F = E = B would make the 

problem nonsensible, the radius O1B of C1 

can only intersect C2, say at F.  Then the 

radius O2B of C2 intersect C1 at E.  Since 

∆ EO1B and ∆ FO2B are isosceles, 

FEO1∠  = FBE∠− 2 180  = FEO2∠ .  

Thus, E, O2, O1, F are concyclic.  Then 

2/)360(  1BAOAEB ∠−=∠  = 180  

- .212 EBMEFOFOO ∠=∠=∠   So 

arcAMB = arcMAE.  Subtracting minor 

arcAM from both sides, we get minor 

arcMB = minor arcAE.  So MB = AE.  

Similarly, NB = AF.  Then MN = MB + 

NB = AE + AF. 
 

Other recommended solvers: Chan Kin 
Hang Andy (Bishop Hall Jubilee School, 
Form 7), CHAU Suk Ling (Queen 
Elizabeth School, Form 6) and LEUNG 
Wai Ying (Queen Elizabeth School, Form 
6). 
 

Problem 109.  Show that there exists an 

increasing sequence a1, a2, a3, … of 

positive integers such that for every 

nonnegative integer k, the sequence k + a1, 

k + a2, k + a3, … contains only finitely 

many prime numbers. (Source: 1997 

Math Olympiad of Czech and Slovak 

Republics) 
 
Solution.  CHAU Suk Ling (Queen 
Elizabeth School, Form 6), CHENG Kei 

Tsi (La Salle College, Form 6), CHENG 

Man Chuen (Tsuen Wan Government 
Secondary School, Form 7), LAM Shek 

Ming Sherman (La Salle College, Form 
5), LAW Hiu Fai (Wah Yan College, 
Kowloon, Form 7), LAW Ka Ho (HKU, 
Year 1) and YEUNG Kai Shing (La Salle 
College, Form 4). 
 

Let an = n! + 2.  Then for every 

non-negative integer k, if n ≥  k + 2, then k 

+ an is divisible by k + 2 and is greater than 

k + 2, hence not prime. 
 

Other commended solvers:  CHAN Kin 
Hang Andy (Bishop Hall Jubliee School, 
Form 7), KO Man Ho (Wah Yan College, 
Form 7), LEE Kevin (La Salle College, 
Form 5) and LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 

Problem 110.  In a park, 1000 trees have 

been placed in a square lattice.  

Determine the maximum number of trees 

that can be cut down so that from any 

stump, you cannot see any other stump.  

(Assume the trees have negligible radius 

compared to the distance between 

adjacent trees.)  (Source: 1997 German 

Mathematical Olympiad) 
 
Solution.  CHAN Kin Hang Andy 
(Bishop Hall Jubliee School, Form 7), 
CHAO Khek Lun Harold (St. Paul’s 
College, Form 6), Chau Suk Ling (Queen 
Elizabeth School, Form 6), CHENG Kei 

Tsi (La Salle College, Form 6), CHENG 

Man Chuen (Tsuen Wan Government 
Secondary School, Form 7), FUNG Wing 

Kiu Ricky (La Salle College), LAM 

Shek Ming Sherman (La Salle College, 
Form 5), LAW Ka Ho (HKU, Year 1), 
LEE Kevin (La Salle College, Form 5), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6), LYN Kwong To and 
KO Man Ho (Wah Yan College, 
Kowloon, Form 7), POON Wing Sze 

Jessica (STFA Leung Kau Kui College, 
Form 7) and YEUNG Kai Shing (La 
Salle College, Form 4). 
 

In every 22×  subsquare, only one tree 

can be cut.  So a maximum of 2500 trees 

can be cut down.  Now let the trees be at 

(x, y), where x, y = 0, 1, 2, …, 99.  If we 

cut down the 2500 trees at (x, y) with 

both x and y even, then the condition will 

be satisfied.  To see this, consider the 

stumps at (x1, y1) and (x2, y2) with x1, y1, 

x2, y2 even.  The cases x1 = x2 or y1 = y2 

are clear.  Otherwise, write (y2 – y1)/(x2 – 

x1) = m/n in lowest term.  Then either m 

or n is odd and so the tree at (x1 + m, y1 + 

n) will be between (x1, y1) and (x2, y2). 
 

Other recommended solvers: NG Chok 
Ming Lewis (STFA Leung Kau Kui 
College, Form 7). 
 

 
 

Olympiad Corner 

(continued from page 1) 
 

Problem 3.  (cont’d) 

Determine all values of λ  such that, for 

any point M on the line and any initial 

position of the n fleas, there is a finite 

sequence of moves that will take all the 

fleas to positions to the right of M.  

Problem 4.  A magician has one hundred 

cards numbered 1 to 100.  He puts them 

into three boxes, a red one, a white one a 

blue one, so that each contains at least 

one card. 
 
A member of the audience selects two of 

the three boxes, chooses one card from 

each and announces the sum of the 

numbers on the chosen cards.  Given this 

sum, the magician identifies the box from 

which no card has been chosen. 
 
How many ways are there to put all the 

cards into the boxes so that this trick 

always works? (Two ways are considered 

different if at least one card is put into a 

different box.) 

Problem 5.  Determine whether or not 

there exists a positive integer n such that 

n is divisible by exactly 2000 different 

prime numbers, and n2 + 1 is divisible by 

n. 

Problem 6.  Let AH1, BH2, CH3, be the 

altitudes of an acute-angled triangle ABC.  

The incircle of the triangle ABC touches 

the sides BC, CA, AB at T1, T2, T3, 

respectively.  Let the lines 321  , ,  be 

the reflections of the lines H2H3, H3H1, 

H1H2 in the lines T2T3, T3T1, T1T2, 

respectively. 
 

Prove that 321  , ,  determine a 

triangle whose vertices lie on the incircle 

of the triangle ABC. 
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Olympiad Corner 
 

British Mathematical Olympiad, 

January 2000: 

Time allowed: 3 hours 30 minutes 
 
Problem 1.  Two intersecting circles C1 

and C2 have a common tangent which 

touches C1 at P and C2 at Q.  The two 

circles intersect at M and N, where N is 

nearer to PQ than M is.  The line PN 

meets the circle C2 again at R.  Prove that 

MQ bisects angle PMR. 
 

Problem 2.  Show that for every positive 

integer n, 

nnnn )4(190025121 −−+−  

is divisible by 2000. 
 

Problem 3.  Triangle ABC has a right 

angle at A.  Among all points P on the 

perimeter of the triangle, find the 

position of P such that 

AP + BP + CP 

is minimized. 
 

Problem 4.  For each positive integer k, 

define the sequence { }na  by 

a0 = 1   and   an = kn + n)1(−  an-1 

for each  n ≥  1. 

(continued on page 4) 

 

我們知道，圓錐曲線是一些所謂二

次形的曲線，即一條圓錐曲線會滿足

以下的一般二次方程：Ax
2
 + Bxy + Cy

2
 

+ Dx + Ey + F = 0，其中 A、B 及 C 不

會同時等於 0。 假設 A ≠ 0，那麼我們

可以將上式除以 A，並化簡成以下模

式： 

x
2
 + bxy + cy

2
 + dx + ey + f = 0。 

 

以上的方程給了我們一個啟示：就

是五點能夠定出一個圓錐曲線。 因為

如果我們知道了五個不同點的坐標，我

們可以將它們分別代入上面的方程

中，從而得到一個有 5 個未知數（即 b、

c、d、e 和 f ）和 5 條方程的方程組。

祇要解出各未知數的答案，就可以知道

該圓錐曲線的方程了。 

 

不過，上述方法雖然明顯，但真正

操作時又困難重重！這是由於有 5 個

未知數的聯立方程卻不易解！而且我

們在計算之初假設 x
2 的係數非零，但

萬一這假設不成立，我們就要改設 B

或 C 非零，並需要重新計算一次了。 
 

幸好，我們可以通過「圓錐曲線族」

的想法來解此問題。方法見下例： 

 

例例例例:::: 求穿過 A(1, 0), B(3, 1), C(0, 3), 

D(−4, −1), E(−2, −3) 五點的圓錐曲線

方程。 
 

解解解解:::: 利用兩點式，先求出以下各直線的

方程： 
 

AB : 

13

01

1

0

−

−
=

−

−

x

y
，即 x − 2y − 1 = 0 

CD : 
04

31

0

3

−−

−−
=

−

−

x

y
，即 x − y + 3 = 0 

AC : 
10

03

1

0

−

−
=

−

−

x

y
，即 3x + y − 3 = 0 

BD : 
34

11

3

1

−−

−−
=

−

−

x

y
，即 2x − 7y + 1 = 0 

 

然後將 AB 和 CD 的方程「相乘」，

得一條圓錐曲線的方程： 
 
(x − 2y − 1)(x − y + 3) = 0，即 x

2
 − 3xy + 

2y
2
 + 2x − 5y − 3 = 0。 

 

注意注意注意注意：：：：雖然上述的方程是一條二次形

「曲線」，但實際上它是由兩條直線所

組成的。同時，亦請大家留意，該曲線

同時穿過 A、B、C 和 D 四點。 
 

類似地，我們又將 AC 和 BD「相

乘」，得：�

(3x + y − 3)(2x − 7y + 1) = 0，即 6x
2
 − 19xy 

− 7y
2
 − 3x + 22y − 3 = 0。 

 

考慮圓錐曲線族： 

x
2
 − 3xy + 2y

2
 + 2x − 5y − 3 + k(6x

2
 − 19xy 

− 7y
2
 − 3x + 22y − 3) = 0。很明顯，無論

k 取任何數值，這圓錐曲線族都會同樣

穿過 A、B、C 和 D 四點。 
 

最後，將 E 點的坐標代入曲線族

中，得：12 + k (−216) = 0，即 k = 1/18，

由此得所求的圓錐曲線方程為 

 

18(x
2
 − 3xy + 2y

2
 + 2x − 5y − 3) + (6x

2
 − 

19xy − 7y
2
 − 3x + 22y − 3) = 0，即 

 

24x
2
 − 73xy + 29y

2
 + 33x − 68y − 57 = 0。 
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Kin Y. Li 
 
The majorization inequality is a 

generalization of Jensen's inequality.  

While Jensen's inequality provides one 

extremum (either maximum or minimum) 

to a convex (or concave) expression, the 

majorization inequality can provide both 

in some cases as the examples below will 

show.  In order to state this inequality, we 

first introduce the concept of majorization 

for ordered set of numbers.  If 

nxxx ≥≥≥ �21 , 

nyyy ≥≥≥ �21 , 

...,     ,    , 212111 yyxxyx +≥+≥  

1111 −− ++≥++ nn yyxx ��  

and 

nn yyxx ++=++ �� 11 , 

then we say ) ..., , ,( 21 nxxx  majorizes 

) ..., , ,( 21 nyyy  and write 

) ..., , ,( 21 nxxx � ) ..., , ,( 21 nyyy . 

Now we are ready to state the inequality. 
 
�����������	
�	�
�������  If the function f 

is convex on the interval I = [a, b] and 

) ..., , ,( 21 nxxx � ) ..., , ,( 21 nyyy  

for Iyx ii ∈, , then 

)()()( 21 nxfxfxf +++ �  

)()()( 21 nyfyfyf +++≥ � . 
 

For strictly convex functions, equality 

holds if and only if ii yx =  for i = 1, 2, …, 

n.  The statements for concave functions 

can be obtained by reversing inequality 

signs. 
 
Next we will show that the majorization 

inequality implies Jensen's inequality.  

This follows from the observation that if 

nxxx ≥≥≥ �21 , then ) ..., , ,( 21 nxxx  �  

(x, x, …, x), where x is the arithmetic mean 

of 1x , 2x , …, nx .  (Thus, applying the 

majorization inequality, we get Jensen's 

inequality.)  For k = 1, 2, …, n - 1, we have 

to show kxxx k ≥++�1 .  Since 

))(( 1 kxxkn ++− �  

1)()( +−≥−≥ kk xknkkxkn  

).( 1 nk xxk �+≥ +  

Adding )( 1 kxxk ++�  to the two 

extremes, we get 

.)()( 11 knxxxkxxn nk =++≥++ ��  

Therefore, .1 kxxx k ≥++�  

Example 1.  For acute triangle ABC, 

show that 

2

3
coscoscos1 ≤++≤ CBA  

and determine when equality holds. 
 

Solution.  Without loss of generality, 

assume .CBA ≥≥   Then 3/π≥A  and 

3/π≤C .  Since 3/2/ ππ ≥≥ A  and 

3/2)( πππ ≥−=+≥ CBA , 

we have � )0 ,2/ ,2/( ππ (A, B, C) �  

)3/ ,3/ ,3/( πππ .  Since f(x) = cos x is 

strictly concave on I = [0, ],2/π  by the 

majorization inequality, 

)0(
22

1 fff +







+







=

ππ
 

  ≤  f(A) + f(B) + f(C) 

   = cos A + cos B + cos C 

  ≤
2

3

333
=








+







+






 πππ
fff . 

For the first inequality, equality cannot 

hold (as two of the angles cannot both be 

right angles).  For the second inequality, 

equality holds if and only if the triangle is 

equilateral. 
 

Remarks.  This example illustrates the 

equilateral triangles and the degenerate 

case of two right angles are extreme cases 

for convex (or concave) sums. 
 
Example 2.  Prove that if a, b ≥  0, then 

.3 33 33 33 3 abbabbaa +++≤+++
 

(Source: Math Horizons, Nov. 1995, 

Problem 36 of Problem Section, proposed 

by E.M. Kaye) 
 

Solution.  Without loss of generality, we 

may assume ≥≥ ab 0.  Among the 

numbers 

3
1 bbx += ,     3

2 abx += , 

3
3 bax += ,     3

4 aax += , 

1x  is the maximum and 4x  is the 

minimum.  Since 1x + 4x  = 2x + 3x , we 

get ( 1x , 4x ) � ( 2x , 3x ) or ( 3x , 2x ) 

(depends on which of 2x  or 3x  is larger).  

Since f(x) = 3 x  is concave on the interval 

[0, ∞ ), so by the majorization inequality, 

)()()()( 2314 xfxfxfxf +≤+ , 

which is the desired inequality. 

Example 3.  Find the maximum of +
12a  

1212 cb +  if ≤−1  a, b, c 1≤  and a + b + c 

= .2/1−  
 

Solution.  Note the continuous function 

f(x) = 12x  is convex on [–1, 1] since 

)('' xf  = 132 ≥
10x  0 on (–1, 1).  If 1 ≥  a 

≥  b ≥  c ≥ 1−  and  

2

1
−=++ cba , 

then we get (1, –1/2, –1) �  (a, b, c).  This 

is because 1 ≥  a and 

.
2

1

2

1
1

2

1
bac +=−−≥−=  

So by the majorization inequality, 

  121212 cba ++  

= f(a) + f(a) + f(c) 

)1(
2

1
)1( −+








−+≤ fff  

= 2 + 
122

1
. 

The maximum value 2 + (1/ 122 ) is 

attained when a = 1, b = –1/2 and c = –1. 
 

Remarks.  The example above is a 

simplification of a problem in the 1997 

Chinese Mathematical Olympiad. 
 
Example 4.  (1999 IMO)  Let n be a fixed 

integer, with n ≥  2. 

 
(a) Determine the least constant C such 

that the inequality 

       ( )
4

1 1

22∑ ∑
≤<≤ ≤≤









≤+

nji ni
ijiji xCxxxx  

       holds for all real numbers x1, x2, …,   

       xn ≥ 0. 
 

(b) For this constant C, determine when 

equality holds. 
 

Solution.  Consider the case n = 2 first.  

Let 1x = m + h and 2x = m – h, then m = 

( 1x  + 2x )/2, h = ( 1x  – 2x )/2 and 

 

( ) ( )442
2

2
121 2 hmxxxx −=+  

( )421
4

8

1
2 xxm +=≤  

with equality if and only if h = 0, i.e. 1x  

= 2x . 

 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  Solutions 

should be preceeded by the solver’s 

name, home (or email) address and 

school affiliation.  Please send 

submissions to Dr. Kin Y. Li, Department 

of Mathematics, Hong Kong University 

of Science & Technology, Clear Water 

Bay, Kowloon.  The deadline for 

submitting solutions is February 4, 2001. 
 

Problem 116.  Show that the interior of a 

convex quadrilateral with area A and 

perimeter P contains a circle of radius 

A/P.   
 

Problem 117.  The lengths of the sides of 

a quadrilateral are positive integers.  The 

length of each side divides the sum of the 

other three lengths.  Prove that two of the 

sides have the same length. 
 

Problem 118.  Let R be the real numbers.  

Find all functions f : R →  R such that for 

all real numbers x and y, 

f (xf (y) + x) = xy + f (x). 

 

Problem 119.  A circle with center O is 

internally tangent to two circles inside it 

at points S and T.  Suppose the two 

circles inside intersect at M and N with N 

closer to ST.  Show that OM ⊥ MN if and 

only if S, N, T are collinear.  (Source: 

1997 Chinese Senior High Math 

Competitiion) 
 

Problem 120.  Twenty-eight integers are 

chosen from the interval [104, 208].  

Show that there exist two of them having 

a common prime divisor. 

 

***************** 

Solutions 

***************** 

Problem 111.  Is it possible to place 100 

solid balls in space so that no two of them 

have a common interior point, and each 

of them touches at least one-third of the 

others?  (Source: 1997 Czech-Slovak 

Match) 
 
Solution 1.  LEE Kai Seng (HKUST).  
 

Take a smallest ball B with center at O and 

radius r.  Any other ball touching B at x 

contains a smaller ball of radius r also 

touching B at x.  Since these smaller balls 

are contained in the ball with center O and 

radius 3r, which has a volume 27 times the 

volume of B, there are at most 26 of these 

other balls touching B. 
 

 

Solution 2.  LEUNG Wai Ying (Queen 

Elizabeth School, Form 6). 
 

Consider a smallest ball S with center O 

and radius r.  Let iS  and jS  (with 

centers iO  and jO  and radii ir  and jr , 

respectively) be two other balls touching S 

at iP  and jP , respectively.  Since ir , jr  

≥  r, we have iO jO ≥ ir  + jr  ≥  r + ir  = 

O iO  and similarly iO jO ≥  O jO .  So 

iO jO  is the longest side of ∆ O iO jO .  

Hence 
�

60≥∠=∠ jiji OOOOPP . 

 

For ball iS , consider the solid cone with 

vertex at O obtained by rotating a �30  

angle about iOP  as axis.  Let iA  be the 

part of this cone on the surface of S.  Since 
�

60≥∠ jiOPP , the interiors of iA  and 

jA  do not intersect.  Since the surface 

area of each iA  is greater than 

2)30sin( �rπ = 4/ 2rπ , which is 1/16 of 

the surface area of S, S can touch at most 

15 other balls.  So the answer to the 

question is no. 
 

Other recommended solvers:  CHENG 
Kei Tsi (La Salle College, Form 6). 
 

Problem 112.  Find all positive integers (x, 

n) such that nx  + n2  + 1 is a divisor of 
1+nx  + 12 +n  + 1.  (Source: 1998 

Romanian Math Olympiad) 
Solution.  CHENG Kei Tsi (La Salle 
College, Form 6), LEE Kevin (La Salle 
College, Form 5) and LEUNG Wai Ying 
(Queen Elizabeth School, Form 6). 
 

For x = 1, 2( n1  + n2  + 1) > 11 +n  + 
12 +n  + 1 > n1  + n2  + 1.  For x = 2, 

2( n2  + n2  + 1) > 12 +n  + 12 +n  + 1 > 
n2  + n2  + 1.  For x = 3, 3( n3  + n2  + 1) 

> 13 +n  + 12 +n  + 1 > 2( n3  + n2  + 1).  

So there are no solutions with x = 1, 2, 3.    
 
For 4≥x , if 2≥n , then we get 

x( nx + n2 + 1) > 1+nx + 12 +n  + 1.  Now  

1+nx + 12 +n + 1 

= (x – 1)( nx + n2 + 1) 

   + nx  – ( n2 + 1) x + n23 ⋅ + 2  

> (x – 1)( nx + n2 + 1) 
 

because for n = 2, nx  – ( n2 + 1)x + 
12 +n  = 2x  – 5x + 8 > 0 and for n ≥  3, 

nx – ( n2 + 1)x ≥  x( 14 −n  – n2  – 1) > 0.  

Hence only n = 1 and x ≥  4 are possible.  

In that case, nx  + n2 + 1 = x + 3 is a 

divisor of 1+nx + 12 +n + 1 = 2x + 5 = (x– 

3)(x + 3) + 14 if and only if x + 3 is a 

divisor of 14.  Since x + 3 ≥  7, x = 4 or 

11.  So the solutions are (x, y) = (4, 1) and 

(11, 1). 
 

Problem 113.  Let a, b, c > 0 and abc ≤  1.  

Prove that 

cba
b

c

a

b

c

a
++≥++ . 

 

Solution.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 

Since abc ≤  1, we get 1/(bc) ≥  a, 1/(ac) 

≥  b and 1/(ab) ≥  c.  By the AM-GM 

inequality, 

a
b

c

c

a

c

a

b

c

c

a
3

bc

a
 3

2 3
2

≥≥++=+ . 

Similarly, 2b/a + a/c ≥  3b and 2c/b + b/a 

≥  3c.  Adding these and dividing by 3, 

we get the desired inequality. 

Alternatively, let x = 
9 24

/ cba , y = 

9 24
/bac  and z = 

9 24
/ acb .  We have 

a = 2x y, b = 2z x, c = 2y z and xyz = 

≤3 abc  1.  Using this and the 

re-arrangement inequality, we get 

zx

y

xy

z

yz

x

b

c

a

b

c

a
222

++=++  

333
222

zyx
zx

y

xy

z

yz

x
xyz ++=














++≥  

cbaxzzyyx ++=++≥
222

. 
 

Problem 114.  (Proposed by Mohammed 

Aassila, Universite Louis Pasteur, 

Strasbourg, France)  An infinite 

chessboard is given, with n black squares 

and the remainder white.  Let the 

collection of black squares be denoted by 

0G .  At each moment t = 1, 2, 3, …, a 

simultaneous change of colour takes place 

throughout the board according to the 

following rule: every square gets the 

colour that dominates in the three square 
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configuration consisting of the square 

itself, the square above and the square to 

the right.  New collections of black 

squares 1G , 2G , 3G , … are so formed.  

Prove that nG  is empty. 
 
Solution.  LEE Kai Seng (HKUST). 
 

Call a rectangle (made up of squares on 

the chess board) desirable if with respect 

to its left-lower vertex as origin, every 

square in the first quadrant outside the 

rectangle is white.  The most crucial fact is 

that knowing only the colouring of the 

squares in a desirable rectangle, we can 

determine their colourings at all later 

moments.  Note that the smallest rectangle 

enclosing all black squares is a desirable 

rectangle.  We will prove by induction that 

all squares of a desirable rectangle with at 

most n black squares will become white 

by t = n.  The case n = 1 is clear.  Suppose 

the cases n < N are true.  Let R be a 

desirable rectangle with N black squares.  

Let 0R  be the smallest rectangle in R 

containing all N black squares, then 0R  is 

also desirable.  Being smallest, the 

leftmost column and the bottom row of 

0R  must contain some black squares.  

Now the rectangle obtained by deleting 

the left column of 0R  and the rectangle 

obtained by deleting the bottom row of 

0R  are desirable and contain at most n - 1 

black squares.  So by t = n - 1, all their 

squares will become white.  Finally the 

left bottom corner square of 0R  will be 

white by t = n. 
 

Comments:  This solution is essentially 

the same as the proposer's solution. 
 

Other commended solvers:  LEUNG Wai 

Ying (Queen Elizabeth School, Form 6). 
 

Problem 115.  (Proposed by Mohammed 

Aassila, Universite Louis Pasteur, Stras- 

bourg, France)  Find the locus of the points 

P in the plane of an equilateral triangle ABC 

for which the triangle formed with PA, PB 

and PC has constant area. 
 
Solution.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 

Without loss of generality, assume PA ≥  

PB, PC.  Consider P outside the 

circumcircle of ∆ ABC first.  If PA is 

between PB and PC, then rotate ∆ PAC 

about A by �60  so that C goes to B and P 

goes to P'.  Then ∆ APP' is equilateral 

and the sides of ∆ PBP' have length PA, 

PB, PC. 
 
Let O be the circumcenter of ∆ ABC, R 

be the circumradius and x = AB = AC = 

AO3  = R3 .  The area of ∆ PBP' is 

the sum of the areas of ∆ PAP' , ∆ PAB, 

∆ P'AB (or ∆ PAC), which is 

PABxPAPA ∠⋅+ sin   
2

1

4

3 2
 

PACxPA sin   
2

1
⋅+ . 

Now 

  PACPAB ∠+∠ sin    sin  

= 2 sin �150  cos( �150−∠PAB ) 

= )30cos( �
+∠− PAB  

RPA

RPAPO
PAO

⋅

−−
=∠−=

2
cos

222

. 

Using these and simplifying, we get the 

area of 'PBP∆  is .4/)(3 22 RPO −  

If PC is between PA and PB, then rotate 

PAC∆  about C by �60  so that A goes to 

B and P goes to P'.  Similarly, the sides of 

'PBP∆  have length PA, PB, PC and the 

area is the same.  The case PB is between 

PA and PC is also similar. 
 
For the case P is inside the circumcircle 

of ABC∆ , the area of the triangle with 

sidelengths PA, PB, PC can similarly 

computed to be 4/)(3 22 POR − .  

Therefore, the locus of P is the circle(s) 

with center O and radius 3/42 cR ± , 

where c is the constant area. 
 
Comments:  The proposer's solution only 

differed from the above solution in the 

details of computing areas. 
 

 
 
Olympiad Corner 

(continued from page 1) 
 

Problem 4.  (cont’d) 

Determine all values of k for which 2000 

is a term of the sequence. 
 

Problem 5.  The seven dwarfs decide to 

form four teams to compete in the 

Millennium Quiz.  Of course, the sizes of 

the teams will not all be equal.  For 

instance, one team might consist of Doc 

alone, one of Dopey alone, one of 

Sleepy, Happy and Grumpy as a trio, and 

one of Bashful and Sneezy as a pair.  In 

how many ways can the four teams be 

made up?  (The order of the teams or of 

the dwarfs within the teams does not 

matter, but each dwarf must be in exactly 

one of the teams.) 

Suppose Snow White agreed to take part 

as well.  In how many ways could the four 

teams then be formed? 
 

 
 
Majorization Inequality 

(continued from page 2) 
 
For the case n > 2, let ia  = ++�1/(xxi  

)nx  for i = 1, …, n, then naa ++�1  = 1.  

In terms of ia 's, the inequality to be 

proved becomes 

( ) Caaaa ji
nji

ji ≤+∑
≤<≤

22

1

. 

The left side can be expanded and 

regrouped to give 

( )∑
=

+− ++++
n

i
niii aaaaa

1
111

3
��  

).1()1( 3
1

3
1 nn aaaa −++−= �  

Now f(x) = 433 )1( xxxx −=−  = is 

strictly convex on 








2

1
 ,0  because the 

second derivative is positive on 








2

1
 ,0 .  

Since the inequality is symmetric in the 

ia 's, we may assume naaa ≥≥≥ �21 . 

If 
2

1
1 ≤a , then since 

( )naaa  ..., , ,0 ..., ,0 ,
2

1
 ,

2

1
21�








, 

by the majorization inequality, 

 )()()( 21 nafafaf +++ �  

8

1
)0()0(

2

1

2

1
=+++








+







≤ ffff � . 

If 
2

1
1 >a , then naaa  ..., , ,1 21−  are in [0, 

2

1
].  Since 

) ..., ,()0 ..., ,0 ,1( 21 naaa �− , 

by the majorization inequality and case n 

= 2, we have 

  1(af ) + 2(af ) + )( naf+�  

)0()0()1()( 11 ffafaf +++−+≤ �  

   =
8

1
)1()( 11 ≤−+ afaf . 

Equality holds if and only if two of the 

variables are equal and the other 2−n  

variables all equal 0. 
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Olympiad Corner 
 

17
th

 Balkan Mathematical Olympiad, 3-9 

May 2000: 

Time allowed: 4 hours 30 minutes 
 
Problem 1.  Find all the functions f : 

R →R with the property: 

,))(())()((
2 yxfyfxxff +=+  

for any real numbers x and y. 
 

Problem 2.  Let ABC be a nonisosceles 

acute triangle and E be an interior point 

of the median AD, D ∈  (BC).  The point 

F is the orthogonal projection of the 

point E on the straight line BC.  Let M be 

an interior point of the segment EF, N 

and P be the orthogonal projections of 

the point M on the straight lines AC and 

AB, respectively.  Prove that the two 

straight lines containing the bisectrices 

of the angles PMN and PEN have no 

common point. 
 

Problem 3.  Find the maximum number 

of rectangles of the dimensions 2101× , 

which is possible to cut off from a 

rectangle of the dimensions 9050 × , by 

using cuts parallel to the edges of the 

initial rectangle. 
(continued on page 2) 

 

Near Christmas last year, I came across 

two beautiful geometry problems.  I was 

informed of the first problem by a reporter, 

who was covering President Jiang 

Zemin’s visit to Macau.  While talking to 

students and teachers, the President posed 

the following problem. 
 

For any pentagram ABCDE obtained by 

extending the sides of a pentagon FGHIJ, 

prove that neighboring pairs of the 

circumcircles of AJF∆ , BFG, CGH, DHI, 

EIJ intersect at 5 concyclic points K, L, M, 

N, O as in the figure. 
 

 
 

The second problem came a week later.  I 

read it in the Problems Section of the 

November issue of the American 

Mathematical Monthly.  It was proposed 

by Floor van Lamoen, Goes, The 

Netherlands.  Here is the problem. 
 

A triangle is divided by its three medians 

into 6 smaller triangles.  Show that the 

circumcenters of these smaller triangles 

lie on a circle. 
 

To get the readers appreciating these 

problems, here I will say, stop reading, try 

to work out these problems and come 

back to compare your solutions with those 

given below! 
 

Here is a guided tour of the solutions.  The 

first step in enjoying geometry problems 

is to draw accurate pictures with compass 

and ruler! 
 

 

Now we look at ways of getting solutions 

to these problems.  Both are concyclic 

problems with more than 4 points.  

Generally, to do this, we show the points 

are concyclic four at a time.  For example, 

in the first problem, if we can show K, L, 

M, N are concyclic, then by similar 

reasons, L, M, N, O will also be concyclic 

so that all five points lie on the circle 

passing through L, M, N. 

There are two common ways of showing 4 

points are concyclic.  One way is to show 

the sum of two opposite angles of the 

quadrilateral with the 4 points as vertices 

is 180 .  Another way is to use the 

converse of the intersecting chord 

theorem, which asserts that if lines WX 

and YZ intersect at P and PXPW ⋅  = 

PZPY ⋅ , then W, X, Y, Z are concyclic.  

(The equation implies PWY∆ , PZX are 

similar.  Then PWY∠ = PZX∠  and the 

conclusion follows.) 

For the first problem, as the points K, L, M, 

N, O are on the circumcirles, checking the 

sum of opposite angles equal 180  is 

likely to be easier as we can use the 

theorem about angles on the same segment 

to move the angles.  To show K, L, M, N 

are concyclic, we consider showing 

LMN∠  + .180=∠ LKN   Since the 

sides of LMN∠  are in two circumcircles, 

it may be wise to break it into two angles 

LMG and GMN.  Then the strategy is to 

change these to other angles closer to 

LKN∠ . 

Now LFALFGLMG ∠=∠−=∠ 180  = 

LKA∠ .  (So far, we are on track.  We 

bounced LMG∠  to LKA∠ , which shares 

a side with LKN∠ .)  Next, GMN∠  = 

GCN∠  = ACN∠ .  Putting these 

together, we have 

 LKNLMN ∠+∠  

LKNACNLKA ∠+∠+∠=  

 ACNAKN ∠+∠= . 
 

 

 

 

 

 

 

 

Volume 6, Number 1 January 2001 – March 2001 

Concyclic Problems 
Kin Y. Li 

Editors: 張 百 康  (CHEUNG Pak-Hong), Munsang College, HK 

 高 子 眉 (KO Tsz-Mei) 

 梁  達  榮 (LEUNG Tat-Wing), Appl. Math Dept, HKPU 

 李 健 賢 (LI Kin-Yin), Math Dept, HKUST 

 吳 鏡 波 (NG Keng-Po Roger), ITC, HKPU 

Artist: 楊 秀 英 (YEUNG Sau-Ying Camille), MFA, CU 

Acknowledgment: Thanks to Elina Chiu, MATH Dept, 

HKUST for general assistance. 

On-line: http://www.math.ust.hk/mathematical_excalibur/ 

 

The editors welcome contributions from all teachers and 

students.  With your submission, please include your name, 

address, school, email, telephone and fax numbers (if 

available). Electronic submissions, especially in MS Word, 

are encouraged.  The deadline for receiving material for the 

next issue is April 15, 2001. 

For individual subscription for the next five issues for the 

01-02 academic year, send us five stamped self-addressed 

envelopes. Send all correspondence to: 

Dr. Kin-Yin Li 

Department of Mathematics 

Hong Kong University of Science and Technology 

Clear Water Bay, Kowloon, Hong Kong 

Fax: 2358-1643 

Email: makyli@ust.hk  

 



Now if we can only show A, K, N, C are 

concyclic, then we will get 180  for the 

displayed equations above and we will 

finish.  However, life is not that easy.  This 

turned out to be the hard part.  If you draw 

the circle through A, C, N, then you see it 

goes through K as expected and 

surprisingly, it also goes through another 

point, I.  With this discovery, there is new 

hope.  Consider the arc through B, I, O.  

On the two sides of this arc, you can see 

there are corresponding point pairs (A, C), 

(K, N), (J, H), (F, G).  So to show A, K, N, 

C are concyclic, we can first try to show N 

is on the circle through A, C, I, then in that 

argument, if we interchange A with C, K, 

with N and so on, we should also get K is 

on the circle through C, A, I.  Then A, K, N, 

C (and I) will be concyclic and we will 

finish. 
 

Wishful thinking like this sometimes 

works!  Here are the details: 

    GCNACN ∠=∠ GHN∠−= 180  

NIDNHD ∠=∠= AIN∠−= 180 . 

So N is on the circle A, C, I.  

Interchanging letters, we get similarly K 

is on circle C, A, I.  So A, K, N, C (and I) 

are concyclic.  Therefore, K, L, M, N, O 

are indeed concyclic. 

(History.  My friend C.J. Lam did a search 

on the electronic database JSTOR and 

came across an article titled A Chain of 

Circles Associated with the 5-Line by J.W. 

Clawson published in the American 

Mathematical Monthly, volume 61, 

number 3 (March 1954), pages 161-166.  

There the problem was attributed to the 

nineteenth century geometer Miquel, who 

published the result in Liouville’s Journal 

de Mathematiques, volume 3 (1838), 

pages 485-487.  In that paper, Miquel 

proved his famous theorem that for four 

pairwise intersecting lines, taking three of 

the lines at a time and forming the circles 

through the three intersecting points, the 

four circles will always meet at a common 

point, which nowadays are referred to as 

the Miquel point.  The first problem was 

then deduced as a corollary of this Miquel 

theorem.) 
 

For the second problem, as the 6 

circumcenters of the smaller triangles are 

not on any circles that we can see 

immediately, so we may try to use the 

converse of the intersecting chord 

theorem.  For a triangle ABC, let G, D, E, 

F be the centroid, the midpoints of sides 

BC, CA, AB, respectively.  Let 1O , 2O , 

3O , 4O , 5O , 6O  be the circumcenters of 

triangles DBG, BFG, FAG, AEG, ECG, 

CDG, respectively. 
 

 
 

Well, should we draw the 6 circumcircles?  

It would make the picture complicated.  

The circles do not seem to be helpful at 

this early stage.  We give up on drawing 

the circles, but the circumcenters are 

important.  So at least we should locate 

them.  To locate the circumcenter of 

FAG∆ , for example, which two sides do 

we draw perpendicular bisectors?  Sides 

AG and FG are the choices because they 

are also the sides of the other small 

triangles, so we can save some work later.  

Trying this out, we discover these 

perpendicular bisectors produce many 

parallel lines and parallelograms!  
 
Since circumcenters are on perpendicular 

bisectors of chords, lines 3O 4O , 6O 1O  

are perpendicular bisectors of AG, GD, 

respectively.  So they are perpendicular to 

line AD and are 
2
1 AD units apart.  

Similarly, the two lines 1O 2O , 4O 5O  

are perpendicular to line BE and are 
2
1 BE 

units apart.  Aiming in showing 1O , 2O , 

3O , 4O  are concyclic by the converse of 

the intersecting chord theorem, let K be 

the intersection of lines 1O 2O , 3O 4O  

and L be the intersection of the lines 

4O 5O , 6O 1O .  Since the area of the 

parallelogram K 4O L 1O  is 

,
2

1

2

1
14 KOBEKOAD ⋅=⋅  

we get K 1O /K 4O  = AD/BE. 
 

Now that we get ratio of 1KO  and 4KO , 

we should examine 2KO  and 3KO .  

Trying to understand 32OKO∆ , we first 

find its angles.  Since ⊥2KO BG, 

⊥32OO FG and ⊥3KO AG, we see that 

32OKO∠  = BGF∠  and 23OKO∠  = 

FGA∠ .  Then 32 KOO∠  = DGB∠ .  At 

this point, you can see the angles of 

32OKO∆  equal the three angles with 

vertices at G on the left side of segment 

AD. 
 

Now we try to put these three angles 

together in another way to form another 

triangle.  Let M be the point on line AG 

such that MC is parallel to BG.  Since 

MCG∠  = BGF∠ , MGC∠  = FGA∠  

(and GMC∠  = , BGD∠ ) we see 

32OKO∆ , MCG are similar. 
 

The sides of MCG∆  are easy to compute 

in term of AD, BE, CF.  As AD and BE 

occurred in the ratio of 1KO  and 4KO , 

this is just what we need!  Observe that 

MCD∆ , GBD are congruent since 

GBDMCD ∠=∠  (by MC parallel to GB), 

CD = BD and .GDBMDC ∠=∠   So  

MG = 2GD = 
3

2
AD, 

MC = GB = 
3

2
BE 

(and CG = 
3
2 CF.  Incidentally, this means 

the three medians of a triangle can be put 

together to form a triangle!  Actually, this 

is well-known and was the reason we 

considered MCG∆ .)  We have 

23 / KOKO  = MG/MC = AD/BE = 

41 / KOKO . 
 

So 21 KOKO ⋅  = 43 KOKO ⋅ , which 

implies 1O , 2O , 3O , 4O  are concyclic.  

Similarly, we see that 2O , 3O , 4O , 5O  

concyclic (using the parallelogram formed 

by the lines 21OO , 54OO , 32OO , 65OO  

instead) and 3O , 4O , 5O , 6O  are 

concyclic. 
 

 
 
Olympiad Corner 

(continued from page 1) 

Problem 4.  We say that a positive 

integer r is a power, if it has the form r = 
s

t  where t and s are integers, 2≥t , 

2≥s .  Show that for any positive integer 

n there exists a set A of positive integers, 

which satisfies the conditions: 

1. A has n elements; 

2. any element of A is a power; 

3. for any 1r , 2r , …, )2( nkrk ≤≤  

from A the number 
k

rrr k+++ 21  

is a power. 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  Solutions 

should be preceded by the solver’s name, 

home (or email) address and school 

affiliation.  Please send submissions to 

Dr. Kin Y. Li, Department of 

Mathematics, Hong Kong University of 

Science & Technology, Clear Water Bay, 

Kowloon.  The deadline for submitting 

solutions is April 15, 2001. 
 

Problem 121.  Prove that any integer 

greater than or equal to 7 can be written 

as a sum of two relatively prime integers, 

both greater than 1. 

(Two integers are relative prime if they 

share no common positive divisor other 

than 1.  For example, 22 and 15 are 

relatively prime, and thus 37 = 22 + 15 

represents the number 37 in the desired 

way.)  (Source: Second Bay Area 

Mathematical Olympaid) 
 

Problem 122.  Prove that the product of 

the lengths of the three angle bisectors of 

a triangle is less than the product of the 

lengths of the three sides.  (Source: 1957 

Shanghai Junior High School Math 

Competition) 
 

Problem 123.  Show that every convex 

quadrilateral with area 1 can be covered 

by some triangle of area at most 2.  

(Source: 1989 Wuhu City Math 

Competition) 
 

Problem 124.  Find the least integer n 

such that among every n distinct numbers 

1a , 2a , …, na , chosen from [1, 1000], 

there always exist ji aa  ,  such that 

3 310 jiji aaaa +<−< . 

(Source: 1990 Chinese Team Training 

Test) 
 

Problem 125.  Prove that 

89tan5tan3tan1tan
2222 ++++

is an integer. 

 

***************** 

Solutions 

***************** 

Problem 116.  Show that the interior of a 

convex quadrilateral with area A and 

perimeter P contains a circle of radius 

A/P. 
 
Solution 1.  CHAO Khek Lun (St. Paul’s 
College, Form 6).  
 

Draw four rectangles on the sides of the 

quadrilateral and each has height A/P 

pointing inward.  The sum of the areas of 

the rectangles is A.  Since at least one 

interior angle of the quadrilateral is less 

than 180 , at least two of the rectangles 

will overlap.  So the union of the four 

rectangular regions does not cover the 

interior of the quadrilateral.  For any point 

in the interior of the quadrilateral not 

covered by the rectangles, the distance 

between the point and any side of the 

quadrilateral is greater than A/P.  So we 

can draw a desired circle with that point as 

center. 
 

Solution 2.  CHUNG Tat Chi (Queen 
Elizabeth School, Form 4) and LEUNG 
Wai Ying (Queen Elizabeth School, Form 
6). 
 

Let BCDE be a quadrilateral with area A 

and perimeter P.  One of the diagonal, say 

BD is inside the quadrilateral.  Then either 

BCD∆  or BED∆  will have an area 

greater than or equal to A/2.  Suppose this 

is BCD∆ .  Then BCDE contains the 

incircle of BCD∆ , which has a radius of 

 
DBCDBC

BCD

++
][2

 

EBDECDBC

BCD

+++
> ][2

 

 ,
P

A≥  

where the brackets denote area.  Hence, it 

contains a circle of radius A/P. 

Comment:  Both solutions do not need the 

convexity assumption. 
 

Problem 117.  The lengths of the sides of 

a quadrilateral are positive integers.  The 

length of each side divides the sum of the 

other three lengths.  Prove that two of the 

sides have the same length. 
 

Solution.  CHAO Khek Lun (St. Paul’s 
College, Form 6) and LEUNG Wai Ying 
(Queen Elizabeth School, Form 6). 
 

Suppose the sides are a, b, c, d with a < b 

< c < d.  Since d < a + b + c < 3d and d 

divides a + b + c, we have a + b + c = 2d.  

Now each of a, b, c divides a + b + c + d 

= 3d.  Let x = 3d/a, y = 3d/b and z = 3d/c.  

Then a < b < c < d implies x > y > z > 3.  

So z ≥ 4, y ≥ 5, x ≥ 6.  Then 

,2
4

3

5

3

6

3
2 d

ddd
cbad <++≤++=  

a contradiction.  Therefore, two of the 

sides are equal. 
 

Problem 118.  Let R be the real numbers.  

Find all functions f : R →  R such that for 

all real numbers x and y, 

f (xf (y) + x) = xy + f (x). 
 

Solution 1.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 

Putting x = 1, y = -1 – f (1) and letting a = 

f (y) + 1, we get 

f (a) = f ( f (y) + 1) = y + f (1) = -1. 

Putting y = a and letting b = f (0), we get 

b = f (xf (a) + x) = ax + f (x), 

so f(x) = -ax + b.  Putting this into the 

equation, we have 

.
2 baxxybaxabxxya +−=+−−  

Equating coefficients, we get 1±=a  and 

b = 0, so f (x) = x or f (x) = -x.  We can 

easily check both are solutions. 
 
Solution 2.  LEE Kai Seng (HKUST). 

Setting x = 1, we get 

).1()1)(( fyyff +=+  

For every real number a, let y = a – f (1), 

then f (f (y) + 1) = a and f is surjective.  In 

particular, there is b such that f (b) = -1.  

Also, if f (c) = f (d), then 

)1)(()1( +=+ cfffc  

 )1)(( += dff  

 ).1(fd +=  

So c = d and f is injective.  Taking x = 1, y 

= 0, we get f (f (0) +1) = f (1).  Since f is 

injective, we get f (0) = 0. 

For ,0≠x  let xxfy /)(−= , then 

).0(0))(( fxyxff ==+  

By injectivity, we get xf (y) + x = 0. Then 

)(1)()/)(( bfyfxxff =−==−  

and so –f (x)/x = b for every .0≠x   That 

is, f (x) = -bx.  Putting this into the given 

equation, we find f (x) = x or f (x) = -x, 

which are checked to be solutions. 
 
Other commended solvers:  CHAO Khek 
Lun (St. Paul’s College, Form 6) and NG 
Ka Chun Bartholomew (Queen 
Elizabeth School, Form 6). 
 

Problem 119.  A circle with center O is 

internally tangent to two circles inside it 

at points S and T.  Suppose the two 

circles inside intersect at M and N with N 
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closer to ST.  Show that OM ⊥ MN if and 

only if S, N, T are collinear.  (Source: 

1997 Chinese Senior High Math 

Competition) 
 
Solution.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 

 
 

Consider the tangent lines at S and at T.  

(Suppose they are parallel, then S, O, T 

will be collinear so that M and N will be 

equidistant from ST, contradicting N is 

closer to ST.)  Let the tangent lines meet at 

K, then OTKOSK ∠==∠ 90  implies O, 

S, K, T lie on a circle with diameter OK.  

Also, 
22

KTKS =  implies K is on the 

radical axis MN of the two inside circles.  

So M, N, K are collinear. 

If S, N, T are collinear, then SMT∠  = 

TMNSMN ∠+∠  = KTNNSK ∠+∠  = 

SKT∠−180 .  So M, S, K, T, O are 

concyclic.  Then OMN∠  = OMK∠  = 

OSK∠  = 90 . 

Conversely, if MNOM ⊥ , then OMK∠  

= OSK∠=90  implies M, S, K, T, O are 

concyclic.  Then 

  SKT∠  = SMT∠−180  

 = TMNSMN ∠−∠−180  

 = .180 KTNNSK ∠−∠−  

Thus, SKTNSKTNS ∠−∠−=∠ 360  - 

180=∠ KTN .  Therefore, S, N, T are 

collinear. 

Comments:  For the meaning of radical 

axis, we refer the readers to pages 2 and 4 

of Math Excalibur, vol. 4, no. 3 and the 

corrections on page 4 of Math Excalibur, 

vol. 4, no. 4. 
 

Other commended solvers:  CHAO Khek 
Lun (St. Paul’s College, Form 6). 
 

Problem 120.  Twenty-eight integers are 

chosen from the interval [104, 208].  

Show that there exist two of them having 

a common prime divisor. 
 

Solution 1.  CHAO Khek Lun (St. Paul’s 
College, Form 6), CHAU Suk Ling 
(Queen Elizabeth School, Form 6) and 
CHUNG Tat Chi (Queen Elizabeth 
School, Form 4). 
 

Applying the inclusion-exclusion 

principle, we see there are 82 integers on 

[104, 208] that are divisible by 2, 3, 5 or 

7.  There remain 23 other integers on the 

interval.  If 28 integers are chosen from 

the interval, at least 28 – 23 = 5 are 

among the 82 integers that are divisible 

by 2, 3, 5 or 7.  So there will exist two 

that are both divisible by 2, 3, 5 or 7. 
 
Solution 2.  CHAN Yun Hung (Carmel 
Divine Grace Foundation Secondary 
School, Form 4), KWOK Sze Ming 
(Queen Elizabeth School, Form 5), LAM 
Shek Ming (La Salle College, Form 5), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6), WONG Tak Wai Alan 
(University of Toronto) and WONG 
Wing Hong (La Salle College, Form 3).  
 

There are 19 prime numbers on the 

interval.  The remaining 86 integers on 

the interval are all divisible by at least 

one of the prime numbers 2, 3, 5, 7, 11 

and 13 since 13 is the largest prime less 

than or equal to 208 .  So every number 

on the interval is a multiple of one of 

these 25 primes.  Hence, among any 26 

integers on the interval at least two will 

have a common prime divisor. 
 

 
 
A Proof of the Majorization Inequality 

Kin Y. Li 

Quite a few readers would like to see a 

proof of the majorization inequality, 

which was discussed in the last issue of 

the Mathematical Excalibur.  Below we 

will present a proof.  We will first make 

one observation. 

Lemma.  Let a < c < b and f  be convex 

on an interval I with a, b, c on I.  Then the 

following are true: 

ab

afbf

ac

afcf

−
−≤

−
− )()()()(

 

and 

ab

afbf

cb

cfbf

−
−≤

−
− )()()()(

. 

Proof.  Since a < c < b, we have c = (1 – 

t)a + tb for some t ∈ (0, 1).  Solving for t, 

we get t = (c – a)/(b – a).  Since f is 

convex on I,  

f (c) ≤  (1 – t) f (a) + t f (b) 

= ),()( bf
ab

ac
af

ab

cb

−
−+

−
−

 

which is what we will get if we solve for 

)(cf  in the two inequalities in the 

statement of the lemma. 

In brief the lemma asserts that the slopes 

of chords are increasing as the chords are 

moving to the right.  Now we are ready to 

proof the majorization inequality. 

Suppose 

). ..., , ,() ..., , ,( 2121 nn yyyxxx  

Since 1+≥ ii xx  and 1+≥ ii yy  for i = 1, 

2, …, n – 1, it follows from the lemma 

that the slopes 

ii

ii
i

yx

yfxf
m

−
−

=
)()(

 

satisfy 1+≥ ii mm  for 1 ≤  i ≤  n – 1.  

(For example, if iiii xxyy ≤≤≤ ++ 11 , 

then applying the lemma twice, we get 

11

11
1

)()(

++

++
+ −

−
=

ii

ii
i

yx

yfxf
m  

ii

ii

yx

yfxf

−
−

≤
+

+

1

1 )()(
 

i

ii

ii m
yx

yfxf
=

−
−

≤
)()(

 

and similarly for the other ways 1+iy , iy , 

1+ix , ix  are distributed.) 
 

For k = 1, 2, …, n, let  

21 xxX k +=  kx++  

and 

kk yyyY +++= 21 . 

Since kk YX ≥  for k = 1, 2, …, n – 1 and 

nn YX = , we get 

,0))((
1

1∑
=

+ ≥−−
n

k
kkkk mmYX  

where we set 01 =+nm  for convenience.  

Expanding the sum, grouping the terms 

involving the same km ’s and letting 

0X = 0 = 0Y , we get 

,0)(
1

11 ≥+−−∑
=

−−

n

k
kkkkk mYYXX  

which is the same as 

∑
=

≥−
n

k
kkk myx

1

.0)(  

Since ),()()( kkkkk yfxfmyx −=−  

we get 

∑
=

≥−
n

k
kkk myfxf

1

.0))()((  

Transferring the )( kyf  terms to the 

right, we get the majorization inequality. 
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Olympiad Corner 
 

The 2000 Canadian Mathematical 

Olympiad 

 

Problem 1.  At 12:00 noon, Anne, Beth 

and Carmen begin running laps around a 

circular track of length three hundred 

meters, all starting from the same point 

on the track.  Each jogger maintains a 

constant speed in one of the two possible 

directions for an indefinite period of time.  

Show that if Anne’s speed is different 

from the other two speeds, then at some 

later time Anne will be at least one 

hundred meters from each of the other 

runners.  (Here, distance is measured 

along the shorter of the two arcs 

separating two runners). 
 

Problem 2.  A permutation of the 

integers 1901, 1902, …, 2000 is a 

sequence 1a , 2a , …, 100a  in which 

each of those integers appears exactly 

once.  Given such a permutation, we form 

the sequence of partial sums 

11 as = , 212 aas += , 

. ..., , 100211003213 aaasaaas +++=++=
 

(continued on page 4) 

When we write down a number, it is 

understood that the number is written in 

base 10.  We learn many interesting facts 

at a very young age.  Some of these can 

be easily explained in terms of base 10 

representation of a number.  Here is an 

example. 
 

Example 1.  Show that a number is 

divisible by 9 if and only if the sum of its 

digits is divisible by 9.  How about 

divisibility by 11? 
 

Solution.  Let 1010 1ddM m
m ++=  

, 0d+  where id  = 0, 1, 2, …, 9.  The 

binomial theorem tells us kk )19(10 +=  

.19 += kN  So 
 

01 )19()19( ddNdM mm +++++=  

).()(9 011 ddddNd mmm ++++++=
 

Therefore, M is a multiple of 9 if and 

only if 01 dddm +++  is a multiple of 

9. 
 

Similarly, we have .)1(1110 k
k

k N −+′=   

So M is divisible by 11 if and only if 

01)1( dddm
m +−+−  is divisible by 

11. 
 

Remarks.  In fact, we can also see that the 

remainder when M is divided by 9 is the 

same as the remainder when the sum of 

the digits of M is divided by 9.  Recall the 

notation ba ≡  (mod c) means a and b 

have the same remainder when divided 

by c.  So we have 01 dddM m +++≡  

(mod 9). 
 

The following is an IMO problem that 

can be solved using the above remarks. 
 

Example 2. (1975 IMO)  Let A be the sum 

of the decimal digits of ,4444
4444

 and B 

be the sum of the decimal digits of A.  Find 

the sum of the decimal digits of B. 
 

Solution.  Since 444454444 )10(4444 <  = 

,1022220
 so .199980922220 =×<A   

Then 46591 =×+<B  and the sum of 

the decimal digits of B is at most 3+9=12.  

Now 74444 ≡  (mod 9) and 34373 =  

1≡  (mod 9) imply 144443 ≡  (mod 9).  

Then 74444)4444(4444 148134444 ≡=  

(mod 9).  By the remarks above, A, B and 

the sum of the decimal digits of B also 

have remainder 7 when divided by 9.  So 

the sum of the decimal digits of B being 

at most 12 must be 7. 

Although base 10 representations are 

common, numbers expressed in other 

bases are sometimes useful in solving 

problems, for example, base 2 is common.  

Here are a few examples using other 

bases. 
 

Example 3. (A Magic Trick)  A magician 

asks you to look at four cards.  On the first 

card are the numbers 1, 3, 5, 7, 9, 11, 13, 

15; on the second card are the numbers 2, 

3, 6, 7, 10, 11, 14, 15; on the third card are 

the numbers 4, 5, 6, 7, 12, 13, 14, 15; on 

the fourth card are the numbers 8, 9, 10, 

11, 12, 13, 14, 15.  He then asks you to 

pick a number you saw in one of these 

cards and hand him all the cards that have 

that number on them.  Instantly he knows 

the number.  Why? 
 

Solution.  For n = 1, 2, 3, 4, the numbers 

on the n-th card have the common feature 

that their n-th digits from the end in base 2 

representation are equal to 1.  So you are 

handing the base 2 representation of your 

number to the magician.  As the numbers 

are less than ,2
4

 he gets your number 

easily. 
 

Remarks.  A variation of this problem is 

the following.  A positive integer less than 
42  is picked at random.  What is the least 

number of yes-no questions you can ask 
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that always allow you to know the number?  

Four questions are enough as you can ask 

if each of the four digits of the number in 

base 2 is 1 or not.  Three questions are not 

enough as there are 15 numbers and three 

questions can only provide 823 =  

different yes-no combinations. 
 

Example 4.  (Bachet’s Weight Problem)  

Give a set of distinct integral weights that 

allowed you to measure any object having 

weight 40 , ,3 ,2 ,1=n  on a balance.  

Can you do it with a set of no more than 

four distinct integral weights? 
 

Solution.  Since the numbers 1 to 40 in 

base 2 have at most 6 digits, we can do it 

with the set 1, 2, 4, 8, 16, 32.  To get a set 

with fewer weights, we observe that we 

can put weights from this set on both sides 

of the balance!  Consider the set of 

weights 1, 3, 9, 27.  For example to 

determine an object with weight 2, we can 

put it with a weight of 1 on one side to 

balance a weight of 3 on the other side.  

Note the sum of 1, 3, 9, 27 is 40.  For any 

integer n between 1 and 40, we can write it 

in base 3.  If the digit 2 appears, change it 

to 13−  so that n can be written as a 

unique sum and difference of 1, 3, 9, 27.  

For example, 22 = 92 ⋅  + 3 + 1 = (3 – 1)9 

+ 3 + 1 = 27 – 9 + 3 + 1 suggests we put 

the weights of 22 with 9 on one side and 

the weights of 27, 3, 1 on the other side. 
 

Example 5. (1983 IMO)  Can you choose 

1983 pairwise distinct nonnegative 

integers less than 510 such that no three 

are in arithmetic progression? 
 

Solution.  Start with 0, 1 and at each step 

add the smallest integer which is not in 

arithmetic progression with any two 

preceding terms.  We get 0, 1, 3, 4, 9, 10, 

12, 13, 27, 18, … .  In base 3, this 

sequence is 
 

... ,1001 ,1000 ,111 ,110 ,101 ,100 ,11 ,10 ,1 ,0
 

(Note this sequence is the nonnegative 

integers in base 2.)  Since 1982 in base 2 is 

11110111110, so switching this from base 

3 to base 10, we get the 1983
th

 term of the 

sequence is .1087843 5<   To see this 

sequence works, suppose x, y, z with x <y 

< z are three terms of the sequence in 

arithmetic progression.  Consider the 

rightmost digit in base 3 where x differs 

from y, then that digit for z is a 2, a 

contradiction. 
 

Example 6.  Let ][r  be the greatest 

integer less than or equal to r.  Solve the 

equation  

]8[]4[]2[][ xxxx +++  

.12345]32[]16[ =++ xx  
 

Solution.  If x is a solution, then since 

,][1 rrr ≤<−  we have 63x – 6 < 12345 

.63x≤   It follows that .196195 << x   

Now write the number x in base 2 as 

,.11000011 abcde  where the digits 

 , , , , , edcba  are 0 or 1.  Substituting 

this into the equation, we will get 12285 + 

31a + 15b + 7c + 3d + e = 12345.  Then 

31a + 15b + 7c + 3d + e = 60, which is 

impossible as the left side is at most 31 + 

15 + 7 + 3 + 1 = 57.  Therefore, the 

equation has no solution. 
 

Example 7. (Proposed by Romania for 

1985 IMO)  Show that the sequence }{ na  

defined by ]2[nan =  for n = 1, 2, 3, … 

(where the brackets denote the greatest 

integer function) contains an infinite 

number of integral powers of 2. 
 

Solution.  Write 2  in base 2 as 

,. 3210 bbbb  where each 0=ib  or 1.  

Since 2  is irrational, there are infinitely 

many .1=kb   If ,1=kb  then in base 2, 

kk
k bbb .22 10

1
−

− = .  Let m = 

],22[
1−k

 then  
 

.
2

1
22]22[122

111 −<=<− −−− kkk
m

Multiplying by 2  and adding ,2  we 

get .
2

2
22)1(2 +<+< kk m   Then 

.2]2)1[( km =+  
 

Example 8. (American Mathematical 

Monthly, Problem 2486)  Let p be an odd 

prime number.  For any positive integer k, 

show that there exists a positive integer m 

such that the rightmost k digits of ,
2m  

when expressed in the base p, are all 1's. 
 

Solution.  We prove by induction on k.  

For ,1=k  take .1=m   Next, suppose 
2m  in base p, ends in k 1's, i.e.  

12 1 −+++= kppm ).( ++ kap  

This implies m is not divisible by p.  Let 

gcd stand for greatest common divisor (or 

highest common factor).  Then gcd(m, p) 

= 1.  Now 
kkk pcmcpmcpm 2222 2)( ++=+  

.)2(1 1 ++++++= − kk pmcapp  

Since ,1),2gcd( =pm  there is a positive 

integer c such that acm −≡1)2(  (mod p).  

This implies mca 2+  is of the form 

Np+1  and so 2)( kcpm +  will end in at 

least )1( +k  1's as required. 
 

Example 9.  Determine which binomial 

coefficients 
)!(!

!

rnr

n
Cn

r −
=  are odd. 

 

Solution.  We remark that modulo 

arithmetic may be extended to 

polynomials with integer coefficients.  For 

example, ≡++=+ 22 21)1( xxx  21 x+  

(mod 2).  If 1aan m ++= , where the 

ia ’s are distinct powers of 2.  We have 
kk

xx
22

1)1( +≡+  (mod 2) by induction 

on k and so 
 

)1()1()1( 1aan xxx m ++≡+  (mod 2). 
 

The binomial coefficient n
rC  is odd if 

and only if the coefficient of 
rx  in 

)1()1( 1aa
xx m ++  is 1, which is 

equivalent to r being 0 or a sum of one or 

more of the ia ’s.  For example, if 

,141621 ++==n  then n
rC  is odd for r 

= 0, 1, 4, 5, 16, 17, 20, 21 only. 
 

Example 10. (1996 USAMO)  Determine 

(with proof) whether there is a subset X of 

the integers with the following property: 

for any integer n there is exactly one 

solution of nba =+ 2  with ., Xba ∈  
 

This is a difficult problem.  Here we will 

try to lead the reader to a solution.  For a 

problem that we cannot solve, we can try 

to change it to an easier problem.  How 

about changing the problem to positive 

integers, instead of integers?  At least we 

do not have to worry about negative 

integers.  That is still not too obvious how 

to proceed.  So can we change it to an even 

simpler problem?  How about changing 2 

to 10? 
 

 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  Solutions 

should be preceded by the solver’s name, 

home (or email) address and school 

affiliation.  Please send submissions to 

Dr. Kin Y. Li, Department of 

Mathematics, Hong Kong University of 

Science & Technology, Clear Water Bay, 

Kowloon.  The deadline for submitting 

solutions is June 30, 2001. 
 

Problem 126.  Prove that every integer 

can be expressed in the form 
222 5zyx −+ , where x, y, z are integers. 

 

Problem 127.  For positive real numbers 

a, b, c with a + b + c = abc, show that 

2

3

1

1

1

1

1

1

222
≤

+
+

+
+

+ cba

, 

and determine when equality occurs. 

(Source: 1998 South Korean Math 

Olympiad) 
 

Problem 128.  Let M be a point on 

segment AB.  Let AMCD, BEHM be 

squares on the same side of AB.  Let the 

circumcircles of these squares intersect 

at M and N.  Show that B, N, C are 

collinear and H is the orthocenter of 

.ABC∆   (Source: 1979 Henan Province 

Math Competition) 
 

Problem 129.  If f(x) is a polynomial of 

degree 2m+1 with integral coefficients 

for which there are 2m+1 integers 

1221  , , , +mkkk  such that 1)( =ikf  for 

,12 , ,2 ,1 += mi  prove that f(x) is not 

the product of two nonconstant 

polynomials with integral coefficients. 
 

Problem 130.  Prove that for each 

positive integer n, there exists a circle in 

the xy-plane which contains exactly n 

lattice points in its interior, where a 

lattice point is a point with integral 

coordinates.  (Source: H. Steinhaus, 

Zadanie 498, Matematyka 10 (1957), p. 

58) 

 

***************** 

Solutions 

***************** 

Problem 121.  Prove that any integer 

greater than or equal to 7 can be written 

as a sum of two relatively prime integers, 

both greater than 1. 

(Two integers are relative prime if they 

share no common positive divisor other 

than 1.  For example, 22 and 15 are 

relatively prime, and thus 37 = 22 + 15 

represents the number 37 in the desired 

way.)  (Source: Second Bay Area 

Mathematical Olympaid) 
 

Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 6), CHIU Yik Yin 
(St. Joseph’s Anglo-Chinese School, 
Form 5), CHONG Fan Fei (Queen’s 
College, Form 4), CHUNG Tat Chi 
(Queen Elizabeth School, Form 4), LAW 

Siu Lun (Ming Kei College, Form 6), NG 

Cheuk Chi (Tsuen Wan Public Ho Chuen 
Yiu Memorial College), WONG Wing 

Hong (La Salle College, Form 3) & 
YEUNG Kai Sing (La Salle College, 
Form 4). 
 

For an integer ,7≥n  n is either of the 

form 2j + 1 (j > 2) or 4k(k > 1) or 4k + 2(k 

> 1).  If n = 2j + 1, then j and j + 1 are 

relatively prime and n = j + (j + 1).  If n = 

4k, then 2k - 1 (>1) and 2k + 1 are 

relatively prime and n = (2k - 1) + (2k + 1).  

If n = 4k + 2, then 2k - 1 and 2k + 3 are 

relatively prime and n = (2k - 1) + (2k + 

1). 
 

Other commended solvers: HON Chin 

Wing (Pui Ching Middle School, Form 6), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6), NG Ka Chun 

Bartholomew (Queen Elizabeth School, 
Form 6) & WONG Tak Wai Alan 
(University of Toronto). 
 

Problem 122.  Prove that the product of 

the lengths of the three angle bisectors of a 

triangle is less than the product of the 

lengths of the three sides. (Source:  1957 

Shanghai Junior High School Math 

Competition). 
 

Solution.  YEUNG Kai Sing (La Salle 
College, Form 4). 

 

 

 

 

 

 

 

 

 

 
 

Let AD, BE and CF be the angle bisectors 

of ABC∆ , where D is on BC, E is on CA 

and F is on AB.  Since ADC∠  = ABD∠  

+ BAD∠  > ,ABD∠  there is a point K on 

CA such that .ABDADK ∠=∠   Then 

ABD∆  is similar to ADK∆ .  So AB/AD 

= AD/AK.  Then 2AD  = AKAB ⋅  < 

CAAB ⋅ .  Similarly, ABBCBE ⋅<2 and 

.2 BCCACF ⋅<   Multiplying these 

in-equalities and taking square roots, we 

get CABCABCFBEAD ⋅⋅<⋅⋅ . 
 

Other commended solvers: CHAO 

Khek Lun Harold (St. Paul’s College, 
Form 6), CHIU Yik Yin (St. Joseph’s 
Anglo-Chinese School, Form 5), HON 

Chin Wing (Pui Ching Middle School, 
Form 6) & LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 

Problem 123.  Show that every convex 

quadrilateral with area 1 can be covered 

by some triangle of area at most 2.  

(Source: 1989 Wuhu City Math 

Competition) 
 

Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 6), CHUNG Tat 

Chi (Queen Elizabeth School, Form 4) & 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6). 

 

 
 
 
 
 

 
 

 

 
 

Let ABCD be a convex quadrilateral with 

area 1.  Let AC meet BD at E.  Without 

loss of generality, suppose .ECAE ≥   

Construct ,AFG∆  where lines AB and 

AD meet the line parallel to BD through 

C at F and G respectively.  Then ABE∆  

is similar to .AFC∆   Now ECAE ≥  

implies .BFAB ≥   Let [XY Z] denote 

the area of polygon ,ZXY  then [ABC] 

≥  [FBC].  Similarly, [ADC] ≥  [GDC].  

Since [ABC] + [ADC] = [ABCD] = 1, 

so [AFG] = [ABCD] + [FBC] + [GDC] 

≤  2[ABCD] = 2 and AFG∆  covers 

ABCD. 
 

Problem 124.  Find the least integer n 
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E 
K 

C 

F 

B 
D 

D 

A 

E B 

C 
G F 



such that among every n distinct numbers 

, , , , 21 naaa  chosen from [1,1000], 

there always exist ji aa  ,  such that 

.310 3
jiji aaaa +<−<  

(Source: 1990 Chinese Team Training 

Test) 
 

Solution. CHAO Khek Lun Harold (St. 
Paul’s College, Form 6), CHUNG Tat 

Chi (Queen Elizabeth School, Form 4) & 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6). 
 

For ,10≤n  let 3iai =  ). , ,2 ,1( ni =  

Then the inequality cannot hold since 

330 ji −<  implies 1≥− ji  and so 

33 ji −  = 3)( ji −  + )(3 jiij −  ij31+≥ .  

For n = 11, divide [1,1000] into intervals 

])1( ,1[ 33 ++ kk  for k = 0, 1, …, 9.  By 

pigeonhole principle, among any 11 

distinct numbers 1121  , , , aaa  in [1, 

1000], there always exist ji aa  , , say 

ji aa > , in the same interval. Let 

3
iax =  and 3

jay = , then 0 < x - y < 1 

and 0 < ji aa −  = 33 yx −  = 3)( yx −  + 

)(3 yxxy −  < 1 + 3xy = 1 + .33
jiaa  

 
 

Other commended solvers: NG Cheuk 

Chi (Tsuen Wan Public Ho Chuen Yiu 
Memorial College), NG Ka Chun 

Bartholomew (Queen Elizabeth School, 
Form 6), WONG Wing Hong (La Salle 
College, Form 3) & YEUNG Kai Sing 
(La Salle College, Form 4). 
 

Problem 125.  Prove that 

89tan5tan3tan1tan 2222 ++++  

is an integer. 
 

Solution.  CHAO Khek Lun (St. Paul’s 
College, Form 6). 
 

For ,89 , ,5 ,3 ,1=θ  we have θcos  

0≠  and 090cos =θ .  By de Moivre’s 

theorem, θθ 90sin  90cos i+  = +θ(cos  
90

)sin θi .  Taking the real part of both 

sides, we get  

∑
=

−−=
45

0

229090
2 sincos)1(0

k

kk
k

k
C θθ . 

Dividing by θ90cos  on both sides and 

letting θ2tan=x , we get 

∑
=

−=
45

0

90
2)1(0

k

k
k

k
xC . 

So 89tan , ,5tan ,3tan ,1tan
2222

 

are the 45 roots of this equation.  

Therefore, their sum is .400590
88 =C  

 
 

Olympiad Corner 

(continued from page 1) 

How many of these permutations will 

have no terms of the sequence 1s , …, 

100s  divisible by three? 
 

Problem 3.  Let A = ) , , ,( 200021 aaa  be 

a sequence of integers each lying in the 

interval [-1000, 1000].  Suppose that the 

entries in A sum to 1.  Show that some 

nonempty subsequence of A sums to 

zero. 
 

Problem 4.  Let ABCD be a convex 

quadrilateral with 

ADBCBD ∠=∠ 2 , 

  ABD∠  = CDB∠2  

and       AB = CB. 

Prove that AD = CD. 
 

Problem 5.  Suppose that the real 

numbers 10021  , , , aaa  satisfy 

 ≥≥≥≥ 10021 aaa  0, 

  10021 ≤+ aa  

and      .10010043 ≤+++ aaa  

Determine the maximum possible value 

of 2
100

2
2

2
1 aaa +++ , and find all 

possible sequences 10021  , , , aaa  which 

achieve this maximum. 

 

 
 

Base n Representations 

(continued from page 2) 
 

Now try an example, say n = 12345.  We 

can write n in more than one ways in the 

form .10ba +   Remember we want a, b 

to be unique in the set X.  Now for b in X, 

b10  will shift the digits of b to the left 

one space and fill the last digit with a 0.  

Now we can try writing n = 12345 = 

10305 + 10(204).  So if we take X to be 

the positive integers whose even position 

digits from the end are 0, then the 

problem will be solved for n = a + 10b.  

How about ban 2+= ?  If the reader 

examines the reasoning in the case 

,10ba +  it is easy to see the success 

comes from separating the digits and 

observing that multiplying by 10 is a 

shifting operation in base 10.  So for 

,2ba +  we take X to be the set of 

positive integers whose base 2 even 

position digits from the end are 0, then 

the problem is solved for positive 

integers. 

How about the original problem with 

integers?  It is tempting to let X be the set 

of positive or negative integers whose 

base 2 even position digits from the end 

are 0.  It does not work as the example 1 

+ 12 ⋅  = 3 = 5 + 2 ( -1) shows uniqueness 

fails.  Now what other ways can we 

describe the set X we used in the last 

paragraph?  Note it is also the set of 

positive integers whose base 4 

representations have only digits 0 or 1.  

How can we take care of uniqueness and 

negative integers at the same time?  One 

idea that comes close is the Bachet 

weights. 

The brilliant idea in the official solution 

of the 1996 USAMO is do things in base 

).4(−   That is, show every integer has a 

unique representation as ,)4(
0

i
k

i
ic −∑

=
 

where each ic  = 0, 1, 2 or 3 and .0≠kc  

Then let X be the set of integers whose 

base )4(−  representations have only 

0=ic  or 1 will solve the problem. 

To show that an integer n has a base )4(−  

representation, find an integer m such that 

nm ≥+++ 220 444  and express 

n + 3 )444(
1231 −+++ m

 

in base 4 as ∑
=

m

i

i
ib

2

0

4 .  Now set ii bc 22 =  

and .3 1212 −− −= ii bc   Then 

.)4(
2

0

i
m

i
icn −= ∑

=
  

To show the uniqueness of base )4(−  

representation of n, suppose n has two 

distinct representations with digits ic 's 

and id 's.  Let j be the smallest integer 

such that .jj dc ≠   Then  

∑
=

−−=−=
k

ji

i
ii dcnn )4)((0  

would have a nonzero remainder when 

divided by ,4
1+j

 a contradiction. 
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Olympiad Corner 
 

The 42nd International Mathematical 

Olympiad, Washington DC, USA, 8-9 

July 2001 
 

Problem 1.  Let ABC be an acute-angled 

triangle with circumcentre O.  Let P on 

BC be the foot of the altitude from A.  

Suppose that +∠≥∠ ABCBCA  o30 .  

Prove that .90o<∠+∠ COPCAB  
 

Problem 2.  Prove that  

1
888 222

≥
+

+
+

+
+ abc

c

cab

b

bca

a
 

for all positive real numbers a, b and c. 
 

Problem 3.  Twenty-one girls and 

twenty-one boys took part in a 

mathematical contest. 
 

• Each contestant solved at most six 

problems. 
 

• For each girl and each boy, at least 

one problem was solved by both of 

them. 
 

Prove that there was a problem that was 

solved by at least three girls and at least 

three boys. 
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Let d be a positive integer that is not a 

square.  The equation 122 =− dyx  with 

variables yx,  over integers is called 

Pell’s equation.  It was Euler who 

attributed the equation to John Pell 

(1611-1685), although Brahmagupta (7th 

century), Bhaskara (12th century) and 

Fermat had studied the equation in 

details earlier. 
 

A solution ) ,( yx  of Pell’s equation is 

called positive if both x and y are positive 

integers.  Hence, positive solutions 

correspond to the lattice points in the first 

quadrant that lie on the hyperbola 

.122 =− dyx   A positive solution 

) ,( 11 yx  is called the least positive 

solution (or fundamental solution) if it 

satisfies xx <1  and 1y < y for every 

other positive solution (x, y).  (As the 

hyperbola 122 =− dyx  is strictly 

increasing in the first quadrant, the 

conditions for being least are the same as 

requiring +<+ xdyx 11  .)dy  
 

Theorem.  Pell’s equation 122 =− dyx  

has infinitely many positive solutions.  If 

),( 11 yx  is the least positive solution, 

then for ..., ,3 ,2 ,1=n  define  

.)( 11
n

nn dyxdyx +=+  

The pairs ),( nn yx  are all the positive 

solutions of the Pell’s equation.  The 

nx ’s and ny ’s are strictly increasing to 

infinity and satisfy the recurrence 

relations nnn xxxx   2 112 −= ++  and 2+ny  

.2 11 nn yyx −= +  
 

We will comment on the proof.  The 

least positive solution is obtained by 

writing d  as a simple continued 

fraction.  It turns out 

O

1

1

1

2

1

0

+
+

+=

a

a

ad  , 

where ][0 da =  and ... , , 21 aa  is a 

periodic positive integer sequence.  The 

continued fraction will be denoted by 

... , , , 210 aaa .  The k-th convergent of 

... , , , 210 aaa  is the number 
k

k

q

p
 = 

kaaaa  ..., , , , 210 with kk qp  ,  relatively 

prime.  Let maaa  ..., , , 21  be the period 

for d .  The least positive solution of 

Pell’s equation turns out to be  

⎩
⎨
⎧

=
−−

−−

odd is  if) ,(

even is  if) ,(
),(

1212

11
11

mqp

mqp
yx

mm

mm
.

For example, ... ,2 ,1 ,2 ,1 ,1 3 =  and so 

m = 2, then 
1

2
1 ,1 = .  We check 

22 132 ⋅− = 1 and clearly, )1 ,2(  is the 

least positive solution of 13 22 =− yx .  

Next, ... ,2 ,2 ,12 =  and so ,1=m  

then .
2

3
2 ,1 =   We check =⋅− 22 223  

1 and again clearly )2 ,3(  is the least 

positive solution of 12 22 =− yx . 
 

Next, if there is a positive solution (x, y) 

such that 1+<+<+ nnn xdyxdyx  

dyn 1++ , then consider =+ dvu  

)/()( dyxdyx nn ++ .  We will get u 

+ dyxdv 11 +<  and =− dvu  

)/()( dyxdyx nn −−  so that −2u  

2dv  = ))(( dvudvu +−  = 1, 

con-tradicting ) ,( 11 yx  being the least 

positive solution. 
 

To obtain the recurrence relations, note 

that
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dyxdyxdyx 11
2
1

2
1

2
11 2)( ++=+  

 dyxx 11
2
1 212 +−=  

 1)(2 111 −+= dyxx . 

So 

 dyx nn 22 ++ +  

 ndyxdyx )()( 11
2

11 ++=  

 nn dyxdyxx )()(2 11
1

111 +−+= +  

.)2(2 1111 dyyxxxx nnnn −+−= ++  

The related equation 122 −=− dyx  

may not have a solution, for example, 

−2x  13 2 −=y  cannot hold as 

≡− 22 3yx  122 −≠+ yx  (mod 4).  

However, if d is a prime and 1≡d  

(mod 4), then a theorem of Lagrange 

asserts that it will have a solution.  In 

general, if 22 dyx −  1−=  has a least 

positive solution ),( 11 yx , then all its 

positive solutions are pairs (x, y), 

where x + y d  = 12
11 )( −+ ndyx  

for some positive integer n.  

In passing, we remark that some k-th 

convergent numbers are special.  If the 

length m of the period for d  is even, 

then 122 =− dyx  has =),( nn yx  

) ,( 11 −− nmnm qp  as all its positive 

solutions, but 122 −=− dyx  has no 

integer solution.  If m is odd, then 

122 =− dyx  has ) ,( 11 −− jmjm yp  with 

j even as all its positive solutions and 

122 −=− dyx  has ) ,( 11 −− jmjm qp  

with j odd as all its positive solutions. 

Example 1.  Prove that there are 

infinitely many triples of consecutive 

integers each of which is a sum of two 

squares. 

Solution. The first such triple is 228 =  

,1310  ,039  ,2 22222 +=+=+  which 

suggests we consider triples 

,  ,1 22 xx −  .1 2 +x   Since 

1  2  22 =− yx  has infinitely many 

positive solutions (x, y), we see that 

12 −x = 2y + 2y , 2x = 2x + 20  and 

12 +x  satisfy the requirement and 

there are infinitely many such triples. 

Example 2.  Find all triangles whose 

sides are consecutive integers and 

areas are also integers. 

Solution.  Let the sides be z – 1, z, z + 1.  

Then the semiperimeter 
2

3z
s =  and 

the area is 
4

)4(3 2 −
=

zz
A .  If A is an 

integer, then z cannot be odd, say z = 2x, 

and 42 −z = 3 2ω .  So =− 44 2x 3 2ω , 

which implies ω  is even, say .2 y=ω   

Then ,13 22 =− yx  which has =) ,( 11 yx  

(2, 1) as the least positive solution.  So all 

positive solutions are ),( nn yx , where nx  

.)32(3 n
ny +=+   Now =− 3nn yx  

n)32( − .  Hence,  

2

)32()32( nn

nx
−++

=  

and 

32

)32()32( nn

ny
−−+

= . 

The sides of the triangles are  ,12 −nx  

12 ,2 +nn xx  and the areas are A = 

.3 nn yx  

Example 3.  Find all positive integers k, m 

such that k < m and  

.)2()1(21 mkkk +++++=+++ LL  

Solution.  Adding k+++ L21  to both 

sides, we get ),1()1(2 +=+ mmkk  which 

can be rewritten as 22 )12(2)12( +−+ km  

= .1−  Now the equation 2x 12 2 −=− y  

has )1 ,1(  as its least positive solution.  So 

its positive solutions are pairs 
12)21(2 −+=+ n

nn yx .  Then 

2

)21()21( 1212 −− −++
=

nn

nx  

and  

22

)21()21( 1212 −− −−+
=

nn

ny . 

Since 12 22 −=− yx  implies x is odd, so x 

is of the form .12 +m   Then += 22 2my  

1+m  implies y is odd, so y is of the form 

.12 +k   Then ⎟
⎠

⎞
⎜
⎝

⎛ −−
=

2

1
  ,

2

1
) ,( nn xy

mk   

with n = 2, 3, 4, … are all the solutions. 

Example 4.  Prove that there are infinitely 

many positive integers n such that 12 +n  

divides n!. 

Solution.  The equation 15 22 −=− yx  

has )1 ,2(  as the least positive solution.  

So it has infinitely many positive 

solutions.  Consider those solutions with 

.5>y   Then xyy ≤<< 25  as ≤24 y  

.15 22 xy =−   So yyx 25)1(2 2 ⋅⋅=+  

divides x!, which is more than we want. 

Example 5.   For the sequence na  = 

⎥⎦
⎤

⎢⎣
⎡ ++ 22 )1(nn , prove that there are 

infinitely many n’s such that 

>− +1nn aa  1 and .11 =−+ nn aa  

Solution.   First consider the case +2n  

,)1( 22 yn =+  which can be rewritten 

as .12)12( 22 −=−+ yn   As in 

example 3 above, 12 22 −=− yx  has 

infinitely many positive solutions and 

each x is odd, say 12 += nx  for some 

n.  For these n’s, yan =  and 1−na  = 

⎥⎦
⎤

⎢⎣
⎡ +− 22)1( nn  = ⎥⎦

⎤
⎢⎣
⎡ − ny 42 .  The 

equation 222 )1( ++= nny  implies n 

> 2 and ≤−1na nayny =−<− 142  

-1.  So −na 11 >−na  for these n’s. 

Also, for these n’s, 1+na  =  

. 44)2()1( 222
⎥⎦
⎤

⎢⎣
⎡ ++=⎥⎦

⎤
⎢⎣
⎡ +++ nynn

As n < y < 2n + 1, we easily get y + 1 <  

.2442 +<++ yny  So =−+ nn aa 1  

(y + 1) – y = 1. 

Example 6.  (American Math Monthly 

E2606, proposed by R.S. Luthar)  Show 

that there are infinitely many integers n 

such that 2n + 1 and 3n + 1 are perfect 

squares, and that such n must be multiples 

of 40. 

Solution.  Consider 2n + 1 = 2u  and 

3n 21 v=+ . On one hand, 222 ≡+ vu  

(mod 5) implies 2u , ≡2v  1 (mod 5), 

which means n is a multiple of 5. 

On the other hand, we have 22 23 vu −  

= 1.  Setting u = x + 2y and v = x + 3y, 

the equation becomes .16 22 =− yx   

It has infinitely many positive 

solutions.  Since ,123 22 =− vu  u is 

odd, say u = 2k + 1.  Then n = 22k + 2k 

is even.  Since 3n + 1 = 2v , so v is odd, 

say v = 4m ± 1.  Then 3n = ±216m 8m, 

which implies n is also a multiple of 8. 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  

Solutions should be preceded by the 

solver’s name, home (or email) 

address and school affiliation.  Please 

send submissions to Dr. Kin Y. Li, 

Department of Mathematics, Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is November 10, 2001. 
 

Problem 131.  Find the greatest 

common divisor (or highest common 

factor) of the numbers nnn −  for n = 3, 

5, 7, … . 
 

Problem 132.  Points D, E, F are 

chosen on sides AB, BC, CA of ABC∆ , 

respectively, so that DE = BE and FE = 

CE.  Prove that the center of the 

circumcircle of ADF∆  lies on the 

angle bisector of DEF∠ . (Source: 

1989 USSR Math Olympiad) 
 

Problem 133.  (a) Are there real 

numbers a and b such that ba +  is 

rational and nn ba +  is irrational for 

every integer ?2≥n   (b) Are there 

real numbers a and b such that ba +  is 

irrational and nn ba +  is rational for 

every integer ?2≥n  (Source: 1989 

USSR Math Olympiad) 
 

Problem 134.  Ivan and Peter 

alternatively write down 0 or 1 from 

left to right until each of them has 

written 2001 digits.  Peter is a winner if 

the number, interpreted as in base 2, is 

not the sum of two perfect squares.  

Prove that Peter has a winning strategy. 

(Source: 2001 Bulgarian Winter Math 

Competition) 
 

Problem 135.  Show that for ,2≥n  if 

,0 ..., , , 21 >naaa  then  

≥+++ )1()1)(1( 33
2

3
1 naaa L  

).1()1)(1( 1
2

3
2
22

2
1 +++ aaaaaa nL  

(Source: 7th Czech-Slovak-Polish Match) 
 

***************** 

Solutions 

***************** 
 

Problem 126.  Prove that every integer 

can be expressed in the form −+ 22 yx  

,5 2z  where x, y, z are integers. 

Solution.  CHAN Kin Hang (CUHK, 
Math Major, Year 1), CHENG Kei Tsi 
Daniel (La Salle College, Form 7), 
CHENG Man Chuen (CUHK, Math 
Major, Year 1), CHUNG Tat Chi (Queen 
Elizabeth School, Form 5), FOK Chi 
Kwong (Yuen Long Merchants 
Association Secondary School, Form 5), 
IP Ivan (St. Joseph’s College, Form 6), 
KOO Koopa (Boston College, 
Sophomore), LAM Shek Ming Sherman 
(La Salle College, Form 6), LAU Wai 
Shun (Tsuen Wan Public Ho Chuen Yiu 
Memorial College, Form 6), LEE Kevin 
(La Salle College, Form 6), LEUNG Wai 
Ying (Queen Elizabeth School, Form 7), 
MAN Chi Wai (HKSYC IA Wong Tai 
Shan Memorial College), NG Ka Chun 
(Queen Elizabeth School, Form 7), SIU 
Tsz Hang (STFA Leung Kau Kui College, 
Form 6), YEUNG Kai Sing (La Salle 
College, Form 5) and YUNG Po Lam 
(CUHK, Math Major, Year 2). 

For n odd, say n = 2k + 1, we have 
222 5)1()2( kkk −++ = 2k + 1 = n.  For n 

even, say n = 2k, we have 2)12( −k + 
22 )1(5)2( −−− kk  = 2k = n. 

 

Problem 127.  For positive real numbers 

a, b, c with a + b + c = abc, show that 

2

3

1

1

1

1

1

1

222
≤

+
+

+
+

+ cba
, 

and determine when equality occurs. 

(Source: 1998 South Korean Math 

Olympiad) 
 

Solution.  CHAN Kin Hang (CUHK, 
Math Major, Year 1), CHENG Kei Tsi 
Daniel (La Salle College, Form 7), KOO 
Koopa (Boston College, Sophomore), 
LEE Kevin (La Salle College, Form 6) 
and NG Ka Chun (Queen Elizabeth 
School, Form 7). 

Let A = 1tan− a, B = 1tan− b, C = 1tan− c.  

Since a, b, c > 0, we have 0 < A, B, C < 
2

π
.  

Now a + b + c = abc is the same as tan A + 

tan B + tan C = tan A tan B tan C.  Then 

tan C = 
BA

BA

tantan1

)tan(tan

−
+−

= tan(π – A – B) 

which implies A + B + C = π .  In terms of 

A, B, C the inequality to be proved is cos A 

+ cos B + cos C 
2

3
≤ , which follows by 

applying Jensen’s inequality to f(x) = cos x 

on ).
2

 ,0(
π

 

Other commended solvers: CHENG 
Man Chuen (CUHK, Math Major, 
Year 1), IP Ivan (St. Joseph’s College, 
Form 6), LAM Shek Ming Sherman 
(La Salle College, Form 6), LEUNG 
Wai Ying (Queen Elizabeth School, 
Form 7), MAN Chi Wai (HKSYC&IA 
Wong Tai Shan Memorial College), 
TSUI Ka Ho (Hoi Ping Chamber of 
Commerce Secondary School, Form 7), 
WONG Wing Hong (La Salle College, 
Form 4) and YEUNG Kai Sing (La 
Salle College, Form 5). 
 

Problem 128.  Let M be a point on 

segment AB.  Let AMCD, BEHM be 

squares on the same side of AB.  Let the 

circumcircles of these squares intersect 

at M and N.  Show that B, N, C are 

collinear and H is the orthocenter of 

.ABC∆   (Source: 1979 Henan 

Province Math Competition) 
Solution.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 7), MAN Chi 
Wai (HKSYC&IA Wong Tai Shan 
Memorial College) and YUNG Po 
Lam (CUHK, Math Major, Year 2). 

Since BNM∠  = BHM∠  = o45  = 

CDM∠  = CDM∠ , it follows B, N, C 

are collinear.  Next, ABCH   ⊥ .  Also, 

MEBH  ⊥  and ACME  imply BH ⊥  

AC.  So H is the orthocenter of .ABC∆  
Other commended solvers: CHAN 
Kin Hang (CUHK, Math Major, Year 
1), CHENG Kei Tsi Daniel (La Salle 
College, Form 7), CHENG Man 
Chuen (CUHK, Math Major, Year 1), 
CHUNG Tat Chi (Queen Elizabeth 
School, Form 5), IP Ivan (St. Joseph’s 
College, Form 6), KWOK Sze Ming 
(Queen Elizabeth School, Form 6), 
LAM Shek Ming Sherman (La Salle 
College, Form 6), Lee Kevin (La Salle 
College, Form 6), NG Ka Chun 
(Queen Elizabeth School, Form 7), 
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 6), WONG Wing Hong 
(La Salle College, Form 4) and 
YEUNG Kai Sing (La Salle College, 
Form 5). 
 

Problem 129.  If f(x) is a polynomial 

of degree 2m + 1 with integral 

coefficients for which there are 2m + 1 

integers 1221  , , , +mkkk K  such that 

1)( =ikf  for i = 1, 2, …, 2m + 1,  

prove that f(x) is not the product of two 

nonconstant polynomials with integral 

coefficients. 
Solution.  CHAN Kin Hang (CUHK, 
Math Major, Year 1), CHENG Kei Tsi 
Daniel (La Salle College, Form 7), 
CHENG Man Chuen (CUHK, Math 
Major, Year 1), IP Ivan (St. Joseph’s 
College, Form 6), KOO Koopa 
(Boston College, Sophomore), LAM 
Shek Ming Sherman (La Salle 
College, Form 6), LEE Kevin (La 
Salle College, Form 6), LEUNG Wai 
Ying (Queen Elizabeth School, Form 
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7), MAN Chi Wai (HKSYC&IA 
Wong Tai Shan Memorial College), 
YEUNG Kai Sing (La Salle College, 
Form 5) and YUNG Po Lam (CUHK, 
Math Major, Year 2). 

Suppose f is the product of two 

non-constant polynomials with integral 

co-efficients, say f = PQ.  Since 

== )(1 ikf  )( )( ii kQkP  and 

)(  ),( ii kQkP  are integers, so either 

both are 1 or both are –1.  As there are 

2m + 1 ik ’s, either )()( ii kQkP = = 1 

for at least m + 1 ik ’s or 

1)()( −== ii kQkP  for at least m + 

1 ik ’s.  Since deg f = 2m + 1, one of deg 

P or deg Q is at most m.  This forces P 

or Q to be a constant polynomial, a 

contradiction. 
Other commended solvers: NG Cheuk 
Chi (Tsuen Wan Public Ho Chuen Yiu 
Memorial College) and NG Ka Chun 
(Queen Elizabeth School, Form 7). 
 

Problem 130.  Prove that for each 

positive integer n, there exists a circle in 

the xy-plane which contains exactly n 

lattice points in its interior, where a 

lattice point is a point with integral 

coordinates. (Source: H. Steinhaus, 

Zadanie 498, Matematyka 10 (1957), p. 58) 

Solution.  CHENG Man Chuen 
(CUHK, Math Major, Year 1) and IP 
Ivan (St. Joseph’s College, Form 6). 

Let P = ⎟
⎠
⎞

⎜
⎝
⎛

3

1
 ,2 .  Suppose lattice 

points ) ,( ), ,( 1100 yxyx  are the same 

distance from P.  Then 

( )
2

0

2

0
3

1
 2 ⎟

⎠
⎞

⎜
⎝
⎛ −+− yx = 

( ) .
3

1
 2

2

1

2

1 ⎟
⎠
⎞

⎜
⎝
⎛ −+− yx   Moving the x 

terms to the left, the y terms to the right 

and factoring, we get  

    ( )22)( 1010 −+− xxxx  

 = . 
3

2
)( 1010 ⎟

⎠
⎞

⎜
⎝
⎛ −+− yyyy  

As the right side is rational and 2  is 

irrational, we must have .10 xx =   

Then the left side is 0, which forces 

01 yy =  since 01 yy +  is integer.  So 

the lattice points are the same. 

Now consider the circle with center at 

P and radius r.  As r increases from 0 to 

infinity, the number of lattice points inside 

the circle increase from 0 to infinity.  As 

the last paragraph shows, the increase 

cannot jump by 2 or more.  So the 

statement is true. 
Other commended solvers: CHENG Kei 
Tsi Daniel (La Salle College, Form 7), 
KOO Koopa (Boston College, 
Sophomore), LEUNG Wai Ying (Queen 
Elizabeth School, Form 7), MAN Chi 
Wai (HKSYC&IA Wong Tai Shan 
Memorial College), NG Ka Chun (Queen 
Elizabeth School, Form 7) and YEUNG 
Kai Sing (La Salle College, Form 4). 

 

 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 4.  Let n be an odd integer 

greater than 1, let nkkk  ..., , , 21  be given 

integers.  For each of the n! permutations 

) ..., , ,( 21 naaaa =  of 1, 2, …, n, let 

.)(
1

∑
=

=
n

i
iiakaS  

Prove that there are two permutations b 

and c, b ≠  c, such that n! is a divisor of 

S(b) – S(c). 
 

Problem 5.  In a triangle ABC, let AP 

bisect BAC∠ , with P on BC, and let BQ 

bisect ABC∠ , with Q on CA.  It is known 

that o60=∠BAC  and that AB + BP = AQ 

+ QB. 

What are the possible angles of triangle 

ABC? 
 

Problem 6.  Let a, b, c, d be integers with 

a > b > c > d > 0.  Suppose that 

ac + bd = (b + d + a – c)(b + d – a + c). 

Prove that ab + cd is not prime. 
 

 
 

Pell’s Equation (I)  

(continued from page 2) 

 

Example 7.  Prove that the only positive 

integral solution of 235 =− ba  is a = b = 1. 

Solution.  Clearly, if a or b is 1, then the 

other one is 1, too.  Suppose (a, b) is a 

solution with both a, b > 1.  Considering 

(mod 4), we have 1 – 2)1( ≡− b  (mod 4), 

which implies b is odd.  Considering (mod 

3), we have 2)1( ≡− a  (mod 3), which 

implies a is odd. 

Setting 13 += bx  and 2/)1(3 −= by  

2/)1(5 −a , we get +== bbaby 3(35315 2  

2) = ( .11)13 22 −=−+ xb   So (x, y) is a 

positive solution of .115 22 =− yx   The 

least positive solution is )1 ,4( .  Then (x, y) 

= ) ,( nn yx  for some positive integer n, 

where .)154(  15  n
nn yx +=+   After 

examining the first few ny ’s, we observe 

that ky3  are the only terms that are 

divisible by 3.  However, they also seem 

to be divisible by 7, hence cannot be of 

the form dc53 . 

To confirm this, we use the recurrence 

relations on ny .  Since =1y 1, =2y 8 

and nnn yyy −= ++ 12 8 , taking ny (mod 

3), we get the sequence 1, 2, 0, 1, 2, 0… 

and taking ny (mod 7), we get 1, 1, 0, -1, 

-1, 0, 1, 1, 0, -1, -1, 0, …. 

Therefore, no nyy = is of the form dc53  

and 1  , >ba  cannot be solution to 
ba 35 −  = 2. 

 

Example 8.  Show that the equation 2a  
43 cb =+  has infinitely many solutions. 

Solution.  We will use the identity  

+31 ,
2

)1(
2

2
33 ⎟

⎠
⎞

⎜
⎝
⎛ +

=++
nn

nL  

which is a standard exercise of 

mathematical induction.  From the 

identity, we get =+⎟
⎠
⎞

⎜
⎝
⎛ −

   
2

)1( 3
2

n
nn

 

2

2

)1(
⎟
⎠
⎞

⎜
⎝
⎛ +nn

 for n > 1.  All we need to do 

now is to show there are infinitely many 

positive integers n such that n(n + 1)/2 = 

2k  for some positive integers k.  Then (a, 

b, c) = ((n – 1)n/2, n, k) solves the 

problem. 

Now n(n + 1)/2 = 2k  can be rewritten as 

.1)2(2)12( 22 =−+ kn   We know −2x  

12 2 =y  has infinitely many positive 

solutions.  For any such ), ,( yx  clearly x 

is odd, say .12 += mx   They 22 2my =  

m2+  implies y is even.  So any such (x, y) 

is of the form ,12( +n  2k).  Therefore, 

there are infinitely many such n. 
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Olympiad Corner 
 

The 18
th

 Balkan Mathematical Olympiad, 

Belgrade, Yugoslavia, 5 May 2001 

 

Problem 1. Let n be a positive 

integer.  Show that if a and b are integers 

greater then 1 such that ab
n =−12 , then 

the number ab – (a – b) – 1 is of the form 
m

k
2

2⋅ , where k is odd and m is a 

positive integer. 
 

Problem 2. Prove that if a convex 

pentagon satisfies the following 

conditions: 

(1) all interior angles are congruent; and 

(2) the lengths of all sides are rational 

numbers, 

then it is a regular pentagon. 
 

Problem 3. Let a, b, c be positive real 

numbers such that abccba ≥++ .  

Prove that  

abccba 3
222 ≥++ . 

 

Problem 4. A cube of dimensions 

333 ××  is divided into 27 congruent 

unit cubical cells. 
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 圖一左顯示一個四面體，用邊作

輪廓，如將底面擴張，然後把其他的

邊壓下去，可得到一個平面圖，各邊

袛在頂點處相交，如圖一右所示。 

 

 

(插圖一) 
 

 非平面圖不能是多面體的輪廓，

最基本的非平面圖有兩個。第一個有

五個頂點，兩兩相連，稱為 5K ，見

圖二左。第二個有六個頂點，分為兩

組，各有三個，同組的互不相連，不

同組的則兩兩相連，稱為 3 ,3K ，見圖

二右。 
 

 

(插圖二) 
 

 一個頂點所在邊上的數量，稱為

它的度數，一個代表多面體的平面

圖，每個頂點的度數，都不能少於 3，

所以任何多面體，都不少於四個頂

點。假如它祇有四個頂點，它們的度

數必定是 (3，3，3，3)，唯一的可能

就是圖一的四面體。 
 

 假如一個多面體有五個頂點，看 

 

來它們的度數可能會是： 

(3，3，3，3，3) ， (3，3，3，3，4)， 

(3，3，3，4，4) ， (3，3，4，4，4)， 

(3，4，4，4，4) 或 (4，4，4，4，4)。 

 

 不過很快便會發現，左面那三組

是不可能的，因為各頂點度數之和，

必定是邊數的雙倍，不可能是奇數。

右面第一組是個四邊形為底的金字

塔，見圖三左，第二組是個三角形為

底的雙金字塔，見圖三右。最後一組

是 5K ，不是平面圖，不能代表多面

體。 

 

 

(插圖三) 

 

 六個頂點的多面體，有多少個

呢？每個頂點的度數，都是 3，4或 5，

有下列可能: 

(3，3，3，3，3，3)，(3，3，3，3，3，5)， 

(3，3，3，3，4，4)，(3，3，3，3，5，5)， 

(3，3，3，4，4，5)，(3，3，4，4，4，4)， 

(3，3，3，5，5，5)，(3，3，4，4，5，5)， 

(3，4，4，4，4，5)，(4，4，4，4，4，4)， 

(3，3，5，5，5，5)，(3，4，4，5，5，5)， 

(4，4，4，4，5，5)，(3，5，5，5，5，5)， 

(4，4，5，5，5，5)或(5，5，5，5，5，5)。 
 

 這十六組其中四組，有兩種表達

方式，所以共有二十種情況，我們發

現有七個不同的多面體，見圖四。 
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(插圖四) 

 最後證明，就祇有這七種。我們

先試劃這些圖，因為頂點太多兩兩相

連，祇劃出缺了的邊比較容易，亦立即

發現 (3，3，5，5，5，5) 和 (3，5，5，

5，5，5) 這兩組是不能成立的，其餘十

八種在圖五列出。 

 

(插圖五) 

沒做記號那七組，代表我們那七種多面

體，用 X 做記號的，都含有 3 ,3K  在內，

所以不可能是平面圖。用 Y 做記號的，

雖然它們都是平面圖，但不能代表多面

體。 

 先看圖六左的 (3，3，3，3，5，5)，

它僅能代表兩個共邊的四面體，不是一

個多面體。 再看圖六右 (3，3，3，3，4，

4) 的第二種情況，兩個度數為 4的頂點

互不相連，兩個四邊形的面，有兩個不

相鄰的公共頂點，這也是不可能的。 

 
(插圖六) 

Remarks by Professor Andy Liu 

(University of Alberta, Canada) 
 

Polyhedra with Six Vertices is the work of 

Richard Travis Ng, currently a Grade 12 

student at Archbishop MacDonald High 

School in Edmonton, Canada.  The result 

is equivalent to that in John McClellan’s 

The Hexahedra Problem (Recreational 

Mathematics Magazine, 4, 1961, 34-40), 

which counts the number of polyhedra 

with six faces.  The problem is also 

featured in Martin Gardner’s “New 

Mathematical Dviersions” (Mathematical 

Association of America, 1995, 224-225 

and 233).  However, the proof in this 

article is much simpler. 

 

 

The 2001 Hong Kong IMO team with Professor Andrew Wiles at Washington, DC taken on July 13, 2001.  From left to right, 

Leung Wai Ying, Yu Hok Pun, Ko Man Ho, Professor Wiles, Cheng Kei Tsi, Chan Kin Hang, Chao Khek Lun. 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  

Solutions should be preceded by the 

solver’s name, home (or email) 

address and school affiliation.  Please 

send submissions to Dr. Kin Y. Li, 

Department of Mathematics, Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is 15 January 2001. 
 

Problem 136. For a triangle ABC, 

if sin A, sin B, sin C are rational, prove 

that cos A, cos B, cos C must also be 

rational.  

If cos A, cos B, cos C are rational, must 

at least one of sin A, sin B, sin C be 

rational? 
 

Problem 137. Prove that for every 

positive integer n,  

nn /1/1
)23()23( −++  

is irrational. 

 

Problem 138. (Proposed by José 

Luis Díaz-Barrero, Universitat 

Politècnica de Catalunya, Barcelona, 

Spain)  If ba +  and ba −  are 

relatively prime integers, find the 

greatest common divisor (or the 

highest common factor) of 

))(21(2
22 baaa −++  and +2

(2 aa  

).)(2
222 baba −−  

 

Problem 139.   Let a line intersect a 

pair of concentric circles at points A, B, 

C, D in that order.  Let E be on the outer 

circle and F be on the inner circle such 

that chords AE and BF are parallel.  Let 

G and H be points on chords BF and 

AE that are the feet of perpendiculars 

from C to BF and from D to AE, 

respectively.  Prove that EH = FG. 

(Source: 1958 Shanghai City Math 

Competition) 

 

Problem 140.   A convex pentagon 

has five equal sides.  Prove that the 

interior of the five circles with the five 

sides as diameters do not cover the 

interior of the pentagon. 

***************** 

Solutions 

***************** 

Problem 131.   Find the greatest 

common divisor (or highest common 

factor) of the numbers nn
n −  for n = 3, 5, 

7, … . 
 

Solution.  CHAN Wai Hong (STFA Leung 
Kau Kui College, Form 6), CHUNG Tat 
Chi (Queen Elizabeth School, Form 5), 
Jack LAU Wai Shun (Tsuen Wan Public 
Ho Chuen Yiu Memorial College, Form 6), 
LEE Tsun Man Clement (St. Paul’s 
College, Form 3), SIU Tsz Hang (STFA 
Leung Kau Kui College, Form 6), Boris 
YIM Shing Yik (Wah Yan College, 
Kowloon) and YUEN Ka Wai (Carmel 
Divine Grace Foundation Secondary School, 
Form 6). 
 

Since the smallest number is 

,2433
3 =−  the greatest common 

divisor is at most 24.  For 12 += kn , 

=−nn
n ( )1)(

2 −k
nn  

).1)(1()1(
22 +++−= −knnnn  

Now one of 1  ,  ,1 +− nnn is divisible by 

3.  Also, )1(4)1)(1( +=+− kknn  is 

divisible by 8.  So nn
n −  is divisible by 

24.  Therefore, the greatest common 

divisor is 24. 
 
Other commended solvers: CHAO Khek 
Lun Harold (St. Paul’s College, Form 7), 
CHAU Suk Ling (Queen Elizabeth School, 
Form 7), CHIU Yik Yin (St. Joseph’s 
Anglo-Chinese School, Form 6), CHU Tsz 
Ying (St. Joseph’s Anglo-Chinese School), 
KWOK Sze Ming (Queen Elizabeth School, 
Form 6), LAW Siu Lun (CCC Ming Kei 
College, Form 7), Antonio LEI Iat Fong 
and Alvin LEE Kar Wai (Colchester Royal 
Grammar School, England), LEUNG Wai 
Ying (Queen Elizabeth School, Form 7), 
Campion LOONG (STFA Leung Kau Kui 
College, Form 6), NG Ka Chun  (Queen 
Elizabeth School, Form 7), SIU Ho Chung 
(Queen’s College, Form 3), TANG Sheung 
Kon (STFA Leung Kau Kui College, Form 
7), TSOI Hung Ming (SKH Lam Woo 
Memorial Secondary School, Form 7), 
WONG Chun Ho (STFA Leung Kau Kui 
College, Form 7), Tak Wai Alan WONG 
(University of Toronto, Canada), WONG 
Tsz Wai (Hong Kong Chinese Women’s 
Club College, Form 6), WONG Wing 
Hong (La Salle College, Form 4) and 
YUEN Chi Hung (SKH Chan Young 
Secondary School, Form 4). 
 

Problem 132.   Points D, E, F are 

chosen on sides AB, BC, CA of ABC∆ , 

respectively, so that DE = BE and FE = 

CE.  Prove that the center of the 

circumcircle of ADF∆  lies on the 

angle bisector of DEF∠ . (Source: 

1989 USSR Math Olympiad) 
 

Solution.  CHAN Wai Hong (STFA 
Leung Kau Kui College, Form 6), 
CHAO Khek Lun Harold (St. Paul’s 
College, Form 7), CHAU Suk Ling 
(Queen Elizabeth School, Form 7), 
CHIU Yik Yin (St. Joseph’s 
Anglo-Chinese School, Form 6), CHU 
Tsz Ying (St. Joseph’s Anglo-Chinese 
School), CHUNG Tat Chi (Queen 
Elizabeth School, Form 5), FOK Chi 
Kwong (Yuen Long Merchants 
Association Secondary School, Form 5), 
KWOK Sze Ming (Queen Elizabeth 
School, Form 6), KWONG Tin Yan 
(True Light Girls’ College, Form 6), 
Antonio LEI Iat Fong and Alvin LEE 
Kar Wai (Colchester Royal Grammar 
School, England), LEUNG Wai Ying 
(Queen Elizabeth School, Form 7), SIU 
Ho Chung (Queen’s College, Form 3), 
WONG Tsz Wai (Hong Kong Chinese 
Women’s Club College, Form 6) and 
WONG Wing Hong (La Salle College, 
Form 4). 
 

Let O be the circumcenter of 

ADF∆ and γβα  , ,  be the measures of 

angles A, B, C of ABC∆ .  Then 

α2=∠ DOF  and =∠− DEF180  

CEFBED ∠+∠  =−−= γβ 22360  

.2 DOF∠=α   So ODEF is a cyclic 

quadrilateral.  Since OD = OF, DEO∠  

FEO∠= .  So O is on the angle 

bisector of .DEF∠  
 

Other commended solvers: NG Ka 
Chun (Queen Elizabeth School, Form 7), 
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 6), TSOI Hung Ming 
(SKH Lam Woo Memorial Secondary 
School, Form 7) and YUEN Chi Hung 
(SKH Chan Young Secondary School, 
Form 4). 
 

Problem 133.  (a)  Are there real 

numbers a and b such that ba +  is 

rational and nn ba +  is irrational for 

every integer ?2≥n   (b)  Are there 

real numbers a and b such that ba +  is 

irrational and nn ba +  is rational for 

every integer ?2≥n  (Source: 1989 

USSR Math Olympiad) 
 

Solution.  CHAO Khek Lun Harold 
(St. Paul’s College, Form 7), LEUNG 
Wai Ying (Queen Elizabeth School, 
Form 7) and YUEN Chi Hung (SKH 
Chan Young Secondary School, Form 4). 
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 (a) Let 12    +=a  and .2    −=b   

Then 1=+ ba  is rational.  For an 

integer ,2≥n  from the binomial 

theorem, since binomial coefficients 

are positive integers, we get 

,2)12( nn
n sr +=+  

where nn sr ,  are positive integers. 

For every positive integer k, we have 
k

kk
kk srba 2        2    22

22 ++=+  and 
1212

    ++ + kk ba  +−= +   2)2(  12
k

kr  

.12 +ks   Since 

,222
112

212
kkkk

k Cr >+≥ −+
+  

nn
ba +  is irrational for .2≥n  

 

(b) Suppose such a and b exist.  

Then neither of them can be zero from 

cases n = 2 and 3.  Now  

2244222
2)()( bababa ++=+  

implies 
22

ba  is rational, but then 

           ))((
3322 baba ++  

)()(
2255 bababa +++=  

will imply ba +  is rational, which is a 

contradiction. 
 

Other commended solvers:  NG Ka 
Chun (Queen Elizabeth School, Form 7), 
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 6) and TSUI Chun Wa 
(Carmel Divine Grace Foundation 
Secondary School, Form 6).  
 

Problem 134.  Ivan and Peter 

alternatively write down 0 or 1 from 

left to right until each of them has 

written 2001 digits.  Peter is a winner if 

the number, interpreted as in base 2, is 

not the sum of two perfect squares.  

Prove that Peter has a winning strategy. 

(Source: 2001 Bulgarian Winter Math 

Competition) 
 

Solution.  (Official Solution) 

Peter may use the following strategy:  

he plans to write three 1’s and 1998 0’s, 

until Ivan begins to write a 1.  Once 

Ivan writes his first 1, then Peter will 

switch to follow Ivan exactly from that 

point to the end.  
 

If Peter succeeded to write three 1’s 

and 1998 0’s, then Ivan wrote only 0’s 

and the number formed would be 
1998

421× .  This is not the sum of two 

perfect squares since 21 is not the sum 

of two perfect squares. 

If Ivan wrote a 1 at some point, then 

Peter’s strategy would cause the number 

to have an even number of 0’s on the right 

preceded by two 1’s.  Hence, the number 

would be of the form .4)34( mn +   This 

kind of numbers are also not the sums of 

two perfect squares, otherwise we have 

integers x, y such that 

,4)34(
22 mnyx +=+  

which implies x, y are both even if m is a 

positive integer.  Keep on canceling 2 

from both x and y.  Then at the end, we 

will get 4n + 3 as a sum of two perfect 

squares, which is impossible by checking 

the sum of odd and even perfect squares. 
 

Other commended solvers:  LEUNG Wai 
Ying (Queen Elizabeth School, Form 7) and 
NG Ka Chun (Queen Elizabeth School, 
Form 7). 
 

Problem 135.   Show that for ,2≥n  if 

,0 ..., , , 21 >naaa  then  

≥+++ )1()1)(1(
33

2
3
1 naaa  

).1()1)(1( 1
2

3
2
22

2
1 +++ aaaaaa n  

(Source: 7
th

 Czech-Slovak-Polish Match) 
 

Solution 1. CHIU Yik Yin (St. Joseph’s 
Anglo-Chinese School, Form 6), CHU Tsz 
Ying (St. Joseph’s Anglo-Chinese School), 
FOK Chi Kwong (Yuen Long Merchants 
Association Secondary School, Form 5) and 
WONG Tsz Wai (Hong Kong Chinese 
Women’s Club College, Form 6). 
 

First we shall prove that 

( ) ( ) ( ) .111
3

2
2
1

3
2

23
1 +≥++ aaaa  

By expansion, this is the same as 

  122
3
1

6
1

3
2

3
2

3
1

3
2

6
1 +++++ aaaaaaa  

 ≥ 133 2
2
1

2
2

4
1

3
2

6
1 +++ aaaaaa . 

This follows by regrouping and factoring to 

get 

( ) )2( 21
2

21
3
1 aaaaa +−  

+ ( ) 0)2( 21
2

21 ≥+− aaaa  

or from 

( ) ,332 2
2
1

313
1

3
1

3
2

3
1

3
2 aaaaaaa =≥+  

( ) ,332
2
2

4
1

316
2

12
1

6
1

3
2

3
1 aaaaaaa =≥+  

by the AM-GM inequality.  Similarly, we 

get 

( ) ( ) ( )31
23

1

23
111 +≥++ ++ iiii aaaa  

for i = 2, 3, …, n with 1+na  = .1a  

Multiplying these inequalities and taking 

cube root, we get the desired inequality. 

 

Solution 2.  Murray KLAMKIN 
(University of Alberta, Canada) and NG 
Ka Chun (Queen Elizabeth School, 
Form 7). 
 

Let 11 aan =+ .  For i = 1, 2, …, n, by 

Hölder’s inequality, we have 

3/13
1

3/23
)1()1( ++ +ii aa  

   .1)()(
3/13

1
3/23 +≥ +ii aa  

Multiplying these n inequalities, we get 

the desired inequality. 

Comments:  For the statement and 

proof of Hölder’s inequality, we refer 

the readers to vol. 5, no. 4, page 2 of 

Math Excalibur. 
 

Other commended solvers:  CHAO 
Khek Lun Harold (St. Paul’s College, 
Form 7), Antonio LEI Iat Fong and 
Alvin LEE Kar Wai (Colchester Royal 
Grammar School, England), LEUNG 
Wai Ying (Queen Elizabeth School, 
Form 7), SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 6), TSOI Hung 
Ming (SKH Lam Woo Memorial 
Secondary School, Form 7), WONG 
Chun Ho (STFA Leung Kau Kui 
College, Form 7), and YUEN Chi Hung 
(SKH Chan Young Secondary School, 
Form 4). 

 

 
 

Olympiad Corner 

(continued from page 1) 

 

One of these cells is empty and the 

others are filled with unit cubes 

labeled in an arbitrary manner with 

numbers 1, 2, …, 26.  An admissible 

move is the moving of a unit cube into 

an adjacent empty cell.  Is there a 

finite sequence of admissible moves 

after which the unit cube labeled with 

k and the unit cube labeled with 27 – k 

are interchanged, for each k = 1, 2, …, 

13?  (Two cells are said to be adjacent 

if they share a common face.) 



 

Volume 6, Number 5 January 2002 – February 2002

Vector Geometry 

Kin Y. Li 

 

Olympiad Corner 
 
The 10th Winter Camp, Taipei, Taiwan, 

February 14, 2001. 
 

Problem 1.  Determine all integers a 

and b which satisfy that 

20019013 bba =+ . 
 

Problem 2.  Let na  be sequence of real 

numbers satisfying the recurrence relation 

[ ] . ... ,2 ,1   , 2   , 11 === + naaka nn  

where [x] denotes the largest number 

which is less or equal than x.  Find all 

positive integers k for which three exist 

three consecutive terms 11  , , +− iii aaa  

satisfy .2 11 +− += iii aaa  
 

Problem 3.  A real number r is said to 

be attainable if there is a triple of 

positive real numbers (a, b, c) such that 

a, b, c are not the lengths of any triangle 

and satisfy the inequality 

.222 accbbarabc ++>  

(a) Determine whether or not 
2

7
 is 

attainable. 

(b) Find all positive integer n such that n 

is attainable. 

(continued on page 4) 
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 A vector XY  is an object having a 

magnitude (the length XY) and a 

direction (from X to Y).  Vectors are very 

useful in solving certain types of 

geometry problems.  First, we will 

mention some basic concepts related to 

vectors.  Two vectors are considered the 

same if and only if they have the same 

magnitudes and directions.  A vector 

OX  from the origin O to a point X is 

called a position vector.  For 

convenience, often a position vector OX  

will simply be denoted by X, when the 

position of the origin is understood, so 

that the vector XY = OXOY −  will 

simply be Y – X.  The length of the 

position vector OX  = X will be denoted 

by X .  We have the triangle inequality 

YXYX +≤+ , with equality if and 

only if X = tY for some t ≥  0.  Also, cX  

= Xc  for number c. 

 For a point P on the line XY, in 

terms of position vectors, P = tX + (1 – 

t)Y for some real number t.  If P is on the 

segment XY, then t = PY/XY ∈  [0, 1]. 

 Next, we will present some 

examples showing how vectors can be 

used to solve geometry problems. 
 

Example 1.  (1980 Leningrad High 

School Math Olympiad)  Call a segment 

in a convex quadrilateral a midline if it 

joins the midpoints of opposite sides.  

Show that if the sum of the midlines of a 

quadrilateral is equal to its 

semiperimeter, then the quadrilateral is a 

parallelogram. 

Solution.  Let ABCD be such a convex 

quadrilateral.  Set the origin at A.  The 

sum of the lengths of the midlines is 

2

BCDDCB −++−+
 

and the semiperimeter is 

2

BCDDCB −++−+
. 

So 

BCDDCB −++−+  

= BCDDCB −++−+  

By triangle inequality, ≥−+ DCB  

DCB −+ , with equality if and only if 

)( DCtB −=  (or CDAB ).  Similarly, 

≥−+ BCD BCD −+ , with equality 

if and only if BCAD .  For the equation 

to be true, both triangle inequalities must 

be equalities.  In that case, ABCD is a 

parallelogram. 
 

Example 2.  (Crux Problem 2333) D 

and E are points on sides AC and AB of 

triangle ABC, respectively.  Also, DE is 

not parallel to CB.  Suppose F and G are 

points of BC and ED, respectively, such 

that FCBF :  = GDEG :  = CDBE : .  

Show that GF is parallel to the angle 

bisector of BAC∠ . 
 
Solution.  Set the origin at A.  Then E = 

pB and D = qC for some p, q ∈  (0, 1).  

Let t = 
FC

BF
, then F = 

1+
+

t

BtC
 and G = 

1+
+

t

EtD
 = 

1+
+

t

pBtqC
. 

Since BE = tCD, so (1 – p)|B| = t(1 – 

q)|C|.  Thus,  

B
t

p
C

t

qt
GF

1

1

1

)1(

+
−+

+
−=−  

         = 







+

+
−

||||1

||)1(

B

B

C

C

t

Bp
. 
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This is parallel to ,
|||| B

B

C

C +  which is 

in the direction of the angle bisector of 

.BAC∠  

* * * * * * * * * * * * * * * * * * * * * 

 The dot product of two vectors X 

and Y is the number YX ⋅ = |X||Y| 

cosθ , where θ is the angle between 

the vectors.  Dot product has the 

following properties: 

(1)  ZXZYXXYYX ⋅=⋅+⋅=⋅ )( ,
 

+ ZY ⋅  and (cX) )( YXcY ⋅=⋅ . 

(2) ,
2

XXX ⋅=  YXYX ≤⋅  and 

OYOX ⊥ if and only if YX ⋅ = 0. 
 

Example 3.  (1975 USAMO)  Let A, 

B, C, D denote four points in space and 

AB the distance between A and B, and 

so on.  Show that 

.222222 CDABBCADBDAC +≥+++  
 

Solution.  Set the origin at A.  The 

inequality to be proved is  

 )()( DBDBCC −⋅−+⋅  

      )()( CBCBDD −⋅−+⋅+  

  ).()( DCDCBB −⋅−+⋅≥  

After expansion and regrouping, this is 

the same as )()( DCBDCB −−⋅−−  

,0 ≥  with equality if and only if B – C 

= D = D – A, i.e. is BCAD is a 

parallelogram. 

* * * * * * * * * * * * * * * * * * * * * 

 For a triangle ABC, the position 

vectors of its centroid is  

G = .
3

CBA ++
 

If we take the circumcenter O as the 

origin, then the position of the 

orthocenter is H = A + B + C as OH  

= OG3 .  Now for the incenter I, let a, 

b, c be the side lengths and AI 

intersect BC at D.  Since BD:CD = c:b  

and DI:AI = 
cb

ca

+
:c = a:b + c, so D = 

cb

cCbB

+
+

 and I = 
cba

cCbBaA

++
++

. 

 

Example 4.  (2nd Balkan Math 

Olympiad)  Let O be the center of the 

circle through the points A, B, C, and let D 

be the midpoint of AB.  Let E be the 

centroid of triangle ACD.  Prove that the 

line CD is perpendicular to line OE if and 

only if AB = AC. 
 

Solution.  Set the origin at O.  Then 

,
2

BA
D

+=  

,
6

23

3

CBADCA
E

++=++=  

.
2

2CBA
CD

−+=−  

Hence OECD ⊥  if and only if (A + B – 

.0)23()2 =++⋅ CBAC   Since AA ⋅  = 

BB ⋅  = CC ⋅ , this is equivalent to BA (⋅  

,0) =⋅−⋅=− CABAC  which is the same 

as ,BCOA ⊥  i.e. AB = AC. 
 

Example 5.  (1990 IMO Usused Problem, 

Proposed by France)  Given ABC∆ with 

no side equal to another side, let G, I and H 

be its centroid, incenter and orthocenter, 

respectively.  Prove that .90o>∠ GIH  
 

Solution.  Set the origin at the 

circumcenter.  Then 

H = A + B + C,    G = 
3

CBA ++
, 

I = .
cba

cCbBaA

++
++

 

We need to show =−⋅− )()( IHIG  

.0)( <+⋅−⋅+⋅ HGIIIHG  Now AA ⋅  

= 2RCCBB =⋅=⋅  and CB ⋅2  = BB ⋅  

+ CC ⋅ – )()( CBCB −⋅− = 222 aR − , … .  

Hence, 

3

)()( CBACBA
HG

++⋅++=⋅  

,
3

3
222

2 cba
R

++−=  

2)(

)()(

cba

cCbBaAcCbBaA
II

++
++⋅++=⋅  

,2

cba

abc
R

++
−=  

)(3

)()(4
)(

cba

CBAcCbBaA
HGI

++
++⋅++=+⋅

.
)(3

)]()()([2
4

222
2

cba

bacacbcba
R

++
+++++−=  

Thus, it is equivalent to proving (a + b 

+ c)( 222 cba ++ ) + 3abc > 2[ 2a (b + 

c) + 2b (c + a) + 2c (a + b)], which 

after expansion and regrouping will 

become a(a – b)(a – c) + b(b – c)(b – a) 

+ c(c – a)(c – b) > 0.  To obtain this 

inequality, without loss of generality, 

assume .cba ≥≥  Then −− abaa )((  

))(() cbbabc −−≥  so that the sum of 

the first two terms is nonnegative.  As 

the third term is also nonnegative, the 

above inequality is true. 

* * * * * * * * * * * * * * * * * * * * * 

 The cross product of two vectors X 

and Y is a vector YX × having 

magnitude |X||Y| sin θ , where θ  is the 

angle between the vectors, and direction 

perpendicular to the plane of X and Y 

satisfying the right hand rule.  Cross 

product has the following properties: 

(1) YX × = XY ×− ,  (X + Y) × Z = 

ZX × + Y × Z  and  (cX) × Y = 

c(X × Y). 

(2) 
2

|| YX ×
 is the area of triangle 

XOY.  When X, Y ≠ O, YX × = 0 

if and only if X, O, Y are collinear. 

 

Example 6.  (1984 Annual Greek 

High School Competition)  Let 

1A 2A 3A 4A 5A 6A  be a convex 

hexagon having its opposite sides 

parallel.  Prove that triangles 1A 3A 5A  

and 2A 4A 6A  have equal areas.  
 

Solution.  Set the origin at any point.  

As the opposite sides are parallel, 1(A  

,0)() 542 =−×− AAA  523 ()( AAA ×−  

)6A− = 0 and )()( 1643 AAAA −×−  = 

0.  Expanding these equations and 

adding them, we get 5331 AAAA ×+×  

.26644215 AAAAAAAA ×+×+×=×+
Now  

[ 1A 3A 5A ] = 
2

|)()(| 5131 AAAA −×−
 

= 
2

|| 155331 AAAAAA ×+++×
. 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  

Solutions should be preceded by the 

solver’s name, home (or email) 

address and school affiliation.  Please 

send submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is March 23, 2002. 
 

Problem 141.   Ninety-eight points 

are given on a circle.  Maria and José 

take turns drawing a segment between 

two of the points which have not yet 

been joined by a segment.  The game 

ends when each point has been used as 

the endpoint of a segment at least once.  

The winner is the player who draws the 

last segment.  If José goes first, who 

has a winning strategy? (Source: 1998 

Iberoamerican Math Olympiad) 
 

Problem 142.   ABCD is a 

quadrilateral with .||CDAB   P and Q 

are on sides AD and BC respectively 

such that APB∠  = CPD∠  and 

AQB∠  = .CQD∠   Prove that P and Q 

are equal distance from the intersection 

point of the diagonals of the 

quadrilateral. (Source: 1994 Russian 

Math Olympiad, Final Round) 
 

Problem 143.   Solve the equation 

cos cos cos cos x = sin sin sin sin x. 

(Source: 1994 Russian Math Olympiad, 

4th Round) 
 

Problem 144.   (Proposed by José 

Luis Díaz-Barrero, Universitat 

Politècnica de Catalunya, Barcelona, 

Spain) Find all (non-degenerate) 

triangles ABC with consecutive integer 

sides a, b, c and such that C = 2A. 
 

Problem 145.  Determine all natural 

numbers 1>k  such that, for some 

distinct natural numbers m and n, the 

numbers 1+mk  and 1+nk  can be 

obtained from each other by reversing 

the order of the digits in their decimal 

representations. (Source: 1992 CIS 

Math Olympiad) 

***************** 

Solutions 

***************** 
 

Problem 136.  For a triangle ABC, if 

sinA, sinB, sinC are rational, prove that 

cosA, cosB, cosC must also be rational.  

If cosA, cosB, cosC are rational, must at 

least one of sinA, sinB, sinC be rational? 
 

Solution.   CHAN Wai Hong (STFA 
Leung Kau Kui College, Form 6), CHAO 
Khek Lun Harold (St. Paul’s College, Form 
7), CHIU Yik Yin (St. Joseph’s 
Anglo-Chinese School, Form 6), LEUNG 
Wai Ying (Queen Elizabeth School, Form 
7), LO Chi Fai (STFA Leung Kau Kui 
College, Form 6), WONG Tak Wai Alan 
(University of Toronto), WONG Tsz Wai 
(Hong Kong Chinese Women’s Club 
College, Form 6) and WONG Wing Hong 
(La Salle College, Form 4). 
 

If sinA, sinB, sinC are rational, then by 

cosine law and sine law,  







 −+=−+=

c

a

b

a

b

c

c

b

bc

acb
A

2

1

2
cos

222

 







 −+=

C

A

B

A

B

C

C

B

sin

sin

sin

sin

sin

sin

sin

sin

2

1
 

is rational.  Similarly, cosB and Ccos  

are rational.  In the case of an equilateral 

triangle, cosA = cosB = cosC = cos o60 = 

2

1
 is rational, but sinA = sinB = sinC = 

2

3
60sin =o  is irrational. 

Other commended solvers: LEE Tsun Man 
Clement (St. Paul’s College, Form 3), 
LOONG King Pan Campion (STFA 
Leung Kau Kui College, Form 6), SIU Tsz 
Hang (STFA Leung Kau Kui College, Form 
6) and TANG Chun Pong (La Salle 
College, Form 4). 
 

Problem 137.  Prove that for every 

positive integer n,  
nn /1/1 )23()23( −++  

is irrational. 
 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 7) and LEUNG Wai 
Ying (Queen Elizabeth School, Form 7). 
 

Let .)23( /1 nx +=   Since ( )23 +  

( )23 −  = 1, .)23( /11 nx −=−   If 

1−+ xx  is rational, then +=+ − xxx (22  

21)−x  – 2 is also rational.  Since 

( )kkkk xxxxxx −−+−+ ++=+ )( 1)1(1  

( ))1(1 −−− +− kk xx , 

by math induction, 32  =+ −nn xx  

would be rational, a contradiction.  

Therefore, x + 1−x  is irrational. 
 
Other commended solvers: CHAN Wai 
Hong (STFA Leung Kau Kui College, 
Form 6), SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 6) and WONG 
Wing Hong (La Salle College, Form 4). 

 

Problem 138.   (Proposed by José 

Luis Díaz-Barrero, Universitat 

Politècnica de Catalunya, Barcelona, 

Spain)  If a + b and a – b are relatively 

prime integers, find the greatest common 

divisor (or the highest common factor) of 

2a + (1 + 2a)( 22 ba − ) and 2a( 2a + 2a – 
2b )( 22 ba − ). 

 
Solution. CHAO Khek Lun Harold 
(St. Paul’s College, Form 7) and LEUNG 
Wai Ying (Queen Elizabeth School, 
Form 7). 
 

Let (r, s) denote the greatest common 

divisor (or highest common factor) of r 

and s.  If (r, s) = 1, then for any prime p 

dividing rs , either p divides r or p 

divides s, but not both.  In particular p 

does not divide r + s.  So (r + s, rs) = 1.  

Let x = a + b and y = a – b.  Then 

    2a + (1 + 2a)( 22 ba − ) 

 = x + y + (1 + x + y)xy 

 = (x + y + xy) + (x + y)xy 

and  

    2a( 2a + 2a – 2b )( 22 ba − ) 

 = (x + y)(xy + x + y)xy.  

Now (x, y) = 1 implies (x + y, xy) = 1.  

Repeating this twice, we get 

(x + y + xy, (x + y) xy) = 1 

and 

((x + y + xy + (x + y)xy, 

(x + y + xy)(x + y)xy) = 1. 

So the answer to the problem is 1. 
 
Other commended solvers: LEE Tsun 
Man Clement (St. Paul’s College, Form 
3), POON Yiu Keung (HKUST, Math 
Major, Year 1), SIU Tsz Hang (STFA 
Leung Kau Kui College, Form 6), TANG 
Chun Pong (La Salle College, Form 4), 
WONG Chun Ho (STFA Leung Kau 
Kui College, Form 7) and WONG Wing 
Hong (La Salle College, Form 4). 
 

Problem 139.   Let a line intersect a 

pair of concentric circles at points A, B, 

C, D in that order. Let E be on the outer 

circle and F be on the inner circle such 

that chords AE and BF are parallel.  Let 
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G and H be points on chords BF and AE 

that are the feet of perpendiculars from 

C to BF and from D to AE, respectively.  

Prove that EH = FG. (Source: 1958 

Shanghai City Math Competition) 
 
Solution.   WONG Tsz Wai (Hong Kong 
Chinese Women’s Club College, Form 6). 
 

Let M be the midpoint of BC (and AD).  

Since DHMADHDHA ∠=∠=∠  ,90o .  

Since ,|| AEBF  FEABAE ∠=∠  by 

symmetry with respect to the diameter 

perpendicular to BF and AE.  Now 
oo 9090 =∠−=∠=∠ ADHBAEFEA  

– AHGDHM ∠=∠ .  So .|| HGEF   

Since FGEH ||  also, EFGH is a 

parallelogram.  Therefore, .FGEH =  
 
Other commended solvers: CHAO 
Khek Lun Harold (St. Paul’s College, 
Form 7), CHUNG Tat Chi (Queen 
Elizabeth School, Form 5), LEUNG Wai 
Ying (Queen Elizabeth School, Form 7), 
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 6) and WONG Chun Ho 
(STFA Leung Kau Kui College, Form 7). 
 

Problem 140.  A convex pentagon 

has five equal sides.  Prove that the 

interior of the five circles with the five 

sides as diameters do not cover the 

interior of the pentagon. 
 
Solution.  LEUNG Wai Ying 
(Queen Elizabeth School, Form 7). 
 

Let the pentagon be 54321 AAAAA  and 

2r be the common length of the sides.  

Let ijM  be the midpoint of ji AA  and 

iC  be the circle with diameter 1+ii AA  

for i = 1, 2, 3, 4, 5 (with 16 AA = ).  

Since 1802  603540 ⋅=⋅−  and <∠ iA  

,180o  there are at least 3 interior 

angles (in particular, two adjacent angles) 

greater than .60o   So we may suppose 

.60, 21
o>∠∠ AA   Since ,4543 AAAA =  

we get .53354 AAMA ⊥   Then 35M  is 

on 43  , CC  and the points on the ray 

from 4A  to 35M  lying beyond 35M  

is outside 43,CC . 

Next, since o601 >∠ A and 21AA = ,51AA  

52 AA  is the longest side of .521 AAA∆   

By the midpoint theorem, =  3523MM  

r
AAAA =>
22

2152 so that 35M is outside 

2C .  Similarly, 35M  is outside 5C .  If 

35M  is not outside 1C , then 352MA  

3221 AAAA =<  and 2351 AMA∠  .90  o≥   

Since 3243353 AAAAMA =<  also, 32 AA  

must be the longest side of .3532 MAA∆   

Then .603352
o>∠ AMA   Similarly, 

.605351
o>∠ AMA   Then, we have 

,602351
o<∠ AMA  a contradiction.  So 

35M  is outside 1C , too. 

For i = 1, 2, 5 let .01,35 >−= + rMMd iii   

Let d be the distance from 35M  to the 

intersection point of the pentagon with the 

ray from 4A  to 35M  lying beyond 35M .  

Choose a point X beyond 35M  on the ray 

from 4A  to 35M  with 2135  , , dddXM <  

and .5d   Then X is inside the pentagon 

and is outside 43  , CC .  Also, for i = 1, 2, 5, 

 351,351, XMMMXM iiii −> ++  

 = r + rXMdi >− 35  

so that X is outside 521  , , CCC . 

Comments:   The point 35M  is enough for 

the solution as it is not in the interior of the 

5 circles.  The point X is better as it is not 

even on any of the circles. 

 
 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 4.  Let O be the center of 

excircle of ABC∆  touching the side BC 

internally.  Let M be the midpoint of AC, P 

the intersection point of MO and BC.  

Prove that AB = BP, if BAC∠  = 2 .ACB∠  
 

Problem 5.  Given that 21 regular 

pentagons 1P , 2P , …, 21P  are such that 

for any ∈k {1, 2, 3, …, 20}, all the 

vertices of 1+kP  are the midpoints of the 

sides of kP .  Let S be the set of the 

vertices of 2121  ..., , , PPP .  Determine the 

largest positive integer n for which there 

always exist four points A, B, C, D from S 

such that they are the vertices of an 

isosceles trapezoid and with the same 

color if we use n kinds of different colors 

to paint the element of S. 

 
 

 

Vector Geometry 
(continued from page 2) 

Similarly, 

.
2

||
][ 266442

642

AAAAAA
AAA

×+×+×=

So [ 1A 3A 5A ] = [ 2A 4A 6A ]. 
 

Example 7.  (1996 Balkan Math 

Olympiad)  Let ABCDE be a convex 

pentagon and let M, N, P, Q, R be the 

midpoints of sides AB, BC, CD, DE, EA, 

respectively.  If the segments AP, BQ, CR, 

DM have a common point, show that this 

point also lies on EN. 
 

Solution.  Set the origin at the commom 

point.  Since, A, P and the origin are 

collinear, 

0 = .
22

DACADC
APA

×+×=





 +×=×  

So ADCA ×=×     .  Similarly, DB × = 

BE × , CAEC ×=×     , .    DBAD ×=×   

Then .    ECBE ×=×   So ×=× ENE      







 +

2

CB
 = 0, which implies E, N and 

the origin are collinear. 
 

Example 8.  (16
th
 Austrian Math Olympiad) 

A line interesects the sides (or sides 

produced) BC, CA, AB of triangle ABC 

in the points 1A , 1B , 1C , respectively.  

The points 2A , 2B , 2C  are symmetric 

to 1A , 1B , 1C  with respect to the 

midpoints of BC, CA, AB, respectively.  

Prove that 2A , 2B , 2C  are collinear. 
 

Solution.   Set the origin at a vertex, 

say C.  Then === 12111  , , CAcBBcA A 

)(3 ABc −+  for some constants , , 21 cc  

3c .  Since 1A , 1B , 1C , are collinear, 

 0 = )()( 1111 ACAB −×−  

    = .)( 3231211 BAccccccc ×+−−  

Since 

,)1( 112 BcABA −=−=  

AB =2 AcB )1( 21 −=−  

and 

2C = (A + B) – 31 cC = A + (1 – 3c )B, 

so 222 ,, CBA , are collinear if and only if 

 0 = )()( 2222 ACAB −×−  

    = ,)( 3231211 BAccccccc ×+−−  

which is true. 
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Olympiad Corner 
 
The 32

nd
 Austrian Mathematical 

Olympiad 2001. 
 

Problem 1.  Prove that 

∑
= 










2001

0 25

2

25

1

k

k

 

is an integer.  ([x] denotes the largest 

integer less than or equal to x.) 
 
Problem 2.  Determine all triples of 

positive real numbers x, y and z such 

that both x + y + z = 6 and =++
zyx

111
 

2 – 
xyz

4
 hold. 

 

Problem 3.  We are given a triangle 

ABC and its circumcircle with mid-point 

U and radius r.  The tangent 'c  of the 

circle with mid-point U and radius 2r is 

determined such that C lies between c = 

AB and 'c , and 'a  and 'b  are defined 

analogously, yielding the triangle 

''' CBA .  Prove that the lines joining the 

mid-points of corresponding sides of 

ABC∆  and ''' CBA∆  pass through a 

common point. 
 

(continued on page 4) 
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 在現今計算工具發達的年代，要

找出如 ln2 這個對數值只需一指之勞。 

但是大家有沒有想過，在以前計算機

尚未出現的時候，那些厚厚成書的對

數表是如何精確地構造出來的？ 當

然，在歷史上曾出現很多不同的構造

方法，各有其所長，但亦各有其所限。 

下面我們將會討論一個比較有系統的

方法，它只需要用上一些基本的微積

分技巧，就能夠有效地構造對數表到

任意的精確度。 

 首先注意，ln(xy) = ln x + ln y, 所

以我們只需求得所有質數 p 的對數值

便可以由此算得其他正整數的對數

值。 由 ln(1 + t) 的微分運算和幾何級

數公式直接可得 

t

t
t

ttt
t

t
dt

d

nn
nn

+
−+−++

−+−=
+

=+

−−

1

)1(
)1(

1
1

1
)1ln(

11

32

 

運用微積分基本定理（亦即微分和積

分是兩種互逆的運算），即得下式： 

dt
t

t

n

x

xxx
xdt

t
x

x
nnn

n

x

∫ +
−+−++

−+−=∫ +
=+

−
0

1

432

0

1

)1(
)1(

4321

1
)1ln(

 

能夠對於所有正整數 n 皆成立。 現在

我們去估計上式中的積分餘項的大

小。 設 x  < 1，則有： 

)1)(1(1

11

)1(

1

0

00

xn

x
dt

x

t

dt
t

t
dt

t

t

n

x
n

x
n

x
nn

−+
=∫ −

≤

∫ +
≤∫ +

−

+
 

由此可見，這個餘項的絕對值會隨著 n 

的增大而趨向 0。 換句話說，只要 n 選

得足夠大， ( )x+1ln  和 
32

 
32

xx
x +−  

( )
n

xx
n

n 1
4

1 
4

−−++− 之間的誤差就可

以小到任意小，所以我們不妨改用下

式表達這個情況： 

 
432

)1ln(
432

+−+−=+ xxx
xx ( x <1) 

總之 n 的選取總是可以讓我們忽略兩

者的誤差。 把上式中的 x代以-x然後

將兩式相減，便可以得到下面的公式： 

)(      
53

2

)1ln()1ln(
1

1
ln

53

∗





+++=

−−+=







−
+

xx
x

xx
x

x

 

可惜的是若直接代入
1

1

+
−=

p

p
x 使得

p
x

x =
−
+

1

1
時， ( )∗ -式並不能有效地計

算 ln p。 例如取 p = 29，則 =
+
−=

129

129
x  

15

14
,在此時即使計算了  100 項至 

8
199

101.1
199

2 −×≈x
，ln p 的數值還未必

能準確至第 8 個小數位（嚴格來說，

應該用 ( )∗ -式的積分餘項來做誤差估

計，不過在這裏我們只是想大約知道

其大小）；又例如取 p = 113，則 x = 
57

56
 

而 
4

199

103
199

2 −×≈x
，ln p 的準確度則

更差。 但是我們可以取 x = 
12

1
2 −p

，

則有 

( )( )
( )( )1 1lnln2

1 1
ln

112

112
ln

1

1
ln

2

2

2

−+−=
−+

=

−−
+−=







−
+

ppp
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p

p

p

x
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而當質數 p > 2 時，(p + 1) 和 (p – 1) 

的質因數都必定小於 p，所以如果我

們已算得小於 p 的質數的對數值，就

可以用上式來計算 ln p 的值： 

( ) ( )1ln1ln
1

1
lnln2 −+++






−
+= pp

x

x
p  

而未知的 






−
+

x

x

1

1
ln 是能夠有效計算

的，因為現在所選的 x 的絕對值很

小。例如當 29=p 時，
1292

1
2 −⋅

=x  

1681

1= ，所以只需計算到 ×≈   3
5

2
5

x
 

17
10− ，便能夠準確至十多個小數位

了。 

 經過上面的討論，假設現在我們

想構造一個 8 位對數表，則可以依次

序地求 2, 3, 5, 7, 11, 13, … 的對數值，

而後面質數的對數值都可以用前面的

質數的對數值來求得。由此可見，在

開始時的 ln 2 是需要算得準確一些： 

( ) ( ) ( )

 5896931471805.0

21
  

533

1
2

1

1
ln2ln

21

3
15

3
13

3
1

3
1

3
1

=













++++≈












−
+

=

 

這個和確實數值  

2ln  = 0.693147180559945 … 

相比其精確度已到達第 11 位小數。

接著便是要計算 ln 3。取 x =
132

1
2 −⋅

 

17

1= ，則有 

( ) ( ) ( )

 545041177830356.0

75317

1
2

1

1
ln

7

17
15

17
13

17
1

17
1

17
1

=













+++≈











−
+

注意 
( )

12

9

17
1

109.1
9

2 −×≈ ，在 8 位的

精確度之下大可以不用考慮。 所以 

( )
 350986122886.1

2ln4ln 51177830356.0
2

1
3ln

=

++≈

(續於第四頁) 

Pell’s Equation (II) 

Kin Y. Li 

For a fixed nonzero integer N, as the case 

1−=N  shows, the generalized 

equation Ndyx =− 22
 may not have a 

solution.  If it has a least positive solution 

),( 11 yx , then Ndyx =− 22
 has 

infinitely many positive solutons given by 

),( nn yx , where  

1
11 ))(( −++=+ n

nn dbadyxdyx  

and (a, b) is the least positive solution of 

1
22 =−dyx .  However, in general these 

do not give all positive solutions of 

Ndyx =− 22
 as the following example 

will show. 
 

Example 9.  Consider the equation −2
x  

723
2 −=y .  It has ),( 11 yx = (4, 1) as the 

least positive solution.  The next two 

solutions are (19, 4) and (211, 44).  Now 

the least positive solution of 
22

23yx − = 

1 is (a, b) = (24, 5).  Since (4 + 23 )(24 + 

5 23 ) = 211 + 44 23 , the solution (19, 

4) is skipped by the formula above. 
 

In case Ndyx =− 22
 has positive 

solutions, how do we get them all?  A 

solution (x, y) of Ndyx =− 22
 is called 

primitive if x and y (and N) are relatively 

prime.  For 0 ≤  s < N , we say the 

solution belong to class sC  if x ≡ sy 

(mod N ).  As x, y are relatively prime to 

N, so is s.  Hence, there are at most φ ( N ) 

classes of primitive solutions, where φ (k) 

is Euler’s φ -function denoting the 

number of positive integers m ≤  k that are 

relatively prime to k.  Also, for such s, 

−≡− 222
)( xyds  0

2 ≡dy (mod N ) 

and y, N relatively prime imply 

ds ≡2
(mod N ). 

 

Theorem.  Let ),( 11 ba  be a 
sC  primitive 

solutions of Ndyx =− 22
.  A pair ,( 2a  

)2b  is also a sC  primitive solution of 

Ndyx =− 22
 if and only if dba 22 + = 

)/()( 1122 dbadba −− .  Multiplying 

these two equations, we get 
22

dvu − = 

N/N = 1. 
 

To see u, v are integers, note 2121 bdbaa −  

≡  21
2

)( bbds −  ≡  0 (mod N ), which 

implies u is an integer.  Since −21ba  

21ab 2121 sbbbsb −≡ = 0 (mod N ), v is 

also an integer. 
 

For the converse, multiplying the 

equation with its conjugate shows 

),( 22 ba  solves Ndyx =− 22
.  From 

112 dvbuaa +=  and 112 vaubb += , 

we get −= 22 uaa 2dvb  and 

221 vaubb −= .  Hence, common 

divisors of 22 ,ba  are also common 

divisors 11  , ba .  So 22 ,ba  are 

relatively prime.  Finally, ≡− 22 sba  

1
2

1111 )()()( vbsdvsbubsdvbusb −=+−+
 0≡  (mod N ) concludes the proof. 
 

Thus, all primitive solutions of −2
x  

Ndy =2
can be obtained by finding a 

solution (if any) in each class, then 

multiply them by solutions of −2
x  

2dy  = 1.  For the nonprimitive 

solutions, we can factor the common 

divisors of a and b to reduce N. 
 

Example 10.  (1995 IMO proposal by 

USA leader T. Andreescu)  Find the 

smallest positive integer n such that 

19n + 1 and 95n + 1 are both integer 

squares. 
 

Solution.  Let 95n + 1 =
2

x  and 19n + 1 

= 
2y , then 

22
5yx − = -4.  Now φ (4) 

= 2 and (1, 1), (11, 5) are 31   , CC  

primitive solutions, respectively.  As (9, 

4) is the least positive solution of 
22

5yx − = 1 and 9 + 54 = (2 +
2

)5 , 

so the primitive positive solutions are 

pairs (x, y), where )51(5 +=+ yx  
22

)52( −+ n  or (11 + +2)(55  
22

)5 −n . 
 

Since the common divisors of x, y 

divide 4, the nonprimitive positive 

solutions are the cases x and y are even.  

This reduces to considering 
22

5vu − = 

-1, where we take u = x/2 and v = y/2.  

The least positive solution for 
2

u  - 
2

5v = -1 is (2, 1).  So x + 5y = 2(u + 

)5v = 2(2 +
12

)5 −n . 
 

In attempt to combine these solutions, we 

look at the powers of 51+ coming from 

the least positive solutions (1, 1). 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  

Solutions should be preceded by the 

solver’s name, home (or email) 

address and school affiliation.  Please 

send submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is May 15, 2002. 
 

Problem 146.  Is it possible to partition 

a square into a number of congruent 

right triangles each containing an 

30 angle? (Source: 1994 Russian 

Math Olympiad, 3
rd

 Round) 
 

Problem 147.   Factor 44 28 ++ xx  

into two nonconstant polynomials with 

integer coefficients. 
 

Problem 148.   Find all distinct 

prime numbers p, q, r, s such that their 

sum is also prime and both qsp +2 , 

qrp +2  are perfect square numbers. 

(Source: 1994 Russian Math Olympiad, 

4
th

 Round) 
 

Problem 149.   In a 2000× 2000 table, 

every square is filled with a 1 or –1.  It 

is known that the sum of these numbers 

is nonnegative.  Prove that there are 

1000 columns and 1000 rows such that 

the sum of the numbers in these 

intersection squares is at least 1000. 

(Source: 1994 Russian Math Olympiad, 

5
th

 Round) 
 

Problem 150.  Prove that in a convex 

n-sided polygon, no more than n 

diagonals can pairwise intersect.  For 

what n, can there be n pairwise 

intersecting diagonals? (Here intersection 

points may be vertices.)  (Source: 1962 

Hungarian Math Olympiad) 

 

***************** 

Solutions 

***************** 
 

Problem 141.  Ninety-eight points are 

given on a circle.  Maria and José take 

turns drawing a segment between two 

of the points which have not yet been 

joined by a segment.  The game ends 

when each point has been used as the 

endpoint of a segment at least once.  The 

winner is the player who draws the last 

segment.  If José goes first, who has a 

winning strategy? (Source: 1998 

Iberoamerican Math Olympiad)  
 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 7), CHUNG Tat Chi 
(Queen Elizabeth School, Form 5), 何思銳 
(大角嘴天主教小學, Primary 5), LAM 
Sze Yui (Carmel Divine Grace Foundation 
Secondary School, Form 4), Antonio LEI 
(Colchester Royal Grammar School, UK, 
Year 12), LEUNG Chi Man (Cheung Sha 
Wan Catholic Secondary School, Form 5), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 7), POON Yiu Keung 
(HKUST, Math Major, Year 1), SIU Tsz 
Hang (STFA Leung Kau Kui College, 
Form 6), Ricky TANG (La Salle College, 
Form 4), WONG Tsz Wai (Hong Kong 
Chinese Women’s Club College, Form 6) 
and WONG Wing Hong (La Salle College, 
Form 4). 
 

José has the following winning strategy.  

He will let Maria be the first person to 

use the ninety-sixth unused point.  Since 

there are 446595
2 =C  segments joining 

pairs of the first ninety-five points, if 

Maria does not use the ninety-sixth point, 

José does not have to use it either.  Once 

Maria starts using the ninety-sixth point, 

José can win by joining the 

ninety-seventh and ninety-eighth points. 
 

Problem 142.  ABCD is a quadrilateral 

with .|| CDAB   P and Q are on sides AD 

and BC respectively such that =∠ APB  

CPD∠  and .CQDAQB ∠=∠   Prove 

that P and Q are equal distance from the 

intersection point of the diagonals of the 

quadrilateral. (Source: 1994 Russian Math 

Olympiad, Final Round) 
 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 7) and WONG Tsz 
Wai (Hong Kong Chinese Women’s Club 
College, Form 6). 
 

Let O be the intersection point of the 

diagonals.  Since CODAOB ∆∆  ,  are similar, 

AO:CO = AB:CD = BO:DO.  By sine law, 

.
sin

sin

sin

sin

CP

CD

CDP

CPD

BAP

APB

BP

AB =
∠
∠=

∠
∠=  

So AB:CD = BP:CP.  Let S be on BC so that 

ADSP ⊥  and R be on AD so that 

.BCRQ ⊥   Then SP bisects BPC∠ , 

BS:CS = BP:CP = AB:CD = AO:CO.  This 

implies .ABOS   Then AB:OS = CA:CO.  

Similarly, AB:RO = DB:DO.  However, 

.11
DO

DB

DO

BO

CO

AO

CO

CA =+=+=  

So OS = RO.  Since O is the midpoint 

of RS and RQSSPR ∆∆   ,  are right 

triangles, PO = OS = QO. 
 
Other commended solvers: CHUNG Tat 
Chi (Queen Elizabeth School, Form 5), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 7) and SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 6). 
 

Problem 143.  Solve the equation cos 

cos cos cos x = sin sin sin sin x. (Source: 

1994 Russian Math Olympiad, 4
th
 Round) 

 
Solution.  CHAO Khek Lun Harold 
(St. Paul’s College, Form 7). 
 

Let f(x) = sin sin x and g(x) = cos cos x. 

Now 






 −−×






 +−=

−




 −=−

2

sin

2

cos

4
sin 

2

sin

2

cos

4
cos2

sinsincos
2

sin)()(

xx

xx

xxxfxg

π

π

π

and 

.
42

)sin(2

2

sincos 4 ππ
<

±
=± xxx

 

So 0)()( >− xfxg  (hence g(x) > f(x)) 

for all x.  Since sin x, f(x), g(x) ]1 ,1[−∈  

]  ,[ 22
ππ−⊂  and sin x is strictly 

increasing in ] ,[ 22
ππ− , so f(x) is 

strictly increasing in ]  ,[ 22
ππ−  and 

( ) ( ) ( ))()()( xggxgfxff <<  

for all x.  Therefore, the equation has 

no solution. 
 
Other commended solvers: Antonio LEI 
(Colchester Royal Grammar School, UK, 
Year 12), LEUNG Wai Ying (Queen 
Elizabeth School, Form 7), OR Kin 
(HKUST, Year 1) and SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 6). 
 

Problem 144.  (Proposed by José Luis 

Díaz-Barrero, Universitat Politècnica 

de Catalunya, Barcelona, Spain) Find 

all (non-degenerate) triangles ABC 

with consecutive integer sides a, b, c 

and such that .2AC =  
 
Solution. CHAO Khek Lun Harold 
(St. Paul’s College, Form 7), CHUNG 
Tat Chi (Queen Elizabeth School, 
Form 5), KWOK Tik Chun (STFA 
Leung Kau Kui College, Form 4), 
LAM Wai Pui Billy (STFA Leung 
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Kau Kui College, Form 4), Antonio 
LEI (Colchester Royal Grammar 
School, UK, Year 12), LEUNG Wai 
Ying (Queen Elizabeth School, Form 
7), POON Ming Fung (STFA Leung 
Kau Kui College, Form 4), WONG 
Chun Ho (STFA Leung Kau Kui 
College, Form 7), WONG Tsz Wai  
(Hong Kong Chinese Women’s Club 
College, Form 6) and YEUNG Wing 
Fung (STFA Leung Kau Kui College). 
 

Let a=BC, b=CA, c=AB.  By sine and 

cosine laws,   

.cos2
sin

sin 222

bc

acb
A

A

C

a

c −+===  

This gives .3222 aacabbc −+=   

Factoring, we get −−− 22)(( acba ab)  

= 0. Since the sides are consecutive 

integers and AC >  implies ,ac >  we 

have (a, b, c) = (n, n – 1, n + 1), (n – 1, 

n + 1, n) or (n – 1, n, n + 1) for some 

positive integer .1>n   Putting these 

into ,0
22 =−− abac  the first case 

leads to ,0132 =++− nn  which has 

no integer solution.  The second case 

leads to ,02
2 =−nn  which yields a 

degenerate triangle with sides 1, 2, 3.  

The last case leads to ,05
2 =−nn  

which gives (a, b, c) = (4, 5, 6). 
 
Other commended solvers:  CHENG Ka 
Wai (STFA Leung Kau Kui College, Form 
4), Clark CHONG Fan Fei (Queen’s 
College, Form 5), SIU Tsz Hang (STFA 
Leung Kau Kui College, Form 6), WONG 
Chun Ho (STFA Leung Kau Kui College, 
Form 7) and WONG Wing Hong (La 
Salle College, Form 4). 
 

Problem 145.  Determine all natural 

numbers k > 1 such that, for some 

distinct natural numbers m and n, the 

numbers mk + 1 and +nk  1 can be 

obtained from each other by reversing 

the order of the digits in their decimal 

representations. (Source: 1992 CIS 

Math Olympiad) 
 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 7), LEUNG Wai 
Ying (Queen Elizabeth School, Form 7), 
Ricky TANG (La Salle College, Form 4) 
and WONG Tsz Wai (Hong Kong 
Chinese Women’s Club College, Form 6). 
 

Without loss of generality, suppose 

such numbers exist and .mn >   By the 

required property, both numbers are 

not power of 10.  So nk  and mk  have 

the same number of digits.  Then 10 >  

.kk
k

k mn

m

n

≥= −   Since every number  

and the sum of its digits are congruent 

(mod 9), we get 11 +≡+ mn kk  (mod 9).  

Then )1  (  −=− −mnmmn kkkk  is 

divisible by 9.  Since the two factors are 

relatively prime, k>10  and mnk −>9 – 1, 

we can only have k = 3, 6 or 9. 

Now 28133 =+  and 82134 =+  show k 

= 3 is an answer.  The case k = 6 cannot 

work as numbers of the form 16 +i  end in 

7 so that both 1+mk  and 1+nk  would 

begin and end with 7, which makes 

kkk mn ≥/  impossible.  Finally, the case k 

= 9 also cannot work as numbers of the form 

19 +i  end in 0 or 2 so that both numbers 

would begin and end with 2, which again 

makes kkk mn ≥/  impossible. 
 
Other commended solvers: SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 6). 

 
 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 4.  Determine all real valued 

functions f(x) in one real variable for which 

yxxfyfxff +=+ )())()(( 2  

holds for all real numbers x and y. 
 

Problem 5.  Determine all integers m 

for which all solutions of the equation  

033 23 =+− mxx  

are rational. 
 

Problem 6. We are given a semicircle 

with diameter AB.  Points C and D are 

marked on the semicircle, such that AC = 

CD holds.  The tangent of the semicircle 

in C and the line joining B and D interect 

in a point E, and the line joining A and E 

intersects the semicircle in a point F.  

Show that CF < FD must hold. 

 
 

 

對對對對 數數數數 表表表表 的的的的 構構構構 造造造造 

((((續第二頁續第二頁續第二頁續第二頁))))    

這個和確實數值 

 68110986122886.13ln =  

相比其精確度也到達第 10位小數。 讀

者不妨自行試算 ln 5, ln 7等等的數值，

然後再和計算機所得的作一比較。 

 回看上述極為巧妙的計算方法，真

的令人佩服當年的數學家們對於數

字關係和公式運算的那種創意與觸

覺！ 
 

【參考文獻】： 

項武義教授分析學講座筆記第三章 

http://ihome.ust.hk/~malung/391.html 

 
 

 

Pell’s Equation (II) 

(continued from page 2) 

The powers are 1 + 5 , 6 + 52 , 16 

+ 58  = 8(2 + 5 ), 56 + 524 , 176 

+ )5511(16580 += , … .  Thus, the 

primitive positive solutions are (x, y) 

with 
56

2

51
2    5    

−
+ 


=+

n

yx  or 

.2
16

2

51
−

+ 


 n

  The nonprimitive 

positive solutions are (x, y) with x 

+ 5y = 
36

2

51
2

−
+ 




n

.  So the general 

positive solutions are (x, y) with 

x + 
k

y 


= +
2

51
25  for odd k. 

Then 

k

kk

Fy =








−


= −+
2

51

2

51

5

1
, 

where kF  is the k-th term of the 

famous Fibonacci sequence.  Finally, 

1
2 ≡y  (mod 19) and k should be odd.  

The smallest such y = 17F = 1597, 

which leads to n = ( ) 1912
17 −F = 

134232. 
 

Comments:  For the readers not 

familiar with the Fibonacci sequence, it 

is defined by 1F = 1, 2F = 1 and 1+nF  

= nF + 1−nF  for n > 1.  By math 

induction, we can check that they 

satisfy Binet’s formula nF = 

( ) 521
nn rr − , where )51(1 +=r /2 

and 2/)51(2 −=r  are the roots of 

the characteristic equation 
2

x  = x + 1.  

(Check cases n = 1, 2 and in the 

induction step, just use 1+n
ir  = 

.)1−+ n
i

n
i rr  
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Olympiad Corner 
 
The 31st United States of America 

Mathematical Olympiad 2002 
 

Problem 1.  Let S be a set with 2002 

elements, and let N be an integer with 0 
20022≤≤ N .  Prove that it is possible to 

color every subset of S either black or 

white so that the following conditions hold: 

(a) the union of any two white subsets 

is white; 

(b) the union of any two black subsets is 

black; 

(c) there are exactly N white subsets. 
 

Problem 2.  Let ABC be a triangle such 

that 

,
7

6

2
cot3

2
cot2

2
cot   

2222







=






+






+








r

sCBA

 

where s and r denote its semiperimeter 

and its inradius, respectively.  Prove that 

triangle ABC is similar to a triangle T 

whose side lengths are all positive 

integers with no common divisor and 

determine these integers. 
 

(continued on page 4) 
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 George Polya’s famous book How 

to Solve It is a book we highly 

recommend every student who is 

interested in problem solving to read.  In 

solving a difficult problem, Polya 

teaches us to ask the following questions.  

What is the condition to be satisfied?  

Have you seen a similar problem?  Can 

you restate the problem in another way or 

in a related way?  Where is the difficulty?  

If you cannot solve it, can you solve a 

part of the problem if the condition is 

relaxed.  Can you solve special cases?  Is 

there any pattern you can see from the 

special cases?  Can you guess the 

answer?  What clues can you get from 

the answer or the special cases?  Below 

we will provide some examples to guide 

the student in analyzing problems. 
 

Example 1.  (Polya, How to Solve It, pp. 

23-25)  Given ABC∆  with AB the 

longest side.  Construct a square having 

two vertices on side AB and one vertex 

on each of sides BC and CA using a 

compass and a straightedge (i.e. a ruler 

without markings). 

Analysis.  (Where is the difficulty?)  The 

difficulty lies in requiring all four 

vertices on the sides of the triangle.  If we 

relax four to three, the problem becomes 

much easier.  On CA, take a point P close 

to A.  Draw the perpendicular from P to 

AB and let the foot be Q.  With Q as 

center and PQ as radius, draw a circle 

and let it intersect AB at R.  Draw the 

perpendicular line to AB through R and 

let S be the point on the line which is PQ 

units from R and on the same side of AB 

as P.  Then PQRS is a square with P on 

CA and Q, R on AB. 

 (What happens if you move the 

point P on side CA?)  You get a square 

similar to PQRS.  (What happens in the 

special case P = A?)  You get a point.  

(What happens to S if you move P from A 

toward C?)  As P moves along AC, the 

triangles APQ will be similar to each 

other.  Then the triangles APS will also 

be similar to each other and S will trace a 

line segment from A.  This line AS 

intersects BC at a point S', which is the 

fourth vertex we need.  From S', we can 

find the three other vertices dropping 

perpendicular lines and rotating points. 
 

Example 2.  (1995 Russian Math 

Olympiad)  There are n > 1 seats at a 

merry-go-around.  A boy takes n rides.  

Between each ride, he moves clockwise a 

certain number (less than n) of places to a 

new horse.  Each time he moves a 

different number of places.  Find all n for 

which the boy ends up riding each horse. 

Analysis.  (Can you solve special 

cases?)  The cases n = 2, 4, 6 work, but 

the cases n = 3, 5 do not work.  (Can you 

guess the answer?)  The answer should 

be n is even.  (What clues can you get 

from the special cases?)  From 

experimenting with cases, we see that if 

n > 1 is odd, then the last ride seems to 

always repeat the first horse.  (Why?)  

From the first to the last ride, the boy 

moved 1 + 2 + +L (n – 1) = n(n – 1)/2 

places.  If n > 1 is odd, this is a multiple 

of n and so we repeat the first horse. 

 (Is there any pattern you can see 

from the special cases when n is even?)  

Name the horses 1, 2, …, n in the 

clockwise direction.  For n = 2, we can 

ride horses 1, 2 in that order and the 

move sequence is 1.  For n = 4, we can 

ride horses 1, 2, 4, 3 in that order and the 

move sequence is 1, 2, 3.  For n = 6, we 

can ride horses 1, 2, 6, 3, 5, 4 and the 



Mathematical Excalibur, Vol. 7, No. 2, May 02- Jun 02 Page 2

 

move sequence is 1, 4, 3, 2, 5.  Then for 

the general even cases n, we can ride 

horses 1, 2, n, 3, n – 1, …, (n/2) + 1 in that 

order with move sequence 1, n – 2, 3, n – 

4, …, 2, n – 1.  The numbers in the move 

sequence are all distinct as it is the result 

of merging odd numbers 1, 3, …, n – 1 

with even numbers n – 2, n – 4, …, 2. 
 

Example 3.  (1982 Putnam Exam)  Let K 

(x, y, z) be the area of a triangle with sides 

x, y, z.  For any two triangles with sides a, 

b, c and a', b', c' respectively, show that 

)',','(

)',','(),,(    

ccbbaaK

cbaKcbaK

+++≤

+
 

and determine the case of equality. 

Analysis.  (Can you restate the problem 

in another way?)  As the problem is about 

the area and sides of a triangle, we bring 

out Heron’s formula, which asserts the 

area of a triangle with sides x, y, z is given 

by  

K(x, y, z) = ))()(( zsysxss −−− , 

where s is half the perimeter, i.e. s = 
2
1 (x  

+ y + z).  Using this formula, the problem 

becomes showing 

4

44

)')(')(')('(

''''    

vvuuttss

vutsstuv

++++≤

+
, 

where s = 
2
1 (a + b + c), t = s – a, u = s –  

b, v = s – c and similarly for '.,',',' vuts  

(Have you seen a similar problem or 

can you relax the condition?)  For those 

who saw the forward-backward induction 

proof of the AM-GM inequality before, 

this is similar to the proof of the case n = 4 

from the case n = 2.  For the others, 

having groups of four variables are 

difficult to work with.  We may consider 

the more manageable case n = 2.  If we 

replace 4 by 2, we get a simpler inequality 

.)')('('' yyxxyxxy ++≤+  

This is easier.  Squaring both sides, 

canceling common terms, then factoring,  

this turns out to be just ( ) ≥−
2

'' yxxy  

0.  Equality holds if and only if =': xx  

'.: yy   Applying this simpler inequality 

twice, we easily get the required inequality 

.)')('()')('(

)'')(''(

''''    44

vvuuttss

vuuvtsst

vutsstuv

++++≤

++≤

+

 

Tracing the equality case back to the 

simpler inequality, we see equality holds if 

and only if ,':':':: cbacba =  i.e. the 

triangles are similar. 
 

Example 4.  Is there a way to pack 250 

411 ××  bricks into a 101010 ××  box? 
 

Analysis.  (Where is the difficulty?)  10 is 

large for a 3 dimensional cube.  We can 

relax the problem a bit by considering a 

two dimensional analogous problem with 

smaller numbers, say 21×  cards pack into 

a 88×  board.  This is clearly possible.  

(What if we relax the board to be a square, 

say by taking out two squares from the 

board?)  This may become impossible.  

For example, if the 88×  board is a 

checkerboard and we take out two black 

squares, then since every 21×  card covers 

exactly one white and one black square, 

any possible covering must require the 

board to have equal number of white and 

black squares. 

(What clue can you get from the 

special cases?)  Coloring a board can help 

to solve the problem.  (Can we restate the 

problem in a related way?)  Is it possible 

to color the cubes of the 101010 ××  box 

with four colors in such a way that in 

every four consecutive cubes each color 

occurs exactly once, where consecutive 

cubes are cubes sharing a common face?  

Yes, we can put color 1 in a corner cube, 

then extend the coloring to the whole box 

by putting colors 1, 2, 3, 4 periodically in 

each of the three perpendicular directions 

parallel to the edges of the box.  However, 

a counting shows that for the 101010 ××  

box, there are 251 color 1 cubes, 251 color 

2 cubes, 249 color 3 cubes and 249 color 4 

cubes.  So the required packing is 

impossible. 
 

Example 5.  (1985 Moscow Math 

Olympiad)  For every integer ,3≥n  show 

that 2272 yxn +=  for some odd positive 

integers x and y. 

Analysis.  (cf. Arthur Engel, Problem- 

Solving Strategies, pp. 126-127) (Can you 

solve special cases?)  For n = 3, 4, …, 10, 

we have the table: 

n 3 4 5 6 7 8 9 10

nxx =  1 1 1 3 1 5 7 3 

nyy =  1 3 5 1 11 9 13 31

 
(Is there any pattern you can see 

from the special cases?)  In cases n = 3, 5, 

8, it seems that 1+nx  is the average of nx  

and .ny   For cases n = 4, 6, 7, 9, 10, the 

average of nx  and ny is even and it 

seems that .2 1+=− nnn xyx   (Can you 

guess the answer?)  The answer should be 


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

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odd is  )( if)(
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.
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(Is this correct?)  The case n = 3 is correct.  

If 2272 nn
n yx += , then the choice of 

1+ny  will give 2
1

2
1

1 72 ++
+ += nn

n yx .  

(Must 1+nx  and 1+ny  be odd positive 

integers?)  Yes, this can be checked by 

writing nx  and ny  in the form 4k .1±  

 

 

IMO 2002 

 IMO 2002 will be held in Glasgow, 

United Kingdom from July 19 to July 

30 this summer.  Based on the selection 

test performances, the following 

students have been chosen to represent 

Hong Kong: 
 

CHAO Khek Lun (St. Paul’s College) 

CHAU Suk Ling (Queen Elizabeth School) 

CHENG Kei Tsi (La Salle College) 

IP Chi Ho (St. Joseph College) 

LEUNG Wai Ying (Queen Elizabeth School) 

YU Hok Pun (SKH Bishop Baker Secondary Sch) 
 

 



Mathematical Excalibur, Vol. 7, No. 2, May 02- Jun 02 Page 3

 

Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  

Solutions should be preceded by the 

solver’s name, home (or email) 

address and school affiliation.  Please 

send submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is September 20, 2002. 
 

Problem 151.  Every integer greater 

than 2 can be written as a sum of 

distinct positive integers.  Let A(n) be 

the maximum number of terms in such 

a sum for n.  Find A(n).  (Source: 1993 

German Math Olympiad) 
 

Problem 152.   Let ABCD be a 

cyclic quadrilateral with E as the 

intersection of lines AD and BC.  Let M 

be the intersection of line BD with the 

line through E parallel to AC.  From M, 

draw a tangent line to the circumcircle 

of ABCD touching the circle at T.  

Prove that MT = ME.  (Source: 1957 

Nanjing Math Competition) 
 

Problem 153.   Let R denote the real 

numbers.  Find all functions f: R  R 

such that the equality f(f(x) + y) = f( 2x  

- y) + 4f(x)y holds for all pairs of real 

numbers x, y.  (source: 1997 Czech- 

Slovak Match) 
 

Problem 154.  For nonnegative 

numbers a, d and positive numbers b, 

c satisfying b + c a≥ + d, what is the 

minimum value of 
ba

c

dc

b

+
+

+
?   

(Source: 1988 All Soviet Math 

Olympiad) 

 

Problem 155.  We are given 1997 

distinct positive integers, any 10 of 

which have the same least common 

multiple.  Find the maximum possible 

number of pairwise relatively prime 

numbers among them.  (Source: 1997 

Hungarian Math Olympiad) 
 

***************** 

Solutions 

***************** 
 

Problem 146.  Is it possible to partition a 

square into a number of congruent right 

triangles each containing a o30 angle? (Source: 

1994 Russian Math Olympiad, 3rd Round) 
 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 7), CHEUNG Chung 
Yeung (STFA Leung Kau Kui College, 
Form 4), Antonio LEI (Colchester Royal 
Grammar School, UK, Year 12), LEUNG 
Wai Ying (Queen Elizabeth School, Form 
7), POON Ming Fung (STFA Leung Kau 
Kui College, Form 4), SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 6), 
WONG Wing Hong (La Salle College, 
Form 4) and Richard YEUNG Wing Fung 
(STFA Leung Kau Kui College, Form 4). 
 

Without loss of generality, let the sides of 

the triangles be 2, 1, 3 .  Assume n such 

triangles can partition a square.  Since the 

sides of the square are formed by sides of 

these triangles, so the sides of the square 

are of the form a + ,3b  where a, b are 

nonnegative integers.  Considering the 

area of the square, we get =+ 2)3( ba   

,
2

3n
 which is the same as )3(2 22 ba +   

= (n – 4ab) .3   Since a, b are integers and 

3  is irrational, we must have 22 3ba + = 

0 and n – 4ab = 0.  The first equation 

implies a = b = 0, which forces the sides of 

the square to be 0, a contradiction. 
 
Other commended solver: WONG Chun 
Ho (STFA Leung Kau Kui College, Form 7). 
 

Problem 147.  Factor ++ 28 4xx 4 into 

two nonconstant polynomials with integer 

coefficients. 
 
Solution. CHENG Ka Wai (STFA Leung 
Kau Kui College, Form 4), CHEUNG 
CHUNG YEUNG (STFA Leung Kau Kui 
College, Form 4), FUNG Yi (La Salle 
College, Form 4), LEUNG Wai Ying 
(Queen Elizabeth School, Form 7), POON 
Ming Fung (STFA Leung Kau Kui College, 
Form 4), SIU Tsz Hang (STFA Leung Kau 
Kui College, Form 6) and TANG Sze Ming 
(STFA Leung Kau Kui College, Form 4). 
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)2222(

)22()22(
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)4884(
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Other commended solvers:  CHAO 
Khek Lun Harold (St. Paul’s College, 
Form 7), HUI Chun Yin John (Hong 
Kong Chinese Women’s Club College, 
Form 6), LAW Siu Lun Jack  (CCC 
Ming Kei College, Form 7), WONG 
Chun Ho (STFA Leung Kau Kui 
College, Form 7), Tak Wai Alan 
WONG (University of Toronto, Canada), 
WONG Wing Hong (La Salle College, 
Form 4) & YEUNG Kai Tsz Max (Ju 
Ching Chu Secondary School, Form 5). 
 

Problem 148.  Find all distinct prime 

numbers p, q, r, s such that their sum is 

also prime and both 2p + qs, +2p qr 

are perfect square numbers. (Source: 

1994 Russian Math Olympiad, 4th Round) 
 
Solution.  CHAO Khek Lun Harold 
(St. Paul’s College, Form 7), CHEUNG 
CHUNG YEUNG (STFA Leung Kau 
Kui College, Form 4), LAW Siu Lun 
Jack  (CCC Ming Kei College, Form 7), 
Antonio LEI (Colchester Royal 
Grammar School, UK, Year 12), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 7), POON Ming Fung 
(STFA Leung Kau Kui College, Form 4), 
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 6), TANG Chun Pong 
Ricky (La Salle College, Form 4), 
WONG Chun Ho (STFA Leung Kau 
Kui College, Form 7), WONG Wing 
Hong (La Salle College, Form 4), 
Richard YEUNG Wing Fung (STFA 
Leung Kau Kui College, Form 4) and 
YUEN Ka Wai (Carmel Divine Grace 
Foundation Secondary School, Form 6). 
 

Since the sum of the primes p, q, r, s is 

a prime greater than 2, one of p, q, r, s is 

2.  Suppose ≠p 2.  Then one of q, r, s 

is 2 so that one of 2p + qs, 2p + qr is 

of the form 2)12( +m + 2(2n + 1) = 

4( 2m + m + n) + 3, which cannot be a 

perfect square as perfect squares are of 

the form =2)2( k 24k or =+ 2)12( k  

4( +2k k) + 1.  So p = 2. 

Suppose +22 qs = 2a , then q, s odd 

implies a odd and qs = (a + 2)(a – 2).  

Since q, s are prime, the smaller factor a – 

2 = 1, q or s.  In the first case, a = 3 and qs 

= 5, which is impossible.  In the 

remaining two cases, either q = a – 2, s = 

a + 2 = q + 4 or s = a – 2, q = a + 2 = s + 4.  

Next 222 bqr =+ will similarly implies 

q, r differe by 4.  As q, r, s are distinct 

primes, one of r, s is q – 4 and the other is 

q = 4.  Note that q – 4, q, q + 4 have 

different remainders when they are 

divided by 3.  One of them is 3 and it must 

be q – 4.  Thus there are two solutions (p, 

q, r, s) = (2, 7, 3, 11) or (2, 7, 11, 3).  It is 

easy to check both solutions satisfy all 
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conditions. 

Other commended solvers: WONG Wai 
Yi (True Light Girl’s College, Form 4) 
 

Problem 149.  In a 2000 × 2000 

table, every square is filled with a + 1 

or a – 1.  It is known that the sum of 

these numbers is nonnegative.  Prove 

that there are 1000 columns and 1000 

rows such that the sum of the numbers 

in these intersection squares is at least 

1000.  (Source: 1994 Russian Math 

Olympiad, 5th Round) 
 
Solution 1.  LEUNG Wai Ying 
(Queen Elizabeth School, Form 7). 
 

Since the numbers have a nonnegative 

sum, there is a column with a 

nonnegative sum.  Hence there are at 

least one thousand squares in that 

column filled with +1.  Thus, without 

loss of generality we may assume the 

squares in rows 1 to 1000 of column 1 

are filled with +1.  Evaluate the sums 

of the numbers in the squares of rows 1 

to 1000 for each of the remaining 

columns.  Pick the 999 columns with 

the largest sums in these evaluations.  

If these 999 columns have a 

nonnegative total sum S, then we are 

done (simply take rows 1 to 1000 and 

the first column with these 999 

columns).  Otherwise, S < 0 and at least 

one of the 999 columns has a negative 

sum.  Since the sum of the first 100 

squares in each column must be even, 

the sum of the first 100 squares in that 

column is at most –2.  Then the total 

sum of all squares in rows 1 to 1000 is 

at most 1000 + S + (-2)1000 < –1000. 

Since the sum of the whole table is 

nonnegative, the sum of all squares in 

rows 1001 to 2000 would then be 

greater than 1000.  Then choose the 

squares in these rows and the 1000 

columns with the greatest sums.  If 

these squares have a sum at least 1000, 

then we are done.  Otherwise, assume 

the sum is less than 1000, then at least 

one of these 1000 columns will have a 

nonpositive sum.  Thus, the remaining 

1000 columns will each have a 

nonpositive sum.  This will lead to the 

sum of all squares in rows 1001 to 2000 

be less than 1000 + (0)1000 = 1000, a 

contradiction. 

Solution 2.  CHAO Khek Lun Harold 
(St. Paul’s College, Form 7). 
 

We first prove that for a nn×  square filled 

with +1 and −1  and the sum is at least m, 

where m, n are of the same parity and m < n, 

there exists a (n – 1) ×  (n – 1) square the 

numbers there have a sum at least m + 1.  If 

the sum of the numbers in the nn×  square is 

greater than m, we may convert some of the 

+1 squares to 1−  to make the sum equal m.  

Let the sum of the numbers in rows 1 to n be 

.,,1 nrr K   Since nrr ++L1 = m < n, there is 

a .0≤jr   For each square in row j, add up 

the numbers in the row and column on which 

the square lies.  Let them be .,,1 naa K   Now 

.)1(1 nmrnmaa jn <≤−+=++L   

Since ia  is the sum of the numbers in 2n – 1 

squares, each ai  is odd.  So there exists 

some .1−≤ka   Removing row j and 

column k, the sum of the numbers in the 

remaining (n – 1)× (n – 1) square is m – 

≥ka m + 1.  Finally convert back the –1 

squares to +1 above and the result follows.  

For the problem, start with n = 2000 and m 

= 0, then apply the result above 1000 

times to get the desired statement. 
 

Problem 150.  Prove that in a convex 

n-sided polygon, no more than n diagonals 

can pairwise intersect.  For what n, can there 

be n pairwise intersecting diagonals?  (Here 

intersection points may be vertices.)  (Source: 

1962 Hungarian Math Olympiad) 

 
Solution.  CHAO Khek Lun Harold (St. 
Paul’s College, Form 7) and TANG Sze Ming 
(STFA Leung Kau Kui College, Form 4. 

For n = 3, there is no diagonal and for n = 

4, there are exactly two intersecting 

diagonals.  So let 5≥n .  Note two 

diagonals intersect if and only if the pairs 

of vertices of the diagonals share a 

common vertex or separate each other on 

the boundary.  Thus, without loss of 

generality, we may assume the polygon is 

regular.  For each diagonal, consider its 

perpendicular bisector.  If n is odd, the 

perpendicular bisectors are exactly the n 

lines joining a vertex to the midpoint of its 

opposite side.  If n is even, the 

perpendicular bisectors are either lines 

joining opposite vertices or lines joining 

the midpoints of opposite edges and 

again there are exactly n such lines.  

Two diagonals intersect if and only if 

their perpendicular bisectors do not 

coincide.  So there can be no more than 

n pairwise intersecting diagonals.  For 

5≥n , since there are exactly n 

different perpendicular bisectors, so 

there are n pairwise intersecting 

diagonals. 
 
Other commended solvers: Antonio 
LEI (Colchester Royal Grammar 
School, UK, Year 12), LEUNG Wai 
Ying (Queen Elizabeth School, Form 7) 
and SIU Tsz Hang (STFA Leung Kau 
Kui College, Form 6). 

 
 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 3.  Prove that any monic 

polynomial (a polynomial with leading 

coefficient 1) of degree n with real 

coefficients is the average of two monic 

polynomials of degree n with n real roots. 
 

Problem 4.  Let R be the set of real 

numbers.  Determine all functions 

RRf →:  such that  

)()()( 22 yyfxxfyxf −=−  

for all real numbers x and y. 
 

Problem 5.  Let a, b be integers 

greater than 2.  Prove that there exists a 

positive integer k and a finite sequence 

,1n knn  ..., ,2 of positive integers such that 

1n  = a, kn = b, and 1+iinn  is divisible by 

+in 1+in  for each i(1 i≤ < k). 
 

Problem 6. I have an nn×  sheet 

of stamps, from which I’ve been asked 

to tear out blocks of three adjacent 

stamps in a single row or column.  (I 

can only tear along the perforations 

separating adjacent stamps, and each 

block must come out of a sheet in one 

piece.)  Let b(n) be the smallest number 

of blocks I can tear out and make it 

impossible to tear out any more blocks.  

Prove that there are real constants c and 

d such that 

dnnnbcnn +≤≤− 22

5

1
)(

7

1
 

for all n > 0. 
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Olympiad Corner 
 
The 43

rd
 International Mathematical 

Olympiad 2002. 
 

Problem 1. Let n be a positive integer. 

Let T be the set of points (x, y) in the 

plane where x and y are non-negative 

integers and x + y < n. Each point of T is 

colored red or blue. If a point (x, y) is 

red, then so are all points (x′, y′ ) of T 

with both x′ ≤  x and y′ ≤  y. Define an 

X-set to be a set of n blue points having 

distinct x-coordinates, and a Y-set to be a 

set of n blue points having distinct 

y-coordinates. Prove that the number of 

X-sets is equal to the number of Y-sets.

  

Problem 2.  Let BC be a diameter of the 

circle Γ with center O. Let A be a point 

on Γ such that 0° < ∠AOB < 120°.  Let D 

be the midpoint of the arc AB not 

containing C. The line through O parallel 

to DA meets the line AC at J. The 

perpendicular bisector of OA meets Γ at 

E and at F. Prove that J is the incentre of 

the triangle CEF. 
 
Problem 3. Find all pairs of integers 

such that there exist infinitely many 

positive integers a for which 
   

(continued on page 4) 
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An invariant is a quantity that does not 

change. A monovariant  is a quantity that 

keeps on increasing or keeps on 

decreasing. In some mathematical 

games, winning often comes from 

understanding the invariants or the  

monovariants that are controlling the 

games. 

 

Example 1. (1974 Kiev Math Olympiad) 

Numbers 1, 2, 3, l , 1974 are written on 

a board. You are allowed to replace any 

two of these numbers by one number, 

which is either the sum or the difference 

of these numbers. Show that after 1973 

times performing this operation, the only 

number left on the board cannot be 0. 

 

Solution. There are 987 odd numbers 

on the board in the beginning. Every 

time the operation is performed, the 

number of odd numbers left either stay 

the same (when the numbers taken out 

are not both odd) or decreases by two 

(when the numbers taken out are both 

odd). So the number of odd numbers left 

on the board after each operation is 

always odd. Therefore, when one 

number is left, it must be odd and so it 

cannot be 0. 

 

Example 2. In an 8 ×  8 board, there are 

32 white pieces and 32 black pieces, one 

piece in each square. If a player can 

change all the white pieces to black and 

all the black pieces to white in any row 

or column in a single move, then is it 

possible that after finitely many moves, 

there will be exactly one black piece left 

on the board? 

 

 Solution. No. If there are exactly k 

black pieces in a row or column before a 

move is made to that row or column, 

then   after  the  moves,  the number  of 

black pieces in the row or in the column 

will become 8 – k, a change of (8 – k)  – 

k = 8 – 2 k black pieces on the board. 

Since 8 – 2 k is even, the parity of the 

number of  black  pieces stay the same 

before and after the move. Since at the 

start, there are 32 black pieces, there 

cannot be 1 black piece left at any time. 

 

Example 3. Four x’s and five o’s are 

written around the circle in an arbitrary 

order. If two consecutive symbols are the 

same, then insert a new x between them. 

Otherwise insert a new o between them. 

Remove the old x’s and o’s. Keep on 

repeating this operation. Is it possible to 

get nine o’s? 

 

Solution. If we let x = 1 and  o =  – 1, 

then note that consecutive symbols are 

replaced by their product. If we consider 

the product P of the nine values before 

and after each operation, we will see that 

the new P is the square of the old P. 

Hence, P will always equal 1 after an 

operation. So nine o’s yielding P = – 1 

can never happen. 

 

Example 4. There are three piles of 

stones numbering 19, 8 and 9, 

respectively. You are allowed to choose 

two piles and transfer one stone from 

each of these two piles to the third piles. 

After several of these operations, is it 

possible that each of the three piles has 

12 stones? 

 

Solution. No. Let the number of stones 

in the three piles be a, b and c, 

respectively. Consider (mod 3) of these 

numbers. In the beginning, they are 1, 2, 

0. After one operation, they become 0, 1, 

2 no matter which two piles have stones 

transfer to the third pile. So the 

remainders  are  always  0, 1, 2  in  some 
order.   Therefore,  all  piles  having  12   



Mathematical ExcaliburMathematical ExcaliburMathematical ExcaliburMathematical Excalibur, Vol. 7, No. 3, Jul 02- Oct 02 Page 2

 

stones are impossible. 

 

Example 5. Two boys play the 

following game with two piles of 

candies. In the first pile, there are 12 

candies and in the second pile, there are 

13 candies.  Each boy takes turn to 

make a move consisting of eating two 

candies from one of the piles or 

transferring a candy from the first pile 

to the second. The boy who cannot 

make a move loses. Show that the boy 

who played second cannot lose. Can he 

win? 

 

Solution. Consider S to be the number 

of candies in the second pile minus the 

first. Initially, S = 13 – 12 = 1. After 

each move, S increases or decreases by 

2. So  S (mod 4) has the pattern 1, 3, 1, 

3, l . Every time after the boy who 

played first made a move, S (mod 4) 

would always be 3. Now a boy loses if 

and only if there are no candies left in 

the second pile, then S = 1 – 0 = 1. So 

the boy who played second can always 

make a move, hence he cannot lose.  

 

     Since either the total number of 

candies decreases or the number of 

candies in the first pile decreases, so 

eventually the game must stop, so the 

boy who played second must win. 

 

Example 6. Each member of a club has 

at most three enemies in the club. (Here 

enemies are mutual.) Show that the 

members can be divided into two 

groups so that each member in each 

group has at most one enemy in the 

group. 

 

Solution. In the beginning, randomly 

divide the members into two groups. 

Consider the number S of the pairs of 

enemies in the same group. If a 

member has at least two enemies in the 

same group, then the member has at 

most one enemy in the other group. 

Transferring the member to the other 

group, we will decrease S by at least 

one. Since S is a nonnegative integer, it 

cannot be decreased forever. So after 

finitely many transfers, each member 

can have at most one enemy in the 

same group.   

                                                                               

                              (Continued on page 4) 

 

          IMO 2002 
                       Kin Y. Li 

 

     The International Mathematical 

Olympiad 2002 was held in Glasgow, 

United Kingdom from July 19 to 30. 

There were a total of 479 students from 84 

countries and regions participated in the 

Olympiad. 

      

      The Hong Kong team members were 

 

Chao Khek Lun (St. Paul’s College)   

Chau Suk Ling (Queen Elizabeth School) 

Cheng Kei Tsi (La Salle College) 

Ip Chi Ho (St. Joseph’s College) 

Leung Wai Ying (Queen Elizabeth School) 

Yu Hok Pun (SKH Bishop Baker 

Secondary School). 

 

      The team leader was K. Y. Li and the 

deputy leaders were Chiang Kin Nam and 

Luk Mee Lin. 

  

      The scores this year ranged from 0 to 

42. The cutoffs for medals were 29 points 

for gold, 24 points for silver and 14 points 

for bronze. The Hong Kong team received 

1 gold medal (Yu Hok Pun), 2 silver 

medals (Leung Wai Ying and Cheng Kei 

Tsi) and 2 bronze medals (Chao Khek Lun 

and Ip Chi Ho). There were 3 perfect 

scores, two from China and one from 

Russia. After the 3 perfect scores, the 

scores dropped to 36 with 9 students! This 

was due to the tough marking schemes, 

which intended to polarize the students’ 

performance to specially distinguish those 

who had close to complete solutions from 

those who should only deserve partial 

points. 

 

       The top five teams are China (212), 

Russia (204), USA (171), Bulgaria (167) 

and Vietnam (166). Hong Kong came in 

24
th

 (120), ahead of Australia, United 

Kingdom, Singapore, New Zealand, but 

behind Canada, France and Thailand this 

year. 

 

       One piece of interesting coincidence 

deserved to be pointed out. Both Hong 

Kong and New Zealand joined the IMO in 

1988. Both won a gold medal for the 

first time this year and both gold 

medallists scored 29 points.    

      

       The IMO will be hosted by Japan 

next year at Keio University in Tokyo 

and the participants will stay in the 

Olympic village. Then Greece, Mexico, 

Slovenia will host in the following 

years. 

 

        Addendum. After the IMO, the 

German leader Professor Gronau sent 

an email to inform all leaders about his 

updated webpage 

  http://www.Mathematik-Olympiaden.de/ 

which contains IMO news and facts. 

Clicking Internationale Olympiaden 

on the left, then on that page, scrolling 

down and clicking Top-Mathematikern, 

Die erfolgreichsten IMO-Teilnehmer in 

blue on the right, we could find the 

following past IMO participants who 

have also won the Fields medals, the 

Nevanlinna prizes and the Wolf prizes: 

 

Richard Borcherds (1977  IMO silver, 

1978 IMO gold, 1998 Fields medal) 

 

Vladmir Drinfeld (1969 IMO gold, 

1990 Fields medal) 

 

Tim Gowers (1981 IMO gold, 1998 

Fields medal) 

 

Laurent Lafforgue (1984 IMO silver, 

1985  IMO silver, 2002 Fields medal) 

 

Gregori Margulis (1959 IMO member, 

1962  IMO silver, 1978 Fields medal) 

 

Jean-Christoph Yoccoz  (1974 IMO 

gold, 1994 Fields medal) 

 

Alexander Razborov (1979 IMO gold, 

1990 Nevanlinna prize) 

 

Peter Shor (1977 IMO silver, 1998 

Nevanlinna prize) 

 

László Lovász (1963 IMO silver, 1964 

IMO gold, 1965 IMO gold, 1966 IMO 

gold, 1999 Wolf prize)                
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  

Solutions should be preceded by the 

solver’s name, home (or email) 

address and school affiliation.  Please 

send submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is November 2, 2002. 
 

Problem 156.  If  a, b, c > 0 and   

,3222 =++ cba  then  prove that 

 

.
2

3

1

1

1

1

1

1 ≥
+

+
+

+
+ cabcab

 
 
 
 

Problem 157.  In base 10, the sum of 

the digits of a positive integer n is 100 

and of 44n is 800. What is the sum of 

the digits of 3n?   
 

Problem 158.  Let ABC be an isosceles 

triangle with AB = AC. Let D be a point 

on BC such that  BD = 2DC and let  P 

be a point on AD such that   ∠BAC  = 

∠BPD. Prove that   

            ∠BAC = 2 ∠DPC.   
 
 

Problem 159.  Find all triples (x, k, n) 

of positive integers such that  

                 .13 nk x=−   
 

Problem 160.  We are given 40 

balloons, the air pressure inside each of 

which is unknown and may differ from 

balloon to balloon. It is permitted to 

choose up to k of the balloons and 

equalize the pressure in them (to the 

arithmetic mean of their respective 

pressures.) What is the smallest k for 

which it is always possible to equalize 

the pressures in all of the balloons? 

 

***************** 

Solutions 

***************** 
 

Problem 151. Every integer greater 

than 2 can be written as a sum of 

distinct positive integers. Let A(n) be 

the maximum number of terms in such 

a sum for n. Find A(n). (Source: 1993 

German Math Olympiad)  

 
Solution.  CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form 5), Antonio LEI (Colchester Royal 
Grammar School, UK, Year 12), LEUNG 
Chi Man (Cheung Sha Wan Catholic 
Secondary School, Form 6), Poon Ming 
Fung (STFA Leung Kau Kui College, Form 
5), SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 7), Tsui Ka Ho (CUHK, 
Year 1), Tak Wai Alan WONG (University 
of Toronto)  and WONG Wing Hong (La 
Salle College, Form 5). 
 

Let 
ma  = m (m+1) /2. This is the sum of 

1, 2, � , m and hence the sequence 

ma is strictly increasing to infinity. So 

for every integer n greater than 2, there is 

a positive integer m such that 
ma  ≤  n  < 

1+ma . Then n is the sum of the m positive 

integers 

    1, 2, � , m – 1,  n – m ( m – 1) / 2. 

Assume  A(n) > m.  Then 

1+ma = 1 + 2 + ⋯ + ( m + 1) ≤   n , 

a contradiction. Therefore, A(n) = m. 

Solving the quadratic inequality 

          
ma  = m ( m + 1) / 2 ≤   n , 

we find m is the greatest integer less than 

or equal to ( ) .2/181 ++− n  

 

Other commended solvers: CHU Tsz 

Ying (St. Joseph’s Anglo-Chinese School, 

Form 7). 
 

Problem 152.  Let ABCD be a cyclic 

quadrilateral with E as the intersection of 

lines AD and BC. Let M be the intersection 

of line BD with the line through E parallel 

to AC. From M, draw a tangent line to the 

circumcircle of ABCD touching the circle 

at T. Prove that MT = ME. (Source: 1957 

Nanjing Math Competition) 
 
Solution.  CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form 5), CHU Tsz Ying (St. Joseph’s 
Anglo-Chinese School, Form 7), Antonio 
LEI (Colchester Royal Grammar School, 
UK, Year 12), Poon Ming Fung (STFA 
Leung Kau Kui College, Form 5), SIU Tsz 
Hang (STFA Leung Kau Kui College, Form 
7), TANG Sze Ming (STFA Leung Kau Kui 
College), Tsui Ka Ho (CUHK, Year 1) and 
WONG Wing Hong (La Salle College, 
Form 5). 
 

Since ME and  AC are parallel, we have 

 

 ∠MEB = ∠ACB=∠ADB=∠MDE.    

 

Also, ∠BME=∠EMD.  So triangles BME 

and EMD are similar. Then 

                  MB / ME = ME / MD.  

So .2 MBMDME ⋅= By the 

intersecting chord theorem, also 

.2 MBMDMT ⋅= Therefore, MT = 

ME. 
 

Problem 153.  Let R denote the real 

numbers. Find all functions f : R → R 

such that the equality  

     f ( f (x) + y) = f (x² – y) + 4 f (x) y  

holds for all pairs of real numbers x, y. 

(Source: 1997 Czech-Slovak Match) 
 
Solution.  CHU Tsz Ying (St. Joseph’s 
Anglo-Chinese School, Form 7) and  
Antonio LEI (Colchester Royal 
Grammar School, UK, Year 12), 
 

Setting y = x², we have 

 

     f ( f (x) + x² ) = f ( 0 ) + 4 x² f ( x ). 

 

Setting y = – f ( x ), we have 

 

     f ( 0 ) = f ( f ( x ) + x² ) + 4 f ( x ) ² . 

 

Comparing these, we see that for each x, 

we must have  f (x) = 0   or    f (x) = x². 

Suppose f (a) = 0 for some nonzero a. 

Putting x = a into the given equation, 

we get  

                 f ( y ) = f ( a² – y).  
 

For  y ≠  a² / 2, we have 

 

                    y² ≠  ( a² – y ) ² , 

            

which will imply f (y) = 0. Finally, 

setting  x = 2a and y = a² / 2, we have 

     

        f ( a² / 2 ) = f ( 7 a² / 2) = 0.  

 

So either f (x) = 0 for all x or f (x) = x² 

for all x. We can easily check both are 

solutions.  

 

Comments:  Many solvers submitted 

incomplete solutions. Most of them got 

x∀  (f (x) = 0   or   x²), which is not the 

same as the desired conclusion that 

( x∀  f (x) = 0) or x∀(  f (x) = x²). 
 

Problem 154. For nonnegative 

numbers a, d and positive numbers b, c 

satisfying b + c ≥  a + d, what is the  

 

minimum value of 
ba

c

dc

b

+
+

+
?  

 

(Source: 1988 All Soviet Math 

Olympiad) 
 
Solution. Without loss of generality, 
we may assume that a ≥  d and b ≥  c. 
From b + c ≥  a + d, we get 
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      b + c ≥  ( a + b + c + d ) / 2. 
 
Now 
 
 

 
ba

c

dc

b

+
+

+
 

   

 

 

= 








+
−

+
−

+
+

badc
c

dc

cb 11  

 

 

)(2 dc

dcba

+
+++≥  

 

 

             








+
−

+
+−

badc
dc

11
)(  

               

 

2

1

)(2
−

+
++

+
+=

ba

dc

dc

ba  

 

 

2

1

)(2
2 −

+
+⋅

+
+≥

ba

dc

dc

ba  

 

 

2

1
2 −= , 

 

 

where the AM-GM inequality was used to 

get the last inequality. Tracing the equality 

conditions, we need b + c = a + d,  c = c + 

d  and  a +  b = 2 c.  So the minimum 

2/12 − is attained, for example, when  

a = 2 +  1,  b =  12 − , c = 2,  d = 0. 

 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 5) and  
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 7). 
 

Problem 155.  We are given 1997 

distinct positive integers, any 10 of 

which have the same least common 

multiple. Find the maximum possible 

number of pairwise relatively prime 

numbers among them. (Source: 1997 

Hungarian Math Olympiad) 
 
Solution.  Antonio LEI (Colchester 
Royal Grammar School, UK, Year 12) 
and WONG Wing Hong (La Salle 
College, Form 5). 
 

The answer is 9.  Suppose there were 10 

pairwise relatively prime numbers 

1021
,,, aaa l

among them. Being 

pairwise relatively prime, their least 

common multiple is their product M. 

Then the least common multiple of 

102 ,,, aab l
 for any other b in the set is 

also M. Since 
1

a is relatively prime to 

each of ,,,
102 aa l

 so  b is divisible by 

.
1

a  Similarly, b is divisible by the other 

.ia  Hence b is divisible by M. Since M is a 

multiple of b, so b = M, a contradiction to 

having 1997 distinct integers. 

 

To get an example of 9 pairwise relatively 

prime integers among them, let 
np  be the 

n-th prime number, 
ii pa =  (for i = 1, 2, 

l , 8), 
19881099 pppa m= and  

 

            ii ppppb /
198821

m=  

 

for  i = 1, 2, l , 1988. It is easy to see that 

the 
ia ’s are pairwise relatively prime and 

any 10 of these 1997 numbers have the same 

least common multiple. 
 
Other commended solvers: SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 7). 

 
 

 

Olympiad Corner 
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Problem 3. (cont.) 

 

                  
1

1
2 −+
−+

aa

aa
n

m

  

 

is an integer. 

 

Problem 4. Let n be an integer greater than 

1. The positive divisors of n are 

kddd ,,, 21
l

 where     

        .1 21
nddd k =<<<= m  

Define    

.
13221 kk ddddddD −+++= m  

 

(a) Prove that .2nD <  

(b)  Determine all n for which D is a divisor 

of .2n  
 

Problem 5. Find all functions f from the 

set ℝ of real numbers to itself such that  

         ( )( ))()()()( tfyfzfxf ++  

     )()( yzxtfztxyf ++−=  

for all x, y, z, t in ℝ.  
 

Problem 6. Let 
nΓΓΓ ,,, 21

l be circles 

of radius 1 in the plane, where n ≥  3. 

Denote their centers by 

nOOO ,,, 21
l respectively. Suppose 

that no line meets more than two of the 

circles. Prove that  

 

          .
4

)1(1

1

π−≤∑
≤<≤

n

OOnji ji

  

 
 

 

Mathematical Games (I) 

                            (Continued from page 2) 

                                      

Remarks. This method of proving is 

known as the method of infinite descent. 

It showed that you cannot always 

decrease a quantity when it can only 

have finitely many possible values.  

 

Example 7. (1961 All-Russian Math 

Olympiad) Real numbers are written in 

an nm ×  table. It is permissible to 

reverse the signs of all the numbers in 

any row or column. Prove that after a 

number of these operations, we can 

make the sum of the numbers along 

each line (row or column) nonnegative. 

 

Solution. Let S be the sum of all the mn 

numbers in the table. Note that after an 

operation, each number stay the same 

or turns to its negative. Hence there are 

at most mn2  tables. So S can only have 

finitely many possible values. To make 

the sum of the numbers in each line 

nonnegative, just look for a line whose 

numbers have a negative sum. If no 

such line exists, then we are done. 

Otherwise, reverse the sign of all the 

numbers in the line. Then S increases. 

Since S has finitely many possible 

values, S can increase finitely many 

times. So eventually the sum of the 

numbers in every line must be 

nonnegative. 

 

Example 8. Given 2n points in a plane 

with no three of them collinear. Show 

that they can be divided into n pairs 

such that the n segments joining each 

pair do not intersect. 

 

Solution. In the beginning randomly 

pair the points and join the segments. 

Let S be the sum of the lengths of the 

segments. (Note that since there are 

finitely many ways of connecting 2n 

points by n segments, there are finitely 

many possible values of S.) If two 

segments AB and CD intersect at O, 

then replace pairs AB and CD by AC 

and BD. Since 

 

     AB + CD = AO + OB + CO + OD 

                     >  AC + BD 

 

by the triangle inequality, whenever 

there is an intersection, doing this 

replacement will always decrease S. 

Since there are only finitely many 

possible values of S, so eventually 

there will not be any intersection. 
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Olympiad 

 

Problem 1.  Let S be a subset of {1, 2, 

…, 9}, such that the sums formed by 

adding each unordered pair of distinct 

numbers from S are all different.  For 

example, the subset {1, 2, 3, 5} has this 

property, but {1, 2, 3, 4, 5} does not, since 

the pairs {1, 4} and {2, 3} have the same 

sum, namely 5.  What is the maximum 

number of elements that S can contain? 
 

Problem 2.  Call a positive integer n 

practical if every positive integer less 

than or equal to n can be written as the 

sum of distinct divisors of n. 

For example, the divisors of 6 are 1, 2, 3, 

and 6.  Since 

1 = 1,     2 = 2,     3 = 3,     4 = 1 + 3, 

5 = 2 + 3,     6 = 6 

we see that 6 is practical. 

Prove that the product of two practical 

numbers is also practical. 
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考慮形狀如 m2 + 1 的正整數，如
果它是質數，則 m 一定是 2 的正次幕。
否則的話，設 m = n2 s，其中 s 是 3 或
以上的奇數，我們有 m2 + 1 = sn22 + 1 = 

221222 )2()2)((12( 1)2( −− −+=+ sss nnnn

)1±+L ，容易看到 m2 + 1 分解成兩個
正 因 子 的 積 。  業 餘 數 學 家 費 馬
(1601-1665)曾經考慮過以下這些“費
馬”整數，設 122 +=

n

nF , ... ,2 ,1 ,0=n ， 
費馬看到 312

02
0 =+=F ， 12

12
1 +=F  

= 5， 1712
22

2 =+=F ， =+= 12
32

3F  
257， 6553712

42
4 =+=F ，都是質數，

(最後一個是質數，需要花些功夫證
明），他據此而猜想，所有形如 122 +

n

的
正整數都是質數。 

不幸的是，大概一百年後，歐拉
(1707 – 1783)發現， 5F 不是質數，事實
上，直到現在，已知的 nF ， 5n ≥ ，都
不是質數。對於 5F 不是質數，有一個
簡單的證明。事實上 =+= 44 25641  

125 7 +× ，因此 641 整除 4 4 28(5 2 )2+ = 
4 285 2× 322+ 。另一方面，由於 641 = 5 

127 +× ，因此 641 也整除 (5 72× +1) 

×=−× 27 5)125( 1214 − ，由此，得到
641 整 除 =+×−× )125( )125( 142142  

×45 1228 − 。最後 641 整除 284 25 ×  
322+  和 125 284 −× 之 差 ， 即 是

5
32 12 F=+ 。 

這個證明很簡潔，但並不自然，首
先，如何知道一個可能的因子是 641，
其二，641 能夠寫成兩種和式，實有點
幸運。或許可以探究一下，歐拉是怎樣
發現 5F 不是質數。我們相信大概的過
程是這樣的，歐拉觀察到，如果p是 nF = 

122 +
n

的質因子，則 p 一定是 12 +⋅ nk  + 

1 的形式。用模算術的言語，如果 p 整
除 122 +

n

，則 ),(mod122 p
n

−≡ 取平方， 

得出 )(mod 12
12 p

n

≡
+

。另外，用小費
馬 定 理 ，（ 歐 拉 時 已 經 存 在 ）， 知

)(mod 12 1 pp ≡− 。如果 d 是最小的正整
數，使得 )(mod 12 pd ≡ ，可以證明（請
自証），d 整除 p – 1，也整除 12 +n ，但
d 不整除 n2 ，（因為 ))(mod 122 p

n

−≡ ，
所以 12 += nd ，再因 d 整除 p – 1 ，所
以 121 +⋅=− nkp ，或者 12 1 +⋅= +nkp 。 
（如果用到所謂的二次互反律，還可以
證明，p 實際上是 12 2 +⋅ +nk 的形式。） 

例如考慮 4F ，它的質因子一定是
32k + 1 的形式，取 k = 1, 2, …, 等，得
可 能 的 因 子 是 97, 193 ，（ 小 於

65537 ，以 32k + 1 形式出現的質
數）。但 97 和 193 都不整除 65537，所
以 65537 是質數。另外， 5F 的質因子
一定是 64k + 1 的形式，取 k = 1, 2, …,

等，得可能的因子是 193, 257, 449, 577, 

641, …,經幾 次嘗試，得出 =+12
52  

4294967297 = 641× 6700417，這樣快就
找出 5F 的一個質因子，也算幸運，事
實上第二個因子也是質數，不過要證明
就比較麻煩。 

但是如果試圖用這樣的方法找尋
其他費馬數的因子，很快就遇上問
題。舉例說， 12

62
6 +=F 是一個二十

位 數 ， 它 的 平 方 根 是 一 個 十 位 數
)1029.4( 9×≈ ，其中形狀如 72⋅k  + 1 = 

128k + 1 的數有三百多萬個，要從中找
尋 6F 的因子，可不是易事。讀者可以
想像一下， 5F 的完全分解歐拉在 1732

年已找到，而在一百年後 Landry 和 Le 

Lasseur (1880) 才 找 到 6F 的 完 全 分
解 ， 再 過 約 一 百 年 ，  Morrison 和
Brillhart (1970) 發現 7F 的完全分解，
因此找尋費馬數的因子分解肯定不是
易事。另一方面由於找尋費馬數不是 
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易事，Pepin在1877年找到費馬數是否質
數的一個判斷：N > 3是一個形如 122 +

n

的費馬數，則N是質數的一個充分必須 

條件是 )(mod 1  3 2
1

N
N

−≡
−

。 考慮到 

2

1−N 122 −=
n

，因此是對3不斷取平方, 

然後求對 N 的摸。近代對求費馬數是否
一個質數上，許多都以此為起點。也因
此，曾經有一段長時間，已經知道 7F 不
是質數，但它的任一因子都不知道。 

再簡述一下近代的結果，現在已知
由 5F 至 11F ，都是合數，並且已完全分
解。 151312 ,, FFF 至 19F 是合數，並且知
道部分因子。但 14F , 20F , 22F 等，知道
是合數，但一個因子也不知道。最大的
費 馬 合 數 ， 並 且 找 到 一 個 因 子 的 是

382447F ，讀者可想像一下，如果以十進
制形式寫下這個數，它是多少個位數。
另外如 353433 ,, FFF 等，究竟是合數或質
數，一點也不知道。有興趣的話，可參
考網頁 
http://www.fermatsearch.org/status.htm。 

由於費馬數和相關的數有特定的
形式，而且具備很多有趣的性質,因此也
常在競賽中出現。舉例如下： 

例一： 給定費馬數 ,,...,, 10 nFFF 有以下

的關係 nn FFFF =+− 2110 L 。 

證明： 事實上 21212 22 +−=+=
nn

nF  

2)12)(12(212
111 2222 +−+=+−=
−−− nnn

2)12( 1
2 1

+−= −
−

nF
n

。 

對於 12
12 −
−n

，可以再分解下去，就可
以得到要求的結果。當然嚴格證明可以
用歸納法。 

例二： 給定費馬數 ,, nm FF  m > n，則 

nm FF ,  是互質的。 
證明： 因為 01 FFFF nmm LL−= + 2。
設 d 整除 mF  和 nF , 則 d 也 整除2，所
以d = 1或2。但 2≠d ，因為 nm FF , 都是
奇數，因此 d = 1，即 nm FF , 互質。 

(因此知道， ,...,, 210 FFF , 是互質的，即
他們包括無限多數個質因子，引申是有
無限多個質數。) 

例三： 有無限多個 n，使得 2+nF 不是
質數。 
證明： 只要嘗試幾次就可以觀察到 1F + 

2 = 7, 3F + 2 = 259, 都是7的倍數。事實
上，對於n = 0, 1, 2, …, ≡

n22 2, 4, 2, 4, … 

(mod 7)。因此對於奇數n, nF + 2 
n22≡ + 

1 + 2 4≡ + 1 + 2 0≡  (mod 7)， 

所以不是質數。 

另一個容易看到的事實是： 

例四： 對於 n > 1, nF 最尾的數字是 7。 

證明: 對於 n > 1, n2 是 4 的倍數，設 n2  
= 4k, 得 kk

n

n

F )2(1212 442 =+=+= + 1 

)5(mod 211 ≡+≡ k 。因此 nF 最尾的數字
是 2 或 7，它不可以是 2，因為 nF 不是
偶數。 

例五： 證明存在一個正整數 k，使得對
任何正整數 n， 12 +⋅ nk 都不是質數。 

（如果n固定，但容許k在正整數中變
動，由一個重要的定理 (Dirichlet) 知道
在序列中存在無限多個質數。但若果k

固定,而n變動,在序列中究竟有多少個質
數，是否無限多個，一般都不大清楚。
事實上，反可以找到一個k，對於任何正
整數n， 12 +⋅ nk 都不是質數。這原是波
蘭數學家Sierpinski (1882-1969)的一個
結果，後來演變成美國數學奧林匹克
(1982)的一個題目，直到現在，基本是
只有一種證明方法，並且與費馬數有
關。） 

(續於第四頁) 

  

The 2002 Hong Kong IMO team at the Hong Kong Chek Lap Kok Airport taken on August 1, 2002.  From left to right, Chau Suk Ling, 

Chao Khek Lun, Cheng Kei Tsi, Chiang Kin Nam (Deputy Leader), Yu Hok Pun, Ip Chi Ho, Leung Wai Ying, Li Kin Yin (Leader).   
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  

Solutions should be preceded by the 

solver’s name, home (or email) 

address and school affiliation.  Please 

send submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is December 15, 2002. 
 

Problem 161.  Around a circle are 

written all of the positive integers from 

1 to N, N ≥  2, in such a way that any 

two adjacent integers have at least one 

common digit in their base 10 

representations.  Find the smallest N 

for which this is possible. 
 

Problem 162.  A set of positive 

integers is chosen so that among any 

1999 consecutive positive integers, 

there is a chosen number.  Show that 

there exist two chosen numbers, one of 

which divides the other. 
 

Problem 163.  Let a and n be integers.  

Let p be a prime number such that p > 

|a| + 1.  Prove that the polynomial f (x) 

= xn + ax + p cannot be a product of two 

nonconstant polynomials with integer 

coefficients.  
 

Problem 164.  Let O be the center of 

the excircle of triangle ABC opposite A.  

Let M be the midpoint of AC and let P 

be the intersection of lines MO and BC.  

Prove that if ∠BAC = 2∠ACB, then AB 

= BP.  

 

Problem 165.  For a positive integer n, 

let S(n) denote the sum of its digits.  

Prove that there exist distinct positive 

integers n1, n2, …, n50 such that  

. )(

)()(

5050

2211

nSn

nSnnSn

+=
=+=+ L

 

 

***************** 

Solutions 

***************** 
 

Problem 156.  If  a, b, c > 0 and 

,3222 =++ cba  then prove that 

.
2

3

1

1

1

1

1

1
≥

+
+

+
+

+ cabcab
 

(Source: 1999 Belarussian Math 

Olympiad) 
 
Solution.  SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7) and WONG 
Wing Hong (La Salle College, Form 5). 
 

By the AM-GM and AM-HM inequalities, 

we have  

cabcab +
+

+
+

+ 1

1

1

1

1

1  

2
1

1

2
1

1

2
1

1

222222 accbba +
+

+
+

+

+
+

+

≥
 

.
2

3

3

9

222
=

+++
≥

cba

 

Other commended solvers: CHAN Wai 
Hong (STFA Leung Kau Kui College, 
Form 7), CHAN Yat Fei (STFA Leung 
Kau Kui College, Form 6), CHEUNG Yun 
Kuen (Hong Kong Chinese Women’s Club 
College, Form 5), CHU Tsz Ying (St. 
Joseph’s Anglo-Chinese School, Form 7), 
CHUNG Ho Yin (STFA Leung Kau Kui 
College, Form 6), KWOK Tik Chun 
(STFA Leung Kau Kui College, Form 5), 
LAM Ho Yin (South Tuen Mun 
Government Secondary School, Form 6), 
LAM Wai Pui (STFA Leung Kau Kui 
College, Form 6), LEE Man Fui (STFA 
Leung Kau Kui College, Form 6),Antonio 
LEI (Colchester Royal Grammar School, 
UK, Year 12), LO Chi Fai (STFA Leung 
Kau Kui College, Form 7), POON Ming 
Fung (STFA Leung Kau Kui College, 
Form 5), TAM Choi Nang Julian (SKH 
Lam Kau Mow Secondary School, teacher), 
TANG Ming Tak (STFA Leung Kau Kui 
College, Form 6), TANG Sze Ming (STFA 
Leung Kau Kui College, Form 5), YAU 
Chun Biu and YIP Wai Kiu (Jockey Club 
Ti-I College, Form 5) and Richard 
YEUNG Wing Fung (STFA Leung Kau 
Kui College, Form 5). 
 

Problem 157.  In base 10, the sum of the 

digits of a positive integer n is 100 and of 

44n is 800.  What is the sum of the digits 

of 3n?  (Source: 1999 Russian Math 

Olympiad) 
 
Solution. CHAN Wai Hong (STFA Leung 
Kau Kui College, Form 7), CHAN Yat Fei 
(STFA Leung Kau Kui College, Form 6), 
Antonio LEI (Colchester Royal Grammar 
School, UK, Year 12), LO Chi Fai (STFA 
Leung Kau Kui College, Form 7), POON 
Ming Fung (STFA Leung Kau Kui 
College, Form 5), SIU Tsz Hang (STFA 
Leung Kau Kui College, Form 7), TANG 
Ming Tak (STFA Leung Kau Kui College, 
Form 6), and WONG Wing Hong (La 
Salle College, Form 5). 
 

Let S(x) be the sum of the digits of x in 

base 10.  For digits a and b, if a + b > 9, 

then S(a + b) = S(a ) + S(b) – 9.  Hence, 

if we have to carry in adding x and y, 

then S(x + y) < S(x) + S(y).  So in 

general, S(x + y) ≤  S(x) + S(y).  By 

induction, we have S(kx) ≤  kS(x) for 

every positive integer k.  Now 

)40()44(800 nnSnS +==  

        )4(2)4()40( nSnSnS =+≤  

        .800)(8 =≤ nS  

Hence equality must hold throughout 

and there can be no carry in computing 

4n = n + n + n + n.  So there is no carry 

in 3n = n + n + n and S(3n) = 300. 
 
Other commended solvers: CHU Tsz 
Ying (St. Joseph’s Anglo-Chinese 
School, Form 7). 
 

Problem 158.  Let ABC be an isosceles 

triangle with AB = AC.  Let D be a 

point on BC such that  BD = 2DC and 

let P be a point on AD such that ∠BAC 

= ∠BPD.  Prove that   

∠BAC = 2∠DPC. 

(Source: 1999 Turkish Math Olympiad) 
 
Solution.  LAM Wai Pui (STFA Leung 
Kau Kui College, Form 6), POON 
Ming Fung (STFA Leung Kau Kui 
College, Form 5), SIU Tsz Hang (STFA 
Leung Kau Kui College, Form 7) , 
WONG Wing Hong (La Salle College, 
Form 5) and Richard YEUNG Wing 
Fung (STFA Leung Kau Kui College, 
Form 5). 
 

Let E be a point on AD extended so that 

PE=PB.  Since ∠CAB=∠EPB and 

CA/AB=1=EP/PB, triangles CAB and 

EPB are similar.  Then ∠ACB=∠PEB, 

which implies A, C, E, B are concyclic. 

So ∠AEC=∠ABC=∠AEB.  Therefore, 

AE bisects ∠CEB. 
 

Let M be the midpoint of BE.  By the 

angle bisector theorem, CE/EB = 

CD/DB = 1/2.  So CE = ½EB = ME.  

Also, PE = PE and PE bisects ∠CEM.  

It follows triangles CEP and MEP are 

congruent.  Then ∠BAC = ∠BPE = 

2∠MPE = 2∠CPE = 2∠DPC. 
 
Other commended solvers: CHAN Yat 
Fei (STFA Leung Kau Kui College, 
Form 6), CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form 5) and Antonio LEI (Colchester 
Royal Grammar School, UK, Year 13). 
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Problem 159.  Find all triples (x, k, n) 

of positive integers such that  

.13 nk x=−  

(Source: 1999 Italian Math Olympiad) 

Solution.  (Official Solution) 

For n = 1, the solutions are (x, k, n) = 

(3k  
– 1, k, 1), where k is for any positive 

integer.  

For n > 1, if n is even, then 11 ≡+n
x  

or 2 (mod 3) and hence cannot be 3k ≡  

0 (mod 3).  So n must be odd.  Now 

1+nx  can be factored as  

)1)(1( 21 ++−+ −− Lnn xxx . 

If 3k = xn + 1, then both of these factors 

are powers of 3, say they are 3s, 3t, 

respectively.  Since 

x + 1 ≤  xn–1 – xn–2 + 1+L , 

so s ≤  t .  Then 

0 ≡  3t ≡  (–1)n–1 – (–1)n–2 + 1+L  

               = n (mod x + 1) 

implying n is divisible by x + 1 (and 

hence also by 3).  Let .3/nxy =   Then 

3k = y3 + 1 = (y + 1) (y2 – y + 1). 

So y + 1 is also a power of 3, say it is 3r.  

If r = 1, then y = 2 and (x, k, n) = (2, 2, 3) 

is a solution.  Otherwise, r > 1 and 

3k = y3 + 1 = 33r – 32r+1 + 3r+1 

is strictly between 33r–1 and 33r, a 

contradiction. 
 
Other commended solvers:  LEE Pui 
Chung (Wah Yan College, Kowloon, 
Form 7), LEUNG Chi Man (Cheung Sha 
Wan Catholic Secondary School, Form 6), 
POON Ming Fung (STFA Leung Kau 
Kui College, Form 5) and SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 7). 
 

Problem 160.  We are given 40 

balloons, the air pressure inside each of 

which is unknown and may differ from 

balloon to balloon.  It is permitted to 

choose up to k of the balloons and 

equalize the pressure in them (to the 

arithmetic mean of their respective 

pressures.)  What is the smallest k for 

which it is always possible to equalize 

the pressures in all of the balloons?  

(Source:1999 Russian Math Olympiad) 
 
Solution.  CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form 5) and Antonio LEI (Colchester 
Royal Grammar School, UK, Year 13). 

For k = 5, it is always possible.  We 

equalize balloons 1 to 5, then 6 to 10, and 

so on (five at time).  Now take one balloon 

from each of these 8 groups.  We have 

eight balloons, say a, b, c, d, e, f, g, h.  We 

can equalize a, b, c, d, then e, f, g, h, 

followed by a, b, e, f and finally c, d, g, h.  

This will equalize all 8 balloons.  Repeat 

getting one balloon from each of the 8 

groups for 4 more times, then equalize 

them similarly.  This will make all 40 

balloons having the same pressure. 

For k < 5, it is not always possible.  If the 

i-th balloon has initial pressure pi = πi, 

then after equalizing operations, their 

pressures will always have the form c1 p1 

+ +L  c40 p40 for some rational numbers 

c1, …, c40.  The least common multiple of 

the denominators of these rational 

numbers will always be of the form 2r 3s 

as k = 1, 2, 3 or 4 implies we can only 

change the denominators by a factor of 2, 

3 or 4 after an operation.  So c1, …, c40 can 

never all be equal to 1/40. 

 
 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 3.  Prove that for all positive 

real numbers a, b, and c, 

cba
ab

c

ca

b

bc

a
++≥++

333

 

and determine when equality occurs. 
 

Problem 4.  Let Γ  be a circle with 

radius r.  Let A and B be distinct points on 

Γ  such that AB < r3 .  Let the circle 

with center B and radius AB meet Γ  again 

at C.  Let P be the point inside Γ  such 

that triangle ABP is equilateral.  Finally, 

let the line CP meet Γ  again at Q.  Prove 

that PQ = r. 
 

Problem 5.  Let N = {0, 1, 2, …}.  

Determine all functions NNf →:  such 

that  

)()()()( 22 yxfyxxyfyxf ++=+  

for all x and y in N. 

 

 
 

簡 介 費 馬 數 

(續第二頁) 

證明：（證明的起點是中國餘式定
理，設 rmmm ,...,, 21 是互質的正整
數， raaa ,...,, 21 是任意整數，則方程
組 ),(mod),(mod 2211 maxmax ≡≡  
…, x )(mod rr ma≡ ,有解。並且其解
對於模 rmmmm L21= 唯一。現在考
慮到任意正整數 n，都可以寫成 qh2

的形式，其中 q 是奇數。如果能夠選
擇 k，使得 ),12(mod 1,1 2 +≡>

h

kk

則 qqn hh

kk )2)(1(1212 22 ≡+⋅=+⋅  
hq 22(mod01)1(1)1)(1(1 ≡+−≡+−≡+

 +1)，所以 12 +nk 不是質數。留意到
這裡用到 q 是奇數的性質。不過，如
果這樣做的話，h 會因 n 而變，而 k

隨 h 而變，這是不容許的，k 要在起
先之前決定，而不受 n 影響。） 
解決的方法是這樣的，我們可以先選
擇 k，使得 )12(mod 1  ,1 2 +≡>

h

kk ，
其中 h = 0, 1, 2, 3, 4。這是可能的，
因為我們知道 3210 ,,, FFFF 和 4F 是
不同的質數。這樣的話，可以證明對
於所有 qn h2= ，其中 h < 5， q 是奇
數 ， 12 +⋅ nk 都 不 是 質 數 。 對 於

qn h2= , 5≥h ，又可以怎樣處理
呢。留意到所有這樣的數，都可以寫
成 mqn h 522 == 的形式，其中 m 可
以是奇數，也可以是偶數。另一方
面，我們知道

52
5 2=F + 1 = (641) ×  

(6700417) ，其中 P = 641 ，  Q = 

6700417 是不同的質數。如果我們選
擇 k，使得 k > 1，和 )(mod 1 Pk −≡ ，

)(mod 1 Qk ≡ ，則 1212
52 +=+ mn kk  

m)2)(1(
52−≡ + 1 m)1)(1( −−≡ + 1 ≡  

)(mod 1)1( 1 Pm +− + ，另一方面 +nk2  
mmmk )1(1)2)(1(121

55 22 −≡+≡+=  
+ 1(mod Q)。如果 m 是偶數，則

12 +nk 是 P 的倍數，如果 m 是奇數，
則 12 +nk 是 Q 的倍數，因此都不是
質數。歸納言之，選擇 k，使得

)(mod 1 xk ≡ , x = 3, 5, 17, 257, 65537, 

6700417, )641(mod 1−≡k ，則對於
所有形如 12 +nk 的數，都不是質
數。（最後要留意的是，這方程組的
最小正整數解不可能是 1，因此所有
的 12 +nk ，都不是質數。） 



 

Volume 7, Number 5 December 2002 – January 2003 

 

Mathematical Games (II) 
Kin Y. Li 

 

Olympiad Corner 
 
The 19th Balkan Mathematical Olympiad  

was held in Antalya, Turkey on April 27, 

2002. The problems are as follow. 
 

Problem 1. Let A1, A2, …, An  (n ≥  4) be 

points on the plane such that no three of 

them are collinear. Some pairs of distinct 

points among A1, A2, …, An are connected 

by line segments in such a way that each 

point is connected to three others. Prove 

that there exists k > 1 and distinct points 

X1, X2, …, X2k  in { A1, A2, …, An } so that 

for each 1 ≤  i ≤ 2k−1, Xi is connected to 

Xi+1 and X2k is connected to X1. 

  

Problem 2.  The sequence a1, a2, …, an, 

… is defined by a1 = 20, a2 = 30, an+2 = 

3an+1−an, n > 1. Find all positive integers 

n for which 1+5anan+1 is a perfect square. 
 

Problem 3. Two circles with different 

radii intersect at two pints A and B. The 

common tangents of these circles are MN 

and ST where the points M, S are on one 

of the circles and N, T are on the other. 

Prove that the orthocenters of the 

triangles AMN, AST, BMN and BST are 

the vertices of a rectangle. 
  
  

(continued on page 4) 
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     There are many mathematical game  

problems involving strategies to win or 

to defend. These games may involve 

number theoretical properties or 

combinatorial reasoning or geometrical 

decomposition. Some games may go on 

forever, while some games come to a 

stop eventually. A winning strategy is a 

scheme that allows a player to make 

moves to win the game no matter how 

the opponent plays. A defensive 

strategy cuts off the opponent’s routes 

to winning. The following examples 

illustrate some standard techniques. 

 

Examples 1. There is a table with a 

square top. Two players take turn 

putting a dollar coin on the table. The 

player who cannot do so loses the game. 

Show that the first player can always 

win. 

 

Solution. The first player puts a coin at 

the center. If the second player can 

make a move, the first player can put a 

coin at the position symmetrically 

opposite the position the second player 

placed his coin with respect to the 

center of the table. Since the area of the 

available space is decreasing, the game 

must end eventually. The first player 

will win. 

 

Example 2. (Bachet’s Game) Initially, 

there are n checkers on the table, where 

n > 0. Two persons take turn to remove 

at least 1 and at most k checkers each 

time from the table. The last person who 

can remove any checker wins the game. 

For what values of n will the first person 

have a winning strategy? For what 

values of n will the second person have 

a winning strategy? 

 

Solution. By testing small cases of n, 

we can easily see that if n is not a 

multiple of k + 1 in the beginning, then 

the first person has a winning strategy, 

otherwise the second person has a 

winning strategy. 

To prove this, let n be the number of 

checkers on the table. If n = (k +1)q + r  

with 0 < r < k + 1, then the first person 

can win by removing r checkers each 

time. (Note r > 0 every time at the first 

person’s turn since in the beginning it is 

so and the second person starts with a 

multiple of k + 1 checkers each time and 

can only remove 1 to k checkers.) 

 

However, if n is a multiple of k + 1, then 

no matter how many checkers the first 

person takes, the second person can now 

win by removing r checkers every time. 

 

Example 3. (Game of Nim) There are 3 

piles of checkers on the table. The first, 

second and third piles have x, y and z 

checkers respectively in the beginning, 

where x, y, z > 0. Two persons take turn 

choosing one of the three piles and 

removing at least one to all checkers in 

that pile each time from the table. The 

last person who can remove any checker 

wins the game. Who has a winning 

strategy? 

 

Solution. In base 2 representations, let 
 

   x  =  (a1a2…an)2,   y  =  (b1b2…bn)2, 

   z   =  (c1c2…cn)2,    N =  (d1d2…dn)2,  
 

where di  ≡ ai + bi + ci  (mod 2). The first 

person has a winning strategy if and only 

if N is not 0, i.e. not all di’s are 0. 
 

 To see this, suppose N is not 0. The 

winning strategy is to remove checkers 

so N becomes 0. When the di’s are not all 

zeros, look at the smallest i such that di 

=1, then one of ai, bi,, ci equals 1, say ai = 

1. Then remove checkers from the first 

pile so that  x = (eiei+1…en)2 checkers are 

left, where ej = aj if dj = 0, otherwise ej = 

1 – aj. 

 

(For example, if x = (1000)2 and N = 

(1001)2, then change x to (0001)2 .) After 

the move, N becomes 0. So the first 

person can always make a move. The 

second person will always have N = 0 at 

his turn and making any move will result 
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in at least one di not 0, i.e. N≠ 0. As the 

number of checkers is decreasing, 

eventually the second person cannot  

make a move and will lose the game. 
 

Example 4.  Twenty girls are sitting 

around a table and are playing a game 

with n cards. Initially, one girl holds all 

the cards. In each turn, if at least one 

girl holds at least two cards, one of 

these girls must pass a card to each of 

her two neighbors. The game ends if 

and only if each girl is holding at most 

one card. 

 

(a) Prove that if n ≥ 20, then the game 

cannot end. 

(b) Prove that if n < 20, the game must 

end eventually. 

 

Solution. (a) If n > 20, then by the 

pigeonhole principle, at every moment 

there exists a girl holding at least two 

cards. So the game cannot end.   

 

If n = 20, then label the girls G1, G2, …, 

G20 in the clockwise direction and let 

G1 be the girl holding all the cards 

initially. Define the current value of a 

card to be i if it is being held by Gi. Let 

S be the total value of the cards. 

Initially, S = 20.  

 

Consider before and after Gi passes a 

card to each of her neighbors. If i = 1, 

then S increases by − 1 − 1 + 2 + 20=20. 

If 1 < i < 20, then S does not change 

because − i − i + ( i − 1) + ( i + 1) = 0. If 

i = 20, then S decreases by 20 because 

− 20 − 20 + 1 + 19 = −20. So before and 

after moves, S is always a multiple of 

20. Assume the game can end. Then 

each girl holds a card and S = 1 + 2 + ⋯ 

+ 20 = 210, which is not a multiple of 

20, a contradiction. So the game cannot 

end. 

 

(b) To see the game must end if n < 20, 

let’s have the two girls sign the card 

when it is the first time one of them 

passes card to the other. Whenever one 

girl passes a card to her neighbor, let’s 

require the girl to use the signed card 

between the pair if available. So a 

signed card will be stuck between the 

pair who signed it. If n < 20, there will 

be a pair of neighbors who never 

signed any card, hence never exchange 

any card. 

 

    If the game can go on forever, record 

the number of times each girl passed 

cards. Since the game can go on 

forever, not every girl passed card finitely 

many time. So starting with a pair of girls 

who have no exchange and moving 

clockwise one girl at a time, eventually 

there is a pair Gi and Gi+1 such that  Gi 

passed cards finitely many times and Gi+1 

passed cards infinitely many times. This is 

clearly impossible since Gi will eventually 

stopped passing cards and would keep on 

receiving cards from Gi+1. 

 

Example 5. (1996 Irish Math Olympiad) 

On a 5 × 9 rectangular chessboard, the 

following game is played. Initially, a 

number of discs are randomly placed on 

some of the squares, no square containing 

more than one disc. A turn consists of 

moving all of the discs subject to the 

following rules: 

 

(i) each disc may be moved one square up, 

down, left or right; 

(ii) if a disc moves up or down on one turn, 

it must move left or right on the next turn, 

and vice versa; 

(iii) at the end of each turn, no square can 

contain two or more discs. 

 

The game stops if it becomes impossible 

to complete another turn. Prove that if 

initially 33 discs are placed on the board, 

the game must eventually stop. Prove also 

that it is possible to place 32 discs on the 

board so that the game can continue 

forever. 

  

Solution. If 32 discs are placed in the 

lower right 4 × 8 rectangle, they can all 

move up, left, down, right, repeatedly and 

the game can continue forever.  

 

To show that a game with 33 discs must 

stop eventually, label the board as shown 

below: 

 

   1     2     1     2      1     2     1     2     1    

   2     3     2     3      2     3     2     3     2 

   1     2     1     2      1     2     1     2     1         

   2     3     2     3      2     3     2     3     2 

   1     2     1     2      1     2     1     2     1         

 

Note that there are only eight squares 

labeled with 3’s. A disc on 1 goes to a 3 

after two moves, a disc on 2 goes to a 1 or 

3 immediately, and a disc on 3 goes to a 2 

immediately. Thus if k discs start on 1 and 

k > 8, the game stops because there are not 

enough 3’s to accommodate these discs 

after two moves. Thus we assume k ≤ 8, in 

which case there are at most sixteen discs 

on squares with 1’s or 3’s at the start, and 

at least seventeen discs on squares with 

2’s. Of these seventeen discs, at most eight 

can move onto squares with 3’s after 

one move, so at least nine end up on 

squares with 1’s. These discs will not 

all be able to move onto squares with 

3’s two moves later. So the game must 

eventually stop. 

 

Example 6. (1995 Israeli Math 

Olympiad) Two players play a game on 

an infinite board that consists of 1 × 1 

squares. Players I chooses a square and 

marks it with an O. Then, player II 

chooses another square and marks with 

an X. They play until one of the players 

marks a row or a column of five 

consecutive squares, and this player 

wins the game. If no player can achieve 

this, the game is a tie.  Show that player 

II can prevent player I from winning. 

 

Solution: Label the squares as shown 

below.  

 

       ⋮  ⋮   ⋮  ⋮  ⋮   ⋮  ⋮  ⋮ 

   ⋯  1    2    3    3    1    2    3    3  ⋯ 

    ⋯  1    2    4    4    1    2    4    4  ⋯ 

   ⋯   3    3    1    2    3    3   1    2  ⋯ 

    ⋯  4    4    1    2    4    4    1    2  ⋯ 

   ⋯  1    2    3    3    1    2    3    3  ⋯ 

    ⋯  1    2    4    4    1    2    4    4  ⋯ 

   ⋯   3    3    1    2    3    3   1    2  ⋯ 

    ⋯  4    4    1    2    4    4    1    2  ⋯ 

       ⋮   ⋮  ⋮  ⋮   ⋮  ⋮  ⋮   ⋮ 

 

 

Note that each number occurs in a 

pair. The 1’s and 2’s are in vertical 

pairs and the 3’s and 4’s are in 

horizontal pairs. Whenever player I 

marks a square, player II will mark 

the other square in the pair. Since any 

five consecutive vertical or horizontal 

squares must contain a pair of these 

numbers, so player I cannot win. 
 

Example 7. (1999 USAMO) The Y2K 

Game is played on a 1 × 2000 grid as 

follow. Two players in turn write either 

an S or an O in an empty square. The 

first player who produces three 

consecutive boxes that spell SOS wins. 

If all boxes are filled without 

producing any SOS, then the game is a 

draw. Prove that the second player has 

a winning strategy. 

 

Solution. Call an empty square bad if 

playing an S or an O in that square will 

let the next player gets SOS in the next 

move. 
 
                             (continued on page 4) 

 



Mathematical Excalibur, Vol. 7, No. 5, Dec 02- Jan 03 Page 3

 
Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration. The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is January 26, 2003. 

 

Problem 166.  (Proposed by Ha Duy 

Hung, Hanoi University of Education, 

Hanoi City, Vietnam) Let a, b, c be 

positive integers, [x] denote the 

greatest integer less than or equal to x 

and min{x,y} denote the minimum of x 

and y.  Prove or disprove that   
 

c [a/b] – [c/a] [c/b]  ≤  c min{1/a, 1/b}. 

 

Problem 167.  (Proposed by  José Luis 

Díaz-Barrero, Universitat Politècnica 

de Catalunya, Barcelona, Spain) Find 

all positive integers such that they are 

equal to the sum of their digits in base 

10 representation. 

 

Problem 168.   Let AB and CD be 

nonintersecting chords of a circle and 

let K be a point on CD. Construct (with 

straightedge and compass) a point P on 

the circle such that K is the midpoint of 

the part of segment CD lying inside 

triangle ABP. 

 

Problem 169.  300 apples are given, no 

one of which weighs more than 3 times 

any other. Show that the apples may be 

divided into groups of 4 such that no 

group weighs more than 11/2 times any 

other group. 

 

Problem 170.  (Proposed by 

Abderrahim Ouardini, Nice, France) 

For any (nondegenerate) triangle with 

sides a, b, c, let ∑’ h (a, b, c) denote the 

sum h (a, b, c) + h (b, c, a )+ h (c, a, b). 

Let  f (a, b, c) = ∑’ ﴾a / (b + c – a)﴿2 and 

g (a, b, c) =∑’ j(a, b, c), where j(a,b,c)= 

(b + c – a) / ))(( cbabac −+−+ . 

Show that f (a, b, c)≥ max{3,g(a, b, c)} 

and determine when equality occurs. 

(Here max{x,y} denotes the maximum 

of x and y.) 

 

 

***************** 

Solutions 

***************** 
 

Problem 161.  Around a circle are written 

all of the positive integers from 1 to N, N ≥ 

2, in such a way that any two adjacent 

integers have at least one common digit in 

their base 10 representations. Find the 

smallest N  for which this is possible. 

(Source: 1999 Russian Math Olympiad) 
 
Solution.  CHAN Wai Hong (STFA 
Leung Kau Kui College, Form 7), CHAN 
Yan Sau (True Light Girls’ College, Form 
6), CHAN Yat Fei (STFA Leung Kau Kui 
College, Form 6), CHEUNG Yun Kuen 
(Hong Kong Chinese Women’s Club 
College, Form 5), CHUNG Ho Yin 
(STFA Leung Kau Kui College, Form 6), 
LAM Wai Pui (STFA Leung Kau Kui 
College, Form 5), LEE Man Fui (STFA 
Leung Kau Kui College, Form 6), 
Antonio LEI (Colchester Royal 
Grammar School, UK, Year 13), LEUNG 
Chi Man (Cheung Sha Wan Catholic 
Secondary School, Form 6), SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 7) and 
Richard YEUNG Wing Fung (STFA 
Leung Kau Kui College, Form 5). 
 

Note one of the numbers adjacent to 1 is at 

least 11. So N ≥ 11. Then one of the 

numbers adjacent to 9 is at least 29. So N 

≥ 29. Finally  N = 29 is possible by 

writing 1, 11, 12,  2, 22, 23, 3, 13, 14, 4, 

24, 25, 5, 15, 16, 6, 26, 27, 7, 17, 18, 8, 

28, 29, 9, 19, 21, 20, 10 around a circle. 

Therefore, the smallest N is 29. 
 

Problem 162.  A set of positive integers is 

chosen so that among any 1999 

consecutive positive integers, there is a 

chosen number. Show that there exist two 

chosen numbers, one of which divides the 

other. (Source: 1999 Russian Math 

Olympiad) 
 

Solution.  SIU Tsz Hang (STFA Leung 

Kau Kui College, Form 7). 
 

Define A(1, i) = i for i=1,2,K , 1999. For 

k ≥  2, let B(k) be the product of A(k–1, 1), 

A(k–1, 2), K , A(k–1, 1999) and define 

A(k, i) = B(k) + A(k–1, i) for i = 1,2,K , 

1999. Since B(k) is a multiple of A(k–1, i), 

so A(k, i) is also a multiple of A(k–1, i). 

Then m < n implies A(n, i) is a multiple of 

A(m, i).  
 

Also, by simple induction on k, we can 

check that A(k, 1), A(k, 2), K , A(k, 1999) 

are consecutive integers. So for k = 1,2, 

K , 2000, among  A(k, 1), A(k, 2), K , 

A(k, 1999), there is a chosen number A(k, 

ik). Since  1 ≤ ik ≤ 1999, by the 

pigeonhole principle, two of the ik’s are 

equal. Therefore, among the chosen 

numbers, there are two numbers with 

one dividing the other.  
 
Comments: The condition “among any 
1999 consecutive positive integers, 
there is a chosen number” is meant to 
be interpreted as “among any 1999 
consecutive positive integers, there 
exists at least one chosen number.” The 
solution above covered this 
interpretation. 
 
Other commended solvers: CHAN 
Wai Hong (STFA Leung Kau Kui 
College, Form 7), CHAN Yat Fei (STFA 
Leung Kau Kui College, Form 6), 
CHEUNG Yun Kuen (Hong Kong 
Chinese Women’s Club College, Form 5) 
and Antonio LEI (Colchester Royal 
Grammar School, UK, Year 13). 

 

Problem 163.  Let a and n be integers.  

Let  p be a  prime number such that  p  

>  |a| + 1.  Prove  that  the  polynomial   

f (x) =  xn + ax + p cannot be the product 

of two nonconstant polynomials with 

integer coefficients. (Source: 1999 

Romanian Math Olympiad) 
 
Solution. SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7) and TAM 
Choi Nang Julian (SKH Lam Kau Mow 
Secondary School). 
 

 Assume  we have  f  ( x ) = g  ( x )  h  ( x ) , 

where  g (x) and h(x) are two nonconstant 

polynomials with integer coefficients. 

Since p = f  ( 0 ) = g ( 0 ) h ( 0 ) , we  have  

either   
 

         g  ( 0 ) = ±  p,    h ( 0 ) = ± 1  

  or   g  ( 0 ) = ± 1,     h ( 0 ) = ± p.  
 

Without loss of generality, assume g ( 0 ) 

= ± 1. Then g (x) = ± xm  +  ⋯ ± 1. Let  z1 , 

z2 , K , zm be the (possibly complex) 

roots of g (x). Since 1 = |g ( 0 )| = |z1| |z2| 

⋯|zm| , so  |zi|  ≤  1 for some i. Now  0 =  f 

( zi  ) = zi
n + azi + p implies  

 

p =  – zi
n – azi ≤  |zi|

n + |a| |zi| ≤  1 + |a|,  
 

a contradiction.  
 
Other commended solvers: FOK Kai 

Tung (Yan Chai Hospital No. 2 

Secondary School, Form 6). 

 

Problem 164.   Let O  be  the  center  of  

the excircle of triangle ABC opposite A. 

Let M be the midpoint of AC and let P 

be the intersection of lines MO and BC. 

Prove that if ∠BAC = 2∠ACB, then AB 

= BP.  (Source: 1999 Belarussian Math 

Olympiad) 
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Solution. SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7). 
 

Let AO cut BC at D and AP extended cut 

OC at E. By Ceva’s theorem (∆AOC and 

point P),  we have 

      

          .1=××
DA

OD

EO

CE

MC

AM  

 

Since AM = MC, we get OD/DA = 

OE/EC, which implies DE║AC. Then 

∠EDC = ∠DCA = ∠DAC = ∠ODE, 

which implies DE bisects ∠ODC. In 

∆ACD, since CE and DE are external 

angle bisectors at ∠C and ∠D 

respectively, so E is the excenter of  

∆ACD opposite A. Then AE bisects 

∠OAC so that ∠DAP = ∠CAP. 

Finally,  
 

     ∠BAP = ∠BAD + ∠DAP  

                  = ∠DCA + ∠CAP  

                  = ∠BPA.  
 

Therefore,  AB = BP. 
 
 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 5) and 
Antonio LEI (Colchester Royal 
Grammar School, UK, Year 13).   
 

Problem 165.  For a  positive  integer  

n,  let S (n) denote the sum of its digits. 

Prove that  there exist distinct positive 

integers n1, n2, …, n50 such that   
 
   L=+=+ )()( 2211 nSnnSn  
 
                       ).( 5050 nSn +=  
 
(Source: 1999 Polish Math Olympiad) 
 
Solution. SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7). 
 

We will prove the statement that for m > 1, 

there are positive integers n1 < n2 < ⋯ < 

nm such that all ni + S(ni ) are equal and 

nm is of the form 10⋯08 by induction. 
 

For the case m = 2, take n1 = 99 and n2 = 

108, then ni + S(ni ) = 117. 
 

 Assume the case m = k is true and   nk = 

10⋯08 with h zeros. Consider the case 

m = k + 1. For i = 1, 2, …, k, define 
 

     Ni
 = ni + C,  where C = 99⋯900⋯0 

 

(C has nk – 8 nines and h + 2 zeros) and 

Nk+1 = 10⋯08 with nk – 7 + h zeros. 

Then for  i = 1, 2, …, k, 
 

Ni
 + S(Ni

  ) = C + ni + S(ni ) + 9(nk – 8)  
 

are all equal by the case m = k. Finally, 
 

Nk
 + S(Nk

  ) = C + nk + 9 + 9(nk – 8) 

                  =10⋯017 ( nk – 8 + h zeros) 

                  =10⋯008 + 9   

                  =Nk+1
 + S(Nk+1 ) 

 

completing the induction. 
 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 5). 
 

 
 

Olympiad Corner 

(continued from page 1) 
 

Problem 4.  Find all functions f: ℕ→ℕ 

such that for each  n ∈ ℕ, 
    

       2n + 2001 ≤   f ﴾ f (n)﴿ + f (n) 

                         ≤  2n + 2003. 
 

( ℕ is the set of all positive integers.)  
 
 

 
 

Mathematical Games II 

(continued from page 2) 
 
Key Observation: A square is bad if and 

only if it is in a block of 4 consecutive 

squares of the form S**S, where * denotes 

an empty square. 

 

(Proof. Clearly, the empty squares in S**S 

are bad. Conversely, if a square is bad, 

then playing an O there will allow an SOS 

in the next move by the other player. Thus 

the bad square must have an S on one side 

and an empty square on the other side. 

Playing an S there will also lose the game 

in the next move, which means there must 

be another S on the other side of the empty 

square.) 

 

Now the second player’s winning strategy 

is as follow: after the first player made a 

move, play an S at least 4 squares away 

from either end of the grid and from the 

first player’s first move. On the second 

move, the second player will play an S 

three squares away from the second 

player’s first move so that the squares in 

between are empty. (If the second move of 

the first player is next to or one square 

away from the first move of the second 

player, then the second player will place 

the second S on the other side.) After the 

second move of the second player, there 

are 2 bad squares on the board. So 

eventually somebody will fill these 

squares and the game will not be a draw. 

 

On any subsequent move, when the 

second player plays, there will be an 

odd number of empty squares and an 

even number of bad squares, so the 

second player can always play a square 

that is not bad. 

 

Example 8. (1993 IMO) On an infinite 

chessboard, a game is played as follow. 

At the start, n2 pieces are arranged on 

the chessboard in an n × n block of 

adjoining squares, one piece in each 

square. A move in the game is a jump 

in a horizontal or vertical direction 

over an adjacent occupied square to an 

unoccupied square immediately 

beyond. The piece that has been 

jumped over is then removed. Find 

those values of n for which the game 

can end with only one piece remaining 

on the board. 

 

Solution. Let ℤ denotes the set of 

integers.   Consider the pieces placed at 

the lattice points ℤ2 = { (x, y) : x, y ∈ℤ}. 

For k = 0, 1, 2, let Ck = { (x, y) ∈ℤ2
 : 

x+y ≡ k (mod 3)}. Let ak be the number 

of pieces placed at lattice points in Ck. 

 

A horizontal move takes a piece at (x, y) 

to an unoccupied point (x ± 2, y) 

jumping over a piece at (x ± 1, y). After 

the move, each ak goes up or down by 1. 

So each ak changes parity. If n is 

divisible by 3, then a0 = a1 = a2 = n2/ 3  

in the beginning. Hence at all time, the 

ak’s are of the same parity. So the game 

cannot end with one piece left causing 

two ak’s 0 and the remaining 1. 

 

If n is not divisible by 3, then the game 

can end. We show this by induction. 

For n = 1 or 2, this is easily seen. For n 

≥  4, we introduce a trick to reduce the   

n × n square pieces to (n–3) × (n–3) 

square pieces. 

 

Trick: Consider pieces at (0,0), (0,1), 

(0,2), (1,0). The moves (1,0) → (–1,0), 

(0,2) → (0,0), (–1,0) → (1,0) remove 

three consecutive pieces in a column 

and leave the fourth piece at its original 

lattice point.  

 

We can apply this trick repeatedly to 

the 3 × (n – 3) pieces on the bottom left 

part of the n × n squares from left to 

right, then the n × 3 pieces on the right 

side from bottom to top. This will leave 

(n–3) × (n–3) pieces. Therefore, the n 

× n case follows from the (n–3) × (n–3) 

case, completing the induction. 
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Functional Equations  
Kin Y. Li 

 

Olympiad Corner 
 
The Fifth Hong Kong (China) 

Mathematical Olympiad was held on 

December 21, 2002. The problems are as 

follow. 
 
 

Problem 1. Two circles intersect at points 

A and B. Through the point B a straight 

line is drawn, intersecting the first circle at 

K and the second circle at M. A line 

parallel to AM is tangent to the first circle 

at Q. The line AQ intersects the second 

circle again at R. 

 

(a) Prove that the tangent to the second 

circle at R is parallel to AK. 

(b) Prove that these two tangents are 

concurrent with KM. 
 

Problem 2.  Let n ≥ 3 be an integer. In a 

conference there are n mathematicians. 

Every pair of mathematicians  

communicate in one of the n official 

languages of the conference. For any 

three different official languages, there 

exist three mathematicians who 

communicate with each other in these 

three languages. Determine all n for 

which this is possible. Justify your 

claim. 
 

(continued on page 4) 
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   A functional equation is an equation 

whose variables are ranging over 

functions. Hence, we are seeking all 

possible functions satisfying the 

equation. We will let ℤ denote the set of 

all integers, ℤ+ or ℕ denote the positive 

integers, ℕ0 denote the nonnegative 

integers, ℚ denote the rational numbers, 

ℝ denote the real numbers, ℝ+ denote 

the positive real numbers and ℂ denote 

the complex numbers. 

 

In simple cases, a functional equation 

can be solved by introducing some 

substitutions to yield more information 

or additional equations.  

 

Example 1. Find all functions f : ℝ → ℝ 

such that  
  
         x2 f (x) + f (1 – x) = 2 x – x4 
 
for all x ∊ℝ. 

 

Solution.  Replacing x by 1 – x, we have 
 
 (1– x)2 f (1– x) + f ( x ) =2 (1–x) – (1–x)4. 
 
 Since f (1 – x) =2 x – x4– x2 f (x) by the 

given equation, substituting this into the 

last equation and solving for  f  (x), we 

get  f (x) =  1– x2. 
 
Check:  For f (x) =  1 – x2,  
 

   x2 f (x) + f (1–x) = x2 (1– x2 )+(1– (1– x)2 )  

                          = 2 x – x4. 

 

For certain types of functional equations, 

a standard approach to solving the 

problem is to determine some special 

values (such as  f ( 0 ) or  f ( 1 ) ), then  

inductively determine f ( n ) for   n ∊ ℕ0, 

follow by the values f  ( 1 / n ) and use 

density to find f ( x ) for all x ∊ ℝ. The 

following are examples of such 

approach. 

 

Example 2. Find all functions f : ℚ → ℚ 

such that the Cauchy equation 
  
           f ( x + y ) = f ( x ) +  f ( y )  
 
holds for all x, y ∊ℚ. 

 

Solution. Step 1 Taking x = 0 = y, we get 

f (0) = f (0) + f (0) + f (0) , which implies 

f (0) = 0. 
 
Step 2 We will prove f (kx) = k f (x) for  

k∊ ℕ, x∊ℚ by induction. This is true for 

k = 1. Assume this is true for k. Taking  y 

= kx, we get  
 
   f ((k+1) x) = f (x + kx) = f (x) + f (kx) 

                    = f (x) + k f (x) = (k+1) f (x). 
 
Step 3 Taking y = –x, we get  
 
    0 = f (0) = f (x+ (–x)) = f (x) + f (–x), 
 
which implies f (–x) = – f (x). So  
 
    f (–kx) = – f (kx) = – k f (x) for k∊ℕ. 
 
Therefore, f (kx) = k f (x) for k ∊ℤ, x∊ℚ. 
 
Step 4 Taking x = 1/ k, we get  
 
          f (1) = f (k (1/ k)) = k f (1/ k), 
 
which implies f (1/ k) = (1/ k ) f (1). 
 
Step 5 For m∊ℤ, n∊ℕ,  
 
  f (m/ n) = m f (1/ n) = (m/ n) f (1). 
 
Therefore, f (x) = cx with c = f (1). 
 
Check: For f (x) = cx with c∊ℚ ,  
 
  f (x+y) = c(x+y) = cx + cy = f (x) + f (y). 

 

In dealing with functions on ℝ, after 

finding the function on ℚ, we can often 

finish the problem by using the 

following fact.  
 
Density of Rational  Numbers For every 

real number x, there are rational 

numbers p1, p2, p3, … increase to x and 

there are rational numbers q1, q2, q3, … 

decrease to x. 
 
 This can be easily seen from the decimal 

representation of real numbers. For 

example, the number π = 3.1415… is the 

limits of 3, 31/10, 314/100, 3141/1000, 

31415/10000, … and also 4, 32/10, 

315/100, 3142/1000, 31416/10000, ….   

 

(In passing, we remark that there is a 

similar fact with rational numbers 

replaced by irrational numbers.) 
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Example 3. Find all functions 

f :ℝ→ℝ  such that  
  

          f ( x + y) = f ( x ) +  f ( y ) 
 

for all x, y ∊ ℝ and  f (x) ≥ 0 for x ≥ 0. 

 

Solution. Step 1 By example 2, we 

have  f (x) = x f (1) for x∊ℚ. 
 

Step 2  If x ≥  y, then x – y ≥  0. So 
 

f (x) = f ((x–y)+y) = f (x–y)+f (y )≥  f (y). 
 

Hence, f is increasing. 
 

Step 3 If x ∊ℝ, then by the density of 

rational numbers, there are rational pn, 

qn such that pn ≤  x ≤  qn, the pn’s 

increase to x and the qn’s decrease to x. 

So by step 2, pn   f (1) = f (pn) ≤  f (x) ≤      

f (qn) = qn f (1). Taking limits, the 

sandwich theorem gives f (x) = x f (1) 

for all x. Therefore, f (x) = cx with c ≥  0. 

The checking is as in example 2. 

 

Remarks. (1) In example 3, if we 

replace the condition that “f (x) ≥ 0 for 

x ≥ 0” by  “f is monotone”, then the 

answer is essentially the same, namely 

f (x) = cx with c = f (1).  Also if the 

condition that “f (x) ≥ 0 for x ≥ 0” is 

replaced by “f  is continuous at 0”, then 

steps 2 and 3 in example 3 are not 

necessary. We can take rational pn’s 

increase to x and take limit of pn f (1) = 

f (pn) = f (pn–x) + f (x) to get x f (1) = f (x) 

since pn–x increases to 0. 
 

(2) The Cauchy equation  f ( x + y ) =      

f ( x ) +  f ( y ) for all x, y ∊ ℝ has 

noncontinuous solutions (in particular, 

solutions not of the form f (x) = cx). 

This requires the concept of a Hamel 

basis of the vector space ℝ over ℚ 

from linear algebra. 

 

The following are some useful facts 

related to the Cauchy equation. 

 

Fact 1. Let A = ℝ, [0, ∞) or (0, ∞).  If  

f :A→ℝ  satisfies   f ( x + y ) = f ( x ) 

+  f (y) and  f  (xy) = f  (x) f (y) for all 

x, y ∊ A, then either f (x) = 0 for all x 

∊ A or  f (x) = x for all x ∊ A. 

 

Proof. By example 2, we have f (x) = 

f (1) x for all x∊ℚ. If f (1) = 0, then     

f (x) = f (x·1) = f (x) f (1)=0 for all 

x∊A.  

 

Otherwise, we have f (1) ≠ 0. Since     

f (1) = f (1) f (1), we get f (1) = 1. 

Then  f (x) = x for all x ∊ A ∩ ℚ. 

 

If y ≥  0, then  f (y) = f ( y1/2 )2 ≥  0 and  
 

        f (x + y) = f (x) + f (y) ≥  f (x),  
 

which implies f is increasing. Now for 

any x∊A∖ℚ, by the density of rational 

numbers, there are pn, qn∊ℚ such that pn 

< x < qn, the pn’s increase to x and the 

qn’s decrease to x. As f is increasing, we 

have pn = f (pn) ≤  f (x) ≤  f (qn) = qn. 

Taking limits, the sandwich theorem 

gives f (x) = x for all x∊A. 

 

Fact 2. If a function  f : ( 0, ∞ ) → ℝ 

satisfies  f  (xy) = f  (x) f ( y) for all x, y > 

0 and f is monotone, then either f(x)=0 

for all x > 0 or there exists c such that       

f (x) = xc for all x > 0. 

 

Proof. For x > 0, f (x) = f (x1/2)2 ≥  0. Also 

f (1) = f (1) f (1) implies f (1) = 0 or 1. If 

f (1) = 0, then f (x) = f (x) f (1) = 0 for all 

x > 0.  If f (1) = 1, then f (x) > 0 for all x > 

0 (since  f (x) = 0 implies f (1) = f (x(1/x)) 

=  f (x) f (1/x) = 0, which would lead to a 

contradiction).   

 

Define g: ℝ→ℝ by g (w) = ln  f (ew ). 

Then  
 

g (x+y) = ln  f (ex+y) = ln  f (ex ey) 

             =ln  f (ex) f (ey)  

             = ln  f (ex) + ln  f (ey) 

             = g(x) + g(y). 
 

Since f is monotone, it follows that g is 

also monotone. Then g (w) = cw for all w. 

Therefore, f (x) = xc for all x > 0. 

 

As an application of these facts, we look 

at the following example. 

 

Example 4. (2002 IMO) Find all 

functions f from the set ℝ of real 

numbers to itself such that  
 

      ( f (x) + f (z))( f (y) + f (t)) 

    = f ( xy − zt ) + f ( xt + yz ) 
 

for all x, y, z, t in ℝ. 

 

Solution. (Due to Yu Hok Pun, 2002 

Hong Kong IMO team member, gold 

medalist) Suppose f (x) = c for all x. 

Then the equation implies 4c2 = 2c. So c 

can only be 0 or 1/2. Reversing steps, we 

can also check  f (x) = 0 for all x or f (x) = 

1/2 for all x are solutions. 

 

Suppose the equation is satisfied by a 

nonconstant function f. Setting x = 0 and 

z = 0, we get 2 f (0) (f (y) + f(t)) = 2 f (0), 

which implies f (0) = 0 or  f (y) + f (t) = 1 

for all y, t. In the latter case, setting y = t, 

we get the constant function f (y) = 1/2 

for all y. Hence we may assume f (0) = 0. 

 

 Setting y = 1, z = 0, t = 0, we get f (x) f (1) 

= f (x). Since f (x) is not the zero 

function, f (1) = 1. Setting z = 0, t = 0, 

we get f (x) f (y) = f (xy) for all x,y. In 

particular, f (w) = f (w1/2)2 ≥  0 for       

w > 0. 

 

Setting x = 0, y = 1 and t = 1, we have  

2 f (1) f (z) = f (−z) +  f (z), which 

implies f (z) =  f (−z) for all z. So f is 

even. 

 

Define the function g: (0, ∞) →ℝ by  

g(w)= f (w1/2) ≥  0. Then for all x,y>0, 
 

   g (xy) = f ((xy)1/2) = f (x1/2 y1/2) 

             = f (x1/2) f (y1/2) = g (x) g (y). 

 

Next f is even implies g (x2) = f (x) for 

all x. Setting z = y, t = x in the given 

equation, we get 
 

( g (x2) + g (y2) )2 = g ( (x2 + y2)2 ) 

                            = g ( x2 + y2 )2 

 
for all x,y. Taking square roots and 

letting a = x2, b = y2, we get g(a)+g (b) 

= g(a+ b) for all a, b > 0. 

 

By fact 1, we have g (w) = w for all w 

> 0. Since f (0) = 0 and f is even, it 

follows f (x) = g (x2) = x2 for all x.  

 

Check: If f (x) = x2, then the equation 

reduces to 
 

(x2 + z2)(y2 + t2) = (xy−zt)2 + (xt+yz)2, 
 

which is a well known identity and 

can easily be checked by expansion 

or seen from | p |2 | q |2 = | pq |2, where 

p = x + iz, q = y + it ∊ℂ.  

 

The concept of fixed point of a 

function is another useful idea in 

solving some functional equations. 

Its definition is very simple. We say 

w is a fixed point of a function f if and 

only if w is in the domain of  f and       

f (w) = w.  Having information on the 

fixed points of functions often help to 

solve certain types of functional 

equations as the following examples 

will show. 

 

Example 5. (1983 IMO) Determine 

all functions f : ℝ+ → ℝ+
 such that      

f ( x f  (y) ) = y f (x) for all  x, y ∊ ℝ+ 

and as x → + ∞ ,   f (x) → 0. 

 

Solution. Step 1 Taking x = 1 = y, we 

get f ( f (1)) = f (1). Taking x = 1 and y 

= f (1), we get f ( f ( f (1))) = f (1)2. 

Then f (1)2 = f ( f ( f (1))) = f ( f (1)) = 

f (1), which implies f (1) = 1. So 1 is a 

fixed point of f. 
                            (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration. The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon.  
The deadline for submitting solutions 
is February 28, 2003. 

 

Problem 171.  (Proposed by Ha Duy 

Hung, Hanoi University of Education, 

Hanoi City, Vietnam) Let a, b, c be 

positive integers, [x] denote the 

greatest integer less than or equal to x 

and min{x,y} denote the minimum of x 

and y.  Prove or disprove that   

.
1

,
1

min






≤









−





ba
c

b

c

a

c

ab

c
c

 

Problem 172.  (Proposed by  José Luis 

Díaz-Barrero, Universitat Politècnica 

de Catalunya, Barcelona, Spain) Find 

all positive integers such that they are 

equal to the square of the sum of their 

digits in base 10 representation. 

 

Problem 173.   300 apples are given, 

no one of which weighs more than 3 

times any other. Show that the apples 

may be divided into groups of 4 such 

that no group weighs more than 3/2 

times any other group. 

 

Problem 174.  Let M be a point inside 

acute triangle ABC. Let A′, B′, C′ be the 

mirror images of M with respect to BC, 

CA, AB, respectively. Determine (with 

proof) all points M such that A, B, C, A′, 
B′, C′ are concyclic.  

 

Problem 175.  A regular polygon with 

n sides is divided into n isosceles 

triangles by segments joining its center 

to the vertices.  Initially, n + 1 frogs are 

placed inside the triangles. At every 

second, there are two frogs in some 

common triangle jumping into the 

interior of the two neighboring 

triangles (one frog into each neighbor). 

Prove that after some time, at every 

second, there are at least [ (n + 1) / 2 ] 

triangles, each containing at least one 

frog.  

 

              ***************** 

Solutions 

**************** 

 

In the last issue, problems 166, 167 and 
169 were stated incorrectly. They are 
revised as problems 171, 172, 173, 
respectively. As the problems became  
easy due to the mistakes, we received 
many solutions. Regretfully we do not 
have the space to print the names and 
affiliations of all solvers. We would like to 
apologize for this. 

  

Problem 166.  Let a, b, c be positive 
integers, [x] denote the greatest integer 
less than or equal to x and min{x,y} 
denote the minimum of x and y.  Prove or 
disprove that   
 

c [a/b] – [c/a] [c/b]  ≤  c min{1/a, 1/b}. 
 
Solution. Over 30 solvers disproved the 

inequality by providing different counter- 

examples, such as (a, b, c) = (3, 2, 1).  

 

Problem 167.  Find all positive integers 
such that they are equal to the sum of their 
digits in base 10 representation. 
 
Solution.  Over 30 solvers sent in solutions 
similar to the following. For a positive 
integer N with digits an, … , a0 (from left 
to right), we have 
 
     N = an 10n + an−1 10n−1 + ⋯ + a0 

        ≥  an + an−1 + ⋯ + a0 
 
because 10k

  > 1 for k> 0. So equality holds 
if and only if an=an−1=⋯=a1=0. Hence, 
N=1, 2, …, 9 are the only solutions. 

 

Problem 168. Let AB and CD be 

nonintersecting chords of a circle and let 

K be a point on CD. Construct (with 

straightedge and compass) a point P on 

the circle such that K is the midpoint of the 

part of segment CD lying inside triangle 

ABP. (Source: 1997 Hungarian Math 

Olympiad) 
 
Solution. SIU Tsz Hang (STFA Leung Kau 
Kui College, Form 7)  
 

Draw the midpoint M of AB. If AB || CD, 

then draw ray MK to intersect the circle at P. 

Let AP, BP intersect CD at Q,R, respectively. 

Since AB || QR, ∆ABP ~ ∆QRP. Then M 

being the midpoint of AB will imply K is the 

midpoint of QR. 
 

 If AB intersects CD at E, then draw the 

circumcircle of EMK meeting the original 

circle at S and S′. Draw the circumcircle of 

BES meeting CD at R. Draw the 

circumcircle of AES meeting CD at Q. Let 

AQ, BR meet at P. Since ∠PBS = ∠RBS = 

∠RES = ∠QES = ∠QAS = ∠PAS, P is on 

the original circle. 
 
Next, ∠SMB = ∠SME = ∠SKE = ∠SKR 

and ∠SBM = 180° − ∠SBE = 180° − ∠SRE 

= ∠SRK imply ∆SMB ~ ∆SKR and 

MB/KR = BS/RS. Replacing M by A and 

K by Q, similarly ∆SAB ~ ∆SQR and 

AB/QR = BS/RS. Since AB = 2MB, we 

get QR = 2KR. So K is the midpoint of 

QR. 

 

Problem 169.  300 apples are given, no 

one of which weighs more than 3 times 

any other. Show that the apples may be 

divided into groups of 4 such that no 

group weighs more than 11/2 times any 

other group. 
 
Solution. Almost all solvers used the 

following argument. Let m and M be 

the weights of the lightest and heaviest 

apple(s). Then 3m≥ M. If the problem 

is false, then there are two groups A 

and B with weights wA and wB such that  

(11/2) wB  < wA. Since 4m≤ wB and wA ≤ 

4M, we get (11/2)4m < 4M implying  

3m≤ (11/2)m < M , a contradiction. 
 

Problem 170.  (Proposed by 

Abderrahim Ouardini, Nice, France) 

For any (nondegenerate) triangle with 

sides a, b, c, let ∑’ h (a, b, c) denote the 

sum h (a, b, c) + h (b, c, a )+ h (c, a, b). 

Let  f (a, b, c) = ∑’ ﴾a / (b + c – a)﴿2 and 

g (a, b, c) =∑’ j(a, b, c), where j(a,b,c)= 

(b + c – a) / ))(( cbabac −+−+ . 

Show that f (a, b, c)≥ max{3,g(a, b, c)} 

and determine when equality occurs. 

(Here max{x,y} denotes the maximum 

of x and y.) 
 
Solution. CHUNG Ho Yin (STFA 
Leung Kau Kui College, Form 6), 
CHUNG Tat Chi (Queen Elizabeth 
School, Form 6), D. Kipp JOHNSON 
(Valley Catholic High School, 
Beaverton, Oregon, USA), LEE Man 
Fui (STFA Leung Kau Kui College, 
Form 6), Antonio LEI (Colchester 
Royal Grammar School, UK, Year 13), 
SIU Tsz Hang (STFA Leung Kau Kui 
College, Form 7), TAM Choi Nang 
Julian (SKH Lam Kau Mow Secondary 
School) and WONG Wing Hong (La 
Salle College, Form 5). 
 
Let x = b + c − a,  y = c + a − b and  z = a + 
b − c. Then  a = (y + z)/2, b = (z + x)/2 and 
c = (x + y)/2.  
 
Substituting these and using the AM-GM 

inequality, the rearrangement inequality 

and the AM-GM inequality again, we find 
 

     f ( a, b, c ) 
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222






 +

+






 +
+






 +

=
z

yx

y

xz

x

zy

222











+








+










≥

z

xy

y

zx

x

yz  



Mathematical Excalibur, Vol. 8, No. 1, Feb 03- Mar 03 Page 4

 

zx

yzxy

yz

xyzx

xy

zxyz
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xy

z
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yz
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=++=

.33 3 =≥
xyzxyz

xyz  

 
So f (a,b,c)≥ g(a,b,c) = max{3,g(a,b,c)} 
with equality if and only if x = y = z, 
which is the same as a = b = c. 

 
 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 3.  If a ≥ b ≥ c ≥ 0 and a + b + 

c =3, then prove that ab2 + bc2 + ca2 ≤ 

27/8 and determine the equality 

case(s). 

 

Problem 4.  Let p be an odd prime 

such that p ≡ 1 (mod 4). Evaluate  

(with reason) 
 

                      
1

22

1

,

p

k

k

p

−

=

 
 
 

∑  

 

where {x} = x − [x], [x] being the 

greatest integer not exceeding x. 
 
 

 
 

Functional Equations  

(continued from page 2) 
 
Step 2  Taking y = x, we get  f ( x f ( x)) = 

x f (x). So w = x f (x) is a fixed point of  f 

for every  x ∊ ℝ+. 

 

Step 3 Suppose f  has a fixed point x > 1. 

By step 2, x f (x) = x2 is also a fixed 

point, x2 f (x2) = x4 is also a fixed point 

and so on. So the xm’s are fixed points 

for every m that is a power of 2. Since x 

> 1, for m ranging over the powers of 2, 

we have xm → ∞, but f (xm) = xm  → ∞ , 

not to 0. This contradicts the given 

property. Hence, f cannot have any 

fixed point x > 1. 

 

Step 4  Suppose  f  has a fixed point  x in 

the interval (0,1). Then 
 
1 = f ((1/x) x) = f ((1/x) f (x)) = x f (1/ x), 
 
which implies f (1 / x) = 1 / x. This will 

lead to f having a fixed point 1 / x > 1, 

contradicting step 3. Hence, f cannot 

have any fixed point x in (0,1). 

 

Step 5 Steps 1, 3, 4 showed the only fixed 

point of   f is 1. By step 2, we get x f (x) = 1 

for all  x ∊ ℝ+. Therefore, f (x) = 1 / x for 

all x ∊ ℝ+. 

 

Check: For f (x) = 1/x,  f (x f (y)) = f (x/y) = 

y/x =y f (x). As x →∞ , f (x) = 1/x → 0. 

 

Example 6. (1996 IMO) Find all functions f : 

ℕ0 → ℕ0  such that  
 
        f ( m + f (n) ) = f ( f (m) ) + f (n)  
 
for all m, n∊ℕ0. 
 
Solution. Step 1 Taking m = 0 = n, we get 

f ( f (0)) = f ( f (0) ) + f (0), which implies    

f (0) = 0. Taking m = 0, we get   f ( f ( n )) = 

f (n), i.e. f (n) is a fixed point of f for every 

n ∊ℕ0. Also the equation becomes 

          f ( m +  f (n) ) = f (m) + f (n). 

 

Step 2 If w is a fixed point of  f, then we 

will show kw is a fixed point of  f  for all k 

∊ℕ0. The cases k = 0, 1 are known. If kw 

is a fixed point, then f ((k + 1) w) = f ( kw + 

w ) = f ( kw ) + f (w) = kw + w = (k + 1) w 

and so (k + 1) w is also a fixed point. 

 

Step 3 If 0 is the only fixed point of f, then 

f (n) = 0 for all n ∊ℕ0 by step 1. Obviously, 

the zero function is a solution. 

 

Otherwise,  f  has a least fixed point w > 0. 

We will show the only fixed points are kw, 

k∊ℕ0. Suppose x is a fixed point. By the 

division algorithm, x = kw + r, where 0≤  r 

<w. We have 
 
   x = f (x) = f (r + kw) = f (r + f (kw))  

      = f (r) + f (kw) = f (r) + kw.  
 
So f (r) = x − kw = r. Since w is the least 

positive fixed point, r = 0 and x = kw. 

 

Since f (n) is a fixed point for all n ∊ℕ0 by 

step 1, f (n) = cnw for some cn ∊ ℕ0. We 

have c0 = 0. 

 

Step 4 For n∊ℕ0, by the division 

algorithm, n = kw + r, 0 ≤  r < w. We have 
 
       f (n) = f (r + kw) = f (r + f (kw))  

               = f (r) + f (kw) = crw + kw  

               = (cr+ k) w = (cr + [n/w]) w. 
 
Check: For each w > 0, let c0 = 0 and let 

c1. …, cw−1 ∊ℕ0 be arbitrary. The function 

f(n)=(cr+[n/w])w, where r is the remainder 

of  n divided by w, (and the zero function) 

are all the solutions. Write m = kw + r and  

n = lw + s with 0≤  r, s < w. Then 
 
f (m + f (n)) = f (r + kw + (cs + l) w) 

                    = crw + kw + csw + lw 

                    = f ( f (m) ) + f (n) . 
 
Other than the fixed point concept, in 

solving functional equations, the 

injectivity and surjectivity of the 

functions also provide crucial 

informations. 

 

Example 7. (1987 IMO) Prove that 

there is no function f: ℕ0 → ℕ0  such 

that  f ( f (n)) = n + 1987. 

 

Solution. Suppose there is such a 

function f. Then  f is injective because    

f (a) = f (b) implies 
 
 a = f ( f (a))−1987 = f ( f (b))−1987 = b. 
 
Suppose f (n) misses exactly k distinct 

values c1, … , ck in ℕ0 , i.e. f (n)≠  c1, …, 

ck for all n∊ ℕ0. Then f ( f ( n )) misses 

the 2k distinct values c1, …, ck and          

f (c1), …, f (ck) in ℕ0. (The f (cj)’s are 

distinct because f is injective.) Now if 

w≠ c1, … , ck,  f (c1), … , f (ck), then 

there is m ∊ ℕ0 such that f (m) = w. 

Since w≠  f (cj), m≠  cj, so there is n ∊ 

ℕ0 such that f (n) = m, then f ( f (n)) = w. 

This shows f ( f (n)) misses only the 2k 

values c1, … , ck, f (c1), … , f (ck) and no 

others. Since n + 1987 misses the 1987 

values 0, 1, …, 1986 and 2k ≠ 1987, 

this is a contradiction. 

 

Example 8. (1999 IMO) Determine all 

functions  f : ℝ → ℝ such that 
 
 f (x − f (y)) = f (f (y)) + x f (y) + f (x) − 1 
 
for all x, y ∊ ℝ. 
 
Solution. Let c = f (0). Setting x = y = 0, 

we get f (−c) = f (c) + c − 1. So c≠  0. 

Let A be the range of f, then for x = f (y) 

∊ A, we get c = f (0) = f (x) + x2 + f (x) − 

1. Solving for f (x), this gives f (x) =    

( c + 1 − x2 ) / 2 . 
 
Next, if we set y = 0, we get  
 
         { f (x − c) − f (x) : x ∊ ℝ }  

      = { cx + f ( c ) − 1 : x ∊ ℝ } = ℝ    
 
because c≠  0. Then  A − A = { y1 − y2 :  

y1, y2  ∊ A} = ℝ. 

 

Now for an arbitrary x∊ℝ, let y1, y2∊A 

be such that  y1 − y2 = x. Then 
 
f (x)= f (y1−y2) = f (y2) + y1y2 + f (y1) − 1 

      = (c+1−y2
2)/2+y1y2+(c+1−y1

2)/2 −1 

      = c − ( y1−y2)
2/2 = c − x2/2. 

 
However, for x∊A, f (x) = (c + 1 − x2)/2. 

So c = 1. Therefore,  f (x) = 1 − x2/2  for 

all x ∊ℝ. 
 
Check: For f (x) = 1 − x2/2, both sides 

equal 1/2 + y2/2 − y4/8 + x−xy2/2 − x2/2. 
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Olympiad Corner 
 
The Final Round of the 51st Czech and 

Slovak Mathematical Olympiad was held 

on April 7-10, 2002. Here are the 

problems. 
 

Problem 1. Solve the system 

                    (4x)5 + 7y = 14, 

                 (2y)5 – (3x)7 = 74, 

in the domain of the integers, where (n)k 

stands for the multiple of the number k 

closest to the number n. 
 

Problem 2.  Consider an arbitrary  equi- 

lateral triangle KLM, whose vertices K, L 

and M lie on the sides AB, BC and CD, 

respectively, of a given square ABCD. 

Find the locus of the midpoints of the 

sides KL of all such triangles KLM. 

 

Problem 3. Show that a given natural 

number A is the square of a natural 

number if and only if for any natural 

number n, at least one of the differences 
 

           (A + 1)2 – A, (A + 2)2  – A,  
 

               (A + 3)2 – A, …, (A + n)2 – A 
 

    is divisible by n. 
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   Consider the following two questions: 
 

(1) Is there a nonconstant polynomial 

with integer coefficients which has 

every prime number as a root? 

(2) Is every real number a root of some 

nonconstant polynomial with 

integer coefficients? 
 

The first question can be solved easily. 

Since the set of roots of a nonconstant 

polynomial is finite and the set of prime 

numbers is infinite, the roots cannot 

contain all the primes. So the first 

question has a negative answer. 

 

However, for the second question, both 

the set of real numbers and the set of 

roots of nonconstant polynomials with 

integer coefficients are infinite. So we 

cannot answer this question as quickly as 

the first one. 

 

In number theory, a number is said to be 

algebraic if it is a root of a nonconstant 

polynomial with integer coefficients, 

otherwise it is said to be transcendental. 

So the second question asks if every real 

number is algebraic. 

 

Let’s think about the second question. 

For every rational number a/b, it is 

clearly the root of the polynomial P (x) = 

bx – a. How about irrational numbers? 

For numbers of the form ,/n ba  it is a 

root of the polynomial P (x) = b xn – a. To 

some young readers, at this point they 

may think, perhaps the second question 

has a positive answer. We should do 

more checking before coming to any 

conclusion. How about π and e? Well, 

they are hard to check. Are there any 

other irrational number we can check?  

 

Recall cos(3θ)=4cos3θ-3cos θ. So setting 

θ=20˚, we get 1/2 = 4cos3 20˚-3cos 20˚. 

It follows that cos 20˚ is a root of the 

polynomial P (x) = 8x3 – 6x – 1. With 

this, we seem to have one more piece of 

evidence to think the second question 

has a positive answer.  

So it is somewhat surprising to learn that 

the second question turns out to have a 

negative answer. In fact, it is known that 

π and e are not roots of nonconstant 

polynomials with integer coefficients, 

i.e. they are transcendental. Historically, 

the second question was answered before 

knowing π and e were transcendental. In 

1844, Joseph Liouville proved for the 

first time that transcendental numbers 

exist, using continued fractions. In 1873, 

Charles Hermite showed e was 

transcendental. In 1882, Ferdinand von 

Lindemann generalized Hermite’s 

argument to show π was also 

transcendental. Nowadays we know 

almost all real numbers are 

transcendental. This was proved by 

Georg Cantor in 1874. We would like to 

present Cantor’s countability theory 

used to answer the question as it can be 

applied to many similar questions. 

 

Let ℕ denote the set of all positive 

integers, ℤ the set of all integers, ℚ the 

set of all rational numbers and ℝ the set 

of all real numbers. 

 

Recall a bijection is a function f: A→B 

such that for every b in B, there is exactly 

one a in A satisfying  f (a) = b. Thus, f 

provides a way to correspond the 

elements of A with those of B in a 

one-to-one manner.  

 

We say a set S is countable if and only if 

S is a finite set or there exists a bijection 

f : ℕ→S. For an infinite set, since such a 

bijection is a one-to-one correspondence 

between the positive integers and the 

elements of S, we have  
 
            1↔s1, 2↔s2, 3↔s3, 4↔s4, …  
 

and so the elements of S can be listed 

orderly as s1, s2, s3, … without repetition 

or omission.  Conversely, any such list of 

the elements of a set is equivalent to 

showing the set is countable since 

assigning  f (1) = s1,  f (2) = s2,  f (3) = 

s3, … readily provide a bijection. 
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Certainly, ℕ is countable as the 

identity function f : ℕ→ℕ  defined 

by f (n)= n is a bijection. This 

provides the usual listing of ℕ as 1, 

2, 3, 4, 5, 6, …. Next, for ℤ, the 

usual listing would be  
 
     …, –4, –3, –2, –1, 0, 1, 2, 3, 4, ….  
 

 However, to be in a one-to-one 

correspondence with ℕ, there 

should be a first element, followed 

by a second element, etc. So we can 

try listing ℤ as  
 
           0, 1, –1, 2, –2, 3, –3, 4, –4, ….  
 

From this we can construct a 

bijection  g : ℕ→ℤ, namely define 

g as follow:  
 
               g (n) = (1 – n) / 2 if n is odd  

and  
 
               g (n) = n / 2 if n is even. 

 
For  ℚ, there is no usual listing. So 
how do we proceed? Well, let’s 
consider listing the set of all 
positive rational numbers ℚ+

 first. 
Here is a table of ℚ+. 
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In the m-th row, the numerator is m 
and in the n-th column, the 
denominator is n. 

 

Consider the southwest-to-northeast 

diagonals. The first one has 1/1, the 

second one has 2/1 and 1/2, the third 

one has 3/1, 2/2, 1/3, etc. We can list 

ℚ+ by writing down the numbers on 

these diagonals one after the other. 

However, this will repeat numbers, 

for example, 1/1 and 2/2 are the same. 

So to avoid repetitions, we will write 

down only numbers whose 

numerators and denominators are 

relatively prime. This will not omit 

any positive rational numbers 

because we can cancel common 

factors in the numerator and 

denominator of a positive rational 

number to arrive at a number in the 

table that we will not skip. Here is the 

list we will get for ℚ+:  
 
1/1, 2/1, 1/2, 3/1, 1/3, 4/1, 3/2, 2/3, 

1/4, 5/1, 1/5, 6/1, 5/2, 4/3, 3/4,  … . 

 

Once we have a listing of ℚ+, we can list 

ℚ as we did for ℤ from ℕ, i.e. 
 
0, 1/1, –1/1, 2/1, –2/1, 1/2, –1/2, 

3/1, –3/1, 1/3, –1/3, 4/1, –4/1, 3/2, …. 
 
This shows ℚ is countable, although the 

bijection behind this listing is difficult to 

write down.  

 

If a bijection h : ℕ → ℚ is desired, then 

we can do the following. Define h (1) = 

0. For an integer n > 1, write down the 

prime factorization of  g(n), where g is 

the function above. Suppose  
 
           g(n) = ± 2a 3b 5c 7d….  
 
Then we define  
 
h (n) = ± 2g(a+1) 3g(b+1) 5g(c+1) 7g(d+1)… 
 
with g (n),  h (n) taking the same sign. 

 

Next, how about ℝ? This is interesting. 

It turns out ℝ is uncountable (i.e. not 

countable). To explain this, consider the 

function u : (0,1) →ℝ defined by  u(x) = 

tan π(x–1/2). It has an inverse function 

v(x) = 1/2 + (Arctan x)/ π . So both u and 

v are bijections. Now assume there is a 

bijection f : ℕ→ ℝ. Then F = v◦f : ℕ→ 

(0,1) is also a bijection. Now we write 

the decimal representations of F(1), F(2), 

F(3), F(4), F(5), … in a table. 

          F (1) = 0.a11a12a13a14… 

          F (2) = 0.a21a22a23a24… 

          F (3) = 0.a31a32a33a34… 

          F (4) = 0.a41a42a43a44… 

          F (5) = 0.a51a52a53a54… 

          F (6) = 0.a61a62a63a64… 
 
Consider the number 
 
               r = 0. b1b2b3b4b5b6…, 
 
where the digit bn = 2 if ann = 1 and bn = 

1 if ann ≠ 1. Then F (n) ≠ r for all n 

because ann ≠ bn. This contadicts F is a 

bijection. Thus, no bijection  f : ℕ→ℝ 

can exist. Therefore, (0,1) and ℝ are 

both uncountable.  

 

We remark that the above argument 

shows no matter how the elements of 

(0,1) are listed, there will always be 

numbers omitted. The number r above is 

one such number.  

 

So some sets are countable and some 

sets are uncountable.  

 

For more complicated sets, we will use 

the following theorems to determine if 

they are countable or not. 

 

Theorem 1.  Let A be a subset of B. If 

B is countable, then A is countable.  

 

Theorem 2.  If for every integer n, Sn 

is a countable set, then their union is 

countable. 

 

For the next theorem, we introduce 

some terminologies first. An object 

of the form (x1,…,xn) is called an 

ordered n-tuple. For sets T1, T2, …, Tn, 

the Cartesian product T1×⋯×Tn of 

these sets is the set of all ordered 

n-tuples (x1,…,xn), where each xi is 

an element of Ti for i  = 1,…, n. 

 

Theorem 3.  If T1, T2, …, Tn  are 

countable sets, then their Cartesian 

product is also countable. 

 

We will give some brief explanations 

for these theorems. For theorem 1, if 

A is finite, then A is countable. So 

suppose A is infinite, then B is 

infinite. Since B is countable, we can 

list B as b1, b2, b3, … without 

repetition or omission. Removing the 

elements bi that are not in A, we get a 

list for A without repetition or 

omission.   

 

For theorem 2, let us list the elements 

of  Sn without repetition or omission 

in the n-th row of a table. (If Sn is 

finite, then the row contains finitely 

many elements.) Now we can list the 

union of these sets by writing down 

the diagonal elements as we have 

done for the positive rational 

numbers. To avoid repetition, we will 

not write the element if it has 

appeared before. Also, if some rows 

are finite, it is possible that as we go 

diagonally, we may get to a “hole”. 

Then we simply skip over the hole 

and go on. 

 

For theorem 3, we use mathematical 

induction. The case n = 1 is trivial. 

For the case n = 2, let a1, a2, a3, … be 

a list of the elements of T1 and b1, b2, 

b3, … be a list of the elements of T2 

without repetition or omission. Draw 

a table with (ai, bj) in the i-th row and 

j-th column. Listing the diagonal 

elements as for the positive rational 

numbers, we get a list for T1×T2 

without repetition or omission. This 

takes care the case n = 2.   

 
                            (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration. The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon.  
The deadline for submitting solutions 
is April 26, 2003. 

 

Problem 176.  (Proposed by Achilleas 

PavlosPorfyriadis,AmericanCollege of 

Thessaloniki “Anatolia”, Thessaloniki,  

Greece) Prove that the fraction 
 

                     
nnm

nm

−+
++

)1(

1)1(           

 
is irreducible for all positive integers m 

and n. 
 

Problem 177.  A locust, a grasshopper 

and a cricket are sitting in a long, 

straight ditch, the locust on the left and 

the cricket on the right side of the 

grasshopper. From time to time one of 

them leaps over one of its neighbors in 

the ditch. Is it possible that they will be 

sitting in their original order in the 

ditch after 1999 jumps?  
 

Problem 178.  Prove that if x < y, then 

there exist integers m and n such that 
 
               x < m + n 2  < y.  
 

Problem 179.  Prove that in any 

triangle, a line passing through the 

incenter cuts the perimeter of the 

triangle in half if and only if it cuts the 

area of the triangle in half. 
 

Problem 180.  There are  n  ≥ 4  points 

in the plane such that the distance 

between any two of them is an integer. 

Prove that at least 1/6 of the distances 

between them are divisible by 3. 
 

              ***************** 

Solutions 

**************** 
 

Problem 171. (Proposed by Ha Duy 

Hung, Hanoi University of Education, 

Hanoi City, Vietnam) Let a, b, c be 

positive integers, [x] denote the 

greatest integer less than or equal to x 

and min{x,y} denote the minimum of x 

and y.  Prove or disprove that   

.
1

,
1
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a

c
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c
c  

Solution.  LEE Man Fui (STFA Leung 
Kau Kui College, Form 6) and TANG 
Ming Tak (STFA Leung Kau Kui College, 
Form 6). 
 

Since the inequality is symmetric in a and 

b, without loss of generality, we may 

assume a ≥ b. For every x,  bx ≥ b[x]. 

Since b[x] is an integer, we get [bx] ≥ b[x]. 

Let x = c/(ab). We have 
 

               c[c/(ab)] – [c/a][c/b] 

            = c[x] – [bx][c/b] 

           ≤  (c/b)[bx] – [bx][c/b] 

            = [bx]( (c/b) – [c/b]  ) 

            < bx· 1 = c/a = c min{1/a,1/b}. 

 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form5),  Antonio 
LEI (Colchester Royal Grammar School, 
UK, Year 13), SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7), Rooney TANG 
Chong Man (Hong Kong Chinese 
Women’s Club College, Form 5). 

  

Problem 172.  (Proposed by  José Luis 
Díaz-Barrero, Universitat Politècnica de 
Catalunya, Barcelona, Spain) Find all 
positive integers such that they are equal 
to the square of the sum of their digits in 
base 10 representation. 
 
Solution. D. Kipp JOHNSON (Valley 
Catholic High School, Beaverton, Oregon, 
USA), Antonio LEI (Colchester Royal 
Grammar School, UK, Year 13), SIU Tsz 
Hang (STFA Leung Kau Kui College, Form 7) 
and and WONG Wing Hong (La Salle 
College, Form 5). 
   

Suppose there is such an integer n and it has 

k digits. Then 10k–1 ≤ n ≤ (9k)2. However, 

for k ≥ 5, we have         

 

(9k)2 = 81k2 < (54/2)2k  ≤ (5k–1/2)2k = 10k–1.  

 

So k ≤ 4. Then n ≤ 362. Since n is a perfect 

square, we check 12, 22, …, 362 and find 

only 1 and 92 = 81 work. 
 
Other commended solvers: CHAN Yat 
Fei (STFA Leung Kau Kui College, Form 
6) and Rooney TANG Chong Man (Hong 
Kong Chinese Women’s Club College, 
Form 5).  

 

Problem 173.   300 apples are given, no 

one of which weighs more than 3 times 

any other. Show that the apples may be 

divided into groups of 4 such that no 

group weighs more than 3/2 times any 

other group. (Source: 1997 Russian Math 

Olympiad) 
 
Solution. CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 

Form 5) and D. Kipp JOHNSON 
(Valley Catholic High School, 
Beaverton, Oregon, USA). 
 
Let a1, a2, … , a300 be the weights of the 

apples in increasing order. For  j = 1, 

2, …, 75, let the j-th group consist of the 

apples with weights aj, a75+j, a150+j, a225+j. 

Note the weights of the groups are 

increasing. Then the ratio of the weights 

of any two groups is at most 

 

         

226151761
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≤  
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2
1

aaaa +++
+= . 

Since 3 ≤ (a76 + a151 + a226) / a1 ≤ 9, so the 

ratio of groups is at most 1+2/(1+3)=3/2. 

 
Other commended solvers: CHAN Yat 
Fei (STFA Leung Kau Kui College, 
Form 6), Terry CHUNG Ho Yin 
(STFA Leung Kau Kui College, Form 
6), SIU Tsz Hang (STFA Leung Kau 
Kui College, Form 7) and TANG Ming 
Tak (STFA Leung Kau Kui College, 
Form 6). 

 

Problem 174.  Let M be a point inside 

acute triangle ABC. Let A′, B′, C′ be the 

mirror images of M with respect to BC, 

CA, AB, respectively. Determine (with 

proof) all points M such that A, B, C, A′, 
B′, C′ are concyclic. 
 
Solution. Achilleas Pavlos 

PORFYRIADIS (American College 

of Thessaloniki “Anatolia”, 

Thessaloniki,  Greece). 

 

For such M, note the points around the 

circle are in the order A, B′, C, A′, B, C′. 
Now ∠ACC′ = ∠ABC′ as they are 

subtended by chord AC′. Also, 

AB′=AC′ because they both equal to 

AM by symmetry. So ∠ABC′ = ∠ACB′ 
as they are subtended by chords AC′ 
and AB′ respectively. By symmetry, we 

also have ∠ACB′ = ∠ACM. Therefore, 

∠ACC′ = ∠ACM and so C, M, C′ are 

collinear. Similarly, A, M, A′ are 

collinear. Then CM ⊥ AB and AM ⊥ 

BC. So M is the orthocenter of ∆ABC.  

 

Conversely, if M is the orthocenter, 

then ∠ACB′ = ∠ACM = 90°−∠BAC = 

∠ABB′, which implies A, B, C, B′ are 

concyclic. Similarly, A′ and C′ are on 

the circumcircle of ∆ABC. 

 
Other commended solvers: CHEUNG 
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Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 5), 
Antonio LEI (Colchester Royal 
Grammar School, UK, Year 13), SIU 
Tsz Hang (STFA Leung Kau Kui College, 
Form 7) and WONG Wing Hong (La 
Salle College, Form 5). 
 

Problem 175.  A regular polygon with 

n sides is divided into n isosceles 

triangles by segments joining its center 

to the vertices.  Initially, n + 1 frogs are 

placed inside the triangles. At every 

second, there are two frogs in some 

common triangle jumping into the 

interior of the two neighboring 

triangles (one frog into each neighbor). 

Prove that after some time, at every 

second, there are at least [ (n + 1) / 2 ] 

triangles, each containing at least one 

frog. (Source: 1993 Jiangsu Province 

Math Olympiad) 
 
Solution.  (Official Solution) 
 

By the pigeonhole principle, the process 

will go on forever.  Suppose there is a 

triangle that never contains any frog. Label 

that triangle number 1. Then label the other 

triangles in the clockwise direction 

numbers 2 to n. For each frog in a triangle, 

label the frog the number of the triangle. 

Let S be the sum of the squares of all frog 

numbers. On one hand, S ≤ (n + 1) n2. On 

the other hand, since triangle 1 never 

contains any frog, then at every second, 

some two terms of S will change from i2 + 

i2  to ( i + 1 )2 + ( i – 1 )2  = 2 i2 + 2 with i < n. 

Hence, S will keep on increasing , which 

contradicts  S ≤ (n + 1) n2. Thus, after some 

time T, every triangle will eventually 

contain some frog at least once. 

 

By the jumping rule, for any pair of 

triangles sharing a common side, if one of 

them contains a frog at some second, then 

at least one of them will contain a frog 

from then on. If  n is even, then after time T,  

the n triangles can be divided into n / 2 = 

[ (n + 1) / 2]  pairs, each pair shares a 

common side and at least one of the 

triangles in the pair has a frog. If n is odd, 

then after time T, we may remove one of 

the triangles with a frog and divide the rest 

into (n – 1)/2 pairs. Then there will exist     

1 + ( n – 1) / 2 = [ (n + 1) / 2] triangles, each 

contains at least one frog. 
 
Other commended solvers: SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 7). 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 4.  Find all pairs of real numbers 

a, b for which the equation in the domain of 

the real numbers 
 

             x
x

bxax
=

−
+−

1

24
2

2

 

 

has two solutions and the sum of them 

equals 12. 

 

Problem 5.  A triangle KLM is given in 

the plane together with a point A lying on 

the half-line opposite to KL. Construct a 

rectangle ABCD whose vertices B, C and 

D lie on the lines KM, KL and LM, 

respectively. (We allow the rectangle to 

be a square.) 

 

Problem 6.  Let ℝ+ denote the set of 

positive real numbers. Find all functions 

f : ℝ+→ℝ+ satisfying for all x, y ∊ℝ+ the 

equality 
 

           f (x f (y) ) = f ( xy ) + x. 
 
 

 
 

Countability  

(continued from page 2) 
 
 
Assume the case n = k is true. For k+1 

countable sets T1, …, Tk, Tk+1, we apply 

the case n = k to conclude T1×⋯×Tk is 

countable. Then (T1×⋯×Tk)×Tk+1 is 

countable by the case n = 2. 

 

We should remark that for theorem 1, if 

C is uncountable and B is countable, 

then C cannot be a subset of B. As for 

theorem 2, it is also true for finitely 

many set S1, …, Sn because we can set 

Sn+1, Sn+2, … all equal to S1, then the 

union of S1, …, Sn is the same as the 

union of S1, …, Sn, Sn+1, Sn+2, ….  

However, for theorem 3, it only works 

for finitely many sets. Although it is 

possible to define ordered infinite tuples, 

the statement is not true for the case of 

infinitely many sets. 

 

Now we go back to answer question 2 

stated in the beginning of this article. We 

have already seen that C = ℝ is 

uncountable. To see question 2 has a 

negative answer, it is enough to show 

the set B of all algebraic numbers is 

countable. By the remark for theorem 1, 

we can conclude that C = ℝ cannot be a 

subset of B. Hence, there exists at least 

one real number which is not a root of 

any nonconstant polynomial with 

integer coefficients. 

 

To show B is countable, we will first 

show the set D of all nonconstant 

polynomials with integer coefficients 

is countable. 

 

Observe that every nonconstant 

polynomial is of degree n for some 

positive integer n. Let Dn be the set of 

all polynomials of degree n with 

integer coefficients. Let ℤ′ denote the 

set of all nonzero integers.  Since ℤ′ 
is a subset of ℤ, ℤ′ is countable by 

theorem 1 (or simply deleting 0 from 

a list of ℤ without repetition or 

omission).  

 

Note every polynomial of degree n is 

of the form 
  
  anx

n + an–1x
n–1  + ⋯ + a0  (with an ≠  0), 

 
which is uniquely determined by its 

coefficients. Hence, if we define the 

function w : ℤ′×ℤ×⋯ ×ℤ→ Dn by  
 
w(an, an-1, …, a0)=anx

n+an–1x
n–1 +⋯+a0 , 

 
then w is a bijection. By theorem 3, 

ℤ′×ℤ×⋯ ×ℤ is countable. So there is a 

bijection q : ℕ → ℤ′×ℤ×⋯ ×ℤ.  Then 

w◦ q : ℕ → Dn is also a bijection. 

Hence, Dn is countable for every 

positive integer n. Since D is the union 

of D1, D2, D3, …, by theorem 2, D is 

countable. 

 

Finally, let P1, P2, P3, … be a list of all 

the elements of D. For every n, let Rn 

be the set of all roots of Pn, which is 

finite by the fundamental theorem of 

algebra. Hence Rn is countable. Since B 

is the union of R1, R2, R3, …, by 

theorem 2, B is countable and we are 

done. 

 

Historically, the countability concept 

was created by Cantor when he proved 

the rational numbers were countable in 

1873. Then he showed algebraic 

numbers were also countable a little 

later. Finally in December 1873, he 

showed real numbers were 

uncountable and wrote up the results in 

a paper, which appeared in print in 

1874.  It was this paper of Cantor that 

also introduced the one-to-one 

correspondence concept into 

mathematics for the first time! 



 

Volume 8, Number 3 June 2003 – July 2003 

容斥原則和 Turan 定理 

梁 達 榮 

 

Olympiad Corner 
 
The XV Asia Pacific Mathematics 

Olympiad took place on March 2003.  

The time allowed was 4 hours.  No 

calculators were to be used.  Here are 

the problems. 
 

Problem 1.  Let a, b, c, d, e, f be real 

numbers such that the polynomial 
 

       P(x) = x8 – 4x7 + 7x6 + ax5 + bx4 

                              + cx3 + dx2 + ex + f 
 

factorises into eight linear factors x – xi, 

with xi  > 0 for i = 1, 2, …, 8.  Determine all 

possible values of f. 
 

Problem 2.  Suppose ABCD is a square 

piece of cardboard with side length a.  

On a plane are two parallel lines 1l  and 

2l , which are also a units apart.  The 

square ABCD is placed on the plane so 

that sides AB and AD intersect 1l  at E 

and F respectively.  Also, sides CB and 

CD intersect 2l  at G and H respectively.  

Let the perimeters of AEF∆  and 

CGH∆  be m1 and m2 respectively.  

Prove that no matter how the square was 

placed, m1 + m2 remains constant. 
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設 A 為有限集，以 || A 表示它含元素

的個數。如果有兩個有限集 A 和 B，

以 BA∪ 表示 A 和 B 的并集（它包含

屬於 A 或 B 的元素），以 BA∩ 表示 A

和 B 的交集 (它包含同時屬於 A 和 B

的元素)。眾所周知，如果 A 和 B 之間

沒有共同元素，則 +=∪ |||| ABA  

|| B ，但是如果 A 和 B 之間有共同元

素 x，當數算 A 元素的數目時，x 被算

了一次，但數算 B 元素的數目時，x

又再被算了一次。為了抵消這樣的重

覆，在計算 || BA∪ 時，我們要減去重

覆數算的次數，即 || BA∩ 。因此

|||||||| BABABA ∩−+=∪ 。 

對於三個集的并集 CBA ∪∪ ，我們可

以先數算 A，B 和 C 的個數，相加起

來，發覺是太大了，必須減去一些交

集的個數，現在 A，B 和 C 中任兩個

集的交集可以是 BA∩ ， CA∩ 和

CB∩ ，當我們減去這些交集的元素

個數時，發覺又變得太少了，最後我

們還要加上三個集的交集的元素個

數 ， 最 後 得 +=∪∪ |||| ACBA  

|||||||||| CBCABACB ∩−∩−∩−+

|| CBA ∩∩+ 。 

一般來說，如果有 n 個有限集 ,1A  

nAA ,...,2 ，則 || 21 nAAA ∪∪∪ L  = 

nkjinji
ji

n

i
i AAA

≤≤≤≤=
∑+∑ ∩−∑
ppp 111

||||  

21
1 |)1(|| AAAAA n

kji ∩−+−∩∩ −L  

|nA∩∩L  等式中右邊第一個和式代

表 1A 至 nA 各集元素個數的總和，第二

個和式代表任何兩個集的交集元素個

數的總和，餘此類推，直到考慮

L,, 21 AA 至 nA 的交集為止。 

上面的等式，一般稱為容斥原則 

(Inclusion-Exclusion Principle)，其命 

意義相當明顯。證明可以採歸納法，

但也可以利用二項式定理加以證明。

過程大概如下。設 x 屬於 ∪∪ 21 AA  

nA∪L ，則 x 屬於其中 k 個 ,iA  

)1( ≥k ，為方便計，設 x 屬於 ,...,, 21 AA  

kA ，但不屬於 nk AA ,...,1+ 。這樣的話，

x 在 nAAA ∪∪∪ L21 的“貢獻”為

1。在右邊第一個和式中，x的“貢獻”

為 kCk 1= 。在第二個和式中，由於 x

在 kAAA ,...,, 21 中出現，則 x 在它們任

兩個集的交集中出現，但不在其他兩

個集的交集中出現，因此，x 在第二個

和式中的“貢獻”為 kC2 。這樣分析下

去，我們發覺 x 在右邊的“貢獻”總

和 是 k
k

kkkk CCCC 1
321 )1( +−+−+− L  

1)11(1 =−−= k 。 

留意我們用到了二項式定理，由於 x 

在兩邊的貢獻相等，我們獲得了容斥

原則成立的證明。 

再者二項式系數有以下的性質。 k
mC 在

2
km ≤ 時遞增，在

2
km ≥ 時遞減。（例

如 k = 5，有 5
4

5
3

5
2

5
1

5
0 CCCCC >=<<  

5
5C> ， 5

mC 在 m = 2, 3 時取最大值，k = 

6， 6
6

6
5

6
4

6
3

6
2

6
1

6
0 CCCCCCC >>><<<

， 6
mC 在 m = 3 時最大值。）利用這個

關係，讀者可以証明，如果在容斥原

則的右邊，略去一個正項及它以後各

項，則式的左邊大於右邊，這是因為 x

對於右邊的貢獻非正，或者被略去的

貢獻非負。同理，如果在容斥原則的

右邊略去一個負項及它以後各項，則

式的左邊變為小於右邊。這是一個有

用的估計。 

容斥原則作為數算集的大小的用途上

時常出現，應用廣泛。 
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例一： 這是一個經典的題目，將 1, 

2, …, n 重新安排次序，得到一個排

列，如果沒有一個數字在原先的位置

上，則稱之為亂序，(例如，4321 是

一個亂序，4213 不是)，現在問，有

多少個亂序？ 

解答: 顯而易見，所有的排列數目是

1)1(! ××−×= Lnnn 。但如果直接找

尋亂序的數目，卻不是很容易。因此

我們定義 iA 為 i 在正確位置的排

列， ni ≤≤1 。易見 )!1(|| −= nAi ，同

理 )!2( −=∩ nAA ji ，此處 ji ≠ ，等

等。因此 

!
!1

!3
!

!2
!

1
3

2

21
1

1

11

21

)1(!

1)1()!3(

)!2()!1(

)1(

n
nnnn

nn

n

n
n

nkji
kji

nji
ji

n

i
i

n

n

nC

nCnn

AAA

AAA

AAA

AAA

−

−

−

≤≤

≤≤=

−+−+−=

−+−−+

−−−=

∩∩∩−+

−∑ ∩∩+

∑ ∩−∑=

∪∪∪

L

L

L

L

L

pp

p

 

最後，亂序的數目是 

( )
!

1
!3

1
!2

1

21

)1(!

!

n

n

n

n

AAAn

−++−=

∪∪∪−

L

L
 。 

例二： (IMO 1991) 設 S = {1, 2, …, 

280}。求最小的自然數 n，使得 S 的

每一個 n元子集都含有 5個兩兩互素

的數。 

解答: 首先利用容斥原則求得

217≥n 。設 4321 ,,, AAAA 是 S 中分別

為 2, 3, 5, 7 的倍數的集，則 

1

,2 ,4

,6 ,9

,8 ,13

,18 ,20

,28 ,46

,40,56 ,93 ,140

4321

432431

421321

4342

3241

3121

4321

=∩∩∩

=∩∩=∩∩

=∩∩=∩∩

=∩=∩

=∩=∩

=∩=∩

====

AAAA

AAAAAA

AAAAAA

AAAA

AAAA

AAAA

AAAA

 

因此 

216124698

13182028464056

931404321

=−++++−
−−−−−++

+=∩∩∩ AAAA

 

對於這個 216 元的集，任取 5 個數，

必有兩個同時屬於 321 ,, AAA 或 4A ，

因此不互素。按題意，所以必須有

217≥n 。現在要證明 S 中任一 217 元集

必有 5 個互素的數，方法是要構造適當

的“抽屜”。其中一個比較簡潔的構造

是這樣的。設 A 是 S 的一個子集，並且

217≥A 。定義 

1B ={1 和 S 中的素數}， 1B  = 60， 

,6},13,11,7,5,3,2{ 2
222222

2 == BB  

.5},1311

,237,415,733,1092{

,5},1711

,277,435,793,1132{

,6},1713,1911

,317,475,873,1272{

,6},1913,2311

,377,535,893,1312{

6

6

5

5

4

4

3

3

=×

××××=

=×

××××=

=××

××××=

=××

××××=

B

B

B

B

B

B

B

B

  

易見 1B 至 6B 互不相交，並且 ∪1| B  

88|65432 =∪∪∪∪ BBBBB 。去掉這

88 個數，S 中尚有 280 – 88 = 192 個數。

現在 A 最小有 217 個元素，217 – 192 = 

25，即是說 A 中最小有 25 個元屬於 1B

至 6B 。易見，不可能每個 iB 只含 A 中 4

個或以下的元素，即是說最少有 5 個或

以上的元素屬於同一個 iB ，因此互素。

注意這裏我們用到另一個原則：抽屜原

則。 

例三： (1989 IMO) 設 n 是正整數。我

們說集{1, 2, 3, …, 2n}的一個排列 ,( 1x  

),..., 22 nxx 具有性質 P，如果在{1, 2, 

3, …, 2n – 1}中至少有一個 i，使得 

−ix|  nxi =+ |1 成立。証明具有性質 P

的排列比不具有性質 P 的排列多。 

解答: 留意如果 −ix| nxi =+ |1 ，其中一

個 ix 或 1+ix 必小於 n + 1。因此對於 k = 

1, 2, …, n, 定義 kA 為 k 與 k + n 相鄰的

排列的組合，易見 )!12(2|| −×= nAk 。

（這是因為 k與 k + n 并合在一起，但

位置可以互相交換，想像它是一個

“數”，而另外有 2n - 2 個數，這(2n – 

2) + 1 個數位置隨意。）同時 || hk AA ∩  

= ×22 (2n – 2)!, nhk ≤<≤1 , (k 與 k + n

合在一起成為一個“數”h 與 h + n 合

在一起成為一個“數”。)因此具性質 P

的排列的數目 

)!22(2)!12(2

||

||

2
2

1

1
21

−××−×−×=

∑ ∩−

∑≥∪∪∪

≤≤

=

nCnn

AA

AAAA

n

nhk
hk

n

k
kn

p

L

 

2
1

12
)!2()!2()!22(2 ×>×=×−×= − nnnnn

n
n  

這個數目超過(2n)!的一半，因此具

性質 P 的排列比不具性質 P 的排列

多。 

(這一個問題，當年被視為一個難

題，但如果看到它與容斥原則的關

係，就變得很容易了。) 

例四：設 n 和 k 為正整數， ,3>n  
2
n  

< k < n。平面上有 n 個點，其中任意

三點不共線，如果其中每個點至少與

其它 k 個點用線連結，則連結的線段

中至少有三條圍成一個三角形。 

解答: 因為 n >3, k > 
2
n ，則 2≥k ， 

所以 n 個點中必中兩個點 1v 和 2v 相

連結。考慮餘下的點，設與 1v 相連結

的點集為 A，與 2v 相連結的點集為

B，則 1||,1|| −≥−≥ kBkA 。另外 

||22

||||||||2

BAk

BABABAn

∩−−≥
∩−+=∪≥−

 

即 02|| >−≥∩ nkBA 。因此，存在

點 3v 與 1v 和 2v 相連結，構成一個三

角形。 

例五： 一次會議有 1990 位數學家參

加，其中每人最少有 1327 位合作

者。証明，可以找到 4 位數學家，他

們中每兩人都合作過。 

証明:  將數學家考慮為一個點集，

曾經合作過的連結起來，得到一個

圖。如上例， 1v 互 2v 曾合作過，所

以連結起來，餘下的，設 A 為和 1v 合

作過的點集，B 為和 2v 合作過的點

集，則 1326||,1326|| ≥≥ BA ，同樣，

∪A|  ≤|B 1990 – 2 = 1998，因此 

|||||||| BABABA ∪−+=∩  

0664199813262 >=−×≥  

即是說，可以找到數學家 3v ，與 1v 和

2v 都合作過。設 C 為除 1v 和 2v 以

外，與 3v 合作過的數學家，即

1325|| ≥C 。同時 

|||||)(|1998 CBACBA +∩=∪∩≥  

- || CBA ∩∩  即 

1988|||||| −+∩≥∩∩ CBACBA

0119881325664 >=−+≥ 。 

因 此 CBA ∩∩ 非 空 ， 取 ∈4v  

CBA ∩∩ ，則 4321 ,,, vvvv 都曾經合

作過。 

                             (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is August 10, 2003. 

 

Problem 181.  (Proposed by Achilleas 

PavlosPorfyriadis, AmericanCollege 

of Thessaloniki “Anatolia”, 

Thessaloniki, Greece)  Prove that in a 

convex polygon, there cannot be two 

sides with no common vertex, each of 

which is longer than the longest 

diagonal. 

 

Problem 182.  Let a0, a1, a2, … be a 

sequence of real numbers such that 
 

an+1 ≥  an
2+ 1/5   for all  n ≥  0. 

 

Prove that 2
55 −+ ≥ nn aa  for all 

.5≥n  

 

Problem 183.  Do there exist 10 

distinct integers, the sum of any 9 of 

which is a perfect square? 
 

Problem 184.  Let ABCD be a 

rhombus with 
o

60=∠B .  M is a point 

inside ADC∆  such that =∠AMC  
o120 .  Let lines BA and CM intersect at 

P and lines BC and AM intersect at Q.  

Prove that D lies on the line PQ. 
 

Problem 185.  Given a circle of n 

lights, exactly one of which is initially 

on, it is permitted to change the state of 

a bulb provided one also changes the 

state of every d-th bulb after it (where d 

is a divisor of n and is less than n), 

provided that all n/d bulbs were 

originally in the same state as one 

another.  For what values of n is it 

possible to turn all the bulbs on by 

making a sequence of moves of this 

kind? 
 

***************** 

Solutions 

**************** 
 

Problem 176.  (Proposed by Achilleas 

PavlosPorfyriadis,AmericanCollege of 

Thessaloniki “Anatolia”, Thessaloniki, 

Greece)  Prove that the fraction 
 

nnm

nm

−+
++

)1(

1)1(  

 
is irreducible for all positive integers m 

and n. 
 
Solution.  CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form5), TAM Choi Nang Julian 
(Teacher, SKH Lam Kau Mow Secondary 
School), Anderson TORRES (Colegio 
Etapa, Brazil, 3rd Grade) and Alan T. W. 
WONG (Markham, ON, Canada). 
 

If the fraction is reducible, then m (n + 1) 

+ 1 and m (n + 1) – n are both divisible by 

a common factor d >1.  So their difference 

n + 1 is also divisible by d.  This would 

lead to  
 

1 = ( m ( n + 1) + 1) – m ( n + 1 ) 
 
divisible by d, a contradiction.  
 
Other commended solvers: CHEUNG 
Tin (STFA Leung Kau Kui College, Form 
4), CHUNG Ho Yin (STFA Leung Kau 
Kui College, Form 6), D. Kipp 
JOHNSON (Teacher, Valley Catholic 
High School, Beaverton, Oregon, USA), 
LEE Man Fui (STFA Leung Kau Kui 
College, Form 6), SIU Tsz Hang (STFA 
Leung Kau Kui College, Form 7), Alexandre 
THIERY (Pothier High School, Orleans, 
France), Michael A. VEVE (Argon 
Engineering Associates, Inc., Virginia, USA) 
and Maria ZABAR (Trieste College, Trieste, 
Italy). 

  

Problem 177.  A locust, a grasshopper 

and a cricket are sitting in a long, straight 

ditch, the locust on the left and the cricket 

on the right side of the grasshopper.  From 

time to time one of them leaps over one of 

its neighbors in the ditch.  Is it possible 

that they will be sitting in their original 

order in the ditch after 1999 jumps? 
 
Solution.  CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form5), D. Kipp JOHNSON (Teacher, 
Valley Catholic High School, Beaverton, 
Oregon, USA), Achilleas Pavlos 
PORFYRIADIS (American College of 
Thessaloniki “Anatolia”, Thessaloniki, 
Greece), SIU Tsz Hang (STFA Leung Kau 
Kui College, Form 7) and Anderson 
TORRES (Colegio Etapa, Brazil, 3rd 
Grade). 
   

Let L, G, C denote the locust, grasshopper, 

cricket, respectively.  There are 6 orders:  
 

LCG, CGL, GLC, CLG, GCL, LGC. 
 
Let LCG, CGL, GLC be put in one group 

and CLG, GCL, LGC be put in another 

group.  Note after one leap, an order in one 

group will become an order in the other 

group.  Since 1999 is odd, the order LGC 

originally will change after 1999 leaps.   

 

Problem 178.  Prove that if x < y, then 

there exist integers m and n such that 
 

x < m + n 2  < y. 
 
Solution.  SIU Tsz Hang (STFA Leung 
Kau Kui College, Form 7). 
 

Note 0 < 12 −  < 1.  For a positive 

integer  

,
)12log(

)log(

−
−

>
ab

k  

we get 0 < ( 12 − )k < b – a.  By the 

binomial expansion,  

x = ( 12 − )k   =  p + q 2  

for some integers p and q.  Next, there is 

an integer r such that  

r – 1 ≤  
x

aa ][−
 < r. 

Then a is in the interval  

[ ).][,)1(][ rxaxraI +−+=  

Since the length of I is x < b – a, we get 

a < [a] + rx = ([a] + rp) + rq 2  < b. 

 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 5), D. 
Kipp JOHNSON (Teacher, Valley 
Catholic High School, Beaverton, 
Oregon, USA), Alexandre THIERY 
(Pothier High School, Orleans, France) 
and Anderson TORRES (Colegio 
Etapa, Brazil, 3rd Grade). 
 

Problem 179.  Prove that in any 

triangle, a line passing through the 

incenter cuts the perimeter of the 

triangle in half if and only if it cuts the 

area of the triangle in half. 
 
Solution. CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form 5), LEE Man Fui (STFA Leung 
Kau Kui College, Form 6), Achilleas 
Pavlos PORFYRIADIS (American 
College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece), SIU Tsz Hang 
(STFA Leung Kau Kui College, Form 7), 
TAM Choi Nang Julian (Teacher, 
SKH Lam Kau Mow Secondary 
School), and Alexandre THIERY 
(Pothier High School, Orleans, France). 
 

Let ABC be the triangle, s be its 

semiperimeter and r be its inradius.  

Without loss of generality, we may 

assume the line passing through the 

incenter cuts AB and AC at P and Q 

respectively. (If the line passes through 

a vertex of ∆ABC, we may let Q = C.)  
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Let [XYZ] denote the area of XYZ∆ . 

The line cuts the perimeter of ABC∆  

in half if and only if AP + AQ = s, 

which is equivalent to  
 
     [APQ]   =  [API] + [AQI]  

                  =  (r·AP) / 2 + (r·AQ) / 2  

                  = rs/2 = [ABC] /2.  
 
i.e. the line cuts the area of ABC∆  in 

half. 

 

Problem 180.  There are n ≥  4 points 

in the plane such that the distance 

between any two of them is an integer.  

Prove that at least 1/6 of the distances 

between them are divisible by 3.  
 
Solution.  CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form 5), D. Kipp JOHNSON 
(Teacher, Valley Catholic High School, 
Beaverton, Oregon, USA) and SIU Tsz 
Hang (STFA Leung Kau Kui College, 
Form 7). 
 

We will first show that for any 4 of the 

points, there is a pair with distance 

divisible by 3.  Assume A, B, C, D are 4 

of the points such that no distance 

between any pair of them is divisible by 

3. Since x ≣ 1 or 2 (mod 3) implies x2 ≣ 

1 (mod 3), AB2, AC2, AD2, BC2, BD2 and 

CD2 are all congruent to 1 (mod 3). 
 

Without loss of generality, we may 

assume that ∠ACD = α + β, where α =
∠ACB and β=∠BCD.  By the cosine 

law,  
 
AD2 = AC2 + CD2 – 2AC·CDcos∠ACD. 
 
Now  
 
cos ∠ACD = cos(α + β)  
                    = cos  α cos β – sin α sin β.  
 
By cosine law, we have 
 

BCAC

ABBCAC

⋅
−+

=
2

cos
222

α   and 

 

.
2

cos
222

CDBC

BDCDBC

⋅
−+

=β  

Using ,cos1sin 2 xx −=  we can also 

find sin α and sin β.  Then  
 

2BC2·AD2  = 2BC2 (AC2 + CD2)  

– (2AC·BC)(2BC·CD) cos∠ACD 

   = P + Q, 
 
where  
 

  P = 2BC2 (AC2 + CD2)  

– (AC2+BC2–AB2)(BC2+CD2–BD2) 
 
and 

 Q2 = ( 4 AC2·BC2 – ( AC2 + BC2 – AB2)2 ) 

     × ( 4 BC2·CD2– ( BC2 + CD2 – BD2)2 ). 
 
However, 22 22 ≡⋅ ADBC (mod 3), P 0≡  

(mod 3) and 0≡Q  (mod 3).  This lead to a 

contradiction. 
 

For n ≥  4, there are nC 4
 groups of 4 

points.  By the reasoning above, each of 

these groups has a pair of points with 

distance divisible by 3.  This pair of points 

is in a total of 2

2

−nC groups.  Since 

1
24 / −nn CC  ,26

1 nC=  the result follows. 

 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 3.  Let k ≥  14 be an integer, and 

let pk be the largest prime number which is 

strictly less than k.  You may assume that 

pk ≥ 3k/4.  Let n be a composite integer.  

Prove: 
 

(a) if n = 2pk, then n does not divide 

(n–k)!; 

(b) if n > 2pk, then n divides (n–k)!. 

 

Problem 4.  Let a, b, c be the sides of a 

triangle, with a + b + c =1, and let n ≥  2 

be an integer.  Show that  

 
n nnn nnn nn accbba +++++  

                   .
2

2
1

n

+<  

 

Problem 5.  Given two positive integers 

m and n, find the smallest positive integer 

k such that among any k people, either 

there are 2m of them who form m pairs of 

mutually acquainted people or there are 

2n of them forming n pairs of mutually 

unacquainted people. 
 

 
 

容斥原則和 Turan 定理 

(continued from page 2) 
 

套用圖論的語言，例四和例五的意義正

如，給定一個 n 點的圖，最少有多少

條線，才可以保證有一個三角形

)( 3K 或一個 4K （四點的圖，任兩點

都相連），或者換另一種說法，設有

一個 n 點的圖沒有三角形，則該圖最

多有多少條線段，等等。這一範圍的

圖論稱為極端圖論。最先的結果是這

樣的： 
 
Mantel定理 (1907):  設 n點的簡單圖 

不含 3K ，則其邊數最大值為 ⎥⎦
⎤

⎢⎣
⎡

4

2n 。  

(此處 [x] 是小於或等於 x的最大整 

數。在例四中，邊數和多於 ( ) ×× nn
2

  

>
2
1

⎥⎦
⎤

⎢⎣
⎡

4

2n ，因此結果立即成立。) 

比較精緻的命題是這樣的。 

定理： 如果 n 點的圖有 q 條邊，則

圖至少有
n

qq n

3

)(4
4

2

−
個三角形。 

例六： 在圓周上有 21 個點，由其中

二點引伸至圓心所成的圓心角度，最

多有 110 個大於 o120 。 

解答： 如果兩點與圓心形成的圓心

角度大於 o120 ，則將兩點連結起來，

得到一個圖，這個圖沒有三角形，因

此邊數最多有 [ ]
4

441
4

212
=⎥

⎦

⎤
⎢
⎣

⎡
 = 110 

條，或者最多有 110 個引伸出來的圓

心角度大於 o120 。 

如上所說，定義 pK 是一個 p 個點的 

完全圖，即 p 個點任兩點都相連，對

於一個 n 點的圖 G，如果沒有包含 

pK ，則 G 最多有多少條邊呢? 

Turan 定理(1941): 如果一個 n 點的

圖 G 不含 pK ，則該圖最多有 

)1(2

)1(2

)1(2

2

−
−−

−
− −

p

rpr

p

p
n 條邊，其中 r 是

由 n = k(p – 1) + r, 0 r≤ < p - 1 所定義

的。如 Mantel 定理的情況，這個定

理是極端圖論的一個起點。 

 

Paul Turan (1910-1976) 猶太裔匈牙

利人，當他在考慮這一類問題時，還

是被關在一個集中營內的呢！ 
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利用 GW-BASIC 繪畫曼德勃羅集的方法 

梁子傑老師 

香港道教聯合會青松中學 

 

Olympiad Corner 
 
The 2003 International Mathematical 

Olympiad took place on July 2003 in 

Japan.  Here are the problems. 
 

Problem 1.  Let A be a subset of the set S = 

{1, 2, …, 1000000} containing exactly 

101 elements.  Prove that there exist 

numbers t1, t2, … , t100 such that the sets 
 

       aj = {x + tj | x∊A } for j = 1, 2, … , 100 
   

    are pairwise disjoint. 
 

Problem 2.  Determine all pairs of 

positive integers (a, b) such that  

12 32

2

+− bab

a
 

    is a positive integer. 

 

Problem 3.  A convex hexagon is given 

in which any two opposite sides have the 

following property: the distance between 

their midpoints is 2/3 times the sum 

of their lengths.  Prove that all the angles 

of the hexagon are equal.  (A convex 

hexagon ABCDEF has three pairs of 

opposite sides: AB and DE, BC and EF, 

CD and FA.) 
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已知一個複數 c0，並由此定義一

個複數數列 { cn }，使 cn+1 = cn
2 + c0，

其中 n = 0, 1, 2, ……。如果這個數列

有界，即可以找到一個正實數 M，使

對於一切的 n，| cn | < M，那麼 c0便屬

於曼德勃羅集（Mandelbrot Set）之內。 

可 以 將 以 上 定 義 寫 成 一 個

GW-BASIC 程序（對不起！我本人始

終都是喜歡最簡單的電腦語言，而且

我認為將 GW-BASIC 程序翻譯成其他

電腦語言亦不難），方法如下： 

10 LEFT = 150 : TOP = 380 :  

 W = 360 : M = .833 

20    R = 2.64 : S = 2 * R / W 

30    RECEN = 0 : IMCEN = 0 

40    SCREEN 9 : CLS 

50    FOR Y = 0 TO W 

60      FOR X = 0 TO W 

70   REC = S * (X – W / 2) + RECEN : 

    IMC = S * (Y – W / 2) + IMCEN 

80  RE = REC : IM = IMC 

90   RE2 = RE * RE : IM2 = IM * IM : 

        J = 0 

100  WHILE RE2 + IM2 <= 256 AND  

     J < 15 

110  IM = 2 * RE * IM + IMC 

120  RE = RE2 – IM2 + REC 

130  RE2 = RE * RE :  

  IM2 = IM * IM : J = J + 1 

140 WEND 

150  IF J < 3 THEN GOTO 220 

160 IF J >= 3 AND J < 6 THEN 

   COLOR 14 : REM YELLOW 

 

  

170 IF J >= 6 AND J < 9 THEN 

    COLOR 1 : REM BLUE 

180 IF J >= 9 AND J < 12 THEN 

    COLOR 2 : REM GREEN 

190 IF J >= 12 AND J < 15 THEN 

      COLOR 15 : REM WHITE 

200 IF J >= 15 THEN  

   COLOR 12 : REM RED 

210  PSET (X + LEFT, (TOP – Y)* M) 

220  NEXT X 

230   NEXT Y 

240   COLOR 15 : REM WHITE 

250 LINE (LEFT, (TOP – W / 2) * M) 

           – (W + LEFT, (TOP – W / 2) * M) 

260 LINE (W / 2 + LEFT, (TOP – W)  

         * M) – (W / 2 + LEFT, TOP * M) 

270   END 

以下是這程序的解釋： 

W 紀錄在電腦畫面上將要畫出

圖形的大小。現將 W 設定為 360（見

第 10 行），表示打算在電腦畫面上一

個 360 × 360的方格內畫出曼德勃羅集

（見第 50 及 60 行）。 

LEFT是繪圖時左邊的起點，TOP

是圖的最低的起點（見第 210、250 及

260 行）。注意：在 GW-BASIC 中，畫

面坐標是由上至下排列的，並非像一

般的理解，將坐標由下至上排，因此

要以 “TOP − Y” 的方法將常用的坐標

轉換成電腦的坐標。 

由於電腦畫面上的一點並非正

方形，橫向和縱向的大小並不一樣，

故引入 M（= 5
6
）來調節長闊比（見

第 10、210、250 及 260 行）。 

留意 W 祇是「畫面上」的大小，

並非曼德勃羅集內每一個複數點的實

際坐標，故需要作出轉換。R 是實際

的數值（見第 20 行），即繪畫的範圍

實軸由 −R 畫至 +R，同時虛軸亦由 −R

畫至 +R。S 計算 W 與 R 之間的比例，

並應用於後面的計算之中（見第 20 及

70 行）。 
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    RECEN和 IMCEN用來定出中心

點的位置，現在以 (0, 0) 為中心（見

第 30 行）。我們可以通過更改 R、

RECEN和 IMCEN的值來移動或放

大曼德勃羅集。 

    第 40 行選擇繪圖的模式及清除

舊有的畫面。 

    程序的第 50 及 60 行定出畫面上

的坐標 X 和 Y，然後在第 70 行計

算出對應複數 c0的實值和虛值。 

注意：若 c0 = a0 + b0 i，cn = an + bn i，

則 

   cn+1 = cn
2 + c0  

         = (an + bn i)
2 + (a0 + b0 i)  

         = an
2 − bn

2 + 2anbn i + a0 + b0 i  

         = (an
2 − bn

2 + a0)  

              + (2anbn + b0)i。 

所以 cn+1的實部等於 an
2 − bn

2 + a0，

而虛部則等於 2anbn + b0。 

     將以上的計算化成程序，得第

110 及 120 行。REC 和 IMC 分別是

c0的實值和虛值。RE 和 IM 分別是

cn的實值和虛值。RE2 和 IM2 分別

是 cn的實值和虛值的平方。 

     J 用來紀錄第 100 至 140 行的循

環的次數。第 100 行亦同時計算 cn

模的平方。若模的平方大於 256 或

者循環次數多於 15，循環將會終

止。這時候，J 的數值越大，表示

該數列較「收斂」，即經過多次計

算後，cn的模仍不會變得很大。第

150 至 200 行以顏色將收斂情況分

類，紅色表示最「收歛」的複數，

其次是白色，跟著是綠色、藍色和

黃色，而最快擴散的部分以黑色表

示。第 210 行以先前選定的顏色畫

出該點。 

    曼德勃羅集繪畫完成後，以白色

畫出橫軸及縱軸（見第 240 至 260

行），以供參考。程序亦在此結束。 

    執行本程序所須的時間，要視乎

電腦的速度，以現時一般的電腦而

言，整個程序應該可以 1 分鐘左右

完成。 

參考書目 

Heinz-Otto Peitgen, Hartmut Jürgens 

and Dietmar Saupe (1992) Fractals 

for the Classroom Part Two: 

Introduction to Fractals and Chaos.  

NCTM, Springer-Verlag. 

IMO 2003 

T. W. Leung 

 

    The 44th International Mathematical 

Olympiad (IMO) was held in Tokyo, 

Japan during the period 7 - 19 July 2003.  

Because Hong Kong was declared cleared 

from SARS on June 23, our team was able 

to leave for Japan as scheduled.  The Hong 

Kong Team was composed as follows. 

 

Chung Tat Chi (Queen Elizabeth School) 

Kwok Tsz Chiu (Yuen Long Merchants 

        Assn. Sec. School) 

Lau Wai Shun (T. W. Public Ho Chuen 

       Yiu Memorial College) 

Siu Tsz Hang (STFA Leung Kau Kui 

      College) 

Yeung Kai Sing (La Salle College) 

Yu Hok Pun (SKH Bishop Baker  

      Secondary School) 

Leung Tat Wing (Leader) 

Leung Chit Wan (Deputy Leader) 

 

      Two former Hong Kong Team 

members, Poon Wai Hoi and Law Ka Ho, 

paid us a visit in Japan during this period. 

 

     The contestants took two 4.5 Hours 

contests on the mornings of July 13 and 14.  

Each contest consisted of three questions, 

hence contest 1 composed of Problem 1 to 

3, contest 2 Problem 4 to 6.  In each 

contest usually the easier problems come 

first and harder ones come later.  After 

normal coordination procedures and Jury 

meetings cutoff scores for gold, silver and 

bronze medals were decided.  This year 

the cutoff scores for gold, silver and 

bronze medals were 29, 19 and 13 

respectively.  Our team managed to win 

two silvers, two bronzes and one 

honorable mention.  (Silver: Kwok Tsz 

Chiu and Yu Hok Pun, Bronze: Siu Tsz 

Hang and Yeung Kai Sing, Honorable 

Mention: Chung Tat Chi, he got a full 

score of 7 on one question, which 

accounted for his honorable mention, and 

his total score is 1 point short of bronze).  

Among all contestants three managed to 

obtain a perfect score of 42 on all six 

questions.  One contestant was from 

China and the other two from Vietnam. 

 

      The Organizing Committee did not 

give official total scores for individual 

countries, but it is a tradition that scores 

between countries were compared.  This 

year the top five teams were Bulgaria, 

China, U.S.A., Vietnam and Russia 

respectively. The Bulgarian contestants 

did extremely well on the two hard 

questions, Problem 3 and 6.  Many 

people found it surprising.  On the 

other hand, despite going through war 

in 1960s Vietnam has been strong all 

along.  Perhaps they have participated 

in IMOs for a long time and have a 

very good Russian tradition. 

 
     Among 82 teams, we ranked 
unofficially 26.  We were ahead of 
Greece, Spain, New Zealand and 
Singapore, for instance.  Both New 
Zealand and we got our first gold last 
year.  But this year the performance of 
the New Zealand Team was a bit 
disappointing.  On the other hand, we 
were behind Canada, Australia, 
Thailand and U.K..  Australia has been 
doing well in the last few years, but this 
year the team was just 1 point ahead of 
us.  Thailand has been able to do quite 
well in these few years. 
 
      IMO 2004 will be held in Greece, 

IMO 2005 in Mexico, IMO 2006 in 

Slovenia.  IMO 2007 will be held in 

Vietnam, the site was decided during 

this IMO in Japan. 
 
       For the reader who will try out the 
IMO problems this year, here are some 
comments on Problem 3, the hardest 
problem in the first day of the 
competitions. 
 

Problem 3.  A convex hexagon is 

given in which any two opposite sides 

have the following property: the 

distance between their midpoints is 

2/3 times the sum of their lengths.  

Prove that all the angles of the 

hexagon are equal. (A convex 

hexagon ABCDEF has three pairs of 

opposite sides: AB and DE, BC and 

EF, CD and FA.) 
 

The problem is hard mainly because 

one does not know how to connect the 

given condition with that of the interior 

angles.  Perhaps hexagons are not as 

rigid as triangles.  It also reminded me 

of No. 5, IMO 1996, another hard 

problem of polygons. 

 
The main idea is as follows.  Given a 

hexagon ABCDEF, connect AD, BE 

and CF to form the diagonals.  From 

the given condition of the hexagon, it 

can be proved that the triangles formed 

by the diagonals and the sides are 

actually equilateral triangles.  Hence 

the interior angles of the hexagons are 
o120 . Good luck. 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is November 30, 2003. 

 

Problem 186.  (Due to Fei Zhenpeng, 

Yongfeng High School, Yancheng City, 

Jiangsu Province, China)  Let α, β, γ be 

complex numbers such that  
 
                  α + β + γ = 1,  
 
               α2 + β2 + γ2 = 3,  
 
               α3 + β3 + γ3 = 7.  
 
Determine the value of α21 +  β21 +  γ21 . 

 

Problem 187.  Define f (n) = n!. Let  
 

a = 0. f (1) f (2) f (3) … . 
 
In other words, to obtain the decimal 

representation of a write the numbers 

f(1),  f (2),  f (3), … in base 10 in a row.  

Is a rational?  Give a proof. 
 

Problem 188.  The line S is tangent to 

the circumcircle of acute triangle ABC 

at B.  Let K be the projection of the 

orthocenter of triangle ABC onto line S 

(i.e. K is the foot of perpendicular from 

the orthocenter of triangle ABC to S).  

Let L be the midpoint of side AC. Show 

that triangle BKL is isosceles. 
 

Problem 189.  2n + 1 segments are 

marked on a line.  Each of the segments 

intersects at least n other segments.  

Prove that one of these segments 

intersect all other segments. 

  

Problem 190.  (Due to Abderrahim 

Ouardini) For nonnegative integer n, 

let ⌊x⌋ be the greatest integer less than 

or equal to x and 
 

[ ]
[ ]. 19

21)(

+−

++++=

n

nnnnf
 

 

Find the range of f and for each p in the 

range, find all nonnegative integers n 

such that f (n) = p. 

 

***************** 

Solutions 

**************** 
 

Problem 181.  (Proposed by Achilleas 

PavlosPorfyriadis, AmericanCollege of 

Thessaloniki “Anatolia”, Thessaloniki, 

Greece)  Prove that in a convex polygon, 

there cannot be two sides with no common 

vertex, each of which is longer than the 

longest diagonal. 
 

Proposer’s Solution. 

Suppose a convex polygon has two sides, 

say AB and CD, which are longer than the 

longest diagonal, where A, B, C, D are 

distinct vertices and A, C are on opposite 

side of line BD.  Since AC, BD are 

diagonals of the polygon, we have AB > 

AC and CD > BD. Hence,  
 

AB + CD > AC + BD. 
 
By convexity, the intersection O of 

diagonals AC and BD is on these 

diagonals.  By triangle inequality, we have  
 

AO + BO > AB and CO + DO > CD. 
 
So AC + BD > AB + CD, a contradiction.  
 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form5), John 
PANAGEAS (Kaisari High School, 
Athens, Greece), POON Ming Fung 
(STFA Leung Kau Kui College, Form 6), 
SIU Tsz Hang (CUHK, Math Major, Year 1) 
and YAU Chi Keung (CNC Memorial 
College, Form 6).  
 

 Problem 182.  Let a0, a1, a2, … be a 

sequence of real numbers such that 
 

an+1 ≥  an
2+ 1/5   for all  n ≥  0. 

 

Prove that 
2

55 −+ ≥ nn aa  for all .5≥n  

(Source: 2001 USA Team Selection Test) 
 
Solution.  CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form5) and TAM Choi Nang Julian 
(Teacher, SKH Lam Kau Mow Secondary 
School). 
  

Adding an+1 – an
2 5/1≥  for nonnegative 

integers n = k, k + 1, k + 2, k + 3, k + 4, we 

get  

1)( 24

1

2
5 ≥−∑ −−

+

+=
+ k

k

kn
nnk aaaa . 

Observe that   

0)2/1(4/1 22 ≥−=+− xxx  

implies )(4/1 2 xx −−≥ .  Applying this 

to the inequality above and simplifying, 

we easily get 2
5 kk aa ≥+  for nonnegative 

integer k.  Then 42
510 kkk aaa ≥≥ ++  for 

nonnegative integer k.  Taking square 

root, we get the desired inequality.  

 
Other commended solvers: POON 
Ming Fung (STFA Leung Kau Kui 
College, Form 6) and SIU Tsz Hang 
(CUHK, Math Major, Year 1).  

 

Problem 183.  Do there exist 10 

distinct integers, the sum of any 9 of 

which is a perfect square? (Source: 

1999 Russian Math Olympiad) 
 
Solution.  Achilleas Pavlos 
PORFYRIADIS (American College 
of Thessaloniki “Anatolia”, 
Thessaloniki, Greece) and SIU Tsz 
Hang (CUHK, Math Major, Year 1). 
 
Let a1, a2, …, a10 be distinct integers and 

S be their sum.  For i = 1, 2, …, 10, we 

would like to have S – ai = ki
2 for some 

integer ki.  Let T be the sum of k1
2, …, 

k10
2.  Adding the 10 equations, we get 9S 

= T.  Then ai = S – (S – ai) = (T/9) – ki
2.  

So all we need to do is to choose integers 

k1, k2, …, k10 so that T is divisible by 9.  

For example, taking ki = 3i for i = 1, …, 

10, we get 376, 349, 304, 241, 160, 

61, –56, –191, –344, –515 for a1, …, a10. 

  

Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 5). 

 

Problem 184.  Let ABCD be a 

rhombus with o60=∠B .  M is a point 

inside ADC∆  such that =∠AMC  
o120 .  Let lines BA and CM intersect at 

P and lines BC and AM intersect at Q.  

Prove that D lies on the line PQ. 

(Source: 2002 Belarussian Math 

Olympiad) 
 
Solution.  John PANAGEAS (Kaisari 
High School, Athens, Greece), and 
POON Ming Fung (STFA Leung Kau 
Kui College, Form 6).  

 

Since ABCD is a rhombus and ∠ABC = 
o60 , we see ∠ADC, ∠DAC, ∠DCA, 

∠PAD and ∠DCQ are all o60 . 

 

Now 
 
∠CAM+∠MCA = o180 –∠AMC = o60  
 
and  
 
∠DCM + ∠MCA =∠DCA = 

o60  
 
imply  ∠CAM = ∠DCM.  

 

Since AB || CD, we get  
 

∠APC = ∠DCM = ∠CAQ. 
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Also, ∠PAC = o120  = ∠ACQ.  Hence 

APC∆  and CAQ∆  are similar.  So PA/AC 

= AC/CQ.  

 

Since AC = AD = DC, so PA/AD = DC/CQ.  

As ∠PAD = o60  = ∠DCQ, so PAD∆  and 

DCQ∆  are similar.  Then 

 

          ∠PDA + ∠ADC + ∠CDQ  

=∠PDA + ∠PAD + ∠APD = o180 . 
 
Therefore, P, D, Q are collinear. 

 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese Women’s 
Club College, Form 5), Achilleas Pavlos 
PORFYRIADIS (American College of 
Thessaloniki “Anatolia”, Thessaloniki, 
Greece), SIU Tsz Hang (CUHK, Math 
Major, Year 1), TAM Choi Nang Julian 
(Teacher, SKH Lam Kau Mow Secondary 
School). 

 

Problem 185.  Given a circle of n lights, 

exactly one of which is initially on, it is 

permitted to change the state of a bulb 

provided one also changes the state of 

every d-th bulb after it (where d is a divisor 

of n and is less than n), provided that all n/d 

bulbs were originally in the same state as 

one another.  For what values of n is it 

possible to turn all the bulbs on by making 

a sequence of moves of this kind? 

Solution. 

Let ω = cos (2π/n) + i sin (2π/n) and the 

lights be at 1, , , 2ωω  …, 1−nω  with the 

one at 1 on initially.  If d is a divisor of n 

that is less than n and the lights at  

)(2 ,,,, dnadadaa −+++ ωωωω L  

have the same state, then we can change 

the state of these n/d lights.  Note their sum 

is a geometric series equal to 

.0)1/()1( =−− dna ωωω  

So if we add up the numbers 

corresponding to the lights that are on 

before and after a move, it will remain the 

same.  Since in the beginning this number 

is 1, it will never be 

.01 12 =++++ −nωωω L  

Therefore, all the lights can never be on at 

the same time. 

 

Comments: This problem was due to 

Professor James Propp, University of 

Wisconsin, Madison (see his website 

http://www.math.wisc.edu/~propp/ ) and 

was selected from page 141 of the highly 

recommended book by Paul Zeitz titled 

The Art and Craft of Problem Solving, 

published by Wiley. 

Olympiad Corner 

(continued from page 1)
 

Problem 4.  Let ABCD be a cyclic 

quadrilateral.  Let P, Q and R be the feet of 

the perpendiculars from D to the lines BC, 

CA and AB respectively.  Show that PQ = 

QR if and only if the bisector of ∠ABC and 

∠ADC meet on AC. 
 

Problem 5.  Let n be a positive integer and 

x1, x2, … , xn be real numbers with x1 ≤  x2 

≤≤L  xn.  
 

(a)  Prove that  
2

1 1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ∑ −
= =

n

i

n

j
ji xx  

.)(
3

)1(2

1 1

2
2

∑ ∑ −
−

≤
= =

n

i

n

j
ji xx

n
 

 

(b) Show that equality holds if and only if 

x1, x2, …, xn is an arithmetic sequence.
 

Problem 6.  Let p be a prime number. 

Prove that there exists a prime number q

such that for every integer n, the number 

pn p −  is not divisible by q. 

 

 
The 2003 Hong Kong IMO team from left to right: Wei Fei Fei (Guide), Leung Chit Wan (Deputy Leader), Chung Tat Chi, Siu 

Tsz Hang, Kwok Tsz Chiu, Yu Hok Pun, Yeung Kai Sing, Lau Wai Shun, Leung Tat Wing (Leader). 
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Olympiad Corner 
 
The 2003 USA Mathematical Olympiad 

took place on May 1.  Here are the 

problems. 
 

Problem 1.  Prove that for every positive 

integer n there exists an n-digit number 

divisible by 5n all of whose digits are odd. 
 

Problem 2.  A convex polygon P in the 

plane is dissected into smaller convex 

polygons by drawing all of its diagonals.  

The lengths of all sides and all diagonals 

of the polygons P are rational numbers.  

Prove that the lengths of all sides of all 

polygons in the dissection are also 

rational numbers.  

 

Problem 3.  Let n ≠  0.  For every 

sequence of integers A = a0, a1, a2, …, an 

satisfying 0 ≤  ai ≤  i, for i = 0, …, n, 

define another sequence t ( A ) = t ( a0 ), t 

( a1 ), t ( a2 ),…, t ( an ) by setting t ( ai ) to 

be the number of terms in the sequence A 

that precede the terms ai and are different 

from ai.  Show that, starting from any 

sequence A as above, fewer than n 

applications of the transformation t lead 

to a sequence B such that t ( B ) = B. 
  

  
(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon.  

The deadline for submitting solutions 

is February 28, 2004. 

 

Problem 191.  Solve the equation 
 

.233 +=− xxx  

 

Problem 192.  Inside a triangle ABC, 

there is a point P satisfies ✆PAB = 

✆PBC = ✆PCA = ✝.  If the angles of 

the triangle are denoted by ✞, ✟ and ✠, 
prove that  
 

.
sin

1

sin

1

sin

1

sin

1
2222 γβαϕ

++=

 

Problem 193.  Is there any perfect 

square, which has the same number of 

positive divisors of the form 3k + 1 as 

of the form 3k + 2?  Give a proof of 

your answer. 
 

Problem 194.  (Due to Achilleas 

Pavlos PORFYRIADIS, American 

College of Thessaloniki “Anatolia”, 

Thessaloniki, Greece)  A circle with 

center O is internally tangent to two 

circles inside it, with centers O1 and O2, 

at points S and T respectively.  Suppose 

the two circles inside intersect at points 

M, N with N closer to ST.  Show that S, 

N, T are collinear if and only if 

SO1/OO1 = OO2/TO2. 

  

Problem 195.  (Due to Fei Zhenpeng, 

Yongfeng High School, Yancheng City, 

Jiangsu Province, China)  Given n (n > 

3) points on a plane, no three of them 

are collinear, x pairs of these points are 

connected by line segments.  Prove that  

if  

,
)2(3

3)2)(1(

−
+−−≥

n

nnn
x  

then there is at least one triangle having 

these line segments as edges.  

Find all possible values of integers n > 3 

such that 
)2(3

3)2)(1(

−
+−−

n

nnn  is an 

integer and the minimum number of line 

segments guaranteeing a triangle in the 

above situation is this integer. 

 

***************** 

Solutions 
**************** 

 
Problem 186.  (Due to Fei Zhenpeng, 

Yongfeng High School, Yancheng City, 

Jiangsu Province, China)  Let ✞, ✟, ✠ be 

complex numbers such that  
 

✞ + ✟ + ✠ = 1, 
 

✞2 + ✟2 + ✠2 = 3, 
 

✞3 + ✟3 + ✠3 = 7. 
 
Determine the value of  ✞21 +  ✟21 +  ✠21 . 
 
Solution.  Helder Oliveira de CASTRO 
(Colegio Objetivo, 3rd Grade, Sao Paulo, 
Brazil), CHEUNG Yun Kuen (Hong 
Kong Chinese Women’s Club College, 
Form 6), CHUNG Ho Yin (STFA Leung 
Kau Kui College, Form 7), FOK Kai 
Tung (Yan Chai Hospital No. 2 Secondary 
School, Form 7), FUNG Chui Ying (True 
Light Girls’ College, Form 6), Murray 
KLAMKIN (University of Alberta, 
Edmonton, Canada), LOK Kin Leung 
(Tuen Mun Catholic Secondary School, 
Form 6), SIU Ho Chung (Queen’s 
College, Form 5), YAU Chi Keung (CNC 
Memorial College, Form 7) and YIM Wing 
Yin (South Tuen Mun Government 
Secondary School, Form 4).  
 
Using the given equations and the 

identities 
 

(✞ + ✟ + ✠)2 = ✞2 + ✟2 + ✠2 + 2(✞✟ + ✟✠ + ✠✞), 

(✞ + ✟ + ✡)(✞2 + ✟2 + ✠2 – ✞✟ – ✟✠ – ✡✞) 

      = ✞3 +✟3 +✠3 –3✞✟✠, 
 

we get ✞✟ + ✟✠ + ✠✞ = –1 and ✞✟✠ = 1.  

These imply ✞, ✟, ✠ are the roots of f (x) = 

x
3 – x2 – x – 1 = 0.  Let Sn = ✞n

 + ✟n
 + ✠n, 

then S1 = 1, S2 = 3, S3 = 7 and for n > 0, 

           Sn+3 – Sn+2 – Sn+1 – Sn  

       = ✞n f (✞) – ✟n f (✟) – ✠n
 f (✠) = 0.  

 

Using this recurrence relation, we find S4 

=11, S5 =21, … , S21
 =361109.  

 

Problem 187.   Define f (n) = n!.  Let  
 

a = 0. f (1) f (2) f (3) … . 
 
In other words, to obtain the decimal 

representation of  a  write the numbers  

f (1),  f (2),  f (3), … in base 10 in a row.  

Is a rational?  Give a proof.  (Source: 

Israeli Math Olympiad) 
 
Solution.  Helder Oliveira de 
CASTRO (Colegio Objetivo, 3rd 
Grade, Sao Paulo, Brazil), CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 6), 
Murray KLAMKIN (University of 
Alberta, Edmonton, Canada) and 
Achilleas Pavlos PORFYRIADIS 
(American College of Thessaloniki 
“Anatolia”, Thessaloniki, Greece). 
  
Assume a is rational.  Then its decimal 

representation will eventually be 

periodic.  Suppose the period has k digits.  

Then for every n > 10k ,  f ( n ) is nonzero 

and ends in at least k zeros, which imply 

the period cannot have k digits.  We got a 

contradiction.  

 

Problem 188.  The line S is tangent to 

the circumcircle of acute triangle ABC 

at B.  Let K be the projection of the 

orthocenter of triangle ABC onto line S 

(i.e. K is the foot of perpendicular from 

the orthocenter of triangle ABC to S).  

Let L be the midpoint of side AC.  

Show that triangle BKL is isosceles. 

(Source: 2000 Saint Petersburg City 

Math Olympiad) 
 
Solution.  SIU Ho Chung (Queen’s 
College, Form 5). 
 

Let O, G and H be the circumcenter, 

centroid and orthocenter of triangle ABC 

respectively.  Let T and R be the 

projections of G and L onto line S.  From 

the Euler line theorem (cf. Math 

Excalibur, vol. 3, no. 1, p.1), we know 

that O, G, H are collinear, G is between 

O and H and 2 OG = GH.  Then T is 

between B and K and 2 BT = TK.  
 

Also, G is on the median BL and 2 LG = 

BG.  So T is between B and R and 2 RT = 

BT.  Then 2 BR = 2 ( BT + RT ) = TK + 

TB = BK.  So BR = RK.  Since LR is 

perpendicular to line S, by Pythagorean 

theorem, BL=LK. 
 
Other commended solvers: CHEUNG 
Yun Kuen (Hong Kong Chinese 
Women’s Club College, Form 6) and 
Achilleas Pavlos PORFYRIADIS 
(American College of Thessaloniki 
“Anatolia”, Thessaloniki, Greece). 

 

Problem 189.  2n + 1 segments are 

marked on a line.  Each of the segments 

intersects at least n other segments.  

Prove that one of these segments 
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intersect all other segments. (Source 

2000 Russian Math Olympiad) 
 
Solution. Achilleas Pavlos 
PORFYRIADIS (American College 
of Thessaloniki “Anatolia”, 
Thessaloniki, Greece).  
 

We imagine the segments on the line as 

intervals on the real axis.  Going from 

left to right, let Ii be the i-th segment 

we meet with i = 1, 2, … , 2n + 1.  Let 

Ii
l and Ii

r be the left and right endpoints 

of Ii respectively.  Now I1 contains 

I2
l, … , In+1

l.  Similarly, I2 which 

already intersects I1 must contain 

I3
l, … , In+1

l and so on.  Therefore the 

segments I1, I2, … , In+1 intersect each 

other.   
 

Next let Ik
r be the rightmost endpoint 

among I1
r, I2

r, … , In+1
r (1 ≤  k ≤  n+1).  

For each of the n remaining intervals 

In+2, In+3, … , I2n+1, it must intersect at 

least one of I1, I2, … , In+1 since it has to 

intersect at least n intervals.  This 

means for every j ≥  n + 2, there is at 

least one m ≤  n + 1 such that  Ij
l  ≤  Im

r 

≤  Ik
r, then Ik intersects Ij and hence 

every interval. 

 

Problem 190.  (Due to Abderrahim 

Ouardini)  For nonnegative integer n, 

let [x] be the greatest integer less than 

or equal to x and 
 

[ ]21)( ++++= nnnnf  

[ ]19 +− n  . 
 

Find the range of f and for each p in the 

range, find all nonnegative integers n 

such that f (n) = p. 
 
Combined Solution by the Proposer and 
CHEUNG Yun Kuen (Hong Kong 
Chinese Women’s Club College, Form 6). 

For positive integer n, we claim that 

99)(89 +<<+ nngn , 

where  

21)( ++++= nnnng . 

This follows from 

)1((233)( 2 +++= nnnng  

))2()2)(1( nnnn +++++  

and the following readily verified 

inequalities for positive integer n, 

(n + 0.4 ) 2 < n(n + 1) < (n + 0.5 )2, 

(n + 1.4 )2 < (n + 1)(n + 2) < (n + 1.5 )2 

and  (n + 0.7 )2 < (n + 2) n < (n + 1)2.  The 

claim implies the range of  f  is a subset of 

nonnegative integers. 

Suppose there is a positive integer n such 

that  f (n) ≥  2.  Then  

191)]([99 ++>>+ nngn . 

Squaring the two extremes and comparing, 

we see this is false for n > 1.  Since f (0) = 1 

and f (1) = 1, we have f (n) = 0 or 1 for all 

nonnegative integers n. 
 

Next observe that  

99)]([89 +<<+ nngn  

is impossible by squaring all expressions. 

So ].89[)]([ += nng  

 

Now f (n) = 1 if and only if  p = [ g (n) ] 

satisfies  1]19[ −=+ pn  , i.e. 

.8919 +≤<+ npn  

Considering squares (mod 9), we see that 

p
2 = 9n + 4 or 9n + 7. 

 

If  p2 = 9n + 4, then p = 9k + 2 or 9k + 7.  In 

the former case, n = 9k
2  + 4k and (9k + 1)2 

≤  9n + 1 = 81k
2 + 36k + 1< (9k + 2)2 so that 

.119]19[ −=+=+ pkn   In the 

latter case, n = 9k
2 + 14k + 5 and (9k + 6)2 

≤  9n + 1 = 81k
2 + 126k + 46 < (9k + 7)2 so 

that .169]19[ −=+=+ pkn   
 

If p2 = 9n + 7, then p = 9k + 4 or 9k + 5.  In 

the former case, n = 9k
2 + 8k + 1 and (9k + 

3)2 ≤  9n + 1 = 81k
2 + 72k + 10 < (9k + 4)2 

so that .139]19[ −=+=+ pkn   

In the latter case, n = 9k
2 + 10k + 2 and (9k 

+ 4)2 ≤  9n + 1 = 81k
2 + 90k + 19 < (9k + 5)2 

so that .149]19[ −=+=+ pkn   
 

Therefore,  f (n) = 1 if and only if  n is of the 

form 9k
2 + 4k  or  9k

2 + 14k + 5  or  9k
2 + 8k 

+ 1 or 9k
2 + 10k + 2. 
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Problem 4.  Let ABC be a triangle.  A 

circle passing through A and B intersects 

segments AC and BC at D and E, 

respectively.  Rays BA and ED 

intersect at F while lines BD and CF 

intersect at M.  Prove that MF = MC if 

and only if MDMB ⋅  = MC
2. 

 

Problem 5.  Let a, b, c be positive 

real numbers.  Prove that  
  

22

2

22

2

)(2

)2(

)(2

)2(

acb

acb

cba

cba

++
+++

++
++  

 

.8
)(2

)2(
22

2

≤
++

+++
bac

bac  

 
Problem 6.  At the vertices of a regular 

hexagon are written six nonnegative 

integers whose sum is 2003.  Bert is 

allowed to make moves of the 

following form: he may pick a vertex 

and replace the number written there 

by the absolute value of the difference 

between the numbers written at the two 

neighboring vertices.  Prove that Bert 

can make a sequence of moves, after 

which the number 0 appears at all six 

vertices. 
 

 
 

✁✁✁✁✂✂✂✂✄✄✄✄✁✁✁✁☎☎☎☎
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Olympiad Corner 
 

The Sixth Hong Kong (China) 

Mathematical Olympiad took place on 

December 20, 2003.  Here are the 

problems.  Time allowed: 3 hours 
 

Problem 1.  Find the greatest real K such 

that for every positive u, v and w with u2 > 

4vw, the inequality  

(u2 - 4vw)2 > K(2v2 - uw)(2w2 - uv) 

holds.  Justify your claim. 

 

Problem 2.  Let ABCDEF be a regular 

hexagon of side length 1, and O be the 

center of the hexagon. In addition to the 

sides of the hexagon, line segments are 

drawn from O to each vertex, making a 

total of twelve unit line segments. Find 

the number of paths of length 2003 along 

these line segments that start at O and 

terminate at O.  

 

Problem 3.  Let ABCD be a cyclic 

quadrilateral.  K, L, M, N are the 

midpoints of sides AB, BC, CD and DA 

respectively.  Prove that the orthocentres 

of triangles AKN, BKL, CLM, DMN are 

the vertices of a parallelogram. 
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Complex numbers are wonderful.  In this 

article we will look at some applications 

of complex numbers to solving geometry 

problems.  If a problem involves points 

and chords on a circle, often we can 

without loss of generality assume it is the 

unit circle.  In the following discussion, 

we will use the same letter for a point to 

denote the same complex number in the 

complex plane.  To begin, we will study 

the equation of lines through points. 

Suppose Z is an arbitrary point on the 

line through W1 and W2.  Since the vector 

from W1 to Z is a multiple of the vector 

from W1 to W2, so in terms of complex 

numbers, we get Z − W1 = t(W2 −W1) for 

some real t. Now t t =  and so 

12

1

12

1

WW

WZ

WW

WZ

−
−

=
−
−  

Reversing the steps, we can see that 

every Z satisfying the equation 

corresponds to a point on the line 

through W1 and W2.  So this is the 

equation of a line through two points in 

the complex variable Z. 
 
Next consider the line passing through a 

point C and perpendicular to the line 

through W1 and W2.  Let Z be on this line.  

Then the vector from C to Z is 

perpendicular to the vector from W1 to 

W2.  In terms of complex numbers, we get 

Z − C = it(W2 − W1) for some real t.  So  

)()( 1212 WWi

CZ

WWi

CZ

−
−

=
−
− . 

Again reversing steps, we can conclude this 

is the equation of the line through C 

perpendicular to the line through W1 and W2. 
 

In case the points W1 and W2 are on the 

unit circle, we have 2211 1 WWWW == .  

Multiplying the numerators and 

denominators of the right sides of the 

two displayed equations above by W1W2, 

we can simplify them to 

2121 WWZWWZ +=+  

and      CWWCZWWZ 2121 −=−  

respectively. 

By moving W2 toward W1 along the unit 

circle, in the limit, we will get the 

equation of the tangent line at W1 to the 

unit circle.  It is 1
2

1 2WZWZ =+ . 

Similarly, the equation of the line 

through C perpendicular to this tangent  

line is CWCZWZ
2

1
2

1 −=− . 

For a given triangle A1A2A3 with the unit 

circle as its circumcircle, in terms of 

complex numbers, its circumcenter is the 

origin O, its centroid is G = (A1 + A2 + 

A3)/3, its orthocenter is H = A1 + A2 + A3 

(because OH = 3OG) and the center of its 

nine point circle is N = (A1 + A2 + A3)/2 

(because N is the midpoint of OH). 

Let us proceed to some examples. 
 

Example 1.  (2000 St. Petersburg City 

Math Olympiad, Problem Corner 188) 

The line S is tangent to the circumcircle 

of acute triangle ABC at B.  Let K be the 

projection of the orthocenter of triangle 

ABC onto line S (i.e. K is the foot of 

perpendicular from the orthocenter of 

triangle ABC to S).  Let L be the midpoint 

of side AC.  Show that triangle BKL is 

sosceles. i
 

Solution.  (Due to POON Ming Fung, 

STFA Leung Kau Kui College, Form 6) 

Without loss of generality, let the 

circumcircle of triangle ABC be the unit 

circle on the plane.  Let A = a + bi, B = 

−i, C = c + di.  Then the orthocenter is H 

= A + B + C and K = (a + c) − i, L = (a + 

c)/2 + (b + d)i/2.  Since 

,)2()(
2

1 22 KLdbcaLB =++++=  

triangle BKL is isosceles. 



Mathematical Excalibur, Vol. 9, No. 1, Jan 04- Apr 04 Page 2

 

Example 2.  Consider triangle ABC and 

its circumcircle S.  Reflect the circle with 

respect to AB, AC and BC to get three new 

circles SAB, SAC and SBC (with the same 

radius as S).  Show that these three new 

circles intersect at a common point.  

Identify this point. 
 

Solution.  Without loss of generality, we 

may assume S is the unit circle.  Let the 

center of SAB be O´, then O´ is the mirror 

image of O with respect to the segment 

AB. So O´ = A + B (because segments 

OO´ and AB bisect each other).  Similarly, 

the centers of SAC and SBC  are A + C and B 

+ C respectively.  We need to show there 

is a point Z such that Z is on all three new 

circles, i.e. 

|Z − (A + B)| = |Z − (A + C)| 

= |Z − (B + C)| = 1. 

We easily see that the orthocenter of 

triangle ABC, namely Z = H = A + B + C, 

satisfies these equations.  Therefore, the 

three new circles intersect at the 

orthocenter of triangle ABC. 
 

Example 3.  A point A is taken inside a 

circle.  For every chord of the circle 

passing through A, consider the 

intersection point of the two tangents at 

the endpoints of the chord.  Find the locus 

of these intersection points. 
 

Solution.  Without loss of generality we 

may assume the circle is the unit circle 

and A is on the real axis.  Let WX be a 

chord passing through A with W and X on 

the circle.  The intersection point Z of the 

tangents at W and X satisfies 

WZWZ 22 =+  and XZXZ 22 =+ .  

Solving these equations together for Z, we 

find )/(2 XWZ += . 
 

Since A is on the chord WX, the real 

number A satisfies the equation for line 

WX, i.e. A + WXA = W + X.  Using 

X X   WW == 1 , we see that 

AXW

WX

XWXW
Z

1111
Re =

+
+

=
+

+
+

= . 

So the locus lies on the vertical line 

through 1/A. 

Conversely, for any point Z on this line, 

draw the two tangents from Z to the unit 

circle and let them touch the unit circle at 

the point W and X.  Then the above 

equations are satisfied by reversing the 

argument.  In particular, A + WXA = W + 

X and so A is on the chord WX.  Therefore, 

the locus is the line perpendicular to OA 

at a distance 1/OA from O. 

Example 4.  Let A1, A2, A3 be the 

midpoints of W2W3, W3W1, W1W2 

respectively.  From Ai drop a 

perpendicular to the tangent line to the 

circumcircle of triangle W1W2W3 at Wi. 

Prove that these perpendicular lines are 

concurrent.  Identify this point of 

oncurrency. c
 
Solution.  Without loss of generality, let 

the circumcircle of triangle W1W2W3 be 

the unit circle.  The line perpendicular to 

the tangent at W1 through A1 = (W2 + W3)/2 

has equation 

22

322
1

322
1

WW
W

WW
ZWZ

+
−

+
=− . 

Using 111 =WW , we may see that the right 

side is the same as 

22

3212
1

321 WWW
W

WWW ++
−

++ . 

From this we see that N = (W1 + W2 + 

W3)/2 satisfies the equation of the line and 

so N is on the line.  Since the expression 

for N is symmetric with respect to W1, W2, 

W3, we can conclude that N will also lie on 

the other two lines.  Therefore, the lines 

concur at N, the center of the nine point 

ircle of triangle W1W2W3. c
 
Example 5.  (Simson Line Theorem)  Let 

W be on the circumcircle of triangle 

Z1Z2Z3 and P, Q, R be the feet of the 

perpendiculars from W to Z3Z1, Z1Z2, Z2Z3 

respectively.  Prove that P, Q, R are 

collinear.  (This line is called the Simson 

line of triangle Z1Z2Z3 from W.) 
 
Solution.  Without loss of generality, we 

may assume the circumcircle of triangle 

Z1Z2Z3 is the unit circle. 

Then 1321 ==== WZZZ .  Now P is 

on the line Z3Z1 and the line through W 

perpendicular to Z3Z1.  So P satisfies the 

equations 3131 ZZPZZP +=+  and P – 

WZZWPZZ 3131 −= .  Solving these 

together for P, we get 

2

3131 WZW - Z  Z Z
P 

++
= . 

Similarly, 

2

2121 WZW - Z  Z Z
Q 

++
=  

and 

2

3232 WZW - Z  Z Z
R 

++
= . 

To show P, Q, R are collinear, it suffices to 
check that 

R-Q

R-P

Q-R

P-R
= . 

Now the right side is 

WZZ W ZZ - Z - Z

WZZ W ZZ - Z - Z

322131

323121

+

+ . 

Multiplying the numerator and 

denominator by WZZZ 321  and using 

W W ZZ ii == 1 , we get 

.
132132

123132

ZZWZZWZZ

ZZWZZWZZ

+−−
+−−

 

This equals the left side (P − R)/(Q − R) 

and we complete the checking. 
 
Example 6. (2003 IMO, Problem 4) Let 

ABCD be a cyclic quadrilateral.  Let P, Q 

and R be the feet of the perpendiculars 

from D to the lines BC, CA and AB 

respectively.  Show that PQ = QR if and 

only if the bisectors of ABC∠  and 

ADC∠  meet on AC. 
 

Solution.  (Due to SIU Tsz Hang, 2003 

Hong Kong IMO team member)  Without 

loss of generality, assume A, B, C, D lies 

on the unit circle and the perpendicular 

bisector of AC is the real axis.  Let A = 

cosθ + isin θ, then θθ sincos iAC −==  

so that AC = 1 and A + C = 2cosθ.  Since 

the bisectors of  and ABC∠ ADC∠  pass 

through the midpoints of the major and 

minor arc AC, we may assume the 

bisectors of ∠ABC and ∠ADC pass 

through 1 and −1 respectively.  Let AC 

intersect the bisector of ∠ABC at Z, then 

Z satisfies CAZACZ +=+ , (which is 

θcos2=+ ZZ ), and 1+=+ BZBZ . 

Solving for Z, we get 

1

1cos2

B 

BB
Z 

−
−−

=
θ . 

Similarly, the intersection point Z ′  of AC 

with the bisector of ∠ADC is 

1

1cos2
'

+
−+

=
D

DD
Z

θ
. 

Next, R is on the line AB and the line 

through D perpendicular to AB.  So 

BARABR +=+  and DABDRABR −=− .  

Solving for R, we find 

2

DABDBA
R 

−++
= . 

Similarly, 

2

DBCDCB
P 

−++
=  

and 

2

DCADAC
Q 

−++
= . 

(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is May 25, 2004. 
 

Problem 196.  (Due to John 

PANAGEAS, High School “Kaisari”, 

Athens, Greece)  Let  be 

positive real numbers with sum equal 

to 1.  Prove that for every positive 

integer m, 

nxxx ,...,, 21

)....(
21

m
n

mmm xxxnn +++≤  

 

Problem 197.  In a rectangular box, the 

length of the three edges starting at the 

same vertex are prime numbers.  It is 

also given that the surface area of the 

box is a power of a prime.  Prove that 

exactly one of the edge lengths is a 

prime number of the form 2k - 1. 
 

Problem 198.  In a triangle ABC, AC = 

BC. Given is a point P on side AB such 

that ∠ACP = 30∘.  In addition, point 

Q outside the triangle satisfies ∠CPQ 

=  ∠CPA + ∠APQ = 78∘.  Given that 

all angles of triangles ABC and QPB, 

measured in degrees, are integers, 

determine the angles of these two 

triangles. 
 

Problem 199.  Let R+
 denote the 

positive real numbers.  Suppose 

is a strictly decreasing 

function such that for all , 

++ → RRf :
+∈Ryx,

           f (x + y) + f (f (x) + f (y))  

= f (f (x + f (y)) + f (y + f (x))). 

Prove that f (f (x)) = x for every x > 0. 

(Source: 1997 Iranian Math 

Olympiad) 
 

Problem 200.  Aladdin walked all over 

the equator in such a way that each 

moment he either was moving to the 

west or was moving to the east or 

applied some magic trick to get to the 

opposite point of the Earth.  We know 

that he travelled a total distance less 

than half of the length of the equator 

altogether during his westward moves. 

Prove that there was a moment when the 

difference between the distances he had 

covered moving to the east and moving to 

the west was at least half of the length of 

the equator. 
 

***************** 

Solutions 

**************** 

Due to an editorial mistake in the last 

issue, solutions to problems 186, 187, 188 

by POON Ming Fung (STFA Leung Kau 

Kui College, Form 6) were overlooked 

and his name was not listed among the 

solvers.  We express our apology to him 

and point out that his clever solution to 

problem 188 is printed in example 1 of the 

article “Geometry via Complex Numbers” 

in this issue. 
 

Problem 191.  Solve the equation 

.233 +=− xxx  

Solution.  Helder Oliveira de CASTRO 
(ITA-Aeronautic Institue of Technology, 
Sao Paulo, Brazil) and Yufei ZHAO (Don 
Mills Collegeiate Institute, Toronoto, 

anada, Grade 10). C
 

If x < -2, then the right side of the equation 

is not defined. If x > 2, then 

.2
4

4

)2)(2(3
3

3

3
3

+>>

−++
=−

x
x

xxxx
xx

 

So the solution(s), if any, must be in [-2, 2].  

Write x = 2 cos a, where π≤≤ a0 .  The 

equation becomes 

.2cos2cos6cos8 3 +=− aaa  

Using the triple angle formula on the left 

side and the half angle formula on the right 

side, we get 

).0(
2

cos23cos2 ≥=
a

a  

Then 3a ± (a/2) = 2nπ for some integer n. 

Since 3a ± (a/2) ∈  [-π/2, 7π /2], we get 

n = 0 or 1.  We easily checked that a = 0, 

5/4π , 4π/7 yield the only solutions x = 2, 

2cos(4π/5), 2cos(4π/7). 
 
Other commended solvers: CHUNG Ho 
Yin (STFA Leung Kau Kui College, Form 
7), LEE Man Fui (CUHK, Year 1), 
LING Shu Dung, POON Ming Fung 
(STFA Leung Kau Kui College, Form 6), 
SINN Ming Chun (STFA Leung Kau Kui 
College, Form 4), SIU Ho Chung 
(Queen’s College, Form 5), TONG Yiu 
Wai (Queen Elizabeth School), YAU Chi 
Keung (CNC Memorial College, Form 7) 
and YIM Wing Yin (South Tuen Mun 
Government Secondary School, Form 4). 

Problem 192.  Inside a triangle ABC, 

there is a point P satisfies ∠PAB = ∠
PBC = ∠PCA = φ.  If the angles of the 

triangle are denoted by α, β and γ, 
prove that  

γβαϕ 2222 sin

1

sin

1

sin

1

sin

1
++= . 

Solution.  LEE Tsun Man Clement (St. 
Paul’s College), POON Ming Fung (STFA 
Leung Kau Kui College, Form 6), SIU Ho 
Chung (Queen’s College, Form 5) and 
Yufei ZHAO (Don Mills Collegiate 
nstitute, Tornoto, Canada, Grade 10). I

 

Let AP meet BC at X.  Since ∠XBP = ∠
BAX and ∠BXP = ∠AXB, triangles 

XPB and XBA are similar.  Then XB/XP = 

XA/XB.  Using the sine law and the last 

equation, we have 

2

2

2

2

2

2

sin

sin

sin

sin

XA

XB

XBA

XAB
=

∠
∠

=
β
ϕ  

   
XA

XP

XA

XAXP
=

⋅
=

2
 

Using [ ] to denote area, we have 

][

][

][

][

][

][

ABC

BPC

XCA

XCP

XBA

XBP

XA

XP
===  

Combining the last two equations, we 

have   By 

similar arguments, we have 

]./[][sin/sin 22 ABCBPC=βϕ

1
][

][

][

][

][

][

][

][

sin

sin

sin

sin

sin

sin
  

2

2

2

2

2

2

==

++=

++

ABC

ABC

ABC

CPA

ABC

BPC

ABC

APB

γ
ϕ

φ
ϕ

α
ϕ

 

The result follows. 

Other commended solvers: CHENG Tsz 
Chung (La Salle College, Form 5), LEE 
Man Fui (CUHK, Year 1) and Achilleas 
P. PORFYRIADIS (American College 
of Thessaloniki “Anatolia”, Thessaloniki, 
Greece). 

Comments: Professor Murray 

KLAMKIN (University of Alberta, 

Edmonton, Canada) informed us that the 

result csc2 φ = csc2 α + csc2 β + csc2 γ in the 

problem is a known relation for the 

Brocard angle φ of a triangle.  Also 

known is cot φ = cot α + cot β + cot γ.  He 

mentioned these relations and others are 

given in R.A. Johnson, Advanced 

Euclidean Geometry, Dover, N.Y., 1960, 

pp. 266-267.  (For the convenience of 

interested readers, the Chinese translation 

of this book can be found in many 

bookstore.–Ed) LEE Man Fui and 

Achilleas PORFYRIADIS gave a proof 

of the cotangent relation and use it to 
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derive the cosecant relation, which is the 

equation in the problem, by trigonometric 

anipulations. m
 
Problem 193.  Is there any perfect square, 

which has the same number of positive 

divisors of the form 3k + 1 as of the form 

3k + 2?  Give a proof of your answer. 

Solution 1.  K.C. CHOW (Kiangsu-Chekiang 
College Shatin, Teacher), LEE Tsun Man 
Clement (St. Paul’s College), SIU Ho Chung 
(Queen’s College, Form 5) and Yufei ZHAO 
(Don Mills Collegiate Institute, Toronto, 
Canada, Grade 10). 
 
No.  For a perfect square m2, let m = 3ab 

with b not divisible by 3.  Then m2 = 32ab2.  

Observe that divisors of the form 3k + 1 

or 3k + 2 for m2 and for b2 consist of the 

same numbers because they cannot have 

any factor of 3.  Since b2 has an odd 

number of divisors and they can only be 

of the form 3k + 1 or 3k + 2, so the 

number of divisors of the form 3k + 1 

cannot be the same as the number of 

divisors of the form 3k + 2.  Therefore, 

the same is true for m2. 
 
Solution 2.  Helder Oliveira de CASTRO 
(ITA-Aeronautic Institute of Technology, Sao 
Paulo, Brazil), LEE Man Fui (CUHK, Year 
1), LING Shu Dung, POON Ming Fung 
(STFA Leung Kau Kui College, Form 6), 
Achilleas P. PORFYRIADIS (American 
College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece), Alan T.W. WONG 
(Markham, Ontario, Canada) and YIM Wing 
Yin (South Tuen Mun Government Secondary 

chool, Form 4). S
 

No.  For a perfect square, its prime 

factorization is of the form 

···.  Let x, y, z be the number 

of divisors of the form 3k, 3k + 1, 3k + 2 

for this perfect square respectively.  Then 

x + y + z = (2e1 + 1) (2e2 + 1) (2e3 + 1) ··· is 

odd.  Now divisor of the form 3k has at 

least one factor 3, so x = (2e1 + 1) (2e2) 

(2e3 + 1) ··· is even.  Then y + z is odd.  

Therefore y cannot equal z. 

321 222
532

eee

 
Other commended solvers: CHENG Tsz 
Chung (La Salle College, Form 5) and YEUNG 
Wai Kit (STFA Leung Kau Kui College). 
 
Problem 194.  (Due to Achilleas Pavlos 

PORFYRIADIS, American College of 

Thessaloniki “Anatolia”, Thessaloniki, 

Greece)  A circle with center O is 

internally tangent to two circles inside it, 

with centers O1 and O2, at points S and T 

respectively.  Suppose the two circles 

inside intersect at points M, N with N 

closer to ST.  Show that S, N, T are 

collinear if and only if SO1/OO1 = 

OO2/TO2. 
 
Solution.  CHENG Tsz Chung (La Salle 
College, Form 5), K. C. CHOW 

(Kiangsu-Chekiang College Shatin, Teacher), 
Helder Oliveira de CASTRO 
(ITA-Aeronautic Institute of Technology, Sao 
Paulo, Brazil), LEE Tsun Man Clement (St. 
Paul’s College), LING Shu Dung, POON 
Ming Fung (STFA Leung Kau Kui College, 
Form 6), SIU Ho Chung (Queen’s College, 
Form 5), YEUNG Wai Kit (STFA Leung Kau 
Kui College), Yufei ZHAO (Don Mills 
Collegiate Institute, Toronto, Canada, Grade 10) 
and the proposer. 

If S, N, T are collinear, then triangles SO1N 

and SOT are isosceles and share the 

common angle OST, which imply they are 

similar.  Thus ∠SO1N = ∠SOT and so 

lines O1N and OT are parallel.  Similarly, 

lines O2N and OS are parallel.  Hence, 

OO1NO2 is a parallelogram and OO2 = 

O1N = O1S, OO1 = O2N = O2T.  Therefore, 

SO1/OO1 = OO2/TO2.  Conversely, if 

SO1/OO1 = OO2/TO2, then using OO1 = OS 

− O1S and OO2 = OT − O2T, we get 

,
2

2

1

1

TO

TOOT

SOOS

SO −
=

−
 

which reduces to O1S + O2T = OS.  Then 

OO1 = OS − O1S = O2T = O2N and OO2 = 

OT − O2T = O1S = O1N.  Hence OO1NO2 is 

again a parallelogram. Then 

.180

2

1

2

1

   

2211

2211

2211

°=

∠+∠+∠=

∠+∠+∠=
∠+∠+∠

NOONOONOO

TNONOOSNO

NTONOONSO

 

Therefore, S, N, T are collinear. 
 
Other commended solver: TONG Yiu 
Wai (Queen Elizabeth School). 
 
Problem 195.  (Due to Fei Zhenpeng, 

Yongfeng High School, Yancheng City, 

Jiangsu Province, China)  Given n (n > 3) 

points on a plane, no three of them are 

collinear, x pairs of these points are 

connected by line segments.  Prove that if 

,
)2(3

3)2)(1(

−
+−−

≥
n

nnn
x  

then there is at least one triangle having 

these line segments as edges.  Find all 

possible values of integers n > 3 such that  

)2(3

3)2)(1(

−
+−−

n

nnn  is an integer and 

the minimum number of line segments 

guaranteeing a triangle in the above 

situation is this integer. 
 
Solution.  SIU Ho Chung (Queen’s 
College, Form 5), Yufei ZHAO (Don 
Mills Collegiate Institute, Toronto, 

anada, Grade 10) and the proposer. C
 
For every three distinct points A, B, C, 

form a pigeonhole containing the three 

segments AB, BC, CA.  (Each segment 

may be in more than one pigeonholes.) 

There are  pigeonholes.  For each 

segment joining a pair of endpoints, that 

segment will be in n − 2 pigeonholes.  So 

if , that is 

nC3

12)2( 3 +≥− nCnx

,
)2(3

3)2)(1(

2

12 3

−
+−−

=
−
+

≥
n

nnn

n

C
x

n
 

then by the pigeonhole principle, there is 

at least one triangle having these line 

segments as edges. 

If f (n) = (n(n − 1)(n − 2) + 3) / (3(n − 2)) 

is an integer, then 3(n − 2) f (n) = n(n − 

1)(n − 2) + 3 implies 3 is divisible by n − 

2.  Since n > 3, we must have n = 5.  Then 

f (5) = 7.  For the five vertices A, B, C, D, 

E of a regular pentagon, if we connected 

the six segments BC, CD, DE, EA, AC, 

BE, then there is no triangle.  So a 

minimum of f (5) = 7 segments is needed 

to get a triangle. 
 
Other commended solvers: K. C. CHOW 
(Kiangsu-Chekiang College Shatin, 
Teacher) and POON Ming Fung (STFA 
Leung Kau Kui College, Form 6). 

 
 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 4.  Find, with reasons, all 

integers a, b, and c such that 

2

1 (a + b) (b + c) (c + a) + (a + b + c)3 

= 1 – abc. 
 

 
 
Geometry via Complex Numbers 

(continued from page 2) 

 

By Simson’s theorem, P, Q, R are 

collinear. So PQ = QR if and only if Q = 

(P + R)/2.  In terms of A, B, C, D, this may 

be simplified to 

DBC)ABCA(BAC −−=−+ 22 . 

In terms of B, D, θ, this is equivalent to 

(2cosθ − 2B)D = 2 − 2Bcos θ.  This is 

easily checked to be the same as 

1

1cos2

1

1cos2

+
−+

=
−

−−
D

DD

B

B θθ , 

i.e. 'ZZ = . 

Comments:  The official solution by 

pure geometry is shorter, but it takes a 

fair amount of time and cleverness to 

discover. Using complex numbers as 

above reduces the problem to straight 

computations. 
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Olympiad Corner 
 

The XVI Asian Pacific Mathematical 
Olympiad took place on March 2004.  
Here are the problems.  Time allowed:   
4 hours. 

 

Problem 1.  Determine all finite nonempty 

sets S of positive integers satisfying 

  
),( ji

ji +  is an element of S for all i, j in S, 

where (i, j) is the greatest common divisor 

of i and j. 
 

Problem 2.  Let O be the circumcenter 

and H the orthocenter of an acute triangle 

ABC.  Prove that the area of one of the 

triangles AOH, BOH, COH is equal to the 

sum of the areas of the other two.  

 

Problem 3.  Let a set S of 2004 points in 

the plane be given, no three of which are 

collinear.  Let ℒ denote the set of all lines 

(extended indefinitely in both directions) 

determined by pairs of points from the 

set.  Show that it is possible to color the 

points of S with at most two colors, such 

that for any points p, q of S, the number  
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     In algebra, the method of logarithm 

transforms tough problems involving 

multiplications and divisions into 

simpler problems involving additions 

and subtractions.  For every positive 

number x, there is a unique real number 

log x in base 10.  This is a one-to-one 

correspondence between the positive 

numbers and the real numbers.   
 

     In geometry, there are also 

transformation methods for solving 

problems.  In this article, we will discuss 

one such method called inversion.  To 

present this, we will introduce the 

extended plane, which is the plane 

together with a point that we would like 

to think of as infinity.  Also, we would 

like to think of all lines on the plane will 

go through this point at infinity!  To 

understand this, we will introduce the 

stereographic projection, which can be 

described as follow. 
 

     Consider a sphere sitting on a point O 

of a plane.  If we remove the north pole N 

of the sphere, we get a punctured sphere.  

For every point P on the plane, the line 

NP will intersect the punctured sphere at 

a unique point SP.  So this gives a 

one-to-one correspondence between the 

plane and the punctured sphere.  If we 

consider the points P on a circle in the 

plane, then the SP points will form a 

circle on the punctured sphere.  

However, if we consider the points P on 

any line in the plane, then the SP points 

will form a punctured circle on the 

sphere with N as the point removed from 

the circle.  If we move a point P on any 

line on the plane toward infinity, then SP 

will go toward the same point N!  Thus, 

in this model, all lines can be thought of 

as going to the same infinity. 

    Now for the method of inversion, let O 

be a point on the plane and r be a positive 

number. The inversion with center O and 

radius r is the function on the extended 

plane that sends a point X ≠ O to the 

image point X′ on the ray OX  such that  

OX�OX′ = r2
. 

When X = O, X′ is taken to be the point at 

infinity.  When X is infinity, X′ is taken to 

be O.  The circle with center O and 

radius r is called the circle of inversion. 

      The method of inversion is based on 

the following facts. 

(1)  The function sending X to X′ 
described above is a one-to-one 

correspondence between the extended 

plane with itself.  (This follows from 

checking (X′ )′ = X. ) 

(2)  If X is on the circle of inversion, then 

X′ = X.  If X is outside the circle of 

inversion, then X′ is the midpoint of the 

chord formed by the tangent points T1, T2 

of the tangent lines from X to the circle 

of inversion.  (This follows from  

OX�OX′ = (r sec ∠T1OX )(r cos ∠T1OX) 

             = r2
.  ) 

(3)  A circle not passing through O is sent 

to a circle not passing through O.  In this 

case, the images of concyclic points are 

concyclic.  The point O, the centers of 

the circle and the image circle are 

collinear.  However, the center of the 
circle is not sent to the center of the 
image circle! 

(4)  A circle passing through O is sent to 

a line which is not passing through O and 

is parallel to the tangent line to the circle 

at O.  Conversely, a line not passing 

through O is sent to a circle passing 

through O with the tangent line at O 

parallel to the line. 
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(5)  A line passing through O is sent to 

itself. 
 

(6)  If two curves intersect at a certain 

angle at a point P ≠ O, then the image 

curves will also intersect at the same 

angle at P′.  If the angle is a right angle, 

the curves are said to be orthogonal.  So 

in particular, orthogonal curves at P are 

sent to orthogonal curves at P’. A circle 

orthogonal to the circle of inversion is 

sent to itself. Tangent curves at P are sent 

to tangent curves at P’. 
 

(7)  If points A, B are different from O and 

points O, A, B are not collinear, then the 

equation OA�OA′ = r2 
= OB�OB′ implies 

OA/OB=OB′/OA′.  Along with ∠AOB = 

∠B′OA′, they imply ∆OAB, ∆OB′A′ are 

similar.  Then  

OBOA

r

OB

AO

AB

BA

⋅
=

′
=

′′
2

 

so that 

.
2

AB
OBOA

r
BA

⋅
=′′  

 

      The following are some examples that 

illustrate the powerful method of 

inversion.  In each example, when we do 

inversion, it is often that we take the point 

that plays the most significant role and 

where many circles and lines intersect. 

 

Example 1.  (Ptolemy’s Theorem)  For 

coplanar points A, B, C, D, if they are 

concyclic, then 
 

AB�CD + AD�BC = AC�BD. 
 

Solution.  Consider the inversion with 

center D and any radius r.  By fact (4), the 

circumcircle of ∆ABC is sent to the line 

through A′, B′, C′.  Since A′B′ + B′C′ = 

A′C′, we have by fact (7) that 
 

.
222

AC
CDAD

r
BC

CDBD

r
AB

BDAD

r

⋅
=

⋅
+

⋅

Multiplying by (AD�BD�CD)/r2
, we get 

the desired equation. 

Remarks.  The steps can be reversed to 

get the converse statement that if  
 

AB�CD + AD�BC = AC�BD, 
 

then A,B,C,D are concyclic. 

Example 2.  (1993 USAMO)  Let ABCD 

be a convex quadrilateral such that 

diagonals AC and BD intersect at right 

angles, and let O be their intersection 

point.  Prove that the reflections of O 

across AB, BC, CD, DA are concyclic. 
 

Solution.  Let P, Q, R, S be the feet of 

perpendiculars from O to AB, BC, CD, 

DA, respectively.  The problem is 

equivalent to showing P, Q, R, S are 

concyclic (since they are the midpoints of 

O to its reflections).  Note OSAP, OPBQ, 

OQCR, ORDS are cyclic quadrilaterals. 

Let their circumcircles be called CA, CB, 

CC, CD, respectively.  

 

     Consider the inversion with center O 

and any radius r.  By fact (5), lines AC and 

BD are sent to themselves.  By fact (4), 

circle CA is sent to a line LA parallel to BD, 

circle CB is sent to a line LB parallel to AC, 

circle CC is sent to a line LC  parallel to BD, 

circle CD is sent to a line LD parallel to AC.   

 

    Next CA intersects CB at O and P.  This 

implies LA intersects LB at P′.  Similarly, LB 

intersects LC at Q′, LC intersects LD at R′ 

and LD intersects LA at S′. 

 

     Since AC ⊥ BD, P′Q′R′S′ is a rectangle, 

hence cyclic.  Therefore, by fact (3), P, Q, 

R, S are concyclic. 

 

Example 3.  (1996 IMO)  Let P be a point 

inside triangle ABC such that 
 

∠APB – ∠ACB =∠APC – ∠ABC. 
 

Let D, E be the incenters of triangles APB, 

APC, respectively.  Show that AP, BD, CE 

meet at a point. 
 

Solution.  Let lines AP, BD intersect at X, 

lines AP, CE intersect at Y.  We have to 

show X = Y.  By the angle bisector 

theorem, BA/BP = XA/XP.  Similarly, 

CA/CP = YA/YP.  As X, Y are on AP, we 

get X = Y if and only if BA/BP = CA/CP. 

      

    Consider the inversion with center A 

and any radius r.  By fact (7), ∆ABC, 

∆AC′B′ are similar, ∆APB, ∆AB′P′ are 

similar and ∆APC, ∆AC′P′ are similar.  

Now 

        ∠B′C′P′ =∠AC′P′ – ∠AC′B′ 

                 =∠APC – ∠ABC 

                 = ∠APB – ∠ACB 

                 = ∠AB′P – ∠AB′C′ 

                 =∠C′B′P′. 
 

So ∆B′C′P′ is isosceles and P′B′ = P′C′. 

From ∆APB, ∆AB′P′ similar and ∆APC, 

∆AC′P′ similar, we get 

.
CP

CA

CP

AP

BP

AP

BP

BA
=

′′

′
=

′′

′
=  

Therefore, X = Y. 

 

Example 4. (1995 Israeli Math 

Olympiad) Let PQ be the diameter of 

semicircle H. Circle O is internally 

tangent to H and tangent to PQ at C.  Let 

A be a point on H and B a point on PQ 

such that AB ⊥�PQ and is tangent to O.  

Prove that AC bisects ∠PAB.  

 

Solution.  Consider the inversion with 

center C and any radius r.  By fact (7), 

∆CAP, ∆CP′A′ similar and ∆CAB, ∆CB′A′ 

similar.  So AC bisects PAB if and only if 

∠CAP =∠CAB if and only if ∠CP′A′ =

∠CB′A′. 

      By fact (5), line PQ is sent to itself. 

Since circle O passes through C, circle O 

is sent to a line O′ parallel to PQ.  By fact 

(6), since H is tangent to circle O and is 

orthogonal to line PQ, H is sent to the 

semicircle H′ tangent to line O′ and has 

diameter P′Q′.  Since segment AB is 

tangent to circle O and is orthogonal to 

PQ, segment AB is sent to arc A′B′ on the 

semicircle tangent to line O′ and has 

diameter CB’.  Now observe that arc A′Q′ 

and arc A′C are symmetrical with respect 

to the perpendicular bisector of CQ′ so we 

get ∠CP′A′  = ∠CB′A′. 

 

     In the solutions of the next two 

examples, we will consider the 

nine-point circle and the Euler line of a 

triangle.  Please consult Vol. 3, No. 1 of 

Mathematical Excalibur for discussion if 

necessary. 

            (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for 

submitting solutions is August 9, 2004. 
 
Problem 201.  (Due to Abderrahim 
OUARDINI, Talence, France)  Find 

which nonright triangles ABC satisfy 
 
    tan A tan B tan C 

> [tan A] + [tan B] + [tan C], 
 
where [t] denotes the greatest integer 

less than or equal to t.  Give a proof. 
 

Problem 202.  (Due to LUK Mee Lin, 
La Salle College)  For triangle ABC, let 

D, E, F be the midpoints of sides AB, 

BC, CA, respectively.  Determine 

which triangles ABC have the property 

that triangles ADF, BED, CFE can be 

folded above the plane of triangle DEF 

to form a tetrahedron with AD 

coincides with BD; BE coincides with 

CE; CF coincides with AF. 
 

Problem 203.  (Due to José Luis 
DÍAZ-BARRERO, Universitat Politec- 
nica de Catalunya, Barcelona, Spain) 

Let a, b and c be real numbers such that 

a + b + c ≠ 0.  Prove that the equation 
 

(a+b+c)x2 
+ 2(ab+bc+ca)x + 3abc = 0 

 

has only real roots. 
 

Problem 204.  Let n be an integer with 

n > 4.  Prove that for every n distinct 

integers taken from 1, 2, …, 2n, there 

always exist two numbers whose least 

common multiple is at most 3n + 6. 
 

Problem 205.  (Due to HA Duy Hung, 
Hanoi University of Education, 
Vietnam)  Let a, n be integers, both 

greater than 1, such that an
 – 1 is 

divisible by n.  Prove that the greatest 

common divisor (or highest common 

factor) of a – 1 and n is greater than 1. 
 

***************** 

Solutions 

**************** 
 

Problem 196.  (Due to John 
PANAGEAS, High School “Kaisari”, 

Athens, Greece)  Let nxxx ,...,, 21  be 

positive real numbers with sum equal to 1.  

Prove that for every positive integer m, 

)....(
21

m
n

mmm xxxnn +++≤  

Solution.  CHENG Tsz Chung (La Salle 
College, Form 5), Johann Peter Gustav 
Lejeune DIRICHLET (Universidade de 
Sao Paulo – Campus Sao Carlos), KWOK 
Tik Chun (STFA Leung Kau Kui College, 
Form 6), POON Ming Fung (STFA Leung 
Kau Kui College, Form 6), Achilleas P. 
PORFYRIADIS (American College of 
Thessaloniki “Anatolia”, Thessaloniki, Greece), 
SIU Ho Chung (Queen’s College, Form 5) 
and YU Hok Kan (STFA Leung Kau Kui 
College, Form 6). 
 
Applying Jensen’s inequality to f (x) = 

xm on [0, 1] or the power mean inequality, 

we have 

.)( 11

n

xx

n

xx m
n

m
mn ++

≤
++ ��  

Using nxx ++�1 = 1 and multiplying 

both sides by nm+1
, we get the desired 

inequality. 
 
Other commended solvers: TONG Yiu 
Wai (Queen Elizabeth School, Form 6), 
YEUNG Wai Kit (STFA Leung Kau Kui 
College, Form 3) and YEUNG Yuen Chuen (La 
Salle College, Form 4). 

 
Problem 197.  In a rectangular box, the 

lengths of the three edges starting at the 

same vertex are prime numbers.  It is also 

given that the surface area of the box is a 

power of a prime.  Prove that exactly one 

of the edge lengths is a prime number of 

the form 2
k
 −1. (Source: KöMaL Gy.3281) 

 
Solution. CHAN Ka Lok (STFA Leung 
Kau Kui College, Form 4), KWOK Tik 
Chun (STFA Leung Kau Kui College, Form 
6), John PANAGEAS (Kaisari High 
School, Athens, Greece), POON Ming 
Fung (STFA Leung Kau Kui College, Form 
6), Achilleas P. PORFYRIADIS (American 
College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece), SIU Ho Chung 
(Queen’s College, Form 5), TO Ping 
Leung (St. Peter’s Secondary School), 
YEUNG Wai Kit (STFA Leung Kau Kui 
College, Form 3), YEUNG Yuen Chuen (La 
Salle College, Form 4) and YU Hok Kan 
(STFA Leung Kau Kui College, Form 6). 
 

Let the prime numbers x, y, z be the 

lengths of the three edges starting at the 

same vertex.  Then 2(xy + yz + zx) = pn 
for 

some prime p and positive integer n.  Since 

the left side is even, we get p = 2.  So xy + 

yz + zx = 2
n─1

.  Since x, y, z are at least 2, 

the left side is at least 12, so n is at least 5.  

If none or exactly one of x, y, z is even, 

then xy + yz + zx would be odd, a 

contradiction.  So at least two of x, y, z are 

even and prime, say x = y = 2.  Then z = 

2
n─3

−1.  The result follows. 
 
Other commended solvers: NGOO Hung 
Wing (Valtorta College). 
 
Problem 198.  In a triangle ABC, AC = 

BC.  Given is a point P on side AB such 

that ∠ACP = 30
○
.  In addition, point Q 

outside the triangle satisfies ∠CPQ = 

∠CPA + ∠APQ = 78
○
.  Given that all 

angles of triangles ABC and QPB, 

measured in degrees, are integers, 

determine the angles of these two 

triangles. (Source: KöMaL C. 524) 
 
Solution. CHAN On Ting Ellen (True 
Light Girls’ College, Form 4), CHENG 
Tsz Chung (La Salle College, Form 5), 
POON Ming Fung (STFA Leung Kau 
Kui College, Form 6), TONG Yiu Wai 
(Queen Elizabeth School, Form 6), 
YEUNG Yuen Chuen (La Salle College, 
Form 4) and YU Hok Kan (STFA Leung 
Kau Kui College, Form 6). 
 
As ∠ACB >∠ACP = 30

○
, we get  

 
∠CAB  = ∠CBA < (180

○
− 30

○
) / 2 = 75

○
. 

 
Hence ∠CAB ≤ 74

○
.  Then  

    

          ∠CPB = ∠CAB + ∠ACP  

                       ≤ 74
○
+ 30

○
 = 104

○
.  

Now  
 

∠QPB = 360
○
 – ∠QPC − ∠CPB  

             ≥ 360
○
 – 78

○
 – 104

○ 
= 178

○
.  

 
Since the angles of triangle QPB are 
positive integers, we must have  
 
∠QPB = 178

○
, ∠PBQ = 1

○
 =∠PQB 

 
and all less-than-or-equal signs must be 
equalities so that  
 
∠CAB = ∠CBA = 74

○
 and ∠ACB = 32

○
. 

 
Other commended  solvers: CHAN Ka Lok 
(STFA Leung Kau Kui College, Form 4), 
KWOK Tik Chun (STFA Leung Kau Kui 
College, Form 6), Achilleas P. 
PORFYRIADIS (American College of 
Thessaloniki “Anatolia”, Thessaloniki, 
Greece), SIU Ho Chung (Queen’s College, 
Form 5), YEUNG Wai Kit (STFA Leung Kau 
Kui College, Form 3), Richard YEUNG Wing 
Fung (STFA Leung Kau Kui College, Form 6) 
and YIP Kai Shing (STFA Leung Kau Kui 
College, Form 4). 
 

Problem 199.  Let R+
 denote the 

positive real numbers.  Suppose 
++

→ RRf : is a strictly decreasing 

function such that for all +
∈ Ryx, , 

           f (x + y) + f (f (x) + f (y))  

= f (f (x + f (y)) + f (y + f (x))). 

Prove that f (f (x)) = x for every x > 0. 

(Source: 1997 Iranian Math Olympiad) 
 
Solution.  Johann Peter Gustav Lejeune 
DIRICHLET (Universidade de Sao 
Paulo – Campus Sao Carlos) and Achilleas 
P. PORFYRIADIS (American College of 
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Thessaloniki “Anatolia”, Thessaloniki, 
Greece). 
 
Setting y = x gives 
 

f (2x) + f (2f (x)) = f (2f ( x + f (x))). 
 
Setting both x and y to f(x) in the given 

equation gives 
 
                  f (2f (x)) + f (2f (f (x))) 

= f (2f (f (x) + f (f (x)))). 
 
Subtracting this equation from the one 

above gives 
 
f (2f (f (x))) – f (2x)=f (2f ( f (x) + f (f (x)))) 

                                  – f ( 2f (x + f (x))). 
 
Assume f (f (x)) > x.   Then 2f (f (x)) > 2x.  

Since f  is strictly decreasing , we have  
f(2f (f (x))) < f (2x).  This implies the left 

side of the last displayed equation is 

negative.  Hence, 
 
f (2f ( f (x) + f ( f (x)))) < f ( 2f ( x + f (x))). 
 
Again using f strictly decreasing, this 

inequality implies  
 

2f ( f (x) + f ( f (x))) > 2f ( x + f (x)), 
 
which further implies  
 

f (x) + f (f (x)) < x + f (x). 
 
Canceling f (x) from both sides leads to 

the contradiction that f (f (x)) < x. 

 

Similarly, f (f (x)) < x would also lead to a 

contradiction as can be seen by reversing 

all inequality signs above.  Therefore, we 

must have f (f (x)) = x.  

 

Problem 200.  Aladdin walked all over 

the equator in such a way that each 

moment he either was moving to the 

west or was moving to the east or 

applied some magic trick to get to the 

opposite point of the Earth.  We know 

that he travelled a total distance less 

than half of the length of the equator 

altogether during his westward moves.  

Prove that there was a moment when 

the difference between the distances he 

had covered moving to the east and 

moving to the west was at least half of 

the length of the equator. (Source: 
KöMaL F. 3214) 
 
Solution.  
 
Let us abbreviate Aladdin by A.  At every 

moment let us consider a twin, say ∀, of 

A located at the opposite point of the 

position of A.  Now draw the equator 
circle.  Observe that at every moment 

either both are moving east or both are 

moving west.  Combining the movement 

swept out by A and ∀, we get two 

continuous paths on the equator.  At the 

same moment, each point in one path will 

have its opposite point in the other path. 

Let N be the initial point of A in his travel 

and let P(N) denote the path beginning 

with N.  Let W be the westernmost point 

on P(N).  Let N’ and W’ be the opposite 

points of N and W respectively.  By the 

westward travel condition on A, W cannot 

be as far as N’. 

Assume the conclusion of the problem is 

false.  Then the easternmost point reached 

by P(N) cannot be as far as N’.  So P(N) 

will not cover the inside of minor arc WN’ 
and the other path will not cover the inside 

of minor arc W’N.  Since A�have walked 

over all points of the equator (and hence A 

and∀�together walked every point at least 

twice), P(N) must have covered every 

point of the minor arc W’N at least twice. 

Since P(N) cannot cover the entire equator, 

every point of minor arc W’N must be 

traveled westward at least once by A or ∀.�

Then A travelled westward at least a 

distance equal to the sum of lengths of 

minor arcs W’N and NW, i.e. half of the 

equator.  We got a contradiction. 
 
Other commended solvers: POON Ming 
Fung (STFA Leung Kau Kui College, Form 
6). 
 

 

 

Olympiad Corner 

(continued from page 1) 
 

of lines in ℒ which separate p from q is 

odd if and only if p and q have the same 

color. 

Note:  A line ℓ separates two points p 

and q if p and q lie on opposite sides of ℓ 

with neither point on ℓ. 

 

Problem 4.  For a real number x, let  x  

stand for the largest integer that is less 

than or equal to x.  Prove that  










+

−

)1(

)!1(

nn

n
 

is even for every positive integer n. 

 

Problem 5. Prove that 
 

(a2 +2) (b2 
+2) (c2 

+2) ≥ 9 (ab+bc+ca) 
 
for all real numbers a, b, c > 0. 
 

 
 

Inversion 

(continued from page 2) 

 

Example 5.  (1995 Russian Math 

Olympiad)  Given a semicircle with 

diameter AB and center O and a line, 

which intersects the semicircle at C and D 

and line AB at M (MB < MA, MD < MC). 

Let K be the second point of intersection 

of the circumcircles of triangles AOC and 

DOB. Prove that ∠MKO = 90
○
. 

 

Solution.  Consider the inversion with 

center O and radius r = OA.  By fact (2), 

A, B, C, D are sent to themselves.  By fact 

(4), the circle through A, O, C is sent to 

line AC and the circle through D, O, B is 

sent to line DB.  Hence, the point K is sent 

to the intersection K′ of lines AC with DB 

and the point M is sent to the intersection 

M′ of line AB with the circumcircle of 

∆OCD.  Then the line MK is sent to the 

circumcircle of OM′K′. 

     To solve the problem, note by fact (7), 

∠MKO=90
○ 

if and only if ∠K′M′O= 90
○
.  

     Since BC⊥AK′, AD⊥BK′ and O is the 

midpoint of AB, so the circumcircle of 

∆OCD is the nine-point circle of ∆ABK′, 

which intersects side AB again at the foot 

of perpendicular from K′ to AB.  This 

point is M′.  So ∠K′M′O = 90
○
 and we are 

done. 

 

Example 6.  (1995 Iranian Math 

Olympiad)  Let M, N and P be points of 

intersection of the incircle of triangle 

ABC with sides AB, BC and CA 

respectively.  Prove that the orthocenter 

of ∆MNP, the incenter of ∆ABC and the 

circumcenter of ∆ABC are collinear. 
 

Solution.  Note the incircle of ∆ABC is 

the circumcircle of ∆MNP.  So the first 

two points are on the Euler line of ∆MNP.  
 

     Consider inversion with respect to the 

incircle of ∆ABC with center I.  By fact 

(2), A, B, C are sent to the midpoints A′, 

B′, C′ of PM, MN, NP, respectively.  The 

circumcenter of ∆A′B′C′ is the center of 

the nine point circle of ∆MNP, which is 

on the Euler line of ∆MNP.  By fact (3), 

the circumcircle of ∆ABC is also on the 

Euler line of ∆MNP. 
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Olympiad Corner 
 

The 45th International Mathematical 
Olympiad took place on July 2004.  
Here are the problems.  
 

Day 1 Time allowed: 4 hours 30 
minutes. 

 

Problem 1.  Let ABC be an acute-angled 

triangle with AB ≠ AC.  The circle with 

diameter BC intersects the sides AB and 

AC at M and N, respectively.  Denote by 

O the midpoint of the side BC.  The 

bisectors of the angles BAC and MON 

intersect at R.  Prove that the 

circumcircles of the triangles BMR and 

CNR have a common point lying on the 

side BC. 

 
Problem 2.  Find all polynomials P(x) 

with real coefficients which satisfy the 

equality 
 

P(a-b)+P(b-c)+P(c-a) = 2P(a+b+c) 
  

for all real numbers a, b, c such that ab + 

bc + ca = 0. 

 

Problem 3.  Define a hook to be a figure 

made up of six unit squares as shown in 

the diagram 
 

 (continued on page 4) 
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      The 45th International Mathematical 

Olympiad (IMO) was held in Greece 

from July 4 to July 18.  Since 1988, we 

have been participating in the 

Olympiads.  This year our team was 

composed as follows. 
 

Members 
 

Cheung Yun Kuen (Hong Kong Chinese 

Women’s Club College) 
 

Chung Tat Chi (Queen Elizabeth 

School) 
 

Kwok Tsz Chiu (Yuen Long Merchant 

Association Secondary School) 
 

Poon Ming Fung (STFA Leung Kau Kui 

College) 
 

Tang Chiu Fai (HKTA Tang Hin 

Memorial Secondary School) 
 

Wong Hon Yin (Queen’s College) 
 

Cesar Jose Alaban (Deputy Leader) 
 
   Leung Tat Wing (Leader) 

 

I arrived at Athens on July 6.  After 

waiting for a couple of hours, leaders 

were then delivered to Delphi, a hilly 

town 170 km from the airport, 

corresponding to 3 more hours of 

journey. In these days the Greeks were 

still ecstatic about what they had 

achieved in the Euro 2004, and were 

busy preparing for the coming Olympic 

Games in August.  Of course Greece is a 

small country full of legend and 

mythology.  Throughout the trip, I also 

heard many times that they were the 

originators of democracy, their 

contribution in the development of 

human body and mind and their 

emphasis on fair play.  

 

After receiving the short-listed 

problems leaders were busy studying 

them on the night of July 8.  However 

obviously some leaders had strong 

opinions on the beauty and degree of 

difficulty of the problems, so selections 

of all six problems were done in one 

day.  Several problems were not even 

discussed in details of their own merits. 

The following days were spent on 

refining the wordings of the questions 

and translating the problems into 

different languages. 

 

The opening ceremony was held on July 

11. In the early afternoon we were 

delivered to Athens.  After three hours 

of ceremony we were sent back to 

Delphi.  By the time we were in Delphi 

it was already midnight.  Leaders were 

not allowed to talk to students in the 

ceremony. 

 

Contests were held in the next two days.  
The days following the contests were 

spent on coordination, i.e. leaders and 

coordinators discussed how many 

points should be awarded to the answers 

of the students.  This year the 

coordinators were in general very 

careful.  I heard several teams spent 

more than three hours to go over six 

questions.  Luckily coordination was 

completed on the afternoon of July 15.  

The final Jury meeting was held that 

night. In the meeting the cut-off scores 

were decided, namely 32 points for 

gold, 24 for silver and 16 for bronze.  

Our team was therefore able to obtain 

two silver medals (Kwok and Chung) 

and two bronze medals (Tang and 

Cheung).  Other members (Poon and 

Wong) both solved at least one problem 

completely, thus received honorable 

mention.  Unofficially our team ranked 

30 out of 85.  The top five teams in order 

were respectively China, USA, Russia, 

Vietnam and Bulgaria. 
 
In retrospect I felt that our team was 

good and balanced, none of the 

members was particularly weak.  In one 

problem we were as good as any strong 

team.  Every team members solved 

problem 4 completely.  Should we did 

better in the geometry problems our 

rank would be much higher.  Curiously 

geometry is in our formal school 

curriculum while number theory and 

combinatorics are not.  In this Olympiad 

we had two geometry problems, but 

fittingly so, after all, it was Greece. 
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Extending an IMO Problem 

Hà Duy Hung 
 

Dept. of Math and Informatics 
 Hanoi Univ. of Education 

 
In this brief note we give a 

generalization of a problem in the 41st 

International Mathematical Olympiad 

held in Taejon, South Korea in 2000. 
 
IMO 2000/5.  Determine whether or 

not there exists a positive integer n 

such that n is divisible by exactly 

2000 different prime divisors, and 

 is divisible by n. 2 1n +
 

The answer to the question is 

positive.  This intriguing problem 

made me recall a well-known theorem 

due to O. Reutter in [1] as follows. 

 

Theorem 1.  If a is a positive integer 

such that  is not a power of 2, then 

 is divisible by n for infinitely 

many positive integers n. 

1a +
1na +

 

We frequently encounter the 

theorem in the case .  The 

theorem and the IMO problem 

prompted me to think of more general 

problem.  Can we replace the number 2 

in the IMO problem by other positive 

integers?  The difficulty partly lies in 

the fact that the two original problems 

are solved independently.  After a long 

time, I finally managed to prove a 

generalization as follows. 

2a =

 

Theorem 2.  Let s, a, b be given 

positive integers, such that a, b are 

relatively prime and a  is not a 

power of 2.  Then there exist infinitely 

many positive integers n such that 

b+

 
� n has exactly s different prime 

divisors; and 

�  is divisible by n. na b+
 

We give a proof of Theorem 2 below.  

We shall make use of two familiar 

lemmas. 

 

Lemma 1.  Let n be an odd positive 

integer, and a, b be relative prime 

positive integers.  Then 

n na b

a b

+
+

 

is an odd integer , equality if and 

only if  or . 

1≥
1n = 1a b= =

 
The proof of Lemma 1 is simple and is 

left for the reader. 

     Also, we remind readers the usual 

notations r | s means s is divisible by r and 

u ≡ v (mod m) means u – v is divisible by 

m. 
 

Lemma 2.  Let a, b be distinct and 

relatively prime positive integers, and p an 

odd prime number which divides a b+ .  

Then for any non-negative integer k, 
1 |k mp a+ mb+ , 

where . km p=
 
Proof.  We prove the lemma by induction. 

It is clear that the lemma holds for 0k = .  

Suppose the lemma holds for some 

non-negative integer k, and we proceed to 

the case 1k + . 

Let 
kpx a=  and 

kpy b= .  Since 

1
1

0

( ) ( 1)
p

p p i

i

p i ix y x y x y
−

− −

=

+ = + −∑ , 

it suffices to show that the whole 

summation is divisible by p.  Since 

x y≡ −  (mod 1kp + ), we have 

1
1

p
i i

−
− −−

0

1
2 1

0

1 1

( 1)

( 1)

(mod )

i p

i

p
i p

i

p k

x y

x

px p

=

−
−

=

− +

≡ −

≡

∑

∑  

completing the proof. 
 

is note we shall 

om
 

loss of 

In the rest of th

c plete the proof of Theorem 2. 

Proof of Theorem 2.  Without 

generality, let a b> .  Since a b+  is not a 

power of 2, it has an odd prime factor p.  

For natural number k, set 

k kp p
kx a b= + , 1k

k
k

x
y

x
+= . 

Then  is a positive integer and 

i p p i p i
k

i

p
i p p

i

p k

y a b

a

px p

− −

=

−
−

=

− +

= −

≡ −

≡

∑

∑  

which implies that 

 ky

1p−
1

0

1
2 1

0

1 1

( 1) ( ) ( )

( 1) ( )

(mod )

k k

k

ky

p
 is a positive 

integer. Also, we have 

( )1kp pky
b − ⎛ ⎞

≡ mod kx

p p
⎜ ⎟
⎝ ⎠

, 

so that 

gcd , 1k kx y

p p

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

for k = 1, 2, …  By Lemma 2, we also 

have 

gcd , 1kky
p

p

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

for k = 1, 2, ….  Moreover, we have 
k

kx p≥ .  This leads us to 

( )
1

2
1 2 1 2

1

[( ) ( )

p

k k kp p

2 1 2

1

( ) ( ) ]
k k

k k

p i p p i

i
k

p i p p i

p p

k

k

a b

b a

x

p

− −

+

−

> +
=

≥

 

It follows that  

y b a b

−

− − −

=

= +∑

1kky
p

p
≥ > . 

By Lemma 1, ky

p
 is an odd positive 

n 

divisor  of

integer, so we ca choose an odd prime 

kq  ky

p

We ow h e a sequ

.  

n av ence of odd 

prime numbers q
+∞{ }

1k k=
 satisfying the 

 

(i) 

following properties 

 

gcd ( , ) 1k kx q =  

(ii) gcd ( ,p q ) 1k =  

 (iii) 1|k kq x +  

(iv) 1|k kx x + . 
 

We shall now show that the sequence 

 consists of distinct prime 

numbers a

{ }
1k k=

nd is thus infinite.  Indeed, if 

q
+∞

0 1k k<  are positive integers and 

0 1k kq q= , then 

1 0 0 11| | |k k k kq x x+= ⋅⋅ ⋅  

erties (i

          

by prop ii) and (iv).  But this 

icts property (i). 

q

contrad
 

     Next, set 
0 1 1

...s
sn p q q −=  and nk+1 = 

np k for k = 0, 1, 2, ….  It is evident that 

increasing se

 

4) 

{ }
0k k

n
+∞

=
is a strictly quence 

            (continued on page 
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roblem ner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for 

submitting solutions is October 20, 

2004. 
 
Problem 206.  (Due to Zdravko F. 
Starc, Vršac, Serbia and Montenegro) 

Prove that if a, b are the legs and c is 

the hypotenuse of a right triangle, then 
 

P  Cor

( ) ( ) 2 2a b a a b b c c+ + − <  

 
.

Problem 207.  Let A = { 0, 1, 2, …, 9} 

and B1, B2, …, Bk be nonempty subsets 

of A such that Bi and Bj have at most 2 

common elements whenever i ≠ j. Find 

the maximum possible value of k. 
 

Problem 208. In ∆ABC, AB > AC > BC.  

Let D be a point on the minor arc BC of 

the circumcircle of ∆ABC.  Let O be 

the circumcenter of ∆ABC.  Let E, F be 

the intersection points of line AD with 

the perpendiculars from O to AB, AC, 

respectively.  Let P be the intersection 

of lines BE and CF.  If PB = PC + PO, 

then find ∠BAC with proof.  
 
Problem 209.  Prove that there are 

infinitely many positive integers n such 

that 2n + 2 is divisible by n and 2n + 1 is 

divisible by n – 1. 
 

Problem 210.  Let a = 1 and  1 

1

1

2

n
n

n

a
a

a+ = +  

for n = 1, 2, 3, … .  Prove that for every 

integer n > 1,  

2

2

2na −

 

is an integer. 
 
 

***************** 

Solutions 

**************** 
 

Problem 201.  (Due to Abderrahim 
OUARDINI, Talence, France)  Find 

which nonright triangles ABC satisfy 

    tan A tan B tan C 
> [tan A] + [tan B] + [tan C], 

 

where [t] denotes the greatest integer less 

than or equal to t.  Give a proof. 
  
Solution. CHENG Hao (The Second 
High School Attached to Beijing Normal 
University), CHEUNG Yun Kuen 
(HKUST, Math, Year 1) and YIM Wing 
Yin (South Tuen Mun Government 
Secondary School, Form 4). , Achilleas P. 
PORFYRIADIS (American College of 
Thessaloniki “Anatolia”, Thessaloniki, 
Greece),  
 

From  
 

tan C = tan (180○– A – B)  

         = – tan (A+B)  

         = – (tan A + tan B)/(1– tan A tan B),  

we get  
 

tan A + tan B + tan C = tan A tan B tan C.  
 

Let x = tan A, y = tan B and z = tan C.  If 

xyz ≤ [x]+[y]+[z], then x+y+z ≤ [x] + [y] 

+ [z].  As [t] ≤ t, x, y, z must be integers. 

 

If triangle ABC is obtuse, say A > 90○, 

then x < 0 < 1 ≤ y ≤ z.  This implies 1 ≤ yz 

= (x + y + z)/x = 1 + (y + z)/x < 1, a 

contradiction.  If triangle ABC is acute, 

then we may assume 1 ≤ x ≤ y ≤ z.  Now 

xy = (x+y+z)/z ≤ (3z)/z = 3.  Checking the 

cases xy = 1, 2, 3, we see x+y+z = xyz can 

only happen when x=1, y=2 and z=3.  

This corresponds to A = tan-1 1, B = tan-1
 

2 and C = tan-1 3.  Reversing the steps, 

we see among nonright triangles, the 

inequality in the problem holds except 

only for triangles with angles equal 45○ 

= tan-1 1, tan-1
 2 and tan-1 3. 

 
Problem 202.  (Due to LUK Mee Lin, La 
Salle College)  For triangle ABC, let D, E, 

F be the midpoints of sides AB, BC, CA, 

respectively.  Determine which triangles 

ABC have the property that triangles ADF, 

BED, CFE can be folded above the plane 

of triangle DEF to form a tetrahedron with 

AD coincides with BD; BE coincides with 

CE; CF coincides with AF. 
 
Solution. CHENG Hao (The Second 
High School Attached to Beijing Normal 
University), CHEUNG Yun Kuen 
(HKUST, Math, Year 1) and YIM Wing 
Yin (South Tuen Mun Government 
Secondary School, Form 4). 
 
Observe that ADEF, BEFD and CFDE are 

parallelograms.  Hence ∠BDE =∠BAC, 

∠ADF = ∠ABC and ∠EDF = ∠BCA.  

In order for AD to coincide with BD in 

folding, we need to have ∠ BDE + 

ADF∠  > ∠EDF.  So we need ∠BAC 
 > ∠BCA.  Similarly, for BE to 

 with CE and for CF to coincide 

, we need ∠ABC +∠BCA > 

+ ∠ABC
coincide

with AF
BAC∠  and ∠BCA + ∠BAC > ∠ABC.  

So no angle of ∆ABC is 90 or more.  

Therefore, ∆ABC is acute.  

 

Conversely, if ∆ABC is acute, then 

reversing the steps, we can see that the 

required tetrahedron can be obtained. 
 

Problem 203.  (Due to José Luis 
DÍAZ-BARRERO, Universitat Politec- 
nica de Catalunya, Barcelona, Spain) 

Let a, b and c be real numbers such that 

a + b + c ≠ 0.  Prove that the equation 
 

(a+b+c)x2 + 2(ab+bc+ca)x + 3abc = 0 
 
has only real roots. 
 
Solution. CHAN Pak Woon (Wah Yan 
College, Kowloon, Form 6), CHENG Hao 
(The Second High School Attached to 
Beijing Normal University), CHEUNG 
Hoi Kit (SKH Lam Kau Mow Secondary 
School, Form 7), CHEUNG Yun Kuen 
(HKUST, Math, Year 1), Murray 
KLAMKIN  (University of Alberta, 
Edmonton, Canada), Achilleas P. 
PORFYRIADIS (American College of 
Thessaloniki “Anatolia”, Thessaloniki, 
Greece) and YIM Wing Yin (South Tuen 
Mun Government Secondary School, 
Form 4). 
 

The quadratic has real roots if and only 

if its discriminant 

  D = 4(ab+bc+ca)2 – 12(a+b+c)abc 

      = 4[(ab)2+(bc)2+(ca)2–(a+b+c)abc] 

      = 4[(ab–bc)2 +(bc–ca)2 +(ca–ab)2 ] 

is nonnegative, which is clear.  
 
Other commended  solvers: Jason CHENG 
Hoi Sing (SKH Lam Kau Mow Secondary 
School, Form 7), POON Ho Yin (Munsang 
College (Hong Kong Island), Form 4) and 
Anderson TORRES (Universidade de 
Sao Paulo – Campus Sao Carlos). 
 
Problem 204.   Let n be an integer with 

n > 4.  Prove that for every n distinct 

integers taken from 1, 2, …, 2n, there 

always exist two numbers whose least 

common multiple is at most 3n + 6. 
 
Solution.  CHENG Hao (The Second 
High School Attached to Beijing 
Normal University), CHEUNG Yun 
Kuen (HKUST, Math, Year 1) and YIM 
Wing Yin (South Tuen Mun 
Government Secondary School, Form 
4). 
 

Let S be the set of n integers taken and k 

be the minimum of these integers.  If k ≤ 

n, then either 2k is also in S or 2k is not 

in S.  In the former case, lcm(k,2k) = 2k 

≤ 2n < 3n+6.  In the latter case, we 

replace k in S by 2k.  Note this will not 
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 multiple of 

f the new S 

 

e 

l 

 

h 

t 

r 

 

ost 2n and lcm(n+1,3(n+1)/2) 

, 
)  
, 

such that an – 1 is divisible by n.  Pr ve 

at the greatest common divisor (or 

d 
al 

Kuen 
ST, Math, Year 1) and YIM Wing 

t 

. 

 1 

y 

 

nteger such 

at a  ≡ 1 (mod p).  Dividing n by d, we 

 

0.  

e by d.  Similarly, 
1 ≡ 1 (mod  

p sible by d.  Hence, 

gcd(n,  p is 

t

h

defi sible by 

p
 

decrease the least common

ny pair of numbers.  So ia

satisfies the problem, then the original S
will also satisfy the problem.  As w

repeat this, the new minimum wil

increase strictly so that we eventually

reach either k and 2k both in S, in whic

case we are done, or the new S will consis

of n+1, n+2, …, 2n.  So we need to 

consider the latter case only.  
 

If n > 4 is even, then 3(n+2)/2 is an intege

at most 2n and lcm(n+2, 3(n+2)/2) = 

3n+6.  If n > 4 is odd, then 3(n+1)/2 is an

integer at m

= 3n+3.  

 

Problem 205.  (Due to HA Duy Hung
Hanoi University of Education, Vietnam

et a, n be integers, both greater than 1L

o

th

highest common factor) of a – 1 and n is 

greater than 1. 
 
Solution. CHENG Hao (The Secon
High School Attached to Beijing Norm
University), CHEUNG Yun 
(HKU
Yin (South Tuen Mun Governmen
Secondary School, Form 4). 
 

Let p be the smallest prime divisor of n
Then an – 1 is divisibly by p so that an ≡
(mod p).  In particular, a is not divisible b

p.  Then, by Fermat’s little theorem, ap – 1

≡1 (mod p).  
 

Let d be the smallest positive i
dth

get n = dq + r for some integers q, r with 0

≤ r < d.  Then ar ≡ (ad)q ar = an ≡ 1 (mod 

p).  By the definition of d, we get r = 

hen n is divisiblT

dividing p – 1 by d, we see ap – 

) implies p – 1 is divi

p – 1) is divisible by d.  Since

he smallest prime dividing n, we must 

ave gcd(n, p – 1) = 1.  So d =1.  By the 

nition of d, we get a – 1 is divi

.  Therefore, gcd(a – 1, n)  ≥ p > 1. 
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r any of the figures obtained by applying 

d reflections to this figure. otations an

etermine all m x n rectangles that can be 

vered with hooks so that  o

 the rectangle is covered without gaps 

nd without overlaps; 

 no part of a hook covers area outside the

ectangle. 

ay 2 Time allowed:  4 hours 30 
inutes. 

roblem 4.  Let n ≥ 3 be an integer. Let 

1, t2, …, tn be positive real numbers such 

hat 

  n2 + 1  >  (t1 + t2 + ⋯ +  tn) 

1 2

1 1 1
.

n
t t t

⎛ ⎞
× + + +⎜ ⎟
⎝ ⎠

S

t

 

P

A
a .  The point 

P

∠ PBC =

Pro

if a

 

Probl

alt
in n are of 

dif t parity.  

L
 

how that ti, tj, tk are side lengths of a 

riangle for all i, j, k with 1≤ i <j <k ≤ n. 

roblem 5.  In a convex quadrilateral 

BCD the diagonal BD bisects neither the 

gle ABC not the angle CDAn

 lies inside ABCD and satisfies  

∠ DBA and ∠ PDC =∠BDA 

ve that ABCD is a cyclic quadrilateral 

nd only if AP = CP.

em 6.  We call a positive integer 

ernating if every two consecutive digits 

its decimal representatio

feren
 
Fin

a m

 

d all positive integers n such that n has 

ultiple which is alternating. 

 

Ex

 

of 

sequence has

tending an IMO Problem 
(continued from page 2)

positive integers and each term of the 

 exactly s  distinct prime 

div

for 

pos

a

isors. 

It remains to show that  

| k kn n
kn a b+  

k = 0, 1, 2, …  Note that for odd 

itive integers m, n with |m n , we have 

|m n nb a bm + + .  By property (iii), we 

e, for 0 k s≤ < ,  

0 0

1| | | | j jn nn n
k k sq x x a b a b+ + +  

j = 0, 1, 2, … .  Now it suffices to show 

t  

| k kn nk sp a b+ +  

 = 0, 1, 2

hav

for 

tha

for llows easily 

fro

a b+ . 

Th
 

Re

[1] , 18 

[2]

 

k , … .  But this fo

m Lemma 2 since 

| |s k
k sp x+
+

k kn n

is completes the proof of Theorem 2. 
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                                 Homothety 
 

                                                Kin Y. Li 

 

Olympiad Corner 
 
The Czech-Slovak-Polish Match this 

year took place in Bilovec on June 

21-22, 2004.Here are the problems.   
 

Problem 1. Show that real numbers p, q, 

r satisfy the condition 
 
           p

4
(q – r)

2 
+ 2p

2
(q + r) + 1 = p

4
 

 
   if and only if the quadratic equations  
 
        x

2 
+ px + q = 0 and y

2
 – py + r = 0 

 
have real roots (not necessarily distinct) 

which can be labeled by x1, x2 and y1, y2, 

respectively, in such way that the 

equality x1y1 – x2y2 = 1 holds. 
 

Problem 2. Show that for each natural 

number k there exist at most finitely 

many triples of mutually distinct primes 

p, q, r for which the number qr – k is a 

multiple of p, the number pr – k is a 

multiple of q, and the number pq – k is a 

multiple of r. 
 

Problem 3. In the interior of a cyclic 

quadrilateral ABCD, a point P is given 

such that  |∠BPC|=|∠BAP|+|∠PDC|. 

Denote by E, F and G the feet of the 

perpendiculars from the point P to the 

lines AB, AD and DC, respectively. 

Show that the triangles FEG and PBC 

are similar. 
                               (continued on page 4) 
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A geometric transformation of the 
plane is a function that sends every 
point on the plane to a point in the same 
plane. Here we will like to discuss one 
type of geometric transformations, 
called homothety, which can be used to 
solve quite a few geometry problems in 
some international math competitions. 

 
A homothety with center O and ratio k 

is a function that sends every point X 

on the plane to the point X’ such that  
 

                 ' .OX k OX=

����� ����
 

 
So if |k| > 1, then the homothety is a 
magnification with center O. If |k| < 1, 
it is a reduction with center O. A 
homothety sends a figure to a similar 
figure. For instance, let D, E, F be the 
midpoints of sides BC, CA, AB 
respectively of �ABC. The homothety 
with center A and ratio 2 sends �AFE 
to �ABC. The homothety with center at 
the centroid G and ratio –1/2 sends 
�ABC to �DEF. 
 
Example 1. (1978 IMO) In �ABC, AB 
= AC. A circle is tangent internally to 
the circumcircle of ABC and also to the 
sides AB, AC at P, Q, respectively. 
Prove that the midpoint of segment PQ 
is the center of the incircle of �ABC. 

         D

A

B' C'

O

P QI

B C

 
Solution. Let O be the center of the 

circle. Let the circle be tangent to the 

circumcircle of �ABC at D. Let I be the 

midpoint of PQ. Then A, I, O, D are 

collinear by symmetry. Consider the 

homothety with center A that sends 

�ABC to �AB’C’ such that D is on 

B’C’. Thus, k=AB’/AB. As right 

triangles AIP, ADB’, ABD, APO are 

similar, we have 
 

      AI /AO = (AI / AP)(AP / AO) 

  = (AD /AB’)(AB /AD) = AB/AB’=1/k.  

Hence the homothety sends I to O. 

Then O being the incenter of �AB’C’ 

implies I is the incenter of �ABC. 
 
Example 2. (1981 IMO) Three 

congruent circles have a common point 

O and lie inside a given triangle. Each 

circle touches a pair of sides of the 

triangle. Prove that the incenter and the 

circumcenter of the triangle and the 

point O are collinear. 

       

A

B C

A'

B'

O

C'

 
Solution. Consider the figure shown. 
Let A’, B’, C’ be the centers of the 
circles. Since the radii are the same, so 
A’B’ is parallel to AB, B’C’ is parallel to 
BC, C’A’ is parallel to CA. Since AA’, 
BB’ CC’ bisect ∠ A, ∠ B, ∠ C 
respectively, they concur at the incenter 
I of �ABC. Note O is the circumcenter 
of �A’B’C’ as it is equidistant from A’, 
B’, C’. Then the homothety with center I 
sending �A’B’C’ to �ABC will send O 
to the circumcenter P of �ABC. 
Therefore, I, O, P are collinear. 
 
Example 3. (1982 IMO) A 

non-isosceles triangle A1A2A3 is given 

with sides a1, a2, a3 (ai is the side 

opposite Ai). For all i=1, 2, 3, Mi is the 

midpoint of side ai, and Ti is the point 

where the incircle touchs side ai. Denote 

by Si the reflection of Ti in the interior 

bisector of angle Ai.   
Prove that the lines M1S1, M2S2 and M3S3 

are concurrent. 
 

A
2

A
3 A

1

I

T
2

T
1

T
3

B
2

B
3

B
1 S

3

S
2

S
1
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Solution. Let I be the incenter of 

�A1A2A3. Let B1, B2, B3 be the points 

where the internal angle bisectors of  

∠ A1, ∠ A2, ∠ A3 meet a1, a2, a3 

respectively. We will show SiSj is 

parallel to MiMj. With respect to A1B1, 

the reflection of T1 is S1 and the 

reflection of T2 is T3. So ∠T3IS1 = ∠

T2IT1. With respect to A2B2, the 

reflection of T2 is S2 and the reflection 

of T1 is S3. So ∠T3IS2 = ∠T1IT2. Then 

∠ T3IS1 = ∠ T3IS2. Since IT3 is 

perpendicular to A1A2, we get S2S1 is 

parallel to A1A2. Since A1A2 is parallel 

to M2M1, we get S2S1 is parallel to 

M2M1. Similarly, S3S2 is parallel to 

M3M2 and S1S3 is parallel to M1M3.  

 

Now the circumcircle of �S1S2S3 is the 

incircle of �A1A2A3 and the 

circumcircle of �M1M2M3 is the nine 

point circle of �A1A2A3. Since �A1A2A3 

is not equilateral, these circles have 

different radii. Hence �S1S2S3 is not 

congruent to �M1M2M3 and there is a 

homothety sending �S1S2S3 to 

�M1M2M3. Then M1S1, M2S2 and M3S3 

concur at the center of the homothety. 

 
Example 4. (1983 IMO) Let A be one 

of the two distinct points of 

intersection of two unequal coplanar 

circles C1 and C2 with centers O1 and 

O2 respectively. One of the common 

tangents to the circles touches C1 at P1 

and C2 at P2, while the other touches C1 

at Q1 and C2 at Q2. Let M1 be the 

midpoint of P1Q1 and M2 be the 

midpoint of P2Q2. Prove that ∠O1AO2 

= ∠M1AM2. 

C
2

C
1O

2

Q
2

O
1

A

O

P
2

P
1

Q
1

M
2

M
1

B

 

Solution. By symmetry, lines O2O1, 

P2P1, Q2Q1 concur at a point O. 

Consider the homothety with center O 

which sends C1 to C2. Let OA meet C1 

at B, then A is the image of B under the 

homothety. Since �BM1O1 is sent to 

�AM2O2, so  ∠M1BO1 = ∠M2AO2. 

Now �OP1O1 similar to �OM1P1 

implies OO1/OP1 = OP1/OM1. Then  

        OO1 ·OM1 = OP1
2 
 = OA · OB,  

which implies points A, B, M1, O1 are 

concyclic. Then ∠M1BO1 = ∠M1AO1. 

Hence ∠ M1AO1 = ∠ M2AO2. Adding      

∠O1AM2 to both sides, we have ∠O1AO2 

= ∠M1AM2. 

Example 5. (1992 IMO) In the plane let C 

be a circle, L a line tangent to the circle C, 

and M a point on L. Find the locus of all 

points P with the following property: 

there exist two points Q, R on L such that 

M is the midpoint of QR and C is the 

inscribed circle of �PQR. 

  

T C
C'

L

P

Q RS

T'

U

M

V

 

Solution. Let L be the tangent to C at S. 

Let T be the reflection of S with respect to 

M. Let U be the point on C diametrically 

opposite S. Take a point P on the locus. 

The homothety with center P that sends C 

to the excircle C’ will send U to T’, the 

point where QR touches C’. Let line PR 

touch C’ at V. Let s be the semiperimeter 

of �PQR, then  

  TR = QS  = s – PR = PV – PR =VR = T’R  

so that P, U, T are collinear. Then the 

locus is on the part of line UT, opposite 

the ray U T
����

.  

Conversely, for any point P on the part of 

line UT, opposite the ray U T
����

, the 

homothety sends U to T and T’, so T = T’. 

Then QS = s – PR = PV – PR =VR = T’R = 

TR and QM = QS – MS =TR – MT = RM. 

Therefore, P is on the locus. 

      For the next example, the solution 

involves the concepts of power of a point 

with respect to a circle and the radical axis. 

We will refer the reader to the article 

“Power of Points Respect to Circles,” 

in Math Excalibur, vol. 4, no. 3, pp. 2, 

4. 

Example 6. (1999 IMO) Two circles Γ1 

and Γ2 are inside the circle Γ, and are 

tangent to Γ at the distinct points M and 

N, respectively.  Γ1 passes through the 

center of Γ2. The line passing through 

the two points of intersection of Γ1 and 

Γ2 meets Γ at A and B. The lines MA 

and MB meet Γ1 at C and D, 

respectively. Prove that CD is tangent 

to Γ2. 

    

Γ
ΓΓ

L
A,A'

O
1

C C'

O
2

N

F
E

B
M

D

12

 

Solution. (Official Solution) Let EF be 

the chord of Γ which is the common 

tangent to Γ1 and Γ2 on the same side of 

line O1O2 as A. Let EF touch Γ1 at C’. 

The homothety with center M that 

sends Γ1 to Γ will send C’ to some point 

A’ and line EF to the tangent line L of Γ 

at A’. Since lines EF and L are parallel, 

A’ must be the midpoint of arc FA’E. 

Then ∠A’EC’ = ∠A’FC’ = ∠A’ME. 

So �A’EC is similar to �A’ME. Then 

the power of A’ with respect to Γ1 is 

A’C’ ·A’M = A’E
2
. Similar, the power 

of A’ with respect to Γ2 is A’F
2
. Since 

A’E = A’F, A’ has the same power with 

respect to Γ1 and Γ2. So A’ is on the 

radical axis AB. Hence, A’ = A. Then   

C’ = C and C is on EF.  

Similarly, the other common tangent to 

Γ1 and Γ2 passes through D. Let Oi be 

the center of Γi. By symmetry with 

respect to O1O2, we see that O2 is the 

midpoint of arc CO2D. Then 

      ∠DCO2  = ∠CDO2  = ∠FCO2.  

This implies O2 is on the angle bisector 

of ∠FCD. Since CF is tangent to Γ2, 

therefore CD is tangent to Γ2. 

            (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is January 20, 

2005. 
 
Problem 211. For every a, b, c, d in 

[1,2], prove that 

         4 .
a b c d a c

b c d a b d

+ + +
+ ≤

+ + +

  

(Source: 32
nd

 Ukranian Math 

Olympiad) 
 

Problem 212.  Find the largest positive 

integer N such that if S is any set of 21 

points on a circle C, then there exist N 

arcs of C whose endpoints lie in S and 

each of the arcs has measure not 

exceeding 120°. 
 

Problem 213. Prove that the set of all 

positive integers can be partitioned into 

100 nonempty subsets such that if three 

positive integers a, b, c satisfy a + 99 b 

= c, then at least two of them belong to 

the same subset. 
 
Problem 214. Let the inscribed circle 

of triangle ABC be tangent to sides AB, 

BC at E and F respectively. Let the 

angle bisector of ∠ CAB intersect 

segment EF at K. Prove that ∠CKA is 

a right angle.   
 

Problem 215. Given a 8×8 board. 

Determine all squares such that if each 

one is removed, then the remaining 63 

squares can be covered by 21 3×1 

rectangles.  
 
 

***************** 

Solutions 

**************** 
 

Problem 206.  (Due to Zdravko F. 

Starc, Vršac, Serbia and Montenegro) 

Prove that if a, b are the legs and c is 

the hypotenuse of a right triangle, then 
 

( ) ( ) 2 2 .a b a a b b c c+ + − <  

 
Solution. Cheng HAO (The Second 
High School Attached to Beijing 

Normal University), HUI Jack (Queen’s 
College, Form 5), D. Kipp JOHNSON 
(Valley Catholic School, Teacher, 
Beaverton, Oregon, USA), POON Ming 
Fung(STFA Leung Kau Kui College, 
Form 7), Achilleas P. PORFYRIADIS 
(American College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece), Problem Group 
Discussion Euler-Teorema(Fortaleza, Brazil), 
Anna Ying PUN (STFA Leung Kau Kui 
College, Form 6), TO Ping Leung (St. Peter’s 
Secondary School) and YIM Wing Yin 
(South Tuen Mun Government Secondary 
School, Form 4). 
 

By Pythagoras’ theorem, 
 

2 2( ) ( ) 2 .a b a b a b c+ ≤ + + − =   
 

Equality if and only if a = b. By the 

Cauchy-Schwarz inequality, 
 

         ( ) ( )a b a a b b+ + −  

     2 2( ) ( )a b a b a b≤ + + − +  

     2 2 .c c≤  

For equality to hold throughout, we need 

: : 1 :1a b a b a b+ − = = , which 

is not possible for legs of a triangle. So 

we must have strict inequality.   
 

Other commended solvers: HUDREA 

Mihail (High School “Tiberiu Popoviciu” 

Cluj-Napoca Romania) and TONG Yiu 

Wai (Queen Elizabeth School, Form 7). 

 

Problem 207.  Let A = { 0, 1, 2, �, 9} and 

B1, B2, �, Bk be nonempty subsets of A 

such that Bi and Bj have at most 2 common 

elements whenever i ≠ j. Find the 

maximum possible value of k. 
 
Solution. Cheng HAO (The Second High 
School Attached to Beijing Normal 
University), HUI Jack (Queen’s College, 
Form 5), POON Ming Fung(STFA 
Leung Kau Kui College, Form 7) and 
Achilleas P. PORFYRIADIS (American 
College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece). 
 
 
If we take all subsets of A with 1, 2 or 3 

elements, then these 10 + 45 + 120 = 175 

subsets satisfy the condition. So k ≥ 175.  
 

Let B1, B2, �, Bk satisfying the condition 

with k maximum. If there exists a Bi with 

at least 4 elements, then every 3 element 

subset of Bi cannot be one of the Bj, j ≠ i, 

since Bi and Bj can have at most 2 common 

elements. So adding these 3 element 

subsets to B1, B2, �, Bk will still satisfy the 

conditions. Since Bi has at least four 3 

element subsets, this will increase k, 

which contradicts maximality of k. Then 

every Bi has at most 3 elements. Hence, k 

≤ 175. Therefore, the maximum k is 175.   
 

Other commended solvers: CHAN 
Wai Hung (Carmel Divine Grace 
Foundation Secondary School, Form 
6), LI Sai Ki (Carmel Divine Grace 
Foundation Secondary School, Form 
6), LING Shu Dung, Anna Ying PUN 
(STFA Leung Kau Kui College, Form 6) 
and YIM Wing Yin (South Tuen Mun 
Government Secondary School, Form 
4). 

 

Problem 208. In ∆ABC, AB > AC > BC.  

Let D be a point on the minor arc BC of 

the circumcircle of ∆ABC. Let O be the 

circumcenter of ∆ABC. Let E, F be the 

intersection points of line AD with the 

perpendiculars from O to AB, AC, 

respectively. Let P be the intersection 

of lines BE and CF. If PB = PC + PO, 

then find ∠BAC with proof.  
 
Solution. Achilleas P. PORFYRIADIS 
(American College of Thessaloniki 
“Anatolia”, Thessaloniki, Greece), 
Problem Group Discussion Euler - 
Teorema ( Fortaleza, Brazil) and Anna 
Ying PUN (STFA Leung Kau Kui College, 
Form 6). 
 

     

O

D

A

B C

E

F

P

 

Since E is on the perpendicular bisector 

of chord AB and F is on the 

perpendicular bisector of chord AC, AE 

= BE and AF = CF. Applying exterior 

angle theorem, 
 
     ∠BPC =∠AEP + ∠CFD  

                      = 2 (∠BAD+∠CAD) 

                      = 2∠BAC =∠BOC.  
 
Hence, B, C, P, O are concyclic. By 

Ptolemy’s theorem, 
 
           PB·OC = PC·OB + PO·BC.  
 
Then (PB – PC)·OC = PO·BC. Since 

PB – PC = PO, we get OC = BC and so 

∆OBC is equilateral. Then 
 

     ∠BAC= 1
2
∠BOC = 30° 

 
 
Other commended  solvers: Cheng HAO 
(The Second High School Attached to 
Beijing Normal University), HUI Jack 
(Queen’s College, Form 5), POON 
Ming Fung(STFA Leung Kau Kui 
College, Form 7), TONG Yiu Wai 
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(Queen Elizabeth School, Form 7) and 
YIM Wing Yin (South Tuen Mun 
Government Secondary School, Form 
4). 
 
Problem 209.  Prove that there are 

infinitely many positive integers n such 

that 2
n 
+ 2 is divisible by n and 2

n 
+ 1 is 

divisible by n – 1. 
 
Solution.  D. Kipp JOHNSON (Valley 
Catholic School, Teacher, Beaverton, 
Oregon, USA), POON Ming 
Fung(STFA Leung Kau Kui College, 
Form 7) and Problem Group Discussion 
Euler-Teorema(Fortaleza, Brazil). 
 

As 2
2 
+ 2 = 6 is divisible by 2 and 2

2 
+ 1 

= 5 is divisible by 1, n = 2 is one such 

number.  

 

Next, suppose 2
n 

+ 2 is divisible by n 

and 2
n 
+ 1 is divisible by n – 1. We will 

prove N = 2
n 
+ 2 is another such number. 

Since N – 1 = 2
n 
+ 1= (n – 1)k is odd, so k 

is odd and n is even. Since N = 2
n 
+ 2 =   

2(2
n–1 

+ 1) = nm and n is even, so m must 

be odd. Recall the factorization  
 
    x

i 
+ 1 = (x + 1)(x

i–1 
– x

i–3 
+ … + 1) 

 
for odd positive integer i.  Since k is odd, 

2
N 

+ 2 = 2(2
N–1 

+ 1) = 2(2
(n–1)k 

+ 1)  is 

divisible by 2(2
n–1 

+ 1) = 2
n 

+ 2 = N 

using the factorization above. Since m is 

odd, 2
N 

+ 1 = 2
nm 

+ 1 is divisible by        

2
n 

+ 1 = N – 1. Hence, N is also such a 

number. As N > n, there will be 

infinitely many such numbers.  

 

Problem 210.  Let a1 = 1 and  

               
1

1

2

n
n

n

a
a

a
+

= +   

for n = 1, 2, 3, � . Prove that for every 

integer n > 1,  

                   
2

2

2na −

 

is an integer. 
 
Solution. G.R.A. 20 Problem Group 
(Roma, Italy), HUDREA Mihail (High 
School “Tiberiu Popoviciu” Cluj- 
Napoca Romania), Problem Group 
Discussion Euler – Teorema (Fortaleza, 
Brazil), TO Ping Leung (St. Peter’s 
Secondary School) and YIM Wing Yin 
(South Tuen Mun Government 
Secondary School, Form 4). 
 

Note an = pn / qn, where p1 = q1 = 1, pn+1 = 

pn
2
 + 2qn

2
 , qn+1 = 2pnqn for n = 1, 2, 3, …. 

Then  

2 2 2

22
.

2 2

n

n n n

q

a p q
=

− −

 

It suffices to show by mathematical 

induction that pn
2
 – 2qn

2
 = 1 for n > 1. We 

have p2
2
 – 2q2

2
 = 3

2
 – 2·2

2
 = 1. Assuming 

case n is true, we get 

 pn+1
2
 – 2qn+1

2
 = (pn

2
 + 2qn

2
)

2
 –2(2pnqn)  

                       = (pn
2
 – 2qn

2
)

2
 = 1. 

 
Other commended solvers: Ellen CHAN 
On Ting (True Light Girls’ College, Form 
5), Cheng HAO (The Second High 
School Attached to Beijing Normal 
University), HUI Jack (Queen’s College, 
Form 5), D. Kipp JOHNSON (Valley 
Catholic School, Teacher, Beaverton, 
Oregon, USA), LAW Yau Pui (Carmel 
Divine Grace Foundation Secondary 
School, Form 6), Asger OLESEN 
(Toender Gymnasium (grammar school), 
Denmark), POON Ming Fung(STFA 
Leung Kau Kui College, Form 7), 
Achilleas P. PORFYRIADIS (American 
College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece), Anna Ying PUN 
(STFA Leung Kau Kui College, Form 6), 
Steve ROFFE, TONG Yiu Wai (Queen 
Elizabeth School, Form 7) and YEUNG 
Wai Kit (STFA Leung Kau Kui College, 
Form 4).  
 
 

 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 4. Solve the system of equations 

1
1,

x

xy z
= +

1
1,

y

yz x
= +

1
1

z

zx y
= +  

in the domain of real numbers. 

 

Problem 5. In the interiors of the sides AB, 

BC and CA of a given triangle ABC, points 

K, L and M, respectively, are given such 

that  

            | | | | | |
.

| | | | | |

AK BL C M

K B LC M A
= =  

Show that the triangles ABC and KLM 

have a common orthocenter if and only if 

the triangle ABC is equilateral. 

 

Problem 6. On the table there are k heaps 

of 1, 2, …, k stones, where k ≥3. In the 

first step, we choose any three of the heaps 

on the table, merge them into a single new 

heap, and remove 1 stone (throw it away 

from the table) from this new heap. In the 

second step, we again merge some three of 

the heaps together into a single new heap, 

and then remove 2 stones from this new 

heap. In general, in the i-th step we     

choose any three of the heaps, which 

contain more than i stones when 

combined, we merge them into a single 

new heap, then remove i stones from this 

new heap. Assume that after a number of 

steps, there is a single heap left on the 

table, containing p stones. Show that 

the number p is a perfect square if and 

only if the numbers 2k+2 and 3k+1 are 

perfect squares. Further, find the least 

number k for which p is a perfect 

square. 

 

 

 

Homothety 
                        (continued from page 2) 

 

Example 7. (2000APMO) Let ABC be 

a triangle. Let M and N be the points in 

which the median and the angle 

bisector, respectively at A meet the side 

BC. Let Q and P be the points in which 

the perpendicular at N to NA meets MA 

and BA respectively and O the point in 

which the perpendicular at P to BA 

meets AN produced.  
 

Prove that QO is perpendicular to BC.   

A

B CM N

P

O

B' C'K,Q

 

Solution (due to Bobby Poon). The 

case AB = AC is clear.  

 

Without loss of generality, we may 

assume AB > AC. Let AN intersect the 

circumcircle of �ABC at D. Then  

 

  ∠DBC = ∠DAC  = 1
2
∠BAC  

                 = ∠DAB =∠DCB.  

 

So DB = DC and MD is perpendicular 

to BC. 

 

Consider the homothety with center A 

that sends �DBC to �OB’C’. Then 

OB’ = OC’ and BC is parallel to B’C’. 

Let B’C’ intersect PN at K. Then  

 
  ∠OB’K = ∠DBC  = ∠DAB 

                  = 90° – ∠AOP = ∠OPK.  

 

So points P, B’, O, K are concyclic. 

Hence ∠B’KO =∠B’PO = 90° and 

B’K = C’K. Since BC || B’C’, this 

implies K is on MA. Hence, K = Q. 

Now ∠B’KO = 90° implies QO=KO

⊥B’C’. Finally, BC || B’C’ implies QO 

is perpendicular to BC. 



 

Volume 9, Number 5 January 2005 – February 2005 

例析數學競賽中的計數問題 (一) 
 

費振鵬  （江蘇省鹽城市城區永豐中學 224054 ) 

 

Olympiad Corner 
 
The 7th China Hong Kong Math 

Olympiad took place on December 4, 

2004. Here are the problems.   
 

Problem 1.  For n ≥ 2, let a1, a2, …, 

 be positive and a
1,n na a + 2 – a1 = 

3 2 1 0.n na a a a+− = = − ≥L Prove that 

2 2

2 3

1 1 1

na a a
+ + +L

2

1 2

1 2 1

1
.

2

n n

n n

a a a an

a a a a

+

+

+−
≤ ⋅ 1  

Determine when equality holds. 
 

Problem 2.  In a school there are b 

teachers and c students. Suppose that 

(i) each teacher teaches exactly k 

students; and 

(ii) for each pair of distinct students, 

exactly h teachers teach both of them. 

     Show that .
)1(

)1(

−
−

=
kk

cc

h

b  

 
Problem 3.  On the sides AB and AC of 

triangle ABC, there are points P and Q 

respectively such that ∠APC =∠AQB = 

45°.  Let the perpendicular line to side 

AB through P intersects line BQ at S.  

Let the perpendicular line to side AC 

through Q intersects line CP at R.  Let D 

be on side BC such that  .BCAD ⊥
 

  (continued on page 4) 
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組合數學中的計數問題，數學競

賽題中的熟面孔，看似司空見慣，不

足為奇．很多同學認為只要憑藉單純

的課內知識就可左右逢源，迎刃而

解．其實具體解題時，卻會使你挖空

心思，也無所適從．對於這類問題往

往首先要通過構造法描繪出對象的簡

單數學模型，繼而借助在計數問題中

常用的一些數學原理方可得出所求對

象的總數或其範圍． 

 

   1  運用分類計數原理與分步計數原理

 分類計數原理與分步計數原理

（ 即加法原理與乘法原理）是關於計

數的兩個基本原理，是解決競賽中計

數問題的基礎．下面提出的三個問

題，注意結合排列與組合的相關知

識，構造出相應的模型再去分析求解．

例 1  已 知 兩 個 實 數 集 合

{ }1 2 100, , ,A a a a= L 與 { }1 2 50, , ,B b b b= L ，

若從A到B的映射f使得B中每個元素

都有原象，且  f (a1) ≤ f (a2) ≤ …≤ 

f(a100)，則這樣的映射共有（    ）個．

（A）C （B）C （C）C （D）C50

100

48

99

49

100

49

99

解答  設 50 按從小到大排列

50c （因集合元素具有互

異性，故其中不含相等情形）．

1 2, , ,b b bL

為 c c< < <L

 

1

1 2

將 A 中 元 素 分 成 50

組，每組依次與B中元素 對

應．這裏，我們用 ，表

示

1 2 100, , ,a a aL

1 2 50, , ,c c cL

1 2 3 1 4 5 2a a a c a a c L

1 2 3( ) ( ) ( )f a f a f a c== = ， 4( )f a =    

f (a5) = c2，… 

考慮 1 2 100( ) ( ) ( )f a f a f a≤ ≤ ≤L ，容易

得到 100 50( )f a c= ，這就是說 只能寫

在 的 右 邊 ， 故 只 需 在

之 間 的

99 個空位 “□ ＂ 中選擇 49 個位置並

50c

100a

1 2 3 98 99 100 50a a a a a a c□ □ □ □ □ □L

按 從 左 到 右 的 順 序 依 次 填 上

9．從而構成滿足題設要求的

映射共有 個．因此選 D． 

1 2 4, , ,c c cL
49

99C

例 2  有人要上樓，此人每步能向上走

1 階或 2 階，如果一層樓有 18 階，他

上一層樓有多少種不同的走法？ 

解答 1  此人上樓最多走 18 步，最少

走 9 步．這裏用 分別表

示此人上樓走 18 步，17 步，16 步，…，

9 步時走法（對於任意前後兩者的步

數，因後者少走 2 步 1 階，而多走 1

步 2 階，計後者少走 1 步）的計數結

果．考慮步子中的每步 2 階情形，易

得 ， ， ，…，

． 

18 17 16 9, , , ,a a a aL

0

18 18Ca = 1

17 17Ca = 2

16 16Ca =
9

9 Ca = 9

綜 上 ， 他 上 一 層 樓 共 有
0 1 2 9

18 17 16 9C C C C 1 17 120 1+ + + + = + + + +L L

= 4181 種不同的走法． 

解答 2  設 表示上n階的走法的計數

結果． 

nF

顯然， F ， F （2 步 1 階；

1 步 2 階）．對於 起步只有兩

種不同走法：上 1 階或上 2 階． 

1 1= =2 2

3 4, , ,F F L

因此對於 3F ，第 1 步上 1 階的情

形，還剩 階，計 種不同的走

法；對於第 1 步上 2 階的情形，還剩

3 1 2− = 2F

3 2 1− = 階，計 1F 種不同的走法．總計

3 2 1 2 1 3F F F= + = + = ． 

同 理 ， ，4 3 2 3 2 5F F F= + = + =

5 4 3 5 3 8F F F= + = + = ， … ，

18 17 16 2584 1597 4181F F F= + = + = ． 

例 3  在世界盃足球賽前，F國教練為

了考察 …1 2 7, , ,A A A 這七名隊員，準備讓

他們在三場訓練比賽（每場 90 分鐘）

都上場．假設在比賽的任何時刻，這
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些隊員中有且僅有一人在場上，並且

1 2 3 4, , ,A A A A 每人上場的總時間（以分

鐘為單位）均被 7 整除， 5 6 7, ,A A A 每

人上場的總時間（以分鐘為單位）均

被 13 整除．如果每場換人次數不

限，那麼按每名隊員上場的總時間計

算，共有多少種不同的情況． 

解答  設 ( )1,2, ,7iA i = L 上場的總時

間分別為 ( )1,2, ,7ia i = L 分鐘． 

根據題意，可設 

( )7 1,2,3,4i ia k i= = , ( )13 5,6,7i ia k i= = ,

其中 ( )1,2, ,7ik i Z += ∈L ． 

令 ， ， 其 中

， ， 且 ． 則

．易得其一個整數特解

為 ，又因 ，故其整數

通 解 為 ． 再 由

，得

4

1

i

i

k m
=

=∑
7

5

i

i

k n
=

=∑

4m≥ 3n≥ ,m n Z +∈

7 13 270m n+ =

33

3

m

n

=⎧
⎨ =⎩

( )7,13 1=

33 13

3 7

m t

n t

= +⎧
⎨ = −⎩

33 13 4

3 7 3

t

t

+⎧
⎨ −⎩

≥
≥

29
0

13
t− ≤ ≤ ，故整

數 ． 0, 1, 2t = − −

從而其滿足條件的所有整數解

為  
33, 20, 7,

3; 10; 17.

m m m

n n n

= = =⎧ ⎧ ⎧
⎨ ⎨ ⎨= = =⎩ ⎩ ⎩

對於 的正整數解，可以

寫一橫排共計 33 個 1，在每相鄰兩

個 1 之間共 32 個空位中任選 3 個填

入“+＂號，再把 3 個“+＂號分隔開

的 4 個部分裏的 1 分別統計，就可得

到其一個正整數解，故 有

個正整數解 ；同理

有 個 正 整 數 解

4

1

33i

i

k
=

=∑

4

1

33i

i

k
=

=∑
3

32C ( )1 2 3 4, , ,k k k k

7

5

3i

i

k
=

=∑ 2

2C

( )5 6 7, ,k k k ；從而此時滿足條件的正整

數 解 ( )1 2 3 4 5 6 7, , , , , ,k k k k k k k 有

個．… 

3 2

32 2C C⋅

因此滿足條件的所有正整數解

( )1 2 3 4 5 6 7, , , , , ,k k k k k k k 有 

       =42244                                     3 2 3 2 3 2

32 2 19 9 6 16C C C C C C⋅ + ⋅ + ⋅

個，即按每名隊員上場的總時間計算，

共有 42244 種不同的情況． 

 

2  運用容斥原理 

 

容斥原理，又稱包含排斥原理或逐

步淘汰原理．顧名思義，即先計算一個

較大集合的元素的個數，再把多計算的

那一部分去掉．它由英國數學家 J.J.西

爾維斯特首先創立．這個原理有多種表

達形式，其中最基本的形式為： 

      設 1 2, , , nA A L A 是 任 意 n 個 有 限集

合，以 card (S) 代表 S 的元素的個數，

則 

          ( )1 2 ncard A A AU ULU  

        

1 1

( ) ( )i i

i n i j n

card A card A A
≤ ≤ ≤ < ≤

= −∑ ∑ I j

             

1

( )i j k

i j k n

card A A A
≤ < < ≤

+ −∑ I I L  

                 1

1 2( 1) ( ).n

ncard A A A−+ − I ILI

 

例 4  由數字 1，2，3 組成n位數，且在

這個n位數中，1，2，3 的每一個至少出

現一次，問這樣的n位數有多少個？ 

解答  設U是由 1，2，3 組成的n位元數

的集合， 1A 是U中不含數字 1 的n位元數

的集合， 2A 是U中不含數字 2 的n位元

數的集合， 3A 是U中不含數字 3 的n位

元數的集合，則       

( ) 3 ,ncard U =   

( ) ( ) ( )1 2 3 2 ,ncard A card A card A= = =

( ) ( ) ( )1 2 2 3 3 1 1,card A A card A A card A A= = =I I I

( )1 2 3 0.card A A A =I I ． 

因此 

       car 1 2 3( ) ( )d U card A A A− U U  

     ． 3 3 2 3 1 0 3 3 2 3n n n n= − ⋅ + ⋅ − = − ⋅ +

即符合題意的 n 位數的個數為

． 3 3 2 3n n− ⋅ +

下面，我們再來看一個關於容斥原

理應用的變異問題． 

例 5  參加大型團體表演的學生共 240

名，他們面對教練站成一行，自左至

右按 1，2，3，4，5，…依次報數．

教練要求全體學生牢記各自所報的

數，並做下列動作：先讓報的數是 3

的倍數的全體同學向後轉；接著讓報

的數是 5 的倍數的全體同學向後

轉；最後讓報的數是 7 的倍數的全體

同學向後轉．問： 

⑴此時還有多少名同學面對教

練？ 

⑵面對教練的同學中，自左至右

第 66 位同學所報的數是幾？ 

解答  ⑴設 { }1,2,3, ,240U ，= L iA 表示

由U中所有i的倍數組成的集合．則 

( ) 240,card U = ( )3

240
80,

3
card A

⎡ ⎤= =⎢ ⎥⎣ ⎦

( )5

240
48,

5
card A ⎡ ⎤= =⎢ ⎥⎣ ⎦

( )7

240
34

7
card A ⎡ ⎤= =⎢ ⎥⎣ ⎦

( )15

240
16,

15
card A ⎡ ⎤= =⎢ ⎥⎣ ⎦

( )21

240
11,

21
card A ⎡ ⎤= =⎢ ⎥⎣ ⎦

( )35

240
6,

35
card A ⎡ ⎤= =⎢ ⎥⎣ ⎦

( )105

240
2.

105
card A ⎡ ⎤= =⎢ ⎥⎣ ⎦

 

從而此時有 

3 5( ) [ ( ) ( ) (card U card A card A card A− + +

15 21 352[ ( ) ( ) ( )]card A card A card A

7)]

+ + +  

1054 ( ) 136card A− =  

名同學面對教練． 

如 果 我 們 借 助 威 恩 圖 進 行 分

析，利用上面所得數據分別填入圖

1，注意按從內到外的順序填． 

 

55 

③ 

14 9
2 

4 28 19⑦⑤ 

109

圖 1 

如圖 1，此時面對教練的同學一目了

然，應有 109+14+4+9=136 名． 

(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is March 31, 

2005. 
 
Problem 216.  (Due to Alfred Eckstein, 

Arad, Romania) Solve the equation 
 

6 24 6 2 2x x− + = 0.  
 

Problem 217.  Prove that there exist 

infinitely many positive integers which 

cannot be represented in the form  
 

3 5 7 9 11

1 2 3 4 5 ,x x x x x+ + + +  

 
where x1, x2, x3, x4, x5 are positive 

integers. (Source: 2002 Belarussian 

Mathematical Olympiad, Final Round) 
 

Problem 218.  Let O and P be distinct 

points on a plane.  Let ABCD be a 

parallelogram on the same plane such 

that its diagonals intersect at O.  

Suppose P is not on the reflection of 

line AB with respect to line CD.  Let M 

and N be the midpoints of segments AP 

and BP respectively.  Let Q be the 

intersection of lines MC and ND.  

Prove that P, Q, O are collinear and the 

point Q does not depend on the choice 

of parallelogram ABCD. (Source: 2004 

National Math Olympiad in Slovenia, 

First Round) 
 

Problem 219. (Due to Dorin 

Mărghidanu, Coleg. Nat. “A.I. Cuza”, 

Corabia, Romania)  The sequences 

a0,a1,a2,… and b0,b1,b2,… are defined 

as follows: a0,b0 > 0 and  

1

1
,

2
n n

n

a a
b

+ = +    
1

1

2
n n

n

b b
a

+ = +  

f
 
or n = 1,2,3,…. Prove that  

2004 2004max{ , } 2005.a b >  

 
Problem 220. (Due to Cheng HAO, 

The Second High School Attached to 

Beijing Normal University)  For i = 

1,2,…, n, and k ≥ 4, let Ai = (ai1, ai2, … , 

aik)  with aij = 0 or 1 and every Ai has at 

least 3 of the k coordinates equal 1.  

Define the distance between Ai and Aj to 

be 

1

| |
k

im jm

m

a a
=

−∑ .  

     If the distance between any Ai and Aj    

(i ≠ j) is greater than 2, then prove that 

n  ≤  2k–3 – 1. 
 

***************** 

Solutions 

**************** 
 
Problem 211.  For every a, b, c, d in [1,2], 

prove that 

4 .
a b c d a c

b c d a b d

+ + +
+ ≤

+ + +
 

(Source: 32nd Ukranian Math Olympiad) 
 
Solution.  CHEUNG Yun Kuen 
(HKUST, Math Major, Year 1), Achilleas 
P. PORFYRIADIS (American College 
of Thessaloniki “Anatolia”, Thessaloniki, 
Greece) and HUDREA Mihail (High 
School “Tiberiu Popoviciu” Cluj-Napoca 

omania). R
 
Since 0 < b + d  ≤ 4, it suffices to show 
 

.
a b c d

a c
b c d a

+ +
+ ≤ +

+ +
 

 

Without loss of generality, we may 

assume 1 ≤ a ≤ c, say c = a + e with e ≥ 0.  

Then 

1 1
a b c d e

b c d a d a

+ + ⎛ ⎞+ ≤ + +⎜ ⎟+ + +⎝ ⎠
 

                               ≤ 2 + e  

                               ≤ 2a+ e = a + c. 

 

In passing, we observe that equality holds 

if and only if e = 0, a = c = 1, b = d = 2.  
 
Other commended solvers: CHENG Hei 
(Tsuen Wan Government Secondary 
School, Form 5), LAW Yau Pui (Carmel 
Divine Grace Foundation Secondary 
School, Form 6) and YIM Wing Yin 
(South Tuen Mun Government Secondary 
School, Form 5). 

 

Problem 212.  Find the largest positive 

integer N such that if S is any set of 21 

points on a circle C, then there exist N arcs 

of C whose endpoints lie in S and each of 

the arcs has measure not exceeding 120°. 
 
Solution.  
 

We will N = 100.  To see that N ≤ 100, 

consider a diameter AB of C.  Place 11 

points close to A and 10 points close to B.  

The number of desired arcs is then  

1 1 1 0
1 0 0 .

2 2

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

To see that N ≥ 100, we need to observe 

that for every set T of k = 21 points on 

C, there exists a point X in T such that 

there are at least [(k – 1)/ 2] arcs XY 

(with Y in T, Y ≠ X) each having 

measure not exceeding 120°.  This is 

because we can divide the circle C into 

three arcs C1, C2, C3 of 120° (only 

overlapping at endpoints) such that the 

common endpoint of C1 and C2 is a 

point X of T.  If X does not have the 

required property, then there are 1 + 

[(k – 1)/2] points of T lies on C3 and 

any of them can serve as X. 

 

Next we remove X and apply the same 

argument to k = 20, then remove that 

point, and repeat with k = 19, 18, … , 3.  

We get a total of 10 + 9 + 9 + 8 + 8 + … 

+ 1 + 1 = 100 arcs. 

 

Problem 213.  Prove that the set of all 

positive integers can be partitioned into 

100 nonempty subsets such that if three 

positive integers a, b, c satisfy a + 99b 

= c, then at least two of them belong to 

the same subset. 
 
Solution. Achilleas P. PORFYRIADIS 
(American College of Thessaloniki 
Anatolia”, Thessaloniki, Greece). “

 
Let f(n) be the largest nonnegative 

integer k for which n is divisible by 2k.  

Then given three positive integers a, b, c 

satisfying a + 99 b = c at least two of f(a), 

f(b), f(c) are equal.  To prove this, if f(a) 

= f(b), then we are done.  If f(a) < f(b), 

then f(c) = f(a).  If f(a) > f(b), then f(c) = 

f(b).  

 

Therefore, the following partition 

suffices: 

  

Si = {n | f (n) ≡ i (mod 100)} 

 

for 1≤ i ≤100.  
 
Problem 214.  Let the inscribed circle 

of triangle ABC be tangent to sides AB, 

BC at E and F respectively.  Let the 

angle bisector of ∠ CAB intersect 

segment EF at K.  Prove that ∠CKA is 

a right angle.   
 
Solution.  CHENG Hei (Tsuen Wan 
Government Secondary School, Form 
5), HUDREA Mihail (High School 
“Tiberiu Popoviciu” Cluj-Napoca 
Romania),  Achilleas P. PORFYRIADIS 
(American College of Thessaloniki 
“Anatolia”, Thessaloniki, Greece), YIM 
Wing Yin (South Tuen Mun 
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Government Secondary School, Form 
5) and YUNG Ka Chun (Carmel 
Divine Grace Foundation Secondary 
School, Form 6). 
 
Most of the solvers pointed out that the 

problem is still true if the angle bisector 

of ∠CAB intersect line EF at K outside 

the segment EF.  So we have two 

figures. 
 

I

A

B C

E

F

K

 

 

F

E

B

A

I

K

C

 

Let I be the center of the inscribed circle. 

Then A, I, K are collinear.  Now ∠CIK 

= ½(∠BAC+∠ACB).  Next, BE = BF 

implies that ∠BFE = 90° – ½ ∠CBA = 

½ (∠BAC+∠ACB) = ∠CIK. (In the 

second figure, we have ∠CFK = ∠BFE 

= ∠CIK.) Hence C, I, K, F are concyclic.  

Therefore, ∠CKI = ∠CFI = 90°. 
 

Other commended solvers: CHEUNG 

Yun Kuen (HKUST, Math Major, Year 1). 

 

Problem 215.  Given a 8×8 board. 

Determine all squares such that if each 

one is removed, then the remaining 63 

squares can be covered by 21 3×1 

rectangles. 
 
Solution. CHEUNG Yun Kuen 
(HKUST, Math Major, Year 1). 
 

Let us number the squares of the board 

from 1 to 64, with 1 to 8 on the first row, 9 

to 16 on the second row and so on. 
 

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64
 

Using this numbering, a 3×1 rectangle will 

cover three numbers with a sum divisible 

by 3.  Since 64 ≡ 1 (mod 3), only squares 

with numbers congruent to 1 (mod 3) need 

to be considered for our problem.  
 

If there is a desired square for the problem, 

then considering the left-right symmetry 

of the board and the up-down symmetry of 

the board, the images of a desired square 

under these symmetries are also desired 

squares.  Hence they must also have 

numbers congruent to 1 (mod 3) in them. 
 

However, the only such square and its 

image squares having this property are the 

squares with numbers 19, 22, 43 and 46.  
 

Finally square 19 has the required 

property (and hence also squares 22, 43, 

46 by symmetry) by putting 3×1 

rectangles as shown in the following 

figure (those squares having the same 

letter are covered by the same 3×1 

rectangle).  
 

A A A B B B F G

C C C D D D F G

H I  E E E F G

H I J J J K K K

H I L L L M M M

N O P Q R S T U

N O P Q R S T U

N O P Q R S T U
 
Other commended solvers: HUDREA 
Mihail (High School “Tiberiu Popoviciu” 
Cluj-Napoca Romania),  NG Siu Hong 
(Carmel Divine Grace Foundation 
Secondary School, Form 6) and Achilleas 
P. PORFYRIADIS (American College 
of Thessaloniki “Anatolia”, Thessaloniki, 
Greece). 
 

 
 

 

Olympiad Corner 

(continued from page 1) 
 

Problem 3. (cont.)  Prove that the lines 

PS, AD, QR meet at a common point 

and lines SR and BC are parallel. 

 

Problem 4.  Let S = {1, 2, …, 100}.  

Determine the number of functions 

:f S S→  satisfying the following 

conditions. 
 

(i) ; (1) 1f =
(ii) f is bijective (i.e. for every y in S, 

the equation f(x) = y has exactly 

one solution); 

(iii) f(n) = f(g(n)) f(h(n)) for every n in 

S. 
 

Here g(n) and h(n) denote the uniquely 

determined positive integers such that 

g(n) ≤ h(n), g(n) h(n) = n and h(n) − g(n) 

is as small as possible.  (For instance, 

g(80) = 8, h(80) = 10 and g(81) = h(81) 

= 9.) 

  

 

 

例析數學競賽中的計數問題 (一) 

(continued from page 2) 

 

⑵用上面類似的方法可算得自左至

右第 1 號至第 105 號同學中面對教練

的有 60 名． 

    考慮所報的數不是 3，5，7 的倍數

的同學沒有轉動，他們面對教練；所

報的數是 3，5，7 中的兩個數的倍數

的同學經過兩次轉動，他們仍面對教

練；其餘同學轉動了一次或三次，都

背對教練． 

作如下分析：106，107，108（3 的

倍數），109，110（5 的倍數），111（3

的倍數），112（7 的倍數），113，114

（3 的倍數），115（5 的倍數），116，

117（3 的倍數），118，119（7 的倍

數），120（3、5 的倍數），……，可

知面對教練的第 66 位同學所報的數

是 118.   

(to be continued) 
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例析數學競賽中的計數問題(二) 
 

費振鵬  （江蘇省鹽城市城區永豐中學 224054 ) 

 

 

Olympiad Corner 
 
Following are the problems of 2004 

Estonian IMO team selection contest.   
 

Problem 1.  Let k > 1 be a fixed natural 

number.  Find all polynomials P(x) 

satisfying the condition P(xk) = (P(x))k 

for all real number x. 

 

Problem 2.  Let O be the circumcentre 

of the acute triangle ABC and let lines 

AO and BC intersect at a point K.  On 

sides AB and AC, points L and M are 

chosen such that KL = KB and KM = KC.  

Prove that segments LM and BC are 

parallel. 
 

Problem 3.  For which natural number n 

is it possible to draw n line segments 

between vertices of a regular 2n-gon so 

that every vertex is an endpoint for 

exactly one segment and these segments 

have pairwise different lengths? 

 

Problem 4.  Denote 
 

∑
= +

−=
m

k

k

m

k
mf

1

.
12

cos)1()(
π  

 
For which positive integers m is f(m) 

rational? 
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3 運用算兩次原理與抽屜原理 

 

算兩次原理，就是把一個量從兩

個（或更多）方面去考慮它，然後綜

合起來得到一個關係式（可以是等式

或不等式），或者導出一個矛盾的結

論．具體表示為三步：“一方面（利

用一部分條件）……，另一方面（利

用另一部分條件）……，綜合這兩個

方面 ……＂．義大利數學家富比尼

（Fubini）首先應用這個思想方法，

因此今天我們也稱它為富比尼原理．

在解這些問題時，要根據問題的

特點選擇一個適當的量，再將這個量

用兩（或幾）種不同的方法表達出來．

抽屜原理，德國數學家狄利克雷

（Dirichlet）提出．對於這個原理的

具體解釋，想必很多同學早就知道

了，在此不再贅述． 

 

例 6  有 26 個不同國家的集郵愛好

者，想通過互相通信的方法交換各國

最新發行的紀念郵票，為了使這 26

人每人都擁有這 26 個國家的一套最

新紀念郵票，他們至少要通多少封

信？ 

 

解答  不妨設這 26 個集郵愛好者中的

某一個人為組長． 

一方面，對於組長，要接收到其

他 25 個國家的最新紀念郵票，必須從

這 25 個集郵愛好者的手中發出（不管

他們是否直接發給組長），至少要通

25 封信；同樣地，其他 25 個集郵愛

好者分別要接收到組長的一套紀念郵

票，必須由組長發出（不管組長是否

直接發給這 25 個集郵愛好者），至少

要通 25 封信．總計至少要通 50 封信．

另一方面，其餘 25 個集郵愛好者每人

將本國的一套最新的紀念郵票 25 份

或 26 份發給組長，計 25 封信；組長

收到這 25 封信後，再分別給這 25 個

集郵愛好者各發去一封信，每封信中

含有 25 套郵票（發給某人的信中不含

其本國的郵票）或 26 套郵票（發給某

人的信中包含其本國的郵票），計 25

封信．總計 50 封信．這就是說通 50

封信可以使這 26 人每人都擁有這 26

個國家的一套最新紀念郵票． 

因此他們至少要通 50 封信． 

 

例 7  從 1，2，3，…，1997 這 1997

個數中至多能選出多少個數，使得選

出的數中沒有一個是另一個的 19

倍？ 

 

解答  因為 1997÷19=105…2，所以

106，107，…，1997 這 1892 個數中

沒有一個是另一個的 19 倍． 

又因 106÷19=5…11，故 1，2，3，4，

5，106，107，…，1997 這 1897 個數

中沒有一個是另一個的 19 倍． 

另一方面，從（6，6×19），（7，7×

19），…，（105，105×19）這 100 對互

異的數中最多可選出 100 個數（每對

中至多選 1 個），即滿足題意的數至少

剔除 100 個數． 

        綜上所述，從 1，2，3，…，1997

中至多選出 1897 個數，使得選出的數

中沒有一個是另一個的 19 倍． 

 

例 8  在正整數 1，2，3，…，1995，

1996，1997 裏，最多能選出多少數，

使其中任意兩個數的和不能被這兩個

數的差整除． 

 

解答  在所選的數中，不能出現連續自

然數、連續奇數或連續偶數，這是由

於連續自然數之和必能被其差 1 整

除；連續奇數或連續偶數之和是偶

數，必能被其差 2 整除．再考慮差值

為 3 的兩數，不能是 3 的倍數，否則

其和仍是 3 的倍數，必能被其差 3 整

除；而選擇全是 3 除餘 1，或全是 3

除餘 2 的數，注意到各自中任意兩數

之和非 3 的倍數，不能被其差 3 的倍 
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數整除，滿足題意． 

         另 一 方 面 ， 從 (1,2,3) ， (4,5, 

6 )，…，(1993,1993,1995)，(1996,1997) 

中，最多可選出 666 個(每組至多可

選一個)，否則會出現連續自然數、

連續奇數或連續偶數，而不滿足題

意．又間隔 4 的所有數的個數較上述

滿足題意的所有數的個數少． 

綜上可知，1，4，7，…，1990，

1993，1996（666 個）或 2，5，8，…，

1991，1994，1997（666 個）均滿足

題意． 

即最多可選出 666 個，使其中任

意兩數之和不能被這兩數之差整除． 

 

例 9  設自然數n有以下性質：從 1，

2，…，n中任取 50 個不同的數，這

50 個數中必有兩個數之差等於 7，這

樣的n最大的一個是多少？ 

 

解答  n的最大值是 98．說明如下： 

⑴一方面當自然數從 1，2，…，98

中任取 50 個不同的數，必有兩個數

之差等於 7．這是因為： 

首先將自然數 1，2，…，98 分

成 7 組：（1，2，3，4，5，6，7，8，

9，10，11，12，13，14），（15，

16，17，18，19，20，21，22，23，

24，25，26，27，28），…，（85，

86，87，88，89，90，91，92，93，

94，95，96，97，98）． 

考慮取出的數中不出現某兩個

數之差等於 7 的情形：由於每組中含

有差為 7 的兩數，故每組最多可取出

7 個數（即每組中屬於 7 的同一個剩

餘類的兩個數只能取其中的任意一

個）．並且如果在第 1 組中取出了 m

（m=1，2，…，14），那麼後面的

每組分別取出 m+14n（n=1，2，…，

6），可使所取數中的任意兩個數之

差都不是 7．這樣從上述 7 組數中最

多只能取出 7×7=49 個數． 

根據抽屜原理，知從 1，2，…，

98 中任取 50 個不同的數，必有兩個

數之差等於 7． 

⑵另一方面當自然數從 1，2，…，

99 中任取 50 個不同的數，不能保證

必有兩個數之差等於 7．這是因為： 

首先將自然數 1，2，…，99 分成 8

組：（1，2，3，4，5，6，7，8，9，

10，11，12，13，14），（15，16，17，

18，19，20，21，22，23，24，25，26，

27，28），…，（85，86，87，88，89，

90，91，92，93，94，95，96，97，98），

（99）． 

比如，取出前 7 組中每組的前 7 個

數，第 8 組的 99 這 50 個數，就不含有

兩個數之差等於 7． 

綜合⑴、⑵，可得 n 的最大值是 98． 

 

例 10  某校組織了 20 次天文觀測活動，

每次有 5 名學生參加，任何 2 名學生都

至多同時參加過一次觀測．證明：至少

有 21 名學生參加過這些觀測活動． 

 

證法 1  （反證法）假設至多有 20 名學

生參加過這些觀測活動． 

每次觀測活動中的 5 名學生中有

2

5

5 4
10

2 1
C

×= =
×

個 2 人小組，又由題意知

20 次觀測中 2 人小組各不相同，所以

20 次 觀 測 中 2 人 小 組 總 共 有

個． 20 10 200× =

而另一方面，20 名學生中的 2 人小

組最多有 2

20

20 19
190

2 1
C

×= =
×

個． 

兩者自相矛盾．故至少有 21 名學

生參加過這些觀測活動． 

 

稍作簡化，即可證明如下： 

證法 2  （反證法）假設至多有 20 名學

生參加過這些觀測活動． 

由題意知：⑴共有 20 次觀測；⑵

最多有
2

20

2

5

19
C

C
= 次觀測． 

兩者自相矛盾．故至少有 21 名學

生參加過這些觀測活動． 

 

對於低年級學生，還可作出如下證
明： 

證法 3  設參加觀測活動次數最多的學

生A參加了a次觀測，共有x名學生參加

過天文觀測活動． 

由於有 A 參加的每次觀測活動

中，除了 A，其他學生各不相同（這

是因為任何 2 名學生都至多同時參

加過一次觀測），故 4 1x a +≥ ．（I） 

另一方面，學生 A 參加觀測的次

數不小於每名學生平均觀測次數．即

20 5
a

x
×≥ ．（II） 

綜合（I）、（II），得 400
1x

x
+≥ ，

．從而 x ≥ 21． 02 400x x− − ≥

即至少有 21 名學生參加過這些

觀測活動． 

 

例 11  2n名選手參加象棋循環賽，每

一輪中每個選手與其他 2 1n − 人各賽

一場，勝得 1 分，平各得 1
2

分，負得

0 分．證明：如果每個選手第一輪總

分與第二輪總分至少相差n分，那麼

每個選手兩輪總分恰好相差n分． 

 

證明  令集A={第二輪總分>第一輪

總分的人}，集B={第二輪總分<第一

輪總分的人}，並且 |A|=k， |B|=h，

k+h=2n． 

不妨設 k ≥ n ≥ h．考慮 A 中選手

第二輪總分之和 S（若 h  ≥ n ≥ k，則

考慮 B 中選手第一輪總分之和 T）． 

另一方面，對於每輪 A 中選手和 B

中選手的 kh 場比賽中，所得總分之

和為 kh，充其量全為 A 中選手取勝，

則 S ≤ +kh．如 A 中選手第一輪總

分 之 和 為 S’ ， 那 麼 S−S’ ≥ kn ，

+kh−kn ≥ S−kn ≥ S’ ≥ ．從而得

h ≥ n，所以 n=h=k，並且以上不等式

均為等式． 

2

kC

2

kC 2

kC

所以 A 中每個選手第二輪總分

恰比第一輪總分多 n 分，B 中每個選

手第一輪總分恰比第二輪總分多 n

分．因此，原命題成立． 

 

(to be continued) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is May 7, 2005. 

 

Problem 221. (Due to Alfred Eckstein, 

Arad, Romania) The Fibonacci 

sequence is defined by F0 = 1, F1 = 1 

and Fn = Fn−1+Fn−2 for n ≥ 2.  
 

    Prove that  is 

divisible by F

3

1

33

27 ++ −− nnn FFF

n+3. 

 
Problem 222.  All vertices of a convex 

quadrilateral ABCD lie on a circle ω.  

The rays AD, BC intersect in point K 

and the rays AB, DC intersect in point 

L.  

     Prove that the circumcircle of 

triangle AKL is tangent to ω if and only 

if the circumcircle of triangle CKL is 

tangent to ω. 

(Source: 2001-2002 Estonian Math 

Olympiad, Final Round) 
 
Problem 223.  Let n ≥ 3 be an integer 

and x be a real number such that the 

numbers x, x2 and xn have the same 

fractional parts. Prove that x is an 

integer.  
 

Problem 224. (Due to Abderrahim 

Ouardini)  Let a, b, c be the sides of 

triangle ABC and I be the incenter of 

the triangle.  

   

   Prove that  

33

abc
ICIBIA ≤⋅⋅  

and determine when equality occurs. 
 
Problem 225.  A luminous point is in 

space. Is it possible to prevent its 

luminosity with a finite number of 

disjoint spheres of the same size? 

(Source: 2003-2004 Iranian Math 

Olympiad, Second Round) 
 
 

***************** 

Solutions 

**************** 

 
Problem 216.  (Due to Alfred Eckstein, 

Arad, Romania)  Solve the equation 
 

6 24 6 2 2x x 0.− + =  
 
Solution. Kwok Sze CHAI Charles 
(HKU, Math Major, Year 1), CHAN Tsz 
Lung, HUDREA Mihail (High School 
“Tiberiu Popoviciu” Cluj-Napoca 
Romania), MA Hoi Sang (Shun Lee 
Catholic Secondary School, Form 5), 
Achilleas P. PORFYRIADIS (American 
College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece), Anna Ying PUN 
(STFA Leung Kau Kui College, Form 6),  
Badr SBAI (Morocco), TAM Yat Fung 
(Valtorta College, Form 5), WANG Wei Hua 
and WONG Kwok Cheung (Carmel Alison 
Lam Foundation Secondary School, Form 6). 
 

We have .02412 26 =+− xx8   

Let t = 2x2. We get 

 

).22)(2)(2(

)42)(2(

)266()2(

2460

2

33

3

+−−=

−+−=

−−−=

+−=

ttt

ttt

tt

tt

 

 

Solving 2x2 = 2  and 2x2 = −2 2 , 

we get 4 21±=x or .24i±  

 
Other commended solvers: CHAN Pak 
Woon (Wah Yan College, Kowloon, Form 
7), Kin-Chit O (STFA Cheng Yu Tung 
Secondary School) and WONG Sze Wai 
(True Light Girls’ College, Form 4). 

 

Problem 217.  Prove that there exist 

infinitely many positive integers which 

cannot be represented in the form  
 

3 5 7 9

1 2 3 4 ,11

5x x x x x+ + + +  

 
where x1, x2, x3, x4, x5 are positive integers. 

(Source: 2002 Belarussian Mathematical 

Olympiad, Final Round)  
 
Solution. Achilleas P. PORFYRIADIS 
(American College of Thessaloniki “Anatolia”, 
Thessaloniki, Greece) and Tak Wai Alan 
WONG (Markham, ON, Canada). 
 
On the interval [1, n], if there is such an 

integer, then 
 

].[,],[],[ 11/1

5

5/1

2

3/1

1 nxnxnx ≤≤≤ L  

 
So the number of integers in [1, n] of the 

required form is at most n1/3n1/5n1/7n1/9n1/11 

= n3043/3465.  Those not of the form is at 

least n − n3043/3465, which goes to infinity 

as n goes to infinity. 

 

Problem 218.  Let O and P be distinct 

points on a plane.  Let ABCD be a 

parallelogram on the same plane such 

that its diagonals intersect at O.  

Suppose P is not on the reflection of 

line AB with respect to line CD.  Let M 

and N be the midpoints of segments AP 

and BP respectively.  Let Q be the 

intersection of lines MC and ND.  

Prove that P, Q, O are collinear and the 

point Q does not depend on the choice 

of parallelogram ABCD. (Source: 2004 

National Math Olympiad in Slovenia, 

First Round) 
 
Solution. HUDREA Mihail (High 
School “Tiberiu Popoviciu” 
Cluj-Napoca Romania) and Achilleas P. 
PORFYRIADIS (American College of 
Thessaloniki “Anatolia”, Thessaloniki, 

reece). G
 

 

A B

CD

O

P

M N

Q

 
 

Let G1 be the intersection of OP and MC. 

Since OP and MC are medians of 

triangle APC, G1 is the centroid of 

triangle APC.  Hence OG1=⅓OP.  

Similarly, let G2 be the intersection of 

OP and ND. Since OP and ND are 

medians of triangle BPD, G2 is the 

centroid of triangle BPD.  Hence 

OG2=⅓OP.  So G1=G2 and it is on both 

MC and ND.  Hence it is Q.  This implies 

P, Q, O are collinear and Q is the unique 

point such that OQ=⅓OP, which does 

not depend on the choice of the 

parallelogram ABCD.  
 
Other commended solvers: CHAN 
Pak Woon (Wah Yan College, 
Kowloon, Form 7) and CHAN Tsz 
Lung, Anna Ying PUN (STFA Leung 
Kau Kui College, Form 6) and WONG 
Tsun Yu (St. Mark’s School, Form 5). 

 

Problem 219.  (Due to Dorin 

Mărghidanu, Coleg. Nat. “A.I. Cuza”, 

Corabia, Romania)  The sequences 

a0,a1,a2,… and b0,b1,b2,… are defined 

as follows: a0,b0 > 0 and  

1

1
,

2
n n

n

a a
b

+ = +    
1

1

2
n n

n

b b
a

+ = +  

f
 
or n = 1,2,3,….  Prove that  

2004 2004max{ , } 2005.a b >  

 
Solution. CHAN Tsz Lung, Kin-Chit 
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O (STFA Cheng Yu Tung Secondary 
School),  Achilleas P. PORFYRIADIS 
(American College of Thessaloniki 
“Anatolia”, Thessaloniki, Greece) and 
Anna Ying PUN (STFA Leung Kau Kui 
College, Form 6). 
 

We have 
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1
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Then 

2005

2004
4

1
2

2004
4

1

}),(max{

00

00

00

00

20042004

2

20042004

=

+≥

++>

⋅≥

ba
ba

ba
ba

baba

 

and the result follows. 

 

Other commended solvers: HUDREA 

Mihail (High School “Tiberiu 

Popoviciu” Cluj-Napoca Romania). 

 

Problem 220.  (Due to Cheng HAO, 

The Second High School Attached to 

Beijing Normal University)  For i = 1, 

2, …, n, and k ≥ 4, let Ai = (ai1, ai2, … , 

aik)  with aij = 0 or 1 and every Ai has at 

least 3 of the k coordinates equal 1.  

Define the distance between Ai and Aj 

to be 

1

| | .  
k

im jm

m

a a
=

−∑
    If the distance between any Ai and Aj    

(i ≠ j) is greater than 2, then prove that   

 

n  ≤  2k–3 – 1. 
 
Solution.  
 

Let |Ai−Aj| denote the distance between 

Ai and Aj.  We add A0 = (0,…,0) to the n 

Am’s.  Then |Ai−Aj| ≥ 3 still holds for A0, 

A1, …, An. 

     Next we put the coordinates of A0 to 

An into a (n + 1) × k table with the 

coordinates of Ai in the (i + 1)-st row. 

     Note if we take any of the k columns 

and switch all the 0’s to 1’s and 1’s to 

0’s, then we get n + 1 new ordered k-tuples 

that still satisfy the condition |Ai−Aj| ≥ 3.  

Thus, we may change A0 to any 

combination with 0 or 1 coordinates.  

Then the problem is equivalent to showing 

n + 1 ≤ 2k−3 for n + 1 sets satisfying |Ai−Aj| 

≥ 3, but removing the condition each Ai 

has at least 3 coordinates equal 1.  

For k = 4, we have n + 1 ≤ 2.  Next, 

suppose k > 4 and the inequality is true for 

the case k−1.  

In column k of the table, there are at least 

[(n + 2)/2] of the numbers which are the 

same (all 0’s or all 1’s).  Next we keep 

only [(n+2)/2] rows whose k-th 

coordinates are the same and we remove 

column k.  The condition |Ai−Aj| ≥ 3 still 

holds for these new ordered (k−1)-tuples.  

By the case k − 1, we get [(n + 2)/2] + 1 ≤ 

2k−4.  Since (n + 1)/2 < [(n + 2)/2] + 1, we 

get n + 1≤ 2k−3 and case k is true. 
 

 
 
 
  Generalization of Problem 203 
 
                  Naoki Sato 
 
We prove the following generalization of 

problem 203:  
 

Let a1, a2, …, an  be real numbers, and let si 

be the sum of the products of the ai taken i 

at a time.  If s1 ≠ 0, then the equation  
 

02 2

2

1

1 =+++ −−
n

nn nsxsxs L  
 

has only real roots. 
 

Proof.  Let  
 

.2)( 2

2

1

1 n

nn nsxsxsxf +++= −− L  
 

We can assume that none of the ai are equal 

to 0, for if some of the ai are equal to 0, then 

rearrange them so that a1, a2, …, ak are 

nonzero and ak+1, ak+2, …, an are 0.  Then 

sk+1 = sk+2 = … = sn = 0, so  
 

n

nn nsxsxsxf +++= −− L2

2

1

1 2)(  

kn

k

nn xksxsxs −−− +++= L2

2

1

1 2

).2( 2

2

1

1 k

kkkn ksxsxsx +++= −−− L  

 

Thus, the problem reduces to proving the 

same result on the numbers a1, a2, …, ak. 

 

Let g(x) = (a1x+1)(a2x+1)…(anx+1).  The 

roots of g(x) = 0 are clearly real, namely 

−1/a1, −1/a2, …, −1/an.  We claim that the 

roots of g' (x)=0 are all real. 

 

Suppose the roots of g(x) = 0 are distinct.  

Let r1 < r2< … <rn be these roots.  Then 

by Rolle’s theorem, the equation g' (x) = 

0 has a root in each of the intervals 

(r1,r2), (r2,r3), …, (rn−1,rn), so it has n − 1 

real roots. 

 

Now, suppose the equation g(x) = 0 has j 

distinct roots r1 < r2 < … < rj, and root ri 

has multiplicity mi so m1+m2+…+mj = n.  

Then ri is a root of the equation g' (x) = 0 

having multiplicity mi−1.  In addition, 

again by Rolle’s theorem, the equation 

has a root in each of the interval (r1,r2), 

(r2,r3), …, (rj−1,rj), so the equation g' (x) 

= 0 has the requisite 
 

(m1−1)+(m2−1)+…+ (mj−1) + j−1 = n−1 
 

real roots. 

 

Expanding, we have that  
 

g(x) = (a1x+1)(a2x+1)…(anx+1) 

              = snx
n + sn−1x

n−1 + … + 1, 
 

So g' (x) = nsnx
n−1+ (n−1)sn−1x

n−2 +…+s1.  

Since s1 ≠ 0, 0 is not a root of g' (x) = 0.  

Finally, we get that the polynomial  

n

nnn nsxsxs
x

gx +++=′ −−− L1

2

1

1

1 2)
1

(

has all real roots. 

 
 

 

Olympiad Corner 

(continued from page 1) 
 
Problem 5.  Find all natural numbers n 

for which the number of all positive 

divisors of the number lcm(1,2,…,n) is 

equal to 2k for some non-negative 

integer k. 

 

Problem 6.  Call a convex polyhedron 

a footballoid if it has the following 

properties. 

(1)  Any face is either a regular 

pentagon or a regular hexagon. 
 
(2)  All neighbours of a pentagonal 

face are hexagonal (a neighbour of a 

face is a face that has a common edge 

with it). 
 
Find all possibilities for the number of 

a pentagonal and hexagonal faces of a 

footballoid. 
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Olympiad Corner 
 
Following are the problems of 2005 

Chinese Mathematical Olympiad.   
 

Problem 1.    Let )2/,2/( ππθ −∈i
, 

i = 1, 2, 3, 4.  Prove that there exists 

x∈ℝ satisfying the two inequalities 
 

0)sin(sincoscos 2
212

2
1

2 ≥−− xθθθθ

0)sin(sincoscos 2
434

2
3

2 ≥−− xθθθθ  

 

    if and only if  
 

∑ ∏ ∏
= = =

++≤
4

1

4

1

4

1

2 ).cossin1(2sin
i i i

iii θθθ

 

Problem 2.  A circle meets the three 

sides BC, CA, AB of triangle ABC at 

points D1, D2; E1, E2 and F1, F2 in turn.  

The line segments D1E1 and D2F2 

intersect at point L, line segments E1F1 

and E2D2 intersect at point M, line 

segments F1D1 and F2E2 intersect at 

point N.  Prove that the three lines AL, 

BM and CN are concurrent. 
 

Problem 3.  As in the figure, a pond is 

divided into 2n (n ≥ 5) parts.  Two parts 

are called neighbors if they have a 

common side or arc.  Thus every part has  
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is August 10, 

2005. 

 

Problem 226.  Let z1, z2, …, zn be 

complex numbers satisfying  
 

|z1| + |z2| + ⋯ + |zn| = 1. 
 
Prove that there is a nonempty subset 

of {z1, z2, …, zn} the sum of whose 

elements has modulus at least 1/4.
 
Problem 227.  For every integer n ≥ 6, 

prove that  

∑ ≤⋅
−

−

= −

1

1
1

.
5

16

2

1n

k
kkn

n  

 
Problem 228.  In ABC, M is the foot 

of the perpendicular from A to the 

angle bisector of BCA.  N and L are 

respectively the feet of perpendiculars 

from A and C to the bisector of ABC.  

Let F be the intersection of lines MN 

and AC.  Let E be the intersection of 

lines BF and CL.  Let D be the 

intersection of lines BL and AC.  

 

Prove that lines DE and MN are 

parallel.  
 
Problem 229.  For integer n ≥ 2, let a1, 

a2, a3, a4 be integers satisfying the 

following two conditions: 
 
(1) for i = 1, 2, 3, 4, the greatest 

common divisor of n and ai is 1 and 

(2) for every k = 1, 2, …, n – 1, we have 
 

(ka1)n + (ka2)n + (ka3)n + (ka4)n = 2n, 
 
where (a)n denotes the remainder when 

a is divided by n. 
 
Prove that (a1)n, (a2)n, (a3)n, (a4)n can be 

divided into two pairs, each pair having 

sum equals n. 

(Source: 1992 Japanese Math 

Olympiad)  
 
Problem 230.  Let k be a positive 

integer.  On the two sides of a river, 

there are in total at least 3 cities.  From 

each of these cities, there are exactly k 

routes, each connecting the city to a 

distinct city on the other side of the river.  

Via these routes, people in every city can 

reach any one of the other cities.  

 

Prove that if any one route is removed, 

people in every city can still reach any one 

of the other cities via the remaining 

routes. 

(Source: 1996 Iranian Math Olympiad, 

Round 2)  
 
 

***************** 

Solutions 

**************** 
 

Due to an editorial mistake in the last 

issue, solutions to problems 216, 217, 218, 

219 by D. Kipp Johnson (teacher, Valley 

Catholic School, Beaverton, Oregon, 

USA) were overlooked and his name was 

not listed among the solvers.  We express 

our apology to him. 

 

Problem 221.  (Due to Alfred Eckstein, 

Arad, Romania)  The Fibonacci sequence 

is defined by F0 = 1, F1 = 1 and Fn = Fn−1 + 

Fn−2 for n ≥ 2.  
 

Prove that  is 

divisible by F

333

27 ++ −− nnn FFF 1

38 nF +

n+3. 

 
Solution.  HUDREA Mihail (High 
School “Tiberiu Popoviciu” Cluj-Napoca 
Romania) and Kin-Chit O (STFA Cheng 
Yu Tung Secondary School).  
 

As  is divisible by F3

1

3

2 77 ++ += nn FFa n+2 + 

Fn+1 = Fn+3 and b =  is divisible 

by 2F

3

1 nF+

n+1 + Fn = Fn+2 + Fn+1 = Fn+3, so 

 = a − b is divisible 

by F

3

1

33

27 ++ −− nnn FFF

n+3. 

  

Other commended solvers: CHAN Pak 
Woon (Wah Yan College, Kowloon, Form 
7), CHAN Tsz Lung, CHAN Yee Ling 
(Carmel Divine Grace Foundation Secondary 
School, Form 6), G.R.A. 20 Math Problem 
Group (Roma, Italy), MA Hoi Sang (Shun 
Lee Catholic Secondary School, Form 5), 
Anna Ying PUN (STFA Leung Kau Kui 
College, Form 6), WONG Kwok Cheung 
(Carmel Alison Lam Foundation Secondary 
School, Form 6) and WONG Kwok Kit 
(Carmel Divine Grace Foundation Secondary 
School, Form 6).  

 

Problem 222.  All vertices of a convex 

quadrilateral ABCD lie on a circle ω.  The 

rays AD, BC intersect in point K and the 

rays AB, DC intersect in point L.  

Prove that the circumcircle of triangle 

AKL is tangent to ω if and only if the 

circumcircle of triangle CKL is tangent 

to ω. 

(Source: 2001-2002 Estonian Math 

Olympiad, Final Round) 
 
Solution.  LEE Kai Seng (HKUST) and 
MA Hoi Sang (Shun Lee Catholic 
Secondary School, Form 5). 
 

Let ω1 and ω2 be the circumcircles of 

∆AKL and ∆CKL respectively.  For a 

point P on a circle Ω, let Ω(P) denote 

the tangent line to Ω at P.  

 

Pick D’ on ω(A) so that D and D’ are 

on opposite sides of line BL and pick L’ 

on ω1(A) so that L and L’ are on 

opposite sides of line BL.  

 

Next, pick D” on ω(C) so that D and 

D” are on opposite sides of line BK and 

pick L” on ω2(C) so that L and L” are 

on opposite sides of line BK.  Now ω, 

ω1 both contain A and ω, ω2 both 

contain C.  So 
   
                ω(A) =  ω1(A)  

          ⇔  ∠D’AB = ∠L’AB  

          ⇔  ∠ADB = ∠ALB  

          ⇔   BD ║ LK   

          ⇔  ∠BDC = ∠KLC  

          ⇔  ∠BCD” = ∠KCL”  

          ⇔  ω(C) = ω2(C).  

 
Other commended solvers: CHAN Tsz 
Lung and Anna Ying PUN (STFA 
Leung Kau Kui College, Form 6). 

 

Problem 223.  Let n ≥ 3 be an integer 

and x be a real number such that the 

numbers x, x2 and xn have the same 

fractional parts.  Prove that x is an 

integer.  

(Source: 1997 Romanian Math 

Olympiad, Final Round) 
 
Solution. G.R.A. 20 Math Problem 
Group (Roma, Italy). 
 

By hypotheses, there are integers a, b 

such that x2 = x + a and xn = x + b.  Since 

x is real, the discriminant  = 1 + 4a of 

x2 − x − a = 0 is nonnegative.  So a ≥ 0.  

If a = 0, then x = 0 or 1.  
 

If a > 0, then define integers cj, dj so that 

xj = cjx + dj for j ≥ 2 by c2 = 1, d2 = a > 0, 
 

x3
 = x2

 + ax = (1 + a)x + a 
 

leads to c3 = 1 + a, d3 = a and for j > 3, xj 

= (x + a)xj−2 = (cj−1 + acj−2)x + (dj−1 + 
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adj−2) leads to cj = cj−1 + acj−2 > cj−1 > 1 

and dj = dj−1 + adj−2.  
 

Now cnx + dn = xn
  = x + b with cn > 1 

implies x = (b − dn)/(cn − 1) is rational.  

This along with a being an integer and x2 

− x − a = 0 imply x is an integer.  
 
Other commended solvers: CHAN Tsz 
Lung, MA Hoi Sang (Shun Lee 
Catholic Secondary School, Form 5), 
and Anna Ying PUN (STFA Leung Kau 
Kui College, Form 6). 

 

Problem 224.  (Due to Abderrahim 

Ouardini)  Let a, b, c be the sides of 

triangle ABC and I be the incenter of 

the triangle.  

   

Prove that  

33

abc
ICIBIA ≤⋅⋅  

and determine when equality occurs. 

 
Solution. CHAN Tsz Lung and 
Kin-Chit O (STFA Cheng Yu Tung 
Secondary School).   
 

I

B C

A

P

Q

R

 

Let r be the radius of the incircle and s 

be the semiperimeter (a + b + c)/2.  The 

area of ABC is (a + b + c)r/2 =sr and  

))()(( csbsass −−−  by Heron’s 

formula.  So  
 

            r2 = (s-a)(s-b)(s-c)/s.             (*)  
 

Let P, Q, R be the feet of perpendiculars 

from I to AB, BC, CA.  Now s = AP + 

BQ + CR = AP + BC, so AP = s-a.  

Similarly, BQ = s-b and CR = s-c.  By 

the AM-GM inequality,  
 

      s/3 = [(s−a)+(s−b)+(s−c)]/3 

           3 ).)()(( csbsas −−−≥        (**) 
 

Using Pythagoras’ theorem, (*) and (**), 

we have  
   

     IA2·IB2·IC2

  = [r2+(s−a)2][r2+(s−b)2][r2+(s−c)2] 

  = [(s−a)bc/s][(s−b)ca/s][(s−c)ab/s] 

  ≤ (abc)2/33

with equality if and only if a = b = c.  The 

result follows. 
 
Other commended solvers: HUDREA 

Mihail (High School “Tiberiu Popoviciu” 

Cluj-Napoca Romania), KWOK Lo Yan 

(Carmel Divine Grace Foundation Secondary 

School, Form 5), MA Hoi Sang (Shun Lee 

Catholic Secondary School, Form 5) and 

Anna Ying PUN (STFA Leung Kau Kui 

College, Form 6). 

 

Problem 225.  A luminous point is in 

space.  Is it possible to prevent its 

luminosity with a finite number of disjoint 

spheres of the same size? 

(Source: 2003-2004 Iranian Math 

Olympiad, Second Round) 
 
Official Solution.  
 

Let the luminous point be at the origin. 

Consider all spheres of radius r = 4/2  

centered at (i, j, k), where i, j, k are integers 

(not all zero) and |i|, |j|, |k| ≤ 64.  The 

spheres are disjoint as the radii are less 

than 1/2.  For any line L through the origin, 

by the symmetries of the spheres, we may 

assume L has equations of the form y = ax 

and z = bx with |a|, |b| ≤ 1.  It suffices to 

show L intersects one of the spheres. 

  

We claim that for every positive integer n 

and every real number c with |c| ≤ 1, there 

exists a positive integer m ≤ n such that 

|{mc}| < 1/n, where {x} = x – [x] is the 

fractional part of x.  

 

To see this, partition [0,1) into n intervals 

of length 1/n.  If one of {c}, {2c}, …, {nc} 

is in [0,1/n), then the claim is true.  

Otherwise, by the pigeonhole principle, 

there are 0 < m’ < m” ≤ n such that {m’c} 

and {m”c} are in the same interval.  Then 

|{m’c}–{m”c}| < 1/n implies |{mc}| < 1/n 

for m = m” – m’ ≤ n. 

 

Since |a| ≤ 1, by the claim, there is a 

positive integer m ≤ 16 such that |{ma}| < 

1/16 and there is a positive integer n ≤ 4 

such that |{nmb}| < 1/4.  Now |{ma}| < 

1/16 and n ≤ 4 imply |{nma}| < 1/4.  Then 

i = nm ≤ 64 and j = [nma], k = [nmb] 

satisfy |j–nma| < 1/4 and |k–nmb| < 1/4.  

So the distance between the point (i, ia, ib) 

on L and the center (i, j, k) is less than r.  

Therefore, every line L through the origin 

will intersect some sphere. 

 
 

 

Olympiad Corner 

(continued from page 1) 
 
 

three neighbors.  Now there are 4n + 1 

frogs at the pond.  If there are three or 

more frogs at one part, then three of the 

frogs of the part will jump to the three 

neighbors respectively.  

 

Prove that at some time later, the frogs 

at the pond will be uniformly 

distributed.  That is, for any part, either 

there is at least one frog at the part or 

there is at least one frog at each of its 

neighbors. 

 

 

            

Problem 4.  Given a sequence {an} 

satisfying a1 = 21/16 and 2an- 3an-1 = 
3/2n+1, n ≥ 2.  Let m be a positive 

integer, m ≥ 2.  

 

Prove that if n ≤ m, then  
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Problem 5.  Inside and including the 

boundary of a rectangle ABCD with 

area 1, there are 5 points, no three of 

which are collinear.  

 

Find (with proof) the least possible 

number of triangles having vertices 

among these 5 points with areas not 

greater than 1/4. 

 

Problem 6.  Find (with proof) all 

nonnegative integral solutions (x, y, z, 

w) to the equation 
 

2x · 3y -5z · 7w = 1. 
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Olympiad Corner 
 
The 2005 International Mathematical 

Olympiad was held in Merida, Mexico 

on July 13 and 14.  Below are the 

problems. 
 
 

Problem 1.    Six points are chosen on 

the sides of an equilateral triangle ABC: 

A , A  on BC; B , B  on CA; C , C  on 

AB.  These points are the vertices of a 

convex hexagon A A B B C C  with 

equal side lengths.  Prove that the lines 

A B , B C  and C A  are concurrent. 

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

 

Problem 2.   Let a1, a2, … be a sequence 

of integers with infinitely many positive 

terms and infinitely many negative 

terms.  Suppose that for each positive 

integer n, the numbers a1, a2, …, an leave 

n different remainders on division by n. 

Prove that each integer occurs exactly 

once in the sequence. 
 

Problem 3.   Let x, y and z be positive 

real numbers such that xyz ≥ 1.  Prove 

that 
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There are many famous geometry 

theorems.  We will look at some of 

them and some of their applications. 

Below we will write P = WX ∩ YZ to 

denote P is the point of intersection of 

lines WX and YZ.  If points A, B, C are 

collinear, we will introduce the sign 

convention: AB/BC = BCAB /  (so if B 

is between A and C, then AB/BC ≥ 0, 

otherwise AB/BC ≤ 0). 
 

Menelaus’ Theorem Points X, Y, Z are 

taken from lines AB, BC, CA (which are 

the sides of △ ABC extended) 

respectively. If there is a line passing 

through X, Y, Z, then 
 

.1−=⋅⋅
ZA

CZ

YC

BY

XB

AX  

B

A ZC

X Y

 
Proof   Let L be a line perpendicular to 

the line through X, Y, Z and intersect it 

at O.  Let A’, B’, C’ be the feet of the 

perpendiculars from A, B, C to L 

respectively. Then  
 

.
'

'
,

'

'
,

'

'

OA

OC

ZA

CZ

OC

OB

YC

BY

OB

OA

XB

AX
===  

 

Multiplying these equations together, 

we get the result. 
 

The converse of Menelaus’ Theorem is 

also true.  To see this, let Z’=XY∩CA. 

Then applying Menelaus theorem to 

the line through X, Y, Z’ and comparing 

with the equation above, we get 

CZ/ZA=CZ’/Z’A. It follows Z=Z’.  
 

Pascal’s Theorem   Let A, B, C, D, E, F 

be points on a circle (which are not 

necessarily in cyclic order). Let 
 

     P=AB∩DE, Q=BC∩EF,  R=CD∩FA. 
 

Then P,Q,R are collinear. 

Y

P

Q

B

R

X

Z

E
F

D
C

A

 
Proof Let X = EF ∩ AB, Y = AB ∩ CD, 

Z = CD ∩ EF.  Applying Menelaus’ 

Theorem respectively to lines BC, DE, 

FA cutting △XYZ extended , we have 
  

 ,1−=⋅⋅
CZ

YC

BY

XB

QX

ZQ  

,1−=⋅⋅
EX

ZE

DZ

YD

PY

XP  

.1−=⋅⋅
AY

XA

FX

ZF

RZ

YR  

 
Multiplying these three equations 

together, then using the intersecting 

chord theorem (see vol 4, no. 3, p. 2 of 

Mathematical Excalibur) to get XA·XB 

= XE·XF, YC·YD = YA·YB, ZE·ZF = 

ZC·ZD, we arrive at the equation 
 

.1−=⋅⋅
RZ

YR

PY

XP

QX

ZQ  

 
By the converse of Menelaus’ 

Theorem, this implies P, Q, R are 

collinear. 

 

We remark that there are limiting cases 

of Pascal’s Theorem.  For example, we 

may move A to approach B.  In the 

limit, A and B will coincide and the line 

AB will become the tangent line at B.  

 

Below we will give some examples of 

using Pascal’s Theorem in geometry 

problems. 

 

Example 1  (2001 Macedonian Math 

Olympiad) For the circumcircle of △
ABC, let D be the intersection of the 

tangent line at A with line BC, E be the 

intersection of the tangent line at B with 

line CA and F be the intersection of the 

tangent line at C with line AB.  Prove 

that points D, E, F are collinear. 
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Solution  Applying Pascal’s Theorem 

to A, A, B, B, C, C on the circumcircle, 

we easily get D, E, F are collinear. 

 

Example 2  Let D and E be the 

midpoints of the minor arcs AB and AC 

on the circumcircle of △ ABC, 

respectively.  Let P be on the minor arc 

BC, Q = DP ∩ BA and R = PE ∩ AC.  

Prove that line QR passes through the 

incenter I of △ABC. 

A

B C

D

E

P

Q R
I

 

Solution   Since D is the midpoint of 

arc AB, line CD bisects ∠ ACB. 

Similarly, line EB bisects ∠ABC.  So I 

= CD ∩ EB. Applying Pascal’s 

Theorem to C, D, P, E, B, A, we get I, Q, 

R are collinear.  

 

Newton’s Theorem   A circle is 

inscribed in a quadrilateral ABCD with 

sides AB, BC, CD, DA touch the circle 

at points E, F, G, H respectively. Then 

lines AC, EG, BD, FH are concurrent.  

D

C B

A

G

F

E

HX

O

 

Proof.  Let O = EG∩FH and X = 

EH∩FG.  Since D is the intersection of 

the tangent lines at G and at H to the 

circle, applying Pascal’s Theorem to 

E,G,G,F,H,H, we get O, D, X are 

collinear.  Similarly, applying Pascal’s 

Theorem to E, E, H, F, F, G, we get B, X, 

O are collinear.  
 
Then B,O,D are collinear and so lines 

EG, BD, FH are concurrent at O. 

Similarly, we can also obtain lines AC, 

EG, FH are concurrent at O.  Then 

Newton’s Theorem follows.  
 

Example 3  (2001 Australian Math 

Olympiad)  Let A, B, C, A’, B’, C’ be 

points on a circle such that AA’ is 

perpendicular to BC, BB’ is 

perpendicular to CA, CC’ is 

perpendicular to AB.  Further, let D be 

a point on that circle and let DA’ 

intersect BC in A’’, DB’ intersect CA in B’’, 

and DC’ intersect AB in C’’, all segments 

being extended where required.  Prove 

that A’’, B’’, C’’ and the orthocenter of 

triangle ABC are collinear. 

A
A'

B

C

B'

C'

D

A''

B''

C''

H

 

Solution  Let H be the orthocenter of △
ABC. Applying Pascal’s theorem to A, A’, 

D, C’, C, B, we see H, A’’, C’’ are collinear. 

Similarly, applying Pascal’s theorem to B’, 

D, C’, C, A, B, we see B’’, C’’, H are 

collinear. So A’’, B’’, C’’, H are collinear. 

 

Example 4  (1991 IMO unused problem) 

Let ABC be any triangle and P any point in 

its interior.  Let P1, P2 be the feet of the 

perpendiculars from P to the two sides AC 

and BC. Draw AP and BP and from C drop 

perpendiculars to AP and BP.  Let Q1 and 

Q2 be the feet of these perpendiculars.  If 

Q2≠P1 and Q1≠P2, then prove that the lines 

P1Q2, Q1P2 and AB are concurrent. 

C

A
B

P

P1 P2

Q1

Q2

 

Solution  Since ∠ CP1P, ∠ CP2P, ∠
CQ2P, ∠CQ1P are all right angles, we see 

that the points C, Q1, P1, P, P2, Q2 lie on a 

circle with CP as diameter.  Note A = CP1 

∩ PQ1 and B = Q2P ∩ P2C.  Applying 

Pascal’s theorem to C, P1, Q2, P, Q1, P2, 

we see X = P1Q2 ∩ Q1P2 is on line AB. 
 

Desargues’ Theorem  For △ABC and △
A’B’C’, if lines AA’, BB’, CC’ concur at a 

point O, then points P, Q, R are collinear, 

where P = BC ∩ B’C’, Q = CA ∩ C’A’, R 

= AB ∩ A’B’. 

O

A' C'

B'

C
A B

R

Q

P

 
Proof  Applying Menelaus’ Theorem 

respectively to line A’B’ cutting △OAB 

extended, line B’C’ cutting △ OBC 

extended and the line C’A’ cutting △OCA 

extended, we have 

,1
'

'

'

'
−=⋅⋅

OB

BB

RB

AR

AA

OA  

,1
'

'

'

'
−=⋅⋅

OC

CC

PC

BP

BB

OB  

.1
'

'

'

'
−=⋅⋅

QA

CQ

CC

OC

OA

AA  

Multiplying these three equations,  

.1−=⋅⋅
QA

CQ

PC

BP

RB

AR  

By the converse of Menelaus’ Theorem, 

this implies P, Q, R are collinear. 

 

We remark that the converse of 

Desargues’ Theorem is also true.  We 

can prove it as follow: let O = BB’ ∩ 

CC’. Consider △RBB’ and △QCC’.  

Since lines RQ, BC, B’C’ concur at P, 

and A = RB ∩ QC, O = BB’ ∩ CC’, A’ 

= BR’ ∩ C’Q, by Desargues’ Theorem, 
we have A,O,A’ are collinear.  

Therefore, lines AA’, BB’, CC’ concur 

at O. 

 

Brianchon’s Theorem  Lines AB, BC, 

CD, DE, EF, FA are tangent to a circle 

at points G, H, I, J, K, L (not necessarily 

in cyclic order).  Then lines AD, BE, 

CF are concurrent. 

E

F

A
B

C D

G
L

K
J

I

H

M

N

O

P
 

Proof  Let M = AB ∩ CD, N = DE ∩ 

FA. Applying Newton’s Theorem to 

quadrilateral AMDN, we see lines AD, 

IL, GJ concur at a point A’.  Similarly, 

lines BE, HK, GJ concur at a point B’ 

and lines CF, HK, IL concur at a point 

C’.  Note line IL coincides with line 

A’C’.  Next we apply Pascal’s Theorem 

to G, G, I, L, L, H and get points A, O, P 

are collinear, where O = GI ∩ LH and 

P = IL ∩ HG.  Applying Pascal’s 

Theorem again to H, H, L, I, I, G, we 

get C, O, P are collinear.  Hence A, C, P 

are collinear. 
 
Now G = AB ∩ A’B’, H = BC ∩ B’C’, 

P = CA ∩ IL = CA ∩ C’A’.  Applying 

the converse of Desargues’ Theorem to 

△ABC and △A’B’C’, we get lines AA’ 

= AD, BB’ = BE, CC’ = CF are 

concurrent. 

(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is October 30, 

2005. 

 

Problem 231.  On each planet of a star 

system, there is an astronomer 

observing the nearest planet.  The 

number of planets is odd, and pairwise 

distances between them are different. 

Prove that at least one planet is not 

under observation. 

(Source: 1966 Soviet Union Math 

Olympiad) 
 

Problem 232.  B and C are points on 

the segment AD.  If AB = CD, prove 

that PA + PD ≥ PB + PC for any point 

P. 

(Source: 1966 Soviet Union Math 

Olympiad) 
 
Problem 233.  Prove that every 

positive integer not exceeding n! can 

be expressed as the sum of at most n 

distinct positive integers each of which 

is a divisor of n!.  
 
Problem 234.  Determine all 

polynomials P(x) of the smallest 

possible degree with the following 

properties:  
 
a)  The coefficient of the highest power 

is 200. 

b)  The coefficient of the lowest power 

for which it is not equal to zero is 2. 

c)  The sum of all its coefficients is 4. 

d)  P(−1) = 0, P(2) = 6 and P(3) = 8. 
 
(Source: 2002 Austrian National 

Competition)  
 
Problem 235.  Forty-nine students 

solve a set of three problems.  The 

score for each problem is an integer 

from 0 to 7.  Prove that there exist two 

students A and B such that, for each 

problem, A will score at least as many 

points as B. 
 

***************** 

Solutions 

**************** 

 

Problem 226.  Let z1, z2, …, zn be 

complex numbers satisfying  
 

|z1| + |z2| + ⋯ + |zn| = 1. 

 
Prove that there is a nonempty subset of 

{z1, z2, …, zn} the sum of whose elements 

has modulus at least 1/4.
 

Solution.  LEE Kai Seng (HKUST). 

Let zk =ak + bki with ak , bk real.  Then |zk | 

≤ |ak | + |bk|.  So 

   ∑ ∑∑
= ==

+≤=
n

k

n

k

kk

n

k

k baz
1 11

||||||1

)()(
0000
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Hence, one of the four sums is at least 1/4, 

say 
4

1

0

≥∑
≥ka

ka .  Then  

.  
4

1

00

≥≥ ∑∑
≥≥ kk a

k

a

k az

  

Problem 227.  For every integer n ≥ 6, 

prove that  

∑
−

=
− ≤⋅

−

1

1
1

.  
5

16

2

1n

k
kkn

n

 
Comments.  In the original statement of 

the problem, the displayed inequality was 

stated incorrectly.  The < sign should be an 

≤ sign. 
 
Solution. CHAN Pak Woon (Wah Yan 
College, Kowloon, Form 7), Roger CHAN 
(Vancouver, Canada) and LEE Kai Seng 
(HKUST). 
 

For  n = 6, 7, …, let 
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1
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−
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a

Then a6 = 16/5.  For n ≥ 6, if an ≤ 16/5, 

then 
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The desired inequality follows by 

mathematical induction. 

 

Problem 228.  In △ABC, M is the foot of 

the perpendicular from A to the angle 

bisector of ∠ BCA.  N and L are 

respectively the feet of perpendiculars 

from A and C to the bisector of ∠ABC. 

Let F be the intersection of lines MN 

and AC.  Let E be the intersection of 

lines BF and CL.  Let D be the 

intersection of lines BL and AC.  
 

Prove that lines DE and MN are 

parallel.  
 
Solution. Roger CHAN (Vancouver, 
Canada). 
 

Extend AM to meet BC at G and extend 

AN to meet BC at I.  Then AM = MG, AN 

= NI and so lines MN and BC are parallel. 

 

From AM = MG, we get AF = FC.  

Extend CL to meet line AB at J.  Then JL 

= LC.  So lines LF and AB are parallel. 

 

Let line LF intersect BC at H.  Then BH = 

HC.  In △BLC, segments BE, LH and CD 

concur at F.  By Ceva’s theorem (see vol. 2, 

no. 5, pp. 1-2 of Mathematical Excalibur), 

.1=⋅⋅
DB

LD

EL

CE

HC

BH  

Since BH = HC, we get CE/EL = 

DB/LD, which implies lines DE and 

BC are parallel.  Therefore, lines DE 

and MN are parallel. 

 

Problem 229.  For integer n ≥ 2, let a1, 

a2, a3, a4 be integers satisfying the 

following two conditions: 
 
(1) for i = 1, 2, 3, 4, the greatest 

common divisor of n and ai is 1 and 

(2) for every k = 1, 2, …, n – 1, we have 
 

(ka1)n + (ka2)n + (ka3)n + (ka4)n = 2n, 
 
where (a)n denotes the remainder when 

a is divided by n. 
 
Prove that (a1)n, (a2)n, (a3)n, (a4)n can be 

divided into two pairs, each pair having 

sum equals n. 

(Source: 1992 Japanese Math 

Olympiad) 
 
Solution.  (Official Solution) 
 

Since n and a1 are relatively prime, the 

remainders (a1)n, (2a1)n,, …, ((n-1)a1)n 

are nonzero and distinct.  So  there is a 

k among 1, 2, …, n − 1 such that (ka1)n 

= 1.  Note that such k is relatively 

prime to n.  If (ka1)n + (kaj)n = n, then 

ka1 + kaj ≡ 0 (mod n) so that a1 + aj ≡ 0 

(mod n) and (a1)n + (aj)n = n.  Thus, to 

solve the problem, we may replace ai 

by (kai)n and assume 1 = a1 ≤ a2 ≤ a3 ≤ 
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a4 ≤ n − 1.  By condition (2), we have  

 
 
             1+a2+a3+a4=2n.                  (A) 

F
 

or k = 1, 2, …, n − 1, let  

fi(k) = [kai/n] − [(k − 1)ai/n], 
 
then fi(k) ≤ (kai/n) + 1 − (k − 1)ai/n = 1 

+ (ai/n) < 2.  So fi(k) = 0 or 1.  Since x = 

[x/n]n + (x)n, subtracting the case x = 

kai from the case x = (k − 1)ai, then 

summing i = 1, 2, 3, 4, using condition 

2) and (A), we get  (
 

f1(k) + f2(k) + f3(k) + f4(k) = 2. 
 
Since a1 = 1, we see f1(k)=0 and exactly 

two of f2(k), f3(k), f4(k) equal 1.       (B) 
 
Since ai<n, fi(2) = [2ai/n].  Since a2 ≤ a3 

≤ a4 < n, we get f2(2) = 0, f3(2) = f4(2) = 

1, i.e. 1 = a1 ≤ a2 < n/2 < a3 ≤ a4 ≤ n − 1. 
 
Let t2 = [n/a2] + 1, then f2(t2) = [t2a2/n] 

− [(t2 − 1)a2/n] = 1 − 0 = 1.  If 1 ≤ k < t2, 

then k < n/a2, f2(k) = [ka2/n] − [(k − 1) 

a2/n] = 0 − 0 = 0.  Next if f2(j) = 1, then 

f2(k) = 0 for j < k < j + t2 − 1 and 

exactly one of f2(j + t2 − 1) or f2(j + t2) = 

1.                                                      (C) 
 
Similarly, for i = 3, 4, let ti = [n/(n − ai)] 

+ 1, then fi(ti) = 0 and fi(k) = 1 for 1 ≤ k 

< ti.  Also, if fi(j) = 0, then fi(k) = 1 for j 

< k < j + ti − 1 and exactly one of fi(j + 

t  − 1) or fi
 

i(j + ti) = 0.                       (D) 

Since f3(t3) = 0, by (B), f2(t3) = 1.  If k < 

t3≤ t4, then by (D), f3(k) = f4(k) = 1.  So 

by (B), f2(k) = 0.  Then by (C), t2 = t3. 
 
Assume t4 < n.  Since n/2 < a4 < n, we 

get f4(n − 1) = (a4 − 1) − (a4 − 2) = 1 ≠ 0 

= f4(t4) and so t4 ≠ n−1.  Also, f4(t4) = 0 

implies f2(t4) = f3(t4) = 1 by (B).  
 

Since f3(t3) = 0 ≠ 1 = f3(t4), t3 ≠ t4.  Thus 

t2 = t3 < t4.  Let s < t4 be the largest 

integer such that f2(s) = 1.  Since f2(t4) = 

1, we have t4 = s + t2 − 1 or t4 = s + t2. 

Since f2(s) = f4(s) = 1, we get f3(s) = 0. 

As t2 = t3, we have t4 = s + t3 − 1 or t4 = 

s + t3.  Since f3(s) = 0 and f3(t4) = 1, by 

(D), we get f3(t4 − 1) = 0 or f3(t4 + 1) = 0. 

Since f2(s) = 1, f2(t4) = 1 and t2 > 2, by 

(C), we get f2(s + 1) = 0 and f2(t4 + 1) = 

0. So s + 1 ≠ t4, which implies f2(t4 − 1) 

= 0 by the definition of s.  Then k = t4 − 

1 or t4 + 1 contradicts (B).  
  
So t4 ≥ n, then n − a4 = 1. We get a1 + a4 

= n = a2 + a3. 
 
Problem 230.  Let k be a positive 

integer.  On the two sides of a river, 

there are in total at least 3 cities.  From 

each of these cities, there are exactly k 

routes, each connecting the city to a 

distinct city on the other side of the river.  

Via these routes, people in every city can 

reach any one of the other cities.  
 
Prove that if any one route is removed, 

people in every city can still reach any one 

of the other cities via the remaining 

routes. 

(Source: 1996 Iranian Math Olympiad, 

Round 2)  
 
Solution.  LEE Kai Seng (HKUST). 
 
Associate each city with a vertex of a 

graph.  Suppose there are X and Y cities to 

the left and to the right of the river 

respectively.  Then the number of routes 

(or edges of the graph) in the beginning is 

Xk = Yk so that X = Y.  We have X + Y ≥ 3. 

 

After one route between city A and city B 

is removed, assume the cities can no 

longer be connected via the remaining 

routes.  Then each of the other cities can 

only be connected to exactly one of A or B.  

Then the original graph decomposes into 

two connected graphs GA and GB, where 

GA has A as vertex and GB has B as vertex.

 

Let XA be the number of cities among the X 

cities on the left sides of the river that can 

still be connected to A after the route 

between A and B was removed and 

similarly for XB, YA, YB.  Then the number 

of edges in GA is XAk-1 = YAk.  Then (XA - 

YA)k = 1.  So k = 1.  Then in the beginning 

X = 1 and Y = 1, contradicting X + Y ≥ 3. 
 
 

 

 

Olympiad Corner 

(continued from page 1) 

 

Problem 4.  Consider the sequence a1, 

a2, … defined by  
 

an = 2n + 3n + 6n − 1  (n = 1, 2, …) 
 
Determine all positive integers that are 

relatively prime to every term of the 

sequence. 

            

Problem 5.  Let ABCD be a given convex 

quadrilateral with sides BC and AD equal 

in length and not parallel.  Let E and F be 

interior points of the sides BC and AD 

respectively such that BE = DF.  The lines 

AC and BD meet at P, the lines BD and EF 

meet at Q, the lines EF and AC meet at R. 

Consider all the triangles PQR as E and F 

vary.  Show that the circumcircles of these 

triangles have a common point other than 

P. 

 

Problem 6.  In a mathematical 

competition 6 problems were posed to 

the contestants.  Each pair of problems 

was solved by more than 2/5 of the 

contestants.  Nobody solved all 6 

problems.  Show that there were at 

least 2 contestants who each solved 

exactly 5 problems.  

 

 
 

Famous Geometry 

Theorems 

(continued from page 2) 
 

Example 5  (2005 Chinese Math 

Olympiad) A circle meets the three 

sides BC, CA, AB of triangle ABC at 

points D1, D2; E1, E2 and F1, F2 in turn.  

The line segments D1E1 and D2F2 

intersect at point L, line segments E1F1 

and E2D2 intersect at point M, line 

segments F1D1 and F2E2 intersect at 

point N. Prove that the three lines AL, 

BM and CN are concurrent. 

B
C

A
F1 E2

F2

D1
D2

E1

L

P

 

Solution.  Let P = D1F1  ∩ D2E2, Q = 

E1D1 ∩ E2F2, R = F1E1 ∩ F2D2. 

Applying Pascal’s Theorem to E2, E1, 

D1, F1, F2, D2, we get A, L, P are 

collinear.  Applying Pascal’s Theorem 

to F2, F1, E1, D1, D2, E2, we get B, M, Q 

are collinear.  Applying Pascal’s 

Theorem to D2, D1, F1, E1, E2, F2, we 

get C, N, R are collinear. 

 

Let X = E2E1 ∩ D1F2 = CA ∩ D1F2, Y = 

F2F1 ∩ E1D2 = AB ∩ E1D2, Z = D2D1 ∩ 

F1E2 = BC ∩ F1E2.  Applying Pascal’s 

Theorem to D1, F1, E1, E2, D2, F2, we 

get P, R, X are collinear.  Applying 

Pascal’s Theorem to E1, D1, F1, F2, E2, 

D2, we get Q, P, Y are collinear. 

Applying Pascal’s Theorem to F1, E1, 

D1, D2, F2, E2, we get R, Q, Z are 

collinear. 

 

For △ABC and △PQR, we have X = 

CA ∩ RP, Y = AB ∩ PQ, Z = BC ∩ QR. 

By the converse of Desargues’ 

Theorem, lines AP = AL, BQ = BM, 

CR = CN are concurrent. 
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Olympiad Corner 
 
Below is the Bulgarian selection test 

for the 46
th

 IMO given on May 18 – 

19, 2005. 
 

Problem 1.    An acute triangle ABC is 

given. Find the locus of points M in the 

interior of the triangle such that AB−FG 

= (MF·AG+MG·BF)/CM, where F and 

G are the feet of perpendiculars from M 

to the lines BC and AC, respectively. 
 

Problem 2. Find the number of subsets 

B of the set {1, 2, …, 2005} such that the 

sum of the elements of B is congruent to 

2006 modulo 2048. 
 

Problem 3. Let R* be the set of non-zero 

real numbers. Find all functions f : R* → 

R* such that  

        
)(

)(
)()( 22

xf

xyf
xfyxf +=+  

for all x, y ∈R*,  y ≠ −x
2. 

 
Problem 4. Let a1, a2, …, a2005, b1, b2, 

⋯, b2005 be real numbers such that 

           ∑
≠=

−≥−

2005

,1

2 )()(
ijj

jjii bxabxa  

for any real number x and i = 1, 2, …, 

2005. What is the maximal number of 

positive ai’s and bi’s? 
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The technique of infinite descent 

(descent infini) was developed by the 

great amateur mathematician Pierre de 

Fermat (1601-1665). Besides using the 

technique to prove negative results such 

as the equation x
4 + y

4 = z
2 has no 

nontrivial integer solution, he also used 

the technique to prove positive results.  

 

For instance, he knew that an odd prime 

p can be expressed as the sum of two 

integer squares if and only if p is of the 

form    4k + 1. To show that a prime of 

the form 4k + 3 is not a sum of two 

squares is not hard. In fact, every square 

equals 0 or 1 mod 4, thus no matter what 

possibilities, the sum of two squares 

cannot be of the form 4k + 3 ≡ 3 (mod 

4). To prove a prime of the form 4k + 1 

is the sum of two squares, he assumed 

that if there is a prime of the form 4k + 1 

which is not the sum of two squares, 

then there will be another (smaller) 

prime of the same nature, and hence a 

third one, and so on. Eventually he 

would come to the number 5, which 

should not be the sum of two squares. 

But we know 5 = 12 + 22 a sum of two 

squares, a contradiction! 

 

The idea of infinite descent may be 

described as follows. Mainly it is 

because a finite subset of natural 

numbers must have a smallest member. 

So if A is a subset of the natural numbers 

N, and if we need to prove, for every    

a ∈� A, the statement P(a) is valid. 

Suppose by contradiction, the statement 

is  not  valid  for all a ∈�A, i.e. there 

exists a non-empty subset of A, denoted 

by B, and such that P(x) is not true for 

any x ∈� B. Now because B is 

non-empty, there exists a smallest 

element of B, denoted by b and such that 

P(b) is not valid. Using the given 

conditions, if we can find a still smaller 

c ∈�A ( c < b ), and such that P(c) is not 

valid, then this will contradict the 

assumption of b. The conclusion is that 

P(a) must be valid for all a ∈�A. 

 

There are variations of this scenario. For 

instance, suppose there is a positive 

integer a1 such that P(a1) is valid, and 

from this, if we can find a smaller 

positive integer a2 such that P(a2) is 

valid, then we can find a still smaller 

positive integer a3 such that P(a3) is 

valid, and so on. Hence we can find an 

infinite and decreasing chain of positive 

integers (infinite descent) a1 > a2 > a3 > 

⋯. This is clearly impossible. So the 

initial hypothesis P(a1) cannot be valid.  

 

So the method of descent is essentially 

another form of induction. Recall that  

in mathematical induction, we start 

from a smallest element a of a subset of 

natural numbers, (initial step), and 

prove the so-called inductive step. So 

we can go from P(a) to P(a + 1), then 

P(a + 2) and so on.  

 

Many problems in mathematics 

competition require the uses of the 

method of descent. We give a few 

examples. First we use the method of 

infinite descent to prove the well-known 

result that 2  is irrational. Of course 

the classical proof is essentially a 

descent argument. 

 

Example 1: Show that 2  is irrational. 

 
Solution. We need to show that there do 

not exist positive integers x and y such 

that x/y = 2  or by taking squares, we 

need to show the equation x2 = 2y
2 has 

no positive integer solution.   

 

Suppose otherwise, let x = m, y = n be a 

solution of the equation and such that m 

is the smallest possible value of x that 

satisfies the equation. Then m
2 = 2n

2  

and this is possible only if m is even, 

hence m=2m1. Thus, 4m1
2 = (2m1)

2=2n
2, 

so n
2 = 2m1

2. This implies n is also a 

possible value of x in the equation x2 = 

2y
2. However, n < m, contradicting the 

minimality of m. 
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Example 2 (Hungarian MO 2000): 

Find all positive primes p for which 

there exist positive integers x, y and n 

such that pn = x3 + y3. 

 

Solution. Observe 21 = 13 + 13 and 32 = 

23 + 13. After many trials we found no 

more primes with this property. So we 

suspect the only answers are  p = 2 or  p 

= 3. Thus, we need to prove there exists 

no prime p ( p > 3 ) satisfying pn = x3 + 

y
3. Clearly we need to prove by 

contradiction and one possibility is to 

make use of the descent method. (In 

this case we make descent on n and it 

works.)  

 

So we assume pn = x3 + y3 with x, y, n 

positive integers and n of the smallest 

possible value. Now p ≥ 5. Hence at 

least one of x and y is greater than 1. 

Also 
 

     3 3 2 2( )( ),x y x y x xy y+ = + − +   

 

with x + y ≥ 3  and 

 
      2 2 2( ) 2.x xy y x y xy− + = − + ≥   
 
Hence both x y+ and x2 – xy + y2 are 

divisible by p. Therefore 
 

      2 2 2( ) ( ) 3x y x xy y xy+ − − + =   

 
is also divisible by p. However, 3 is not 

divisible by p, so at least one of x or y 

must be divisible by p. As x + y is 

divisible by p, both x and y are divisible 

by p. Then x3 + y3 
≥ 2p

3. So we must 

have n > 3 and 
3 33 3

3

3 3 3
.

n
n p x y x y

p
p p p p p

−
   

= = + = +   
   

This contradicts the minimality of n.  

 

Example 3 (Putnam Exam 1973): Let 

a1, a2, ⋯, a2n+1 be a set of integers such 

that, if any one of them is removed, the 

remaining ones can be divided into two 

sets of n integers with equal sums. 

Prove a1 = a2 = ⋯ = a2n+1. 

 

Solution. Assume a1 ≤ a2 ≤ ⋯ ≤ a2n+1. 

By subtracting the smallest number 

from the sequence we observe the new 

sequence still maintain the property. So 

we may assume a1 = 0. The sum of any 

2n members equals 0 mod 2, so any 

two members must be of the same 

parity, (otherwise we may swap two 

members to form two groups of 2n 

elements which are of different parity). 

Therefore  
 
       0 = a1 ≡ a2 ≡ ⋯ ≡ a2n+1 (mod 2).  
 

Dividing by 2, we note the new sequence 

will maintain the same property. Using the 

same reasoning we see that 0 = a1 ≡ a2 ≡ ⋯ 

≡ a2n+1 (mod 22). We may descent to 0 = a1 

≡ a2 ≡ ⋯ ≡ a2n+1 (mod 2m) for all m ≥ 1. 

This is possible only if the initial numbers 

are all equal to others.  

 

Example 4: Starting from a vertex of an 

acute triangle, the perpendicular is drawn, 

meeting the opposite side (side 1) at A1. 

From A1, a perpendicular is drawn to meet 

another side (side 2) at A2. Starting from 

A2, the perpendicular is drawn to meet the 

third side (side 3) at A3. The  

perpendicular from A3 is then drawn to 

meet side 1 at A4 and then back to side 2, 

and so on.  

 

Prove that the points A1, A2, … are all 

distinct. 

 

Solution. First note that because the 

triangle is acute, all the points Ai, i ≥ 1 lie 

on the sides of the triangle, instead of 

going outside or coincide with the vertices 

of the triangle. This implies Ai and Ai+1 

will not coincide because they lie on 

adjacent sides of the triangle. Suppose 

now Ai coincides with Aj (i < j), and i is the 

smallest index with this property. Then in 

fact i = 1. For otherwise Ai−1 will coincide 

with Aj−1, contradicting the minimality of i. 

Finally suppose A1 coincides with Aj,  j ≥3, 

this happens precisely when Aj−1 is the 

vertex of the triangle facing side 1. But  

we know that no vertices of the triangle 

are in the list, so again impossible.  

 

The following example was a problem of 

Sylvester (1814-1897). Accordingly 

Sylvester was annoyed to find that he 

was unable to tackle this deceptively 

simple problem. It was later solved by 

the technique of descent. The idea is to 

consider the smallest possible element 

with a certain property. 

 

Example 5 (Sylvester’s Problem): 

Given n (n ≥ 3) points on the plane. If a 

line passing through any two points 

also passes through a third point of the 

set, then prove that all the points lie on 

the same line. 

 

Solution. We prove an equivalent 

statement. Namely if there are n (n ≥ 3) 

points on the plane and such that they 

are not on the same line, then there 

exists a line passing through exactly 

two points.  

 

Now there are finitely many lines that 

may be formed by the points of the 

point set. Given such a line, there is at 

least one point of the set which does 

not lie on the line. We then consider  

the distance between the point and the 

line. Finally we list all such distances 

as d1 ≤ d2 ≤ ⋯�≤ dm, namely d1 is the 

minimum distance between all possible 

points and all possible lines, say it is 

the distance between A and the line l. 

We now proceed to show that l contains 

exactly two points of the point set.  

 

Suppose not, say points B, C and D of 

the point set also lie on l. From A, draw 

the line AE perpendicular to l, with E 

on l. If E is one of the B, C or D, say E 

and B coincide, we have the picture 

 

Now AB = d1. However if we draw a 

perpendicular line from B to AC, then 

we will get a distance d0 less than d1, 

contradicting its minimality. Similarly 

if E coincides with C or D, we can also 

obtain a smaller distance.   

  
                      (continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is December 10, 

2005. 

 

Problem 236. Alice and Barbara order 

a pizza. They choose an arbitrary point 

P, different from the center of the pizza 

and they do three straight cuts through 

P, which pairwise intersect at 60˚ and 

divide the pizza into 6 pieces. The 

center of the pizza is not on the cuts. 

Alice chooses one piece and then the 

pieces are taken clockwise by Barbara, 

Alice, Barbara, Alice and Barbara. 

Which piece should Alice choose first 

in order to get more pizza than Barbara? �

(Source: 2002 Slovenian National 

Math Olympiad) 
 
Problem 237.  Determine (with proof) 

all polynomials p with real coefficients 

such that p(x) p(x+1) = p(x2) holds for 

every real number x. 

(Source: 2000 Bulgarian Math 

Olympiad)�
 
Problem 238. For which positive 

integers n, does there exist a 

permutation (x1, x2, …, xn) of the 

numbers 1, 2, …, n such that the 

number x1 + x2+ ⋯+xk is divisible by k 

for every k∈{1,2, …, n}?  

(Source: 1998 Nordic Mathematics 

Contest) 
 
Problem 239. (Due to José Luis 

Díaz-Barrero, Universitat Politècnica 

de Catalunya, Barcelona, Spain) In 

any acute triangle ABC, prove that  
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Problem 240. Nine judges 
independently award the ranks of 1 to 
20 to twenty figure-skaters, with no 
ties. No two of the rankings awarded  
to any figure-skater differ by more than 

3. The nine rankings of each are added. 
What is the maximum of the lowest of the 
sums? Prove your answer is correct. 
 
 

***************** 

Solutions 

**************** 

 

Problem 231. On each planet of a star 

system, there is an astronomer observing 

the nearest planet. The number of planets 

is odd, and pairwise distances between 

them are different. Prove that at least one 

planet is not under observation. 

(Source: 1966 Soviet Union Math 

Olympiad)�
 
Solution. CHAN Pak Woon (HKU Math, 
Year 1), LEE Kai Seng (HKUST), WONG 
Kwok Cheung (Carmel Alison Lam 
Foundation Secondary School, Form 7) and 
YEUNG Wai Kit (STFA Leung Kau Kui 
College, Form 5). 
 
Let there be n planets. The case of n = 1 is 

clear. For n ≥ 3, suppose the case n–2 is 

true. For the two closest planets, the 

astronomers on them observe each other. 

If any of the remaining n – 2 astronomers 

observes one of these two planets, then we 

do not have enough astronomers to 

observe the n – 2 remaining planets. 

Otherwise, we can discard these two 

closest planets and apply the case n – 2.  

  

Commended Solvers: Roger CHAN 
(Vancouver, Canada) and Anna Ying PUN 
(STFA Leung Kau Kui College). 
 
Problem 232.  B and C are points on the 

segment AD. If AB = CD, prove that 

PA+PD ≥ PB+PC for any point P. 

(Source: 1966 Soviet Union Math 

Olympiad)�
 
Solution 1. Anna Ying PUN (STFA 
Leung Kau Kui College). 
 
Suppose P is not on line AD. Let P’ be such 

that PAP’D is a parallelogram. Now AB=CD 

implies PBP’C is a parallelogram. By 

interchanging B and C, we may assume B is 

between A and C. Let line PB intersect AP’ 

at F. Then PA+PD = PA+AP’ = PA+AF 

+FP’ > PF + FP’ = PB + BF + FP’ > PB 

+BP’ = PB + PC. The case P is on line AD 

is easy to check. 
 
Solution 2. LEE Kai Seng (HKUST).  
 
Consider the complex plane with line AD as the 

real axis and the origin at the midpoint O of 

segment AD. Let the complex numbers 

correspond to A, B, P be a, b, p, respectively. 

Since | p ± a |2  = |p|2 ± 2Re ap + a2, so (PA + 

PD)2 = 2( |p|2 + |p2–a
2| + a2) . Then 

 

            (PA + PD)2 – (PB + PC)2 

        = 2( |p2–a
2| + a2 – b2 – | p2–b

2| ) ≥ 0  
 
by the triangle inequality. So PA+PD ≥ 

PB+PC. 
 
Also equality holds if and only if  the ratio of 

p
2 – a2  and  a2 – b2 is a nonnegative number, 

which is the same as  p ≥ a  or  p ≤ –a.  
 
Commended Solvers: CHAN Wai 
Hung (Carmel Divine Grace Foundation 
Secondary School, Form 7), WONG 
Kwok Cheung (Carmel Alison Lam 
Foundation Secondary School, Form 7) and 
YEUNG Wai Kit (STFA Leung Kau 
Kui College, Form 5). 

 

Problem 233. Prove that every 

positive integer not exceeding n! can 

be expressed as the sum of at most n 

distinct positive integers each of which 

is a divisor of n!.   
 
Solution. CHAN Ka Lok (STFA Leung 
Kau Kui College, Form 6), G.R.A. 20 
Math Problem Group (Roma, Italy), 
LEE Kai Seng (HKUST) and YEUNG 
Wai Kit (STFA Leung Kau Kui 
College, Form 5). 
 
We prove by induction on n.  The case         

n = 1 is clear. Suppose case n – 1 is           

true. For n > 1, let 1 ≤ k ≤ n! and let q        

and r be such that k = qn + r with 0 ≤ r          

< n. Then 0 ≤ q ≤ (n–1)! . By the case      

n –1, q can be expressed as d1 + d2 +  ⋯       

+ dm, where m ≤ n – 1 and di is a divisor   

of (n – 1)! and di’s are distinct. Omitting       

r if r = 0, we see d1n + d2n + ⋯ + dmn + r is 

a desired expansion of k. 

 

Problem 234.  Determine all 

polynomials P(x) of the smallest 

possible degree with the following 

properties:  
 
a) The coefficient of the highest power 

is 200. 

b) The coefficient of the lowest power 

for which it is not equal to zero is 2. 

c) The sum of all its coefficients is 4. 

d) P(−1) = 0, P(2) = 6 and P(3) = 8. 
 
(Source: 2002 Austrian National 

Competition)     
 
Solution.  CHAN Pak Woon (HKU 
Math, Year 1), G.R.A. 20 Math Problem 
Group (Roma, Italy), WONG Kwok 
Cheung (Carmel Alison Lam Foundation 
Secondary School, Form 7) and YEUNG 
Wai Kit (STFA Leung Kau Kui 
College, Form 5). 
 
Note c) is the same as P(1) = 4. For  
 
P(x)=200x(x+1)(x–1)(x–2)(x–3)+2x+2            

       =200x
5–1000x

4+1000x
3 

                         +1000x
2–1198x+2, 
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all conditions are satisfied. Assume R 

is another such polynomial with degree 

at most 5. Then P and R agree at –1, 1, 

2, 3. So  
 
P(x)–R(x) = (x+1)(x–1)(x–2)(x–3)S(x) 
 
with degree of S at most 1. If S is 

constant, then b) implies P(0)–R(0) is 0 

or 2. Then S(x) = –1/3 and we get  
 
R(x) = P(x)+(x+1)(x–1)(x–2)(x–3)/3  

        = 200x
5 + ⋯�–1196⅓x,  

 
which fails b). If S is of degree 1, then a) 

and b) imply S(x)=200x–1/3 and we 

will get   R(x) =  
 
P(x) – (x+1)(x–1)(x–2)(x–3)(200x–1/3)�

        = x4/3 + ⋯,  
 
which fails a).  So no such R exists and 

P is the unique answer. 

 

Problem 235. Forty-nine students 

solve a set of three problems. The  

score for each problem is an integer 

from 0 to 7. Prove that there exist two 

students A and B such that, for each 

problem, A will score at least as many 

points as B. 

(Source: 29
th

 IMO Unused Problem)  
 
Solution. LEE Kai Seng (HKUST) and 
Anna Ying PUN (STFA Leung Kau Kui 
College). 
 
For n = 0,1,2,3, let Sn be the set of 

ordered pairs (0,n),(1,n),⋯,(7–n,n) and 

(7 – n, n + 1),⋯, (7 – n, 7). Let S4 =          

{(x,y): x=2 or 3; y= 4,5,6 or 7} and S5 = 

{(x,y): x=0 or 1; y=4,5,6 or 7}.  
 
For each student, let his/her score on the 

first problem be x and on the second 

problem be y. Note if two students have 

both of their (x,y) pairs in one of S0, S1, 

S2 or S3, then one of them will score at 

least as many point as the other in each 

of the first two problems.  
 
Of the 49 pairs (x,y), there are [49/6]+1 

= 9 of them belong to the same Sn. If  

this Sn is S4 or S5, which has 8 elements, 

then two of the 9 pairs are the same and 

the two students will satisfy the desired 

condition. If the Sn is S0, S1, S2 or S3, then 

two of these 9 students will have the 

same score on the third problem and 

they will satisfy the desired condition by 

the note in the last paragraph. 
 
Commended Solvers: CHAN Pak Woon 
(HKU Math, Year 1), LAW Yan Pui 
(Carmel Divine Grace Foundation 
Secondary School, Form 7) and YEUNG 
Wai Kit (STFA Leung Kau Kui College, 
Form 5). 

 
 

 

Olympiad Corner 

(continued from page 1) 

 

Problem 5.  Let ABC be an acute triangle 

with orthocenter H, incenter I and AC ≠ 

BC. The lines CH and CI meet the 

circumcircle of △ABC for the second 

time at points D and L, respectively.  

Prove that ∠CIH = 90˚ if and only if       

∠IDL = 90˚. 
 
Problem 6. In a group of nine people 

there are no four every two of which know 

each other. Prove that the group can be 

partitioned into four groups such that the 

people in every group do not know each 

other. 

 

 
 

The Method of Infinite Descent 

(continued from page 2) 
 
 
Now if the perpendicular from A to l does 

not meet any of B, C or D, then by the 

pigeonhole principle, there are two points 

(say C and D) which lie on one side of the 

perpendicular. Again from the diagram 
 

We draw perpendiculars from E and C to 

AD, and we observe the distances d0 < d < 

d1, again contradicting the minimality of 

d1. From the above arguments, we 

conclude that l contains exactly two 

points.  
 
From the above example, we have 
 
Example 6 (Polish MO 1967-68): Given 

n (n ≥ 3) points on the plane and these 

points are not on the same line. From any 

two of these points a line is drawn and 

altogether k distinct lines are formed. 

Show that k ≥ n. 
 

Solution. We proceed by induction. 

Clearly three distinct lines may be drawn 

from three points not on a line. Hence the 

statement is true for n = 3. Suppose the 

statement is valid for some n ≥ 3. Now let 

A1, A2, …, An, An+1 be n + 1 distinct points 

which are not on the same line. By 

Sylvester’s “theorem”, there exists a 

line containing exactly two points of 

the point set, say A1An+1.  
 

Let’s consider the sets Z1 ={A1, A2, …, 

An}and Z2 ={A2, A3, …, An, An+1} 

Clearly at least one of the point sets 

does not lie on a line.  If A1, A2, …, An 

do not lie on a line, by the inductive 

hypothesis, we can form at least n lines 

using these points. As An+1 is not one  

of the members of Z1, so A1An+1 will  

form a new line, (A1An+1 contains no  

other points of the set) and we have at 

least n + 1 lines. If A2, A3, …, An, An+1 

do not lie on a line, then again we can 

form at least n lines using these points. 

As A1 is not one of the members of Z2, 

so A1An+1 will form a new line, (A1An+1 

contains no other points of the set) and 

we have at least n + 1 lines.  

 

The method of infinite descent was 

used to prove a hard IMO problem. 
 

Example 7 (IMO 1988): Prove that if 

positive integers a and b are such that 

ab + 1 divides a
2 + b

2, then (a2 + 

b
2)/(ab + 1) is a perfect square. 

 
Solution.  Assume (a2 + b2)/(ab + 1) = 

k and k is not a perfect square. After 

rearranging we have a2 − kab + b2 = k, 

with a > 0 and b > 0. Assume now (a0, 

b0) is a solution of the Diophantine 

equation and such that a0 + b0 is as 

small as possible. By symmetry we 

may assume a0 ≥ b0 > 0. Fixing b0 and k, 

we may assume a0 is a solution of the 

quadratic equation  
 

              x
2 − kb0x + b0

2 − k = 0.  
 
Now let the other root of the equation 

be a′. Using sum and product of roots, 

we have a0 + a′ = kb0 and a0a′ = b0
2

 − k. 

The first equation implies a′ is an 

integer. The second equation implies a′ 

≠ 0, otherwise k is a perfect square, 

contradicting our hypothesis. Now a′ 

also cannot be negative, otherwise  
 
  a′ 2 − ka′b0 + b0

2 
≥ a′ 2 + k + b0

2 > k.  
 
Hence a′ > 0. Finally 

        
2 2 2

0 0 0
0

0 0 0

1 1
' .

b k b a
a a

a a a

− − −
= ≤ ≤ <

  

This implies (a′, b0) is a positive 

integer solution of a
2 − kab + b

2 = k, 

and a′ + b0 < a0 + b0, contradicting the 

minimality of a0 + b0. Therefore k  

must be a perfect square.  

l
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Using Tangent Lines to Prove Inequalities 
 

Kin-Yin Li 

 

Olympiad Corner 
 
Below is the Czech-Polish-Slovak 

Match held in Zwardon on June 

20-21, 2005. 
 

Problem 1.  Let n be a given positive 

integer.  Solve the system of equations 

,3

3

2

21 nxxxx n

n =++++ L  

2

)1(
32 321

+
=++++

nn
nxxxx nL  

in the set of nonnegative real numbers 

x1, x2, …, xn. 
 

Problem 2.  Let a convex quadrilateral 

ABCD be inscribed in a circle with 

center O and circumscribed to a circle 

with center I, and let its diagonals AC 

and BD meet at a point P.  Prove that the 

points O, I and P are collinear. 
 

Problem 3.  Determine all integers n ≥ 3 

such that the polynomial W(x) = xn − 

3xn−1 + 2xn−2 + 6 can be expressed as a 

product of two polynomials with 

positive degrees and integer 

coefficients. 
 

Problem 4.  We distribute n ≥ 1 labelled 

balls among nine persons A, B, C, D, E, 

F, G, H, I.  Determine in how many ways 
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For students who know calculus, 

sometimes they become frustrated in 

solving inequality problems when they 

do not see any way of using calculus.  

Below we will give some examples, 

where finding the equation of a tangent 

line is the critical step to solving the 

problems. 
 

Example 1.  Let a,b,c,d be positive real 

numbers such that a + b + c + d = 1. 

Prove that  

6(a3+b3+c3+d3) ≥ (a2+b2+c2+d2) + 1/8. 

Solution.  We have 0 < a, b, c, d < 1.  Let 

f(x) = 6x3 – x2.  (Note: Since there is 

equality when a = b = c = d = 1/4, we 

consider the graph of f(x) and its tangent 

line at x = 1/4.  By a simple sketch, it 

seems the tangent line is below the 

graph of f(x) on the interval (0,1).  Now 

the equation of the tangent line at x = 1/4 

is y = (5x – 1)/8.)  So we claim that for 0 

< x < 1, f(x) = 6x3 – x2 ≥ (5x – 1)/8.  This 

is equivalent to 48x3 − 8x2 − 5x + 1 ≥ 0. 

(Note: Since the graphs intersect at x = 

1/4, we expect 4x − 1 is a factor.)  

Indeed, 48x3 − 8x2 − 5x + 1 = (4x − 1)2 

(3x + 1) ≥ 0 for 0 < x < 1.  So the claim is 

true.  Then f(a) + f(b) + f(c) + f(d) ≥ 5(a 

+ b + c + d)/8 − 4/8 = 1/8, which is 

equivalent to the required inequality. 
 

Example 2. (2003 USA Math Olympiad) 

Let a,b,c be positive real numbers. 

Prove that 

.8
)(2

)2(

)(2

)2(

)(2

)2(
22

2

22

2

22

2

≤
++
++

+
++
++

+
++
++

bac

bac

acb

acb

cba

cba

Solution.  Setting a' = a/(a + b + c), b' = 

b/(a + b + c), c' = c/(a + b + c) if 

necessary, we may assume 0 < a, b, c < 1 

and a + b + c = 1.  Then the first term on 

the left side of the inequality is equal to 

.
123

12

)1(2

)1(
)(

2

2

22

2

+−
++

=
−+

+
=

aa

aa

aa

a
af  

(Note:  When a = b = c = 1/3, there is 

equality.  A simple sketch of f(x) on [0,1] 

shows the curve is below the tangent line

at x = 1/3, which has the equation y = 

(12x + 4)/3.)  So we claim that  

3

412

123

12
2

2 +
≤

+−
++ a

aa

aa  

for 0 < a < 1.  Multiplying out, we see 

this is equivalent to 36a3 − 15a2 − 2a + 1 

≥ 0 for 0 < a < 1.  (Note: Since the curve 

and the line intersect at a = 1/3, we 

expect 3a−1 is a factor.)  Indeed, 36a3 − 

15a2 − 2a + 1 = (3a − 1)2(4a + 1) ≥ 0 for 

0 < a < 1.  Finally adding the similar 

inequality for b and c, we get the desired 

inequality. 
 

The next example looks like the last 

example.  However, it is much more 

sophisticated, especially without using 

tangent lines.  The solution below is due 

to Titu Andreescu and Gabriel 

Dospinescu. 
 

Example 3.  (1997 Japanese Math 

Olympiad)  Let a,b,c be positive real 

numbers.  Prove that  

.
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Solution.  As in the last example, we 

may assume 0 < a, b, c < 1 and a + b + c 

= 1.  Then the first term on the left 

become .
)21(1

2
2

)1(

)21(
222

2

aaa

a

−+
−=

+−
−  

Next, let x1 = 1 − 2a, x2 = 1 − 2b, x3 = 1 − 

2c, then x1 + x2 + x3 = 1, but −1 < x1, x2, 

x3 < 1.  In terms of x1, x2, x3, the desired 

inequality is  

.
10

27
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1

1

1

1

1
2
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2

2

2

1

≤
+

+
+

+
+ xxx

 

(Note: As in the last example, we 

consider the equation of the tangent line 

to f(x) = 1/(1 + x2) at x = 1/3, which is y 

= 27(−x + 2)/50.)  So we claim that f(x) 

≤ 27(−x + 2)/50 for −1 < x < 1.  This is 

equivalent to (3x − 1)2(4 − 3x) ≥ 0.  

Hence the claim is true for −1 < x < 1.  

Then f(x1) + f(x2) + f(x3) ≤ 27/10 and the 

desired inequality follows.  
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Schur’s Inequality 
 

Kin Yin Li 

 

Sometimes in proving an inequality, 

we do not see any easy way.  It will be 

good to know some brute force 

methods in such situation.  In this 

article, we introduce a simple 

inequality that turns out to be very 

critical in proving inequalities by brute 

force.  
 

Schur’s Inequality.  For any x, y, z ≥ 0 

and any real number r, 
 

     xr(x–y)(x–z) + yr(y–x)(y–z) 
 

                  + zr(z–x)(z–y) ≥ 0. 
 

Equality holds if and only if x = y = z or 

two of x, y, z are equal and the third is zero. 
 

Proof.  Observe that the inequality is 

symmetric in x, y, z.  So without loss of 

generality, we may assume x ≥ y ≥ z.  

We can rewrite the left hand side as 

xr(x–y)2+(xr–yr+zr)(x–y)(y–z)+zr(y–z)2. 

The first and third terms are clearly 

nonnegative.  For the second term, if r 

≥ 0, then xr ≥ yr.  If r < 0, then zr ≥ yr.  

Hence, xr–yr+zr ≥ 0 and the second 

term is nonnegative.  So the sum of all 

three terms is nonnegative.  In case x ≥ 

y ≥ z, equality holds if and only if x = y 

first and z equals to them or zero. 
 
In using the Schur’s inequality, we 

often expand out expressions.  So to 

simplify writing, we introduce the 

symmetric sum notation ∑
sym

f(x,y,z) to  

denote the sum of the six terms f(x,y,z), 

f(x,z,y), f(y,z,x), f(y,x,z), f(z,x,y) and 

f(z,y,x).  In particular,  

∑
sym

x3 = 2x3 +2y3+2z3,  

∑
sym

x2y= x2y+x2z+y2z+y2x+z2x+z2y and 

∑
sym

xyz = 6xyz. 

 
Similarly, for a function of n variables, 

the symmetric sum is the sum of all n! 

terms, where we take all possible 

permutations of the n variables. 
 

The r = 1 case of Schur’s inequality is 

x(x–y)(x–z) + y(y–x)(y–z) + z(z–x)(z–y) 

= x3 + y3 + z3 – (x2y + x2z + y2x + y2z + 

z2x + z2y) + 3xyz ≥ 0.  In symmetric sum 

notation, it is  

∑ ≥+−
sym

xyzyxx .0)2( 23  

By expanding both sides and rearranging 

terms, each of the following inequalities is 

equivalent to the r = 1 case of Schur’s 

inequality.  These are common disguises. 
 

a)   x3+y3+z3+3xyz ≥ xy(x+y)+yz(y+z) 

                                     +zx(z+x), 
 

b)   xyz ≥ (x+y–z)(y+z–x)(z+x–y), 
 

c) 4(x+y+z)(xy+yz+zx) ≤ (x+y+z)3+9xyz. 

 

Example 1.  (2000 IMO)  Let a, b, c be 

positive real numbers such that abc = 1. 

Prove that 

.1)
1

1)(
1

1)(
1

1( ≤+−+−+−
a

c
c

b
b

a  

Solution.  Let x = a, y = 1, z = 1/b = ac.  

Then a = x/y, b = y/z and c = z/x.  

Substituting these into the desired 

inequality, we get 

,1
)()()(
≤

+−+−+−
x

yxz

z

xzy

y

zyx  

which is disguise b) of the r = 1 case of 

Schur’s inequality. 

 

Example 2.  (1984 IMO)  Prove that 
 

0 ≤ yz + zx + xy – 2xyz ≤ 7/27, 
 

where x, y, z are nonnegative real numbers 

such that x + y + z = 1. 
 

Solution.  In Schur’s inequality, all terms 

are of the same degree.  So we first change 

the desired inequality to one where all 

terms are of the same degree.  Since x + y + 

z = 1, the desired inequality is the same as 

.
27

)(7
2))((0

3zyx
xyzxyzxyzzyx

++
≤−++++≤

Expanding the middle expression, we get  

xyz+∑
sym

x2y, which is clearly nonnegative 

and the left inequality is proved.  

Expanding the rightmost expression and 

subtracting the middle expression, we get  

).
7

5

7

12
(

54

7 23 xyzyxx
sym

+−∑         (1) 

By Schur’s inequality, we have  

     ∑ ≥+−
sym

xyzyxx .0)2( 23            (2) 

By the AM-GM inequality, we have  

,)(6 6/16662 ∑∑ =≥
symsym

xyzzyxyx  

which is the same as  

             ∑ ≥−
sym

xyzyx .0)( 2              (3) 

Multiplying (3) by 2/7 and adding it to 

(2), we see the symmetric sum in (1) is 

nonnegative.  So the right inequality is 

proved.  

 
Example 3.  (2004 APMO)  Prove that 
 

)(9)2)(2)(2( 222 cabcabcba ++≥+++  

for any positive real numbers a,b,c. 

 

Solution.  Expanding and expressing in 

symmetric sum notation, the desired 

inequality is 

(abc)2+∑
sym

(a2b2+2a2)+8 ≥
2

9 ∑
sym

ab. 

As a2+b2≥2ab, we get ∑
sym

a2 ≥∑
sym

ab. 

As a2b2 + 1 ≥ 2ab, we get  

∑
sym

a2b2 + 6  ≥ 2∑
sym

ab. 

Using these, the problem is reduced to 

showing 

(abc)2 + 2 ≥∑
sym

(ab –
2

1
a2). 

To prove this, we apply the AM-GM 

inequality twice and disguise c) of the r 

= 1 case of Schur’s inequality as follow: 
 
 (abc)2 +2 ≥ 3(abc)2/3 
 
                         ≥  9abc/(a+b+c) 
 
                ≥ 4(ab+bc+ca) – (a+b+c)2 
 
                = 2(ab+bc+ca) – (a2+b2+c2) 

                =∑
sym

(ab –
2

1
a2). 

 

Example 4.  (2000 USA Team Selection 

Test)  Prove that for any positive real 

numbers a, b, c, the following 

inequality holds 

  3

3
abc

cba
−

++
 

}.)(,)(,)max{( 222 accbba −−−≤

 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, Department 

of Mathematics, The Hong Kong 

University of Science & Technology, 

Clear Water Bay, Kowloon, Hong Kong.  

The deadline for submitting solutions is 

February 12, 2006. 

 

Problem 241.  Determine the smallest 

possible value of  
 

S = a1·a2·a3 + b1·b2·b3 + c1·c2·c3, 
 
if a1, a2, a3, b1, b2, b3, c1, c2, c3 is a 

permutation of the numbers 1, 2, 3, 4, 5, 

6, 7, 8, 9. (Source: 2002  Belarussian 

Math. Olympiad) 
 
Problem 242.  Prove that for every 

positive integer n, 7 is a divisor of 3n + 

n3 if and only if 7 is a divisor of 3nn3 + 1. 

(Source: 1995 Bulgarian Winter Math 

Competition) 
 
Problem 243.  Let R+ be the set of all 

positive real numbers.  Prove that there 

is no function f : R+ →R+ such that  
 

( ) ( )yxfyxfxf ++≥ )()()(
2  

 
for arbitrary positive real numbers x 

and y. (Source: 1998 Bulgarian Math 

Olympiad) 
 
Problem 244.  An infinite set S of 

coplanar points is given, such that 

every three of them are not collinear 

and every two of them are not nearer 

than 1cm from each other.  Does there 

exist any division of S into two disjoint 

infinite subsets R and B such that 

inside every triangle with vertices in R 

is at least one point of B and inside 

every triangle with vertices in B is at 

least one point of R?  Give a proof to 

your answer.  (Source: 2002 Albanian 

Math Olympiad) 
 
Problem 245.  ABCD is a concave 

quadrilateral such that ∠BAD =∠ABC 

=∠CDA = 45˚.  Prove that AC = BD. 
 

***************** 

Solutions 

**************** 

 

Problem 236.  Alice and Barbara order 

a pizza.  They choose an arbitrary point 

P, different from the center of the pizza 

and they do three straight cuts through P, 

which pairwise intersect at 60˚ and divide 

the pizza into 6 pieces.  The center of the 

pizza is not on the cuts.  Alice chooses one 

piece and then the pieces are taken 

clockwise by Barbara, Alice, Barbara, 

Alice and Barbara.  Which piece should 

Alice choose first in order to get more 

pizza than Barbara?  (Source: 2002 

Slovenian National Math Olympiad) 
 
Solution.  (Official Solution) 
 
Let Alice choose the piece that contains 

the center of the pizza first.  We claim that 

the total area of the shaded regions below 

is greater than half of the area of the pizza.  

O

B CP

B'

C'

A D

A'

D'

P'

P"

 

Without loss of generality, we can assume 

the center of the pizza is at the origin O 

and one of the cuts is parallel to the x-axis 

(that is, BC is parallel to AD in the picture). 

Let P’ be the intersection of the x-axis and 

the 60˚-cut.  Let A’D’ be parallel to the 

120˚-cut B’C’.  Let P’’ be the intersection 

of BC and A’D’.  Then ∆PP’P” is 

equilateral.  This implies the belts ABCD 

and A’B’C’D’ have equal width. Since AD 

> A’D’, the area of the belt ABCD is 

greater than the area of the belt A’B’C’D’. 

Now when the area of the belt ABCD is 

subtracted from the total area of the 

shaded regions and the area of A’B’C’D’ 

is then added, 

O

B CP

B'

C'

A D

A'

D'

P'

P"

 

we get exactly half the area of the pizza. 

Therefore, the claim follows. 

 

Problem 237.  Determine (with proof) 

all polynomials p with real coefficients 

such that p(x) p(x + 1) = p(x2) holds for 

every real number x.  (Source: 2000 

Bulgarian Math Olympiad) 
 
Solution.  YEUNG Wai Kit (STFA 
Leung Kau Kui College, Form 5). 
 

Let p(x) be such a polynomial.  In case 

p(x) is a constant polynomial, p(x) must 

be 0 or 1.  For the case p(x) is 

nonconstant, let r be a root of p(x).  Then 

setting x = r and x + 1 = r in the equation, 

we see r2 and (r − 1)2 are also roots of 

p(x).  Also, r2 is a root implies (r2 − 1)2 is 

also a root.  If 0 < |r| < 1 or |r| > 1, then 

p(x) will have infinitely many roots r, r2, 

r4, …, a contradiction.  So |r| = 0 or 1 for 

every root r. 
 

The case |r| = 1 and |r − 1| = 1 lead to 

2/)31( ir ±= , but then |r2 − 1| ≠ 0 or 1, a 

contradiction.  Hence, either |r| = 0 or |r − 

1| = 0, that is, r = 0 or 1. 
 

So p(x) = xm(x−1)n for some nonnegative 

integers m, n.  Putting this into the 

equation, we find m = n.  Conversely, p(x) 

= xm(x − 1)m is easily checked to be a 

solution for every nonnegative integer m. 

 

Problem 238.  For which positive 

integers n, does there exist a 

permutation (x1, x2, …, xn) of the 

numbers 1, 2, …, n such that the 

number x1 + x2+ ⋯ + xk is divisible by k 

for every k∈{1,2, …, n}?  (Source: 

1998 Nordic Mathematics Contest) 
 
Solution.  G.R.A. 20 Math Problem 
Group (Roma, Italy), LEE Kai Seng 
(HKUST), LO Ka Wai (Carmel Divine 
Grace Foundation Secondary School, Form 
7), Anna Ying PUN (STFA Leung Kau Kui 
College, Form 7) and YEUNG Wai Kit 
(STFA Leung Kau Kui College, Form 5). 
 

For a solution n, since x1 + x2 + ⋯ + xn 

= n(n + 1)/2 is divisible by n, n must be 

odd.  The cases n = 1 and n = 3 (with 

permutation (1,3,2)) are solutions. 
 

Assume n ≥ 5.  Then x1 + x2 + ⋯ + xn−1 = 

n(n + 1)/2 − xn ≡ 0 (mod n − 1) implies 

xn ≡ (n + 1)/2 (mod n − 1).  Since 1 ≤ xn ≤ 

n and 3 ≤ (n + 1)/2 ≤ n − 2, we get xn = (n 

+ 1)/2.  Similarly, x1 + x2 + ⋯ + xn−2 = 

n(n + 1)/2 − xn − xn−1 ≡ 0 (mod n − 2) 

implies xn−1 ≡ (n + 1)/2 (mod n − 2).  

Then also xn−1 = (n + 1)/2, which leads 

to xn = xn−1, a contradiction.  Therefore, 

n = 1 and 3 are the only solutions. 
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Problem 239.  (Due to José Luis 

Díaz-Barrero, Universitat Politècnica 

de Catalunya, Barcelona, Spain)  In 

any acute triangle ABC, prove that  
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Solution.  (Proposer’s Solution) 
 
By cosine law and the AM-GM 

inequality, 

bc

acb
A

A

2
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2
sin21
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By sine law and cos(A/2) = sin((B+C)/2), 

we get 

=
+

=
+ CB

A
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2
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2
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cbCB

+

+
≤

+
=

−  

Adding two similar inequalities, we get 

the desired inequality. 
 
Commended solvers: Anna Ying PUN 
(STFA Leung Kau Kui College, Form 7) 
and YEUNG Wai Kit (STFA Leung 
Kau Kui College, Form 5). 

  

Problem 240.  Nine judges 

independently award the ranks of 1 to 

20 to twenty figure-skaters, with no 

ties.  No two of the rankings awarded 

to any figure-skater differ by more than 

3.  The nine rankings of each are added. 

What is the maximum of the lowest of 

the sums?  Prove your answer is correct. 

(Source: 1968 All Soviet Union Math 

Competitions) 
 
Solution. WONG Kwok Kit (Carmel 
Divine Grace Foundation Secondary 
School, Form 7) and YEUNG Wai Kit 
(STFA Leung Kau Kui College, Form 5). 
 
Suppose the 9 first places go to the same 

figure skater.  Then 9 is the lowest sum. 

Suppose the 9 first places are shared by two 

figure skaters.  Then one of them gets at 

least 5 first places and that skater’s other 

rankings are no worse than fourth places. So 

the lowest sum is at most 5 × 1 + 4 × 4 = 21. 
 

Suppose the 9 first places are shared by 

three figure skaters.  Then the other 18 

rankings of these figure skaters are no 

worse than 9 third and 9 fourth places.  

Then the lowest sum is at most 9(1 + 3 + 

4)/3 = 24. 
 

Suppose the 9 first places are shared by 

four figure skaters.  Then their rankings 

must be all the first, second, third and 

fourth places. So the lowest sum is at most 

9(1 + 2 + 3 + 4)/4 < 24.  
 

Suppose the 9 first places are shared by k > 

4 figure skaters.  On one hand, these k 

skaters have a total of 9k > 36 rankings.  

On the other hand, these k skaters can only 

be awarded first to fourth places, so they 

can have at most 4 × 9 = 36 rankings all 

together, a contradiction. 
 

Now 24 is possible if skaters A, B, C all 

received 3 first, 3 third and 3 fourth places; 

skater D received 5 second and 4 fifth 

places; skater E received 4 second and 5 

fifth places; and skater F received 9 sixth 

places, …, skater T received 9 twentieth 

places.  Therefore, 24 is the answer. 

 
 

 

Olympiad Corner 

(continued from page 1) 

 

Problem 4. (Cont.)  it is possible to 

distribute the balls under the condition 

that A gets the same number of balls as the 

persons B, C, D and E together. 
 

Problem 5.  Let ABCD be a given convex 

quadrilateral.  Determine the locus of the 

point P lying inside the quadrilateral 

ABCD and satisfying  

[PAB]·[PCD] = [PBC]·[PDA], 

where [XYZ] denotes the area of triangle 

XYZ. 
 

Problem 6.  Determine all pairs of 

integers (x,y) satisfying the equation  

y(x + y) = x3 − 7x2 + 11x − 3. 
 

 
 

Schur’s Inequality 

(continued from page 2) 

 
 
Solution.  From the last part of the 

solution of example 3, we get 
 
3(xyz)2/3 ≥ 2(xy + yz + zx) – (x2 + y2 + z2) 
 
for any x, y, z > 0.  (Note: this used 

Schur’s inequality.)  Setting  

,ax = by =   and  cz =  

and arranging terms, we get 
 

   33 abccba −++  

)(2 cabcabcba −−−++≤  

222 )()()( accbba −+−+−=  

}.)(,)(,)max{(3 222 accbba −−−≤
 

Dividing by 3, we get the desired 

inequality. 
 

Example 5.  (2003 USA Team Selection 

Test)  Let a,b,c be real numbers in the 

interval (0, π/2).  Prove that 

)sin(

)sin()sin(sin

)sin(

)sin()sin(sin

ac

abcbb

cb

cabaa

+
−−

+
+

−−

.0
)sin(

)sin()sin(sin
≥

+
−−

+
ba

bcacc  

Solution.  Observe that 
 
sin(u – v) sin(u + v) = (cos 2v – cos 2u)/2 

                                  =  sin2 u – sin2v.  
 
Setting x = sin2a, y = sin2b, z = sin2c, in 

adding up the terms, the left side of the 

inequality becomes 

.
)sin()sin()sin(

))(())(())((

baaccb

yzxzzxyzyyzxyxx

+++
−−+−−+−−  

This is nonnegative by the r = 1/2 case 

of Schur’s inequality. 

 

For many more examples on Schur’s 

and other inequalities, we highly 

recommend the following book. 

 

Titu Andreescu, Vasile Cîrtoaje, 

Gabriel Dospinescu and Mircea Lascu, 

Old and New Inequalities, GIL 

Publishing House, 2004. 

 

Anyone interested may contact the 

publisher by post to GIL Publishing 

House, P. O. Box 44, Post Office 3, 

450200, Zalau, Romania or by email to 

gil1993@zalau.astral.ro. 
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Muirhead’s Inequality 
 

Lau Chi Hin 

 

Olympiad Corner 
 
Below was Slovenia’s Selection 

Examinations for the IMO 2005. 
 

First Selection Examination 
 

Problem 1.   Let M be the intersection of 

diagonals AC and BD of the convex 

quadrilateral ABCD.  The bisector of 

angle ACD meets the ray BA at the point 

K.  Prove that if MA·MC + MA·CD 

=MB·MD, then ∠BKC= ∠BDC. 
 

Problem 2.  Let R+ be the set of all 

positive real numbers.  Find all functions 

f: R+→R+ such that x2 ( f (x) + f (y) ) = 

( x+y ) f ( f (x) y) holds for any positive 

real numbers x and y. 
 

Problem 3.  Find all pairs of positive 

integers (m, n) such that the numbers 

m2−4n and n2−4m are perfect squares. 
 

Second Selection Examination 
 

Problem 1.  How many sequences of 

2005 terms are there such that the 

following three conditions hold: 
 

(a)  no sequence has three consecutive 

terms equal to each other, 

(b)  every term of every sequence is 

equal to 1 or −1, and 
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Muirhead’s inequality is an important 

generalization of the AM-GM 

inequality.  It is a powerful tool for 

solving inequality problem.  First we 

give a definition which is a 

generalization of arithmetic and 

geometric means. 

 

Definition.  Let x1, x2, …, xn be positive 

real numbers and p = (p1, p2, …, pn) 

∊ℝn.  The p-mean of x1, x2, …, xn is 

defined by 
 

,
!

1
][ )()2()1(

21∑
∈

=
n

n

S

p

n

pp
xxx

n
p

σ
σσσ L  

where Sn is the set of all permutations 

of {1,2,…, n}. (The summation sign 

means to sum n! terms, one term for 

each permutation σ in Sn.) 

 

For example, ∑
=

=
n

i

ix
n 1

1
)]0,,0,1[( K is 

the arithmetic mean of x1, x2, …, xn and 
n

n

nn xxxnnn /1/1

2

/1

1)]/1,,/1,/1[( LK =  is 

their geometric mean. 

 
Next we introduce the concept of 
majorization in ℝn.  Let p = (p1, p2, …, 
pn) and q = (q1, q2, …, qn) ∊ℝn satisfy 
conditions 

 
   1.  p1 ≥ p2 ≥ ⋯ ≥ pn and q1 ≥ q2 ≥ ⋯ ≥ qn,

2.  p1 ≥ q1,   p1+p2 ≥ q1+q2,  … , 

     p1+p2+⋯+pn−1 ≥ q1+q2+⋯+qn−1 and 

3.  p1+p2+⋯+pn = q1+q2+⋯+qn.  
 

Then we say (p1, p2, …, pn) majorizes 

(q1, q2, …, qn) and write  

(p1, p2, …, pn) ≻ (q1, q2, …, qn). 

 

Theorem (Muirhead’s Inequality).  Let 

x1, x2, …, xn be positive real numbers 

and p, q ∊ℝn.  If p ≻ q, then [p] ≥ [q]. 

Furthermore, for p ≠ q, equality holds if 

and only if x1= x2 = ⋯= xn. 
 

Since (1,0,…,0) ≻ (1/n,1/n,…,1/n), 
AM-GM inequality is a consequence. 

Example 1.  For any a, b, c > 0, prove 

that  

(a+b)(b+c)(c+a) ≥ 8abc. 

 

Solution.  Expanding both sides, the 

desired inequality is 
 

a2b+a2c+b2c+b2a+c2a+c2b ≥ 6abc. 
 

This is equivalent to [(2,1,0)]≥ [(1,1,1)], 

which is true by Muirhead’s inequality 

since (2,1,0)≻(1,1,1). 

 

For the next example, we would like to 

point out a useful trick.  When the 

product of  x1, x2, …, xn is 1, we have 
 

 [(p1, p2, …, pn)] = [(p1–r, p2–r,…, pn–r)] 
 

for any real number r. 

 

Example 2.  (IMO 1995)  For any a, b, c 

> 0 with abc = 1, prove that 
 

.
2

3

)(

1

)(

1
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1
333
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+

+
+

+
+ bacacbcba

 

 
Solution.  Multiplying by the common 

denominator and expanding both sides, 

the desired inequality is 

 

   

)(2)

(2

)(2

23323323334

3434343434

444444

bacacbcbaabc

baccabacbbcacba

accbba

++++

+++++

++
 

   345345345345(3 cabacbbcacba +++≥  

   .6) 444345345 cbaabcbac +++  

 

This is equivalent to [(4,4,0)]+2[(4,3,1)] 

+ [(3,3,2)] ≥ 3[(5,4,3)] + [(4,4,4)].  Note 

4+4+0 = 4+3+1 = 3+3+2 = 8, but 5+4+3 

= 4+4+4 = 12.  So we can set r = 4/3 and 

use the trick above to get [(5,4,3)] = 

[(11/3,8/3,5/3)] and also [(4,4,4)] = 

[(8/3,8/3,8/3)]. 
 

Observe that (4,4,0) ≻ (11/3,8/3,5/3), 

(4,3,1) ≻ (11/3,8/3,5/3) and (3,3,2) ≻ 

(8/3,8/3,8/3).  So applying Muirhead’s 

inequality to these three majorizations 

and adding the inequalities, we get the 

desired inequality. 
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Example 3.  (1998 IMO Shortlisted 

Problem)  For any x, y, z > 0 with xyz = 

1, prove that 

.
4

3

)1)(1()1)(1()1)(1(

333
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+
++ yx
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xz

y

zy

x  

Solution.  Multiplying by the common 

denominator and expanding both sides, 

the desired inequality is 
 

          4(x4+y4+z4+x3+y3+z3) 

       ≥ 3(1+x+y+z+xy+yz+zx+xyz). 

 
This is equivalent to 4[(4,0,0)] + 

4[(3,0,0)] ≥ [(0,0,0)] + 3[(1,0,0)] + 

3[(1,1,0)] + [(1,1,1)].  

 

For this, we apply Muirhead’s 

inequality and the trick as follow: 
 
  [(4,0,0)] ≥ [(4/3,4/3,4/3)] = [(0,0,0)], 

3[(4,0,0)] ≥ 3[(2,1,1)] = 3[(1,0,0)], 

3[(3,0,0)] ≥ 3[(4/3,4/3,1/3)] = 3[(1,1,0)] 

and [(3,0,0)] ≥ [(1,1,1)] . 
 
Adding these, we get the desired 

inequality. 

 
Remark.  For the following example, 

we will modify the trick above.  In case 

xyz ≥ 1, we have  
 

[(p1, p2, p3)] ≥ [(p1–r, p2–r, p3–r)] 
 
for every r ≥ 0.  Also, we will use the 

following 

 

Fact.  For p, q ∊ℝn, we have  
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This is because by the AM-GM 

inequality, 
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Summing over σ∊Sn and dividing by n!, 

we get the inequality. 

 

Example 4.  (2005 IMO)  For any x, y, z 

> 0 with xyz ≥ 1, prove that 
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Solution.  Multiplying by the common 

denominator and expanding both sides, 

the desired inequality is equivalent to 

[(9,0,0)]+4[(7,5,0)]+[(5,2,2)]+[(5,5,5)] 

 ≥  [(6,0,0)] + [(5,5,2)] + 2[(5,4,0)] +  

2[(4,2,0)] + [(2,2,2)]. 

 

To prove this, we note that 

(1)  [(9,0,0)] ≥ [(7,1,1)] ≥ [(6,0,0)] 

 

(2)  [(7,5,0)] ≥ [(5,5,2)] 

 

(3)  2[(7,5,0)] ≥ 2[(6,5,1)] ≥ 2[(5,4,0)] 

 

(4)  [(7,5,0)] + [(5,2,2)] ≥ 2[(6,7/2,1)] 

       ≥ 2[(11/2,7/2,3/2)] ≥ 2[(4,2,0)] 

 

(5)  [(5,5,5)] ≥ [(2,2,2)], 

 
where (1) and (3) are by Muirhead’s 
inequality and the remark, (2) is by 
Muirhead’s inequality, (4) is by the fact, 
Muirhead’s inequality and the remark and 
(5) is by the remark.  

 
Considering the sum of the leftmost parts 
of these inequalities is greater than or 
equal to the sum of the rightmost parts of 
these inequalities, we get the desired 
inequalities. 

 
Alternate Solution.  Since 
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Proofs of Muirhead’s Inequality 

Kin Yin Li 
 
Let p ≻ q and p ≠ q.  From i = 1 to n, the 

first nonzero pi – qi is positive by 

condition 2 of majorization.  Then there is 

a negative pi – qi later by condition 3.  It 

follows that there are j < k such that pj > qj, 

pk < qk and pi = qi for any possible i 

between j, k. 
 
Let b = (pj+pk)/2, d = (pj–pk)/2 so that 

[b–d,b+d]  = [pk, pj] ⊃ [qk, qj].  Let c be 

the maximum of |qj–b| and |qk–b|, then 0 ≤ 

c < d.  Let r = (r1,…,rn) be defined by ri 

= pi except rj = b + c and rk = b  – c.  By 

the definition of c, either rj = qj or 

rk=qk.  Also, by the definitions of b, c, 

d, we get p ≻ r, p ≠ r and r ≻ q. Now  
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where  xσ  is  the  product of  ip

ix )(σ
 for 

i ≠ j, k and u = xσ(j) , v = xσ(k).  For each 

permutation σ, there is a permutation ρ 
such that σ(i) = ρ(i) for i ≠ j, k and  σ(j) 
= ρ(k), σ(k) = ρ(j).  In the above sum, if 

we pair the terms for σ and ρ, then xσ = 

xρ and combining the parenthetical 

factors for the σ and ρ terms, we have 
 
(ub+d vb–d– ub+c vb–c)+(vb+d ub–d –vb+c ub–c) 

   = ub–d vb–d (ud+c – vd+c) (ud–c – vd–c) ≥ 0. 
 
So the above sum is nonnegative.  Then 

[p] ≥ [r].  Equality holds if and only if u 

= v for all pairs of σ and ρ, which yields 

x1= x2 = ⋯= xn.  Finally we recall r has 

at least one more coordinate in 

agreement with q than p.  So repeating 

this process finitely many times, we 

will eventually get the case r = q.  Then 

we are done. 

 

Next, for the advanced readers, we 

will outline a longer proof, which tells 

more of the story.  It is consisted of two 

steps.  The first step is to observe that if 

c1, c2, …, ck ≥ 0 with sum equals 1 and 

v1, v2, …, vk ∊ℝn, then  

.][
11
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ii

k

i

ii vcvc  

This follows by using the weighted 
AM-GM inequality instead in the proof 
of the fact above.  (For the statement of 
the weighted AM-GM inequality, see 
Mathematical Excalibur, vol. 5, no. 4, 
p. 2, remark in column 1). 

 
The second step is the difficult step of 
showing p ≻ q implies there exist 
nonnegative numbers c1, c2, …, cn! with 
sum equals 1 such that 

,
!

1

∑
=

=
n

i

ii Pcq  

where P1, P2, …, Pn! ∊ℝn whose 

coordinates are the n! permutations of 

the coordinates of p. Muirhead’s 

inequality follows immediately by 

applying the first step and observing 

that [Pi]=[p] for i=1,2,…, n!. 
 

     (continued on page 4) 
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Problem Corner 
 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is April 16, 2006. 

 

Problem 246.  A spy plane is flying at 

the speed of 1000 kilometers per hour 

along a circle with center A and radius 

10 kilometers.  A rocket is fired from A 

at the same speed as the spy plane such 

that it is always on the radius from A to 

the spy plane.  Prove such a path for the 

rocket exists and find how long it takes 

for the rocket to hit the spy plane. 

(Source: 1965 Soviet Union Math 

Olympiad) 
 
Problem 247.  (a) Find all possible 

positive integers k ≥ 3 such that there 

are k positive integers, every two of 

them are not relatively prime, but every 

three of them are relatively prime. 
 
(b)  Determine with proof if there 

exists an infinite sequence of positive 

integers satisfying the conditions in (a) 

above. 

(Source: 2003 Belarussian Math 

Olympiad) 
 
Problem 248.  Let ABCD be a convex 

quadrilateral such that line CD is 

tangent to the circle with side AB as 

diameter.  Prove that line AB is tangent 

to the circle with side CD as diameter if 

and only if lines BC and AD are 

parallel. 
 

Problem 249.  For a positive integer n, 

if a1,⋯, an, b1, ⋯, bn are in [1,2] and 

,22
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22

1 nn bbaa ++=++ LL  then prove 
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17 22
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Problem 250.  Prove that every region 

with a convex polygon boundary 

cannot be dissected into finitely many 

regions with nonconvex quadrilateral 

boundaries. 

***************** 

Solutions 

**************** 

 

Problem 241.  Determine the smallest 

possible value of  
 

S = a1·a2·a3+b1·b2·b3+c1·c2·c3, 
 
if a1, a2, a3, b1, b2, b3, c1, c2, c3 is a 

permutation of the numbers 1, 2, 3, 4, 5, 6, 

7, 8, 9.  (Source: 2002  Belarussian Math. 

Olympiad) 
 
Solution. CHAN Ka Lok (STFA Leung 
Kau Kui College), CHAN Tsz Lung 
(HKU Math PG Year 1), G.R.A. 20 Math 
Problem Group (Roma, Italy), D. Kipp 
JOHNSON (Valley Catholic School, 
Beaverton, OR, USA, teacher), KWOK 
Lo Yan (Carmel Divine Grace Foundation 
Secondary School, Form 6), Problem 
Solving Group @ Miniforum and 
WONG Kwok Cheung (Carmel Alison 
Lam Foundation Secondary School). 
 
The idea is to get the 3 terms as close as 
possible.  We have 214 = 70 + 72 + 72 = 
2·5·7 + 1·8·9 + 3·4·6.  By the AM-GM 
inequality, S ≥ 3(9!)1/3.  Now 9! = 70·72·72 
> 70·73·71 > 713.  So S > 3·71 = 213. 
Therefore, 214 is the answer. 
 

Problem 242.  Prove that for every 

positive integer n, 7 is a divisor of 3n+n3 if 

and only if 7 is a divisor of 3nn3+1. 

(Source: 1995 Bulgarian Winter Math 

Competition) 
 
Solution. CHAN Tsz Lung (HKU Math 
PG Year 1), G.R.A. 20 Math Problem 
Group (Roma, Italy), D. Kipp JOHNSON 
(Valley Catholic School, Beaverton, OR, 
USA, teacher), KWOK Lo Yan (Carmel 
Divine Grace Foundation Secondary 
School, Form 6), Problem Solving 
Group @ Miniforum, Tak Wai Alan 
WONG (Markham, ON, Canada) and 
YUNG Fai. 
 
Note 3n ≢ 0 (mod 7).  If n ≢ 0 (mod 7), then 

n3 ≡ 1 or –1 (mod 7).  So 7 is a divisor of 

3n+n3 if and only if –3n ≡ n3 ≡ 1 (mod 7) 

or –3n ≡ n3 ≡ –1 (mod 7) if and only if 7 is a 

divisor of 3nn3+1. 

  
Commended solvers: CHAN Ka Lok 
(STFA Leung Kau Kui College), LAM 
Shek Kin (TWGHs Lui Yun Choy 
Memorial College) and WONG Kai 
Cheuk (Carmel Divine Grace Foundation 
Secondary School, Form 6). 

 

Problem 243.  Let R+ be the set of all 

positive real numbers.  Prove that there is 

no function f : R+ →R+ such that  
 

( ) ( )yxfyxfxf ++≥ )()()(
2  

 
for arbitrary positive real numbers x and y. 

(Source: 1998 Bulgarian Math 

Olympiad) 
 
Solution. José Luis DíAZ-BARRERO, 
(Universitat Politècnica de Catalunya, 
Barcelona, Spain). 
 
Assume there is such a function.  We 

rewrite the inequality as  
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Note the right side is positive.  This 

implies f(x) is a strictly decreasing. 

 

First we prove that f(x) – f(x + 1) ≥ 1/2 

for x > 0.  Fix x > 0 and choose a 

natural number n such that n ≥ 1 / f (x + 

1).  When k = 0, 1, …, n − 1, we obtain 
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Adding the above inequalities, we get 

f(x) – f(x+1) ≥ 1/2. 

 

Let m be a positive integer such that m 

≥ 2 f(x).  Then 

 ∑
=

+−−+=+−
m

i

ixfixfmxfxf
1

))()1(()()(  

                       ≥ m/2 ≥ f(x). 

 So  f(x+m) ≤ 0, a contradiction. 

 

Commended solvers: Problem Solving 

Group @ Miniforum. 

 

Problem 244.  An infinite set S of 

coplanar points is given, such that 

every three of them are not collinear 

and every two of them are not nearer 

than 1cm from each other.  Does there 

exist any division of S into two disjoint 

infinite subsets R and B such that inside 

every triangle with vertices in R is at 

least one point of B and inside every 

triangle with vertices in B is at least one 

point of R?  Give a proof to your 

answer.  (Source: 2002 Albanian Math 

Olympiad) 
 

Solution.(Official Solution)   

 
Assume that such a division exists and 
let M1 be a point of R.  Then take four 
points M2, M3, M4, M5 different from 
M1, which are the nearest points to M1 
in R.  Let r be the largest distance 
between M1 and each of these four 
points.  Let H be the convex hull of 
these five points.  Then the interior of 
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H lies inside the circle of radius r 
centered at M1, but all other points of R 
is outside or on the circle.  Hence the 
interior of H does not contain any other 
point of R.  

 
Below we will say two triangles are 
disjoint if their interiors do not 
intersect.  There are 3 possible cases: 

 
(a)  H is a pentagon.  Then H may be 
divided into three disjoint triangles 
with vertices in R, each of them 
containing a point of B inside.  The 
triangle with these points of B as 
vertices would contain another point of 
R, which would be in H.  This is 
impossible. 

 
(b)  H is a quadrilateral.  Then one of 
the Mi is inside H and the other Mj, Mk, 
Ml, Mm are at its vertices, say clockwise. 
The four disjoint triangles MiMjMk, 
MiMkMl, MiMlMm, MiMmMi induce four 
points of B, which can be used to form 
two disjoint triangles with vertices in B 
which would contain two points in R. 
So H would then contain another point 
of R inside, other than Mi, which is 
impossible. 

 
(c)  H is a triangle.  Then it contains 
inside it two points Mi, Mj.  One of the 
three disjoint triangles MiMkMl, 
MiMlMm, MiMmMk will contain Mj. 
Then we can break that triangle into 
three smaller triangles using Mj.  This 
makes five disjoint triangles with 
vertices in R, each having one point of 
B inside.  With these five points of B, 
three disjoint triangles with vertices in 
B can be made so that each one of them 
having one point of R.  Then H 
contains another point of R, different 
from M1, M2, M3, M4, M5, which is 
impossible. 
 
Problem 245.  ABCD is a concave 

quadrilateral such that ∠BAD =∠ABC 

=∠CDA = 45˚.  Prove that AC = BD. 
 
Solution.  CHAN Tsz Lung (HKU 
Math PG Year 1), KWOK Lo Yan 
(Carmel Divine Grace Foundation 
Secondary School, Form 6), Problem 
Solving Group @ Miniforum, WONG 
Kai Cheuk (Carmel Divine Grace 
Foundation Secondary School, Form 6), 
WONG Man Kit (Carmel Divine Grace 
Foundation Secondary School, Form 6) 
and WONG Tsun Yu (St. Mark’s 
School, Form 6).  
 
Let line BC meet AD at E, then ∠BEA 

=180˚ −∠ABC −∠BAD = 90˚.  Note 

∆AEB and ∆CED are 45˚-90˚-45˚ 

triangles.  So AE = BE and CE = DE.  

Then ∆AEC ≅ ∆BED. So AC = BD.  
 
Commended solvers: CHAN Ka Lok 

(STFA Leung Kau Kui College), CHAN 
Pak Woon (HKU Math UG Year 1), 
WONG Kwok Cheung (Carmel Alison 
Lam Foundation Secondary School, Form 
7) and YUEN Wah Kong (St. Joan of Arc 
Secondary School). 
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Problem 1.  (Cont.) 
 
(c)  the sum of all terms of every sequence 

is at least 666? 
 
Problem 2.  Let O be the center of the 

circumcircle of the acute-angled triangle 

ABC, for which ∠CBA < ∠ACB holds. 

The line AO intersects the side BC at the 

point D.  Denote by E and F the centers of 

the circumcircles of triangles ABD and 

ACD respectively.  Let G and H be two 

points on the rays BA and CA such that 

AG=AC and AH=AB, and the point A lies 

between B and G as well as between C and 

H.  Prove the quadrilateral EFGH is a 

rectangle if and only if ∠ACB −∠ABC = 

60˚. 
 
Problem 3.  Let a, b and c be positive 

numbers such that ab + bc + ca = 1.  

Prove the inequality 

.
3

)(6
1

3
3

3

abc
cba

abc
≤+++  

 

 
 

Proofs of Muirhead’s Inequality 

    (continued from page 2) 

 

For the proof of the second step, we 

follow the approach in J. Michael Steele’s 

book The Cauchy-Schwarz Master Class, 

MAA-Cambridge, 2004.  For a n×n 

matrix M, we will denote its entry in the 

j-th row, k-th column by Mjk.  Let us 

introduce the term permutation matrix for 

σ∊Sn to mean the n×n matrix M(σ) with 

M(σ)jk = 1 if σ(j)=k and M(σ)jk = 0 

otherwise.  Also, introduce the term 

doubly stochastic matrix to mean a square 

matrix whose entries are nonnegative real 

numbers and the sum of the entries in 

every row and every column is equal to 

one. The proof of the second step follows 

from two results: 
 
Hardy-Littlewood-Polya’s Theorem.  If p 

≻ q, then there is a n×n doubly stochastic 

matrix D such that q = Dp, where we write 

p and q as column matrices. 

Birkhoff’s Theorem.  For every doubly 
stochastic matrix D, there exist 
nonnegative numbers c(σ) with sum 
equals 1 such that 

.)()(∑
∈

=
nS

McD
σ

σσ  

Granting these results, for Pi’s in the 
second step, we can just let Pi= M(σi)p. 
 
Hardy-Littlewood-Polya’s theorem can 
be proved by introducing r as in the 
first proof.  Following the idea of 
Hardy-Littlewood-Polya, we take T to 
be the matrix with 

Tjj=
d

cd

2

+ =Tkk,  Tjk=
d

cd

2

−
=Tkj, 

all other entries on the main diagonal 

equal 1 and all other entries of the 

matrix equal 0.  We can check T is 

doubly stochastic and r = Tp.  Then we 

repeat until r = q. 

 

Birkhoff’s theorem can be proved by 

induction on the number N of positive 

entries of D using Hall’s theorem (see 

Mathematical Excalibur, vol. 1, no. 5, 

p. 2).  Note N ≥ n.  If N = n, then the 

positive entries are all 1’s and D is a 

permutation matrix already.  Next for N 

> n, suppose the result is true for all 

doubly stochastic matrices with less 

than N positive entries.  Let D have 

exactly N positive entries.  For j = 1,…, 

n, let Wj be the set of k such that Djk > 0. 

We need a system of distinct 

representatives (SDR) for W1,…,Wn. 

To get this, we check the condition in 

Hall’s  theorem.  For  every  collection 

,,,
1 mjj WW K  note  m is the sum of all 

positive entries in column j1,…,jm of D.  

This is less than or equal to the sum of 

all positive entries in those rows that 

have at least one positive entry among 

column j1,…,jm.  This latter sum is the 

number of such rows and is also the 

number of elements  in  the  union  of 

.,,
1 mjj WW K  

 

So the condition in Hall’s theorem is 

satisfied and there is a SDR for W1,…, 

Wn.  Let σ(i) be the representative in Wi, 

then σ∊Sn.  Let c(σ) be the minimum of  

.,, )()1(1 nnDD σσ K   If c(σ) = 1, then D is a  

permutation matrix.  Otherwise, let  
 

D’= (1– c(σ))–1(D – c(σ) M(σ)). 
 
Then D = c(σ) M(σ) + (1– c(σ)) D’ and 
D’ is a double stochastic matrix with at 
least one less positive entries than D.  
So we may apply the cases less than N 
to D’ and thus, D has the required sum. 
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Olympiad Corner 
 
Below was the Find Round of the 36th 

Austrian Math Olympiad 2005. 
 

Part 1 (May 30, 2005) 
 
Problem 1.   Show that an infinite 
number of multiples of 2005 exist, in 
which each of the 10 digits 0,1,2,…,9 
occurs the same number of times, not 
counting leading zeros. 
 
Problem 2.   For how many integer 
values of a with |a| ≤ 2005 does the 
system of equations x2 = y + a, y2 = x + a 
have integer solutions? 
 
Problem 3.   We are given real numbers 
a, b and c and define sn as the sum sn = an 

+ bn + cn of their n-th powers for 
non-negative integers n.  It is known that 
s1 = 2, s2 = 6 and s3 = 14 hold.  Show that 
 

8|| 11

2 =⋅− +− nnn sss  
 
holds for all integers n > 1. 
 
Problem 4.  We are given two 
equilateral triangles ABC and PQR with 
parallel sides, “one pointing up” and 
“one pointing down.”  The common area 
of the triangles’ interior is a hexagon.  
Show that the lines joining opposite 
corners of this hexagon are concurrent. 
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In general, angle bisectors of a triangle 

do not bisect the sides opposite the 

angles.  However, angle bisectors 

always bisect the arcs opposite the 

angles on the circumcircle of the 

triangle! In math competitions, this fact 

is very useful for problems concerning 

angle bisectors or incenters of a triangle 

involving the circumcircle.  Recall that 

the incenter of a triangle is the point 

where the three angle bisectors concur.  

 

Theorem.  Suppose the angle bisector of 

∠ BAC intersect the circumcircle of 

∆ABC at X ≠ A.  Let I be a point on the 

line segment AX.  Then I is the incenter 

of ∆ABC if and only if XI = XB = XC. 

A

B C

X

I

 
 

Proof.  Note ∠BAX =∠CAX =∠CBX. 

So XB = XC.  Then  
 

         I is the incenter of ∆ABC  

  ⇔ ∠CBI =∠ABI 
  ⇔ ∠IBX −∠CBX =∠BIX −∠BAX

     ⇔ ∠IBX = ∠BIX 

     ⇔  XI = XB = XC. 
 

Example 1. (1982 Australian Math 

Olympiad)  Let ABC be a triangle, and 

let the internal bisector of the angle A 

meet the circumcircle again at P.  

Define Q and R similarly.  Prove that AP 

+ BQ + CR > AB + BC + CA. 

A

B C

P

R

I Q

 

Solution.  Let I be the incenter of ∆ABC. 

By the theorem, we have 2IR = AR + BR 

> AB and similarly 2IP > BC, 2IQ > CA. 

Also  AI + BI > AB, BI + CI > BC  and 

CI + AI > CA.  Adding all these 

nequalities together, we get i
 
2(AP + BQ + CR) > 2(AB + BC + CA). 

 
Example 2. (1978 IMO)  In ABC, AB = 
AC. A circle is tangent internally to the 
circumcircle of ABC and also to the 
sides AB, AC at P, Q, respectively. 
Prove that the midpoint of segment PQ 
is the center of the incircle of ∆ABC. 

A

B C
X

P Q
I

 
 

Solution.  Let I be the midpoint of line 

segment PQ and X be the intersection of 

the angle bisector of ∠BAC with the arc 

BC not containing A.  
 

By symmetry, AX is a diameter of the 

circumcircle of ∆ABC and X is the 

midpoint of the arc PXQ on the inside 

circle, which implies PX bisects 

QPB∠ .  Now ∠ABX = 90˚ = ∠PIX 

so that X, I, P, B are concyclic.  Then 
 

∠IBX =∠IPX =∠BPX =∠BIX. 
 

So XI = XB.  By the theorem, I is the 

incenter of ∆ABC. 
 

Example 3.  (2002 IMO)  Let BC be a 

diameter of the circle Γ with center O.  

Let A be a point on Γ such that 0˚ < 

AOB∠  < 120˚.  Let D be the midpoint 

of the arc AB not containing C.  The line 

through O parallel to DA meets the line 

AC at J.  The perpendicular bisector of 

OA meets Γ at E and at F.  Prove that J is 

the incenter of the triangle CEF.
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D

J

 

Solution.  The condition ∠ AOB < 

120˚ ensures I is inside ∆CEF (when 

∠ AOB increases to 120˚, I will 

coincide with C).  Now radius OA and 

chord EF are perpendicular and bisect 

each other.  So EOFA is a rhombus.  

Hence A is the midpoint of arc EAF.  

Then CA bisects ∠ECF.  Since OA = 

OC, ∠AOD = 1/2∠AOB = ∠OAC.  

Then DO is parallel to AJ.  Hence 

ODAJ is a parallelogram.  Then AJ = 

DO = EO = AE.  By the theorem, J is 

the incenter of ∆CEF. 

 

Example 4. (1996 IMO)  Let P be a 

point inside triangle ABC such that 
 

∠APB −∠ACB = ∠APC −∠ABC. 
 

Let D, E be the incenters of triangles 

APB, APC respectively.  Show that AP, 

BD and CE meet at a point. 

A

B C

F

G

P

H

IJ

D E

K

 

Solution.  Let lines AP, BP, CP 

intersect the circumcircle of ∆ABC 

again at F, G, H respectively.  Now 
 

∠APB −∠ACB =∠FPG −∠AGB 

                              =∠FAG. 
 

Similarly, ∠APC − ∠ABC = ∠FAH.  

So AF bisects ∠HAG.  Let K be the 

incenter of ∆HAG.  Then K is on AF 

and lines HK, GK pass through the 

midpoints I, J of minor arcs AG, AH 

respectively.  Note lines BD, CE also 

pass through I, J as they bisect ∠ABP, 

∠ACP respectively. 

 

Applying Pascal’s theorem (see vol.10, 

no. 3 of Math Excalibur) to B, G, J, C, 

H, I on the circumcircle, we see that 

P=BG∩CH, K=GJ∩HI and BI∩CJ= 

BD∩CE are collinear. Hence, BD∩CE is 

on line PK, which is the same as line AP. 

 

Example 5. (2006 APMO)  Let A, B be 

two distinct points on a given circle O and 

let P be the midpoint of line segment AB.  

Let O1 be the circle tangent to the line AB 

at P and tangent to the circle O.  Let ℓ be 

the tangent line, different from the line AB, 

to O1 passing through A.  Let C be the 

intersection point, different from A, of ℓ 

and O.  Let Q be the midpoint of the line 

segment BC and O2 be the circle tangent 

to the line BC at Q and tangent to the line 

segment AC.  Prove that the circle O2 is 

tangent to the circle O. 
 

A BP

N

L

C
Z

Q

M

J

K

 
Solution.  Let the perpendicular to AB 

through P intersect circle O at N and M 

with N and C on the same side of line AB.  

By symmetry, segment NP is a diameter 

of the circle of O1 and its midpoint L is the 

center of O1.  Let line AL intersect circle O 

again at Z.  Let line ZQ intersect line CM 

at J and circle O again at K.  
 

Since AB and AC are tangent to circle O1, 

AL bisects ∠ CAB so that Z is the 

midpoint of arc BC.  Since Q is the 

midpoint of segment BC, ∠ZQB = 90˚ =

∠LPA and ∠JQC = 90˚ =∠MPB.  Next 
 

∠ZBQ =∠ZBC =∠ZAC =∠LAP. 
 

So ∆ZQB, ∆LPA are similar.  Since M is 

the midpoint of arc AMB,  
 

∠JCQ =∠MCB =∠MCA =∠MBP. 
 

So ∆JQC, ∆MPB are similar. 
 

By the intersecting chord theorem, AP·BP 

= NP·MP = 2LP·MP.  Using the similar 

triangles above, we have 

.
2

1

CQBQ

JQZQ

BPAP

MPLP

⋅
⋅

=
⋅
⋅

=  

By the intersecting chord theorem, KQ·ZQ 

= BQ·CQ so that 
 

KQ = (BQ·CQ)/ZQ = 2JQ. 

This implies J is the midpoint of KQ.  

Hence the circle with center J and 

diameter KQ is tangent to circle O at K 

and tangent to BC at Q.  Since J is on 

the bisector of ∠BCA, this circle is 

also tangent to AC.  So this circle is O2. 

 

Example 6. (1989 IMO)  In an 

acute-angled triangle ABC the internal 

bisector of angle A meets the 

circumcircle of the triangle again at A1.  

Points B1 and C1 are defined similarly.  

Let A0 be the point of intersection of 

the line AA1 with the external bisectors 

of angles B and C. Points B0 and C0 are 

defined similarly.  Prove that: 
 

(i)  the area of the triangle A0B0C0 is 

twice the area of the hexagon 

AC1BA1CB1, 
 

(ii)  the area of the triangle A0B0C0 is at 

least four times the area of the triangle 

ABC. 

C0

B0 A0C

B

A

I

A1B1

C1

 

Solution. (i)  Let I be the incenter of 

∆ABC.  Since internal angle bisector 

and external angle bisector are 

perpendicular, we have ∠B0BA0 = 90˚.  

By the theorem, A1I = A1B.  So A1 must 

be the midpoint of the hypotenuse A0I 

of right triangle IBA0.  So the area of 

∆BIA0 is twice the area of ∆BIA1.  
 

Cutting the hexagon AC1BA1CB1 into 

six triangles with common vertex I and 

applying a similar area fact like the last 

statement to each of the six triangles, 

we get the conclusion of (i). 

 

(ii)  Using (i), we only need to show the 

area of hexagon AC1BA1CB1 is at least 

twice the area of ∆ABC. 

B

C

A

A1

DA2
H

 

(continued on page 4) 



Mathematical Excalibur, Vol. 11, No. 2, Apr. 06 - May 06 Page 3

 

Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is August 16, 

2006. 

 

Problem 251.  Determine with proof 

the largest number x such that a cubical 

gift of side x can be wrapped 

completely by folding a unit square of 

wrapping paper (without cutting). 
 
Problem 252.   Find all polynomials 

f(x) with integer coefficients such that 

for every positive integer n, 2n − 1 is 

divisible by f(n).  
 
Problem 253.  Suppose the bisector of 

∠BAC intersect the arc opposite the 

angle on the circumcircle of ∆ABC at 

A1.  Let B1 and C1 be defined similarly.  

Prove that the area of ∆A1B1C1 is at 

least the area of ∆ABC. 
 
Problem 254.  Prove that if a, b, c > 0, 

hen t
 

2)()( cbacbaabc +++++  

                         .)(34 cbaabc ++≥  

 
Problem 255.  Twelve drama groups 
are to do a series of performances (with 
some groups possibly making repeated 
performances) in seven days.  Each 
group is to see every other group’s 
performance at least once in one of its 

ay-offs.  d
 
Find with proof the minimum total 
number of performances by these 
groups. 

 

***************** 

Solutions 

**************** 
 

Problem 246.  A spy plane is flying at 

the speed of 1000 kilometers per hour 

along a circle with center A and radius 

10 kilometers.  A rocket is fired from A 

at the same speed as the spy plane such 

that it is always on the radius from A to 

the spy plane.  Prove such a path for the 

rocket exists and find how long it takes 

for the rocket to hit the spy plane. 

(Source: 1965 Soviet Union Math 

Olympiad) 
 
Solution.  Jeff CHEN (Virginia, USA), 
Koyrtis G. CHRYSSOSTOMOS 
(Larissa, Greece, teacher), G.R.A. 20 Math 
Problem Group (Roma, Italy) and Alex O 
Kin-Chit (STFA Cheng Yu Tung 

econdary School). S
 

O

P

R

QA

L

 
 
Let the spy plane be at Q when the rocket 

was fired.  Let L be the point on the circle 

obtained by rotating Q by 90˚ in the 

forward direction of motion with respect 

to the center A.  Consider the semicircle 

with diameter AL on the same side of line 

AL as Q.  We will show the path from A to 

L along the semicircle satisfies the 

conditions.  

 

For any point P on the arc QL, let the 

radius AP intersect the semicircle at R.  

Let O be the midpoint of AL.  Since  
 

∠QAP =∠RLA = 1/2∠ROA 
 
and AL = 2AO, the length of arc AR is the 

same as the length of arc QP.  So the 

conditions are satisfied. 

Finally, the rocket will hit the spy plane at 

L after 5π/1000 hour it was fired. 

 

Comments:  One solver guessed the path 

should be a curve and decided to try a 

circular arc to start the problem.  The other 

solvers derived the equation of the path by 

a differential equation as follows: using 

polar coordinates, since the spy plane has 

a constant angular velocity of 1000/10 = 

100 rad/sec, so at time t, the spy plane is at 

(10, 100t) and the rocket is at (r(t), θ(t)). 
Since the rocket and the spy plane are on 

the same radius, so θ(t) = 100t.  Now they 

have the same speed, so 

. 10))(')(())('( 622 =+ ttrtr θ

Then  

.
 

100
)(100

)('

2
=

− tr

tr

Integrating both sides from 0 to t, we get 

the equation r = 10 sin(100t) = 10 sin θ, 
which describes the path above. 
 

Problem 247.  (a)  Find all possible 

positive integers k ≥ 3 such that there are k 

positive integers, every two of them are 

not relatively prime, but every three of 

them are relatively prime. 
 
(b)  Determine with proof if there 

exists an infinite sequence of positive 

integers satisfying the conditions in (a) 

bove. a
 
(Source: 2003 Belarussian Math 

Olympiad) 
 
Solution. G.R.A. 20 Math Problem 
Group (Roma, Italy) and YUNG Fai. 
 
(a)  We shall prove by induction that the 

conditions are true for every positive 

integer k ≥ 3.  

 

For k = 3, the numbers 6, 10, 15 satisfy 

the conditions.  Assume it is true for 

some k ≥ 3 with the numbers being a1, 

a2, …, ak.  Let p1, p2, …, pk be distinct 

prime numbers such that each pi is 

greater than a1a2…ak.  For I = 1 to k, let 

bi
  

= aipi and let bk+1= p1p2…pk.  Then 

gcd(bi, bj)=gcd(ai, aj) >1 for 1≤ i < j ≤k, 
 
gcd(bi, bk+1) = pi > 1 for 1 ≤ i ≤ k,   
 
gcd(bh, bi, bj) = gcd(ah, ai, aj) = 1  

 
 
          for 1≤ h ≤ i < j ≤ k and 

gcd(bi, bj, bk+1) = 1 for 1 ≤ i < j ≤ k, 
 
completing the induction. 

 

(b)  Assume there are infinitely many 

positive integers a1, a2, a3, … satisfying 

the conditions in (a).  Let a1 have 

exactly m prime divisors.  For  i = 2 to 

m + 2, since each of the m + 1 numbers 

gcd(a1, ai) is divisible by one of these 

m primes, by the pigeonhole principle, 

there are i, j with 2 ≤ i < j ≤ m + 2 such 

that  gcd(a1, ai) and gcd(a1, aj) are 

divisible by the same prime.  Then 

gcd(a1, ai, aj) > 1, a contradiction. 

 

Commended solvers: CHAN Nga Yi 

(Carmel Divine Grace Foundation 

Secondary School, Form 6) and 

CHAN Yat Sing (Carmel Divine 

Grace Foundation Secondary School, 

Form 6). 

 

Problem 248.  Let ABCD be a convex 

quadrilateral such that line CD is 

tangent to the circle with side AB as 

diameter.  Prove that line AB is tangent 

to the circle with side CD as diameter if 

and only if lines BC and AD are 

parallel. 
 
Solution. Jeff CHEN (Virginia, USA) 

and Koyrtis G. CHRYSSOSTOMOS 

(Larissa, Greece, teacher). 
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Let E be the midpoints of AB.  Since 

CD is tangent to the circle, the distance 

from E to line CD is h1 = AB/2.  Let F 

be the midpoint of CD and let h2 be the 

distance from F to line AB.  Observe 

that the areas of ∆CEF and ∆DEF = 

CD·AB/8.  Now  
 
      line AB is tangent to the circle  

           with side CD as diameter  

⇔ h2=CD/2  

⇔ areas of ∆AEF, ∆BEF, ∆CEF and    

            ∆DEF are equal to AB·CD/8  

⇔ AD∥EF, BC∥EF  

⇔ AD∥BC. 

 

Problem 249.  For a positive integer n, 

if a1,⋯, an, b1, ⋯, bn are in [1,2] and 

 then prove 

that 

,22
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22

1 nn bbaa ++=++ LL
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Solution.  Jeff CHEN (Virginia, USA). 
 
F
 

or x, y in [1,2], we have  

               1/2 ≤ x/y ≤2   
      ⇔  y/2 ≤ x ≤ 2y 
      ⇔  (y/2 − x)(2y − x) ≤ 0  

 
 
     ⇔  x2 + y2 ≤ 5xy/2.  

Let x = ai and y = bi, then ai
2 + bi

2 ≤ 

5aibi/2.  Summing and manipulating, 

we get  

.
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4
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22
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Let x = (ai

3/bi)
1/2 and y = (aibi)

1/2.  Then 

x/y = ai/bi in [1,2].  So ai
3/bi + aibi≤ 

5ai
2/2.  

Summing, we get 

.
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Adding the two displayed inequalities, 

we get 

).(
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Problem 250.  Prove that every region 

with a convex polygon boundary cannot 

be dissected into finitely many regions 

with nonconvex quadrilateral boundaries. 
 
Solution.  YUNG Fai. 
 
Assume the contrary that there is a 

dissection of the region into nonconvex 

quadrilateral R1, R2, …, Rn.  For a 

nonconvex quadrilateral Ri, there is a 

vertex where the angle is θi > 180˚, which 

we refer to as the large vertex of the 

quadrilateral.  The three other vertices, 

where the angles are less than 180˚ will be 

referred to as small vertices.  

 

Since the boundary of the region is a 

convex polygon, all the large vertices are 

in the interior of the region.  At a large 

vertex, one angle is θi > 180˚, while the 

remaining angles are angles of small 

vertices of some of the quadrilaterals and 

add up to 360˚ − θi.  Now  

∑
=

−
n

i

i

1

)360( θo  

accounts for all the angles associated with 

all the small vertices.  This is a 

contradiction since this will leave no more 

angles from the quadrilaterals to form the 

angles of the region. 
 
 

 

 

Olympiad Corner 

(continued from page 1) 

 

Part 2, Day 1  (June 8, 2005) 
 
Problem 1.  Determine all triples of 

positive integers (a,b,c), such that a + b +c 

is the least common multiple of a, b and c. 
 

Problem 2.  Let a, b, c, d be positive real 

numbers.  Prove 

.
1111

3333 dcbaabcd

dcba
+++≤

+++
 

 
Problem 3.  In an acute-angled triangle 

ABC, circle k1 with diameter AC and k2 

with diameter BC are drawn.  Let E be the 

foot of B on AC and F be the foot of A on 

BC.  Furthermore, let L and N be the 

points in which the line BE intersects with 

k1 (with L lying on the segment BE) and K 

and M be the points in which the line AF 

intersects with k2 (with K on the segment 

AF).  Prove that KLMN is a cyclic 

quadrilateral. 
 

Part 2, Day 2  (June 9, 2005) 
 

Problem 4.  The function f is defined 

for all integers {0, 1, 2, …, 2005}, 

assuming non-negative integer values 

in each case.  Furthermore, the 

following conditions are fulfilled for 

all values of x for which the function is 

efined:  d
 

f(2x + 1) = f(2x),    f(3x + 1) = f(3x) 

and   f(5x + 1) = f(5x). 
 
How many different values can the 

unction assume at most? f
 
Problem 5.  Determine all sextuples 

(a,b,c,d,e,f) of real numbers, such that 

the following system of equations is 

ulfilled: f
 

4a=(b+c+d+e)4,  4b=(c+d+e+f)4, 

4c=(d+e+f+a)4,  4d=(e+f+a+b)4, 

4e=(f+a+b+c)4,  4f=(a+b+c+d)4. 
 
Problem 6.  Let Q be a point in the 

interior of a cube.  Prove that an 

infinite number of lines passing 

through Q exists, such that Q is the 

mid-point of the line-segment joining 

the two points P and R in which the line 

and the cube intersect. 

 

 
 

Angle Bisectors Bisect Arcs 

 (continued from page 2) 

 

Let H be the orthocenter of ∆ABC.  Let 

line AH intersect BC at D and the 

circumcircle of ∆ABC again at A2. Note 
 

        ∠ A2BC = ∠A2AC  

                       = ∠DAC 
                       =  90˚ −∠ACD  

                       = ∠HBC.  
 
Similarly, we have ∠A2CB = ∠HCB.  

Then ∆BA2C ≅ ∆BHC.  Since A1 is the 

midpoint of arc BA1C, it is at least as 

far from chord BC as A2.  So the area of 

∆ BA1C is at least the area of ∆ BA2C.  

Then the area of quadrilateral BA1CH 

is at least twice the area of ∆BHC. 
 

Cutting hexagon AC1BA1CB1 into three 

quadrilaterals with common vertex H 

and comparing with cutting ∆ABC into 

three triangles with common vertex H 

in terms of areas, we get the conclusion 

of (ii). 
 

Remarks.  In the solution of (ii), we 

saw the orthocenter H of ∆ABC has the 

property that ∆BA2C ≅ ∆BHC (hence, 

also HD = A2D).  These are useful facts 

for problems related to the orthocenters 

involving the circumcircles. 
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Summation by Parts 
 

Kin Y. Li 

 

Olympiad Corner 
 
The following were the problems of 

the IMO 2006. 
 

Day 1 (July 12, 2006) 
 
Problem 1.   Let ABC be a triangle with 
incenter I.  A point P in the interior of the 
triangle satisfies  
 

.PCBPBCPCAPBA ∠+∠=∠+∠  
 
Show that AP ≥ AI, and that equality 
holds if and only if P = I. 
 
Problem 2.  Let P be a regular 
2006-gon.  A diagonal of P is called 
good if its endpoints divide the 
boundary of P into two parts, each 
composed of an odd number of sides of 
P.  The sides of P are also called good. 
 
     Suppose P has been dissected into 
triangles by 2003 diagonals, no two of 
which have a common point in the 
interior of P.  Find the maximum 
number of isosceles triangles having two 
good sides that could appear in such a 
configuration. 

 
Problem 3.  Determine the least real 

number M such that the inequality  
 

|)()()(| 222222 accacbbcbaab −+−+−  

                 2222 )( cbaM ++≤  

holds for all real numbers a, b and c. 
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In calculus, we have a formula called 

integration by parts 

)()()()()()( sgsFtgtFdxxgxf

t

s

−=∫   

                             ,)(')(∫−
t

s

dxxgxF  

where F(x) is an anti-derivative of f (x). 

There is a discrete version of this 

formula for series.  It is called 

summation by parts, which asserts 
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where Ak = a1+a2+⋯+ak.  This formula 

follows easily by observing that a1 = A1 

and for k > 1, ak = Ak − Ak−1 so that 
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From this identity, we can easily obtain 

some famous inequalities. 
 

Abel’s Inequality. Let Mam
k

i

i ≤≤∑
=1

 

for k = 1,2,…,n and b1 ≥ b2 ≥ ⋯ ≥ bn > 0. 

Then  

.1

1
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n

k
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Proof.  Let Ak= a1+a2+⋯+ak.  Applying 

summation by parts, we have 
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The right side is at least  
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and at most 
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K. L. Chung’s Inequality.  Suppose   

a1 ≥ a2 ≥ ⋯ ≥ an > 0 and ∑∑
==

≤
k

i

i
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for k = 1,2,…,n.  Then 
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Proof.  Applying summation by parts 

and Cauchy-Schwarz’ inequality, we 

have 
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Squaring and simplifying, we get 

.
1

2

1

2 ∑∑
==

≤
n

i

i

n

i

i ba  

 

Below we will do some more examples 

to illustrate the usefulness of the 

summation by parts formula. 

 

Example 1. (1978 IMO)  Let n be a 

positive integer and a1, a2, ⋯, an be a 

sequence of distinct positive integers. 

Prove that  
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Solution.  Since the ai’s are distinct 

positive integers, Ak = a1 + a2 + ⋯ + ak 

is at least 1 + 2 + ⋯ + k = k(k + 1)/2. 

 

Applying summation by parts, we have
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Example 2. (1982 USAMO)  If x is a 

positive real number and n is a positive 

integer, then prove that  
 

,
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where [t] denotes the greatest integer 

less than or equal to t. 
 
Solution.  Let ak = [kx]/k.  Then 
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In terms of Ak, we are to prove [nx]≥An. 

The case n = 1 is easy.  Suppose the 

cases 1 to n − 1 are true.  Applying 

summation by parts, we have 
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Using this and the inductive 

hypothesis,  

        ∑∑
−

==

+=
1

11

][
n

k

k

n

k

n AkxnA  

              ( )

],[

])([][

])[(][][

][][

1

1

1

1

1

11

nxn

xknkxnx

xknkxnx

kxkx

n

k

n

k

n

k

n

k

=

−++≤

−++=

+≤

∑

∑

∑∑

−

=

−

=

−

==

 

which yields case n. 

 

Example 3.  Consider a polygonal line 

P0P1P2…Pn such that ∠ P0P1P2 =        

∠ P1P2P3 = ⋯ = ∠ Pn−2Pn−1Pn, all 

measure in counterclockwise direction. 

If P0P1 > P1P2 > ⋯ > Pn−1Pn, show that 

P0 and Pn cannot coincide.  

 

Solution.  Let ak be the length of Pk−1Pk. 

Consider the complex plane.  Each Pk 

corresponds to a complex number.  We 

may set P0 = 0 and P1 = a1.  Let θ =       

∠ P0P1P2 and z = - θθ sincos i+ , then 

Pn = 1

21

−+++ n

n zazaa L .  Applying 

summation by parts, we get 
    

L++−+−= )1)(()( 3221 zaaaaPn
 

               )1( 1−++++ n

n zza L . 

If θ = 0, then z = 1 and Pn > 0.  If θ ≠ 0, 

then assume Pn = 0.  We get Pn (1−z) = 

0, which implies 
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However, since |z| = 1 and z ≠ 1, by the 

triangle inequality, 
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which is a contradiction to the last 

displayed equation.  So Pn ≠ 0 = P0. 
   

Example 4.  Show that the series 

∑
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k k
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Solution.  Let ak = sin k and bk = 1/k. 

Using the identity 
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Applying summation by parts, we get 
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Example 5.  Let 
naaa ≥≥≥ L21
 with 

a1 ≠ an, ∑
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always holds. 

Solution. Let Si = x1 + x2 + ⋯ + xi. Let 
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Then p − q = 0 and p + q = 1.  So p = 

q = 
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1,2,⋯, n. 

 

Applying summation by parts, we get 
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When x1 = 1/2, xn= −1/2 and all other 

xi = 0, we have equality.  So the least 

such m is 1/2. 

 

Example 6.  Prove that for all real 

numbers a1, a2, …, an, there is an 

integer m among 1,2,…, n such that if  
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Solution.  Let Ai = a1+a2+⋯+ai and bi 

= sin θi, then .01 21 ≥≥≥≥≥ nbbb L  

Next let |Am| be the maximum among 

|A1|, |A2|, …, |An|.  With an+1 = bn+1 = 0, 

we apply summation by parts to get 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is November 25, 

2006. 

 

Problem 256.  Show that there is a 

rational number q such that 
 

.1090sin89sin2sin1sin q=oooo L  

 

Problem 257.  Let n > 1 be an integer. 

Prove that there is a unique positive 

integer A < n2 such that [n2/A] + 1 is 

divisible by n, where [x] denotes the 

greatest integer less than or equal to x.  

(Source: 1993 Jiangsu Math Contest) 
 
Problem 258. (Due to Mihaiela 

Vizental and Alfred Eckstein, Arad, 

Romaina)  Show that if A, B, C  are in 

the interval (0, π/2), then 
 
f (A,B,C) + f (B,C,A) + f (C,A,B) ≥ 3, 

where 
zyx

zyx
zyxf

sin4sin3sin2

sin2sin3sin4
),,(

++
++
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Problem 259.  Let AD, BE, CF be the 

altitudes of acute triangle ABC. 

Through D, draw a line parallel to line 

EF intersecting line AB at R and line 

AC at Q.  Let P be the intersection of 

lines EF and CB.  Prove that the 

circumcircle of ⊿PQR passes through 

the midpoint M of side BC. 

(Source: 1994 Hubei Math Contest) 

 
Problem 260.  In a class of 30 students, 
number the students 1, 2, …, 30 from 
best to worst ability (no two with the 
same ability).  Every student has the 
same number of friends in the class, 
where friendships are mutual.  Call a 
student good if his ability is better than 
more than half of his friends.  
Determine the maximum possible 
number of good students in this class. 
(Source: 1998 Hubei Math Contest) 

 

 

***************** 

Solutions 

**************** 
 

Problem 251.  Determine with proof the 

largest number x such that a cubical gift of 

side x can be wrapped completely by 

folding a unit square of wrapping paper 

(without cutting). 
 
Solution.  CHAN Tsz Lung (Math, HKU) 
and Jeff CHEN (Virginia, USA). 
 
Let A and B be two points inside or on the 

unit square such that the line segment AB 

has length d.  After folding, the distance 

between A and B along the surface of the 

cube will be at most d because the line 

segment AB on the unit square after 

folding will provide one path between the 

two points along the surface of the cube, 

which may or may not be the shortest 

possible.  

 

In the case A is the center of the unit 

square and B is the point opposite to A on 

the surface of the cube with respect to the 

center of the cube, then the distance along 

the surface of the cube between them is at 

least 2x.  Hence, 2x ≤ d ≤ .2/2   

Therefore, x ≤ .4/2  

 

The maximum x = 4/2  is attainable can 

be seen by considering the following 

picture of the unit square.  

x

 

Commended solvers:  Alex O Kin-Chit 

(STFA Cheng Yu Tung Secondary School) 

and Anna Ying PUN (STFA Leung Kau 

Kui College, Form 7). 
 

Problem 252.  Find all polynomials f(x) 

with integer coefficients such that for 

every positive integer n, 2n − 1 is divisible 

by f(n). 
 
Solution.  Jeff CHEN (Virginia, USA) and 
G.R.A. 20 Math Problem Group (Roma, 
Italy). 
 
We will prove that the only such 

polynomials f(x) are the constant 

polynomials 1 and −1. 
 
Assume f(x) is such a polynomial and  

|f(n)| ≠ 1 for some n > 1.   Let  p  be a prime 

which divides f(n), then p also divides  

f(n+ kp) for every integer k.   Therefore,  p 

divides 2n+kp−1 for all integers k ≥ 0. 
 

When k = 0, p divides 2n − 1, which 

implies 2n ≡ 1 (mod p).  By Fermat’s 

little theorem, 2p ≡ 2 (mod p).  Finally, 

when k = 1, we get 
  

1 ≡ 2n+p = 2n 2p ≡ 1·2 = 2 (mod p) 
 

implying p divides 2 − 1 = 1, which is a 

contradiction. 

 

Problem 253.  Suppose the bisector of    

∠ BAC intersect the arc opposite the 

angle on the circumcircle of ∆ABC at 

A1.  Let B1 and C1 be defined similarly. 

Prove that the area of ∆A1B1C1 is at 

least the area of ∆ABC. 
 
Solution.  CHAN Tsz Lung (Math, 
HKU), Jeff CHEN (Virginia, USA) 
and Anna Ying PUN (STFA Leung 
Kau Kui College, Form 7). 

C

A

B

A1

B1
I

C1

 

By a well-known property of the 

incenter I (see page 1 of Mathematical 

Excalibur, vol. 11, no. 2), we have AC1 

= C1I and AB1 = B1I.  Hence, ∆AC1B1 ≅ 

∆IC1B1.  Similarly, ∆BA1C1 ≅ ∆IA1C1 

and ∆CB1A1 ≅ ∆IB1A1. Letting [⋯] 

denote area, we have 
 

[AB1CA1BC1] = 2[A1B1C1]. 
 

If ∆ABC is not acute, say ∠ BAC is 

not acute, then 

    [ ] [ ]CABAABC 1
2

1
≤                 

              [ ] [ ]111111
2

1
CBABCCAAB =≤ . 

Otherwise, ∆ABC is acute and we can 

apply the fact that 

[ ] [ ] [ ]111111
2

1
CBABCCAABABC =≤  

(see example 6 on page 2 of 

Mathematical Excalibur, vol. 11, no. 

2). 
 
Commended solvers:  Samuel Liló 

Abdalla (Brazil) and Koyrtis G. 

CHRYSSOSTOMOS (Larissa, 

Greece, teacher). 
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Problem 254.  Prove that if a, b, c > 0, 

then 
 

2)()( cbacbaabc +++++  
                            

            .)(34 cbaabc ++≥  

 
Solution 1.  José Luis Díaz-Barrero 

(Universitat Politècnica de Catalunya, 

Barcelona, Spain) and G.R.A. 20 Math 

Problem Group (Roma, Italy). 

 

Dividing both sides by 

)( cbaabc ++ , the inequality is 

equivalent to  

.34
)( 3

≥
++

+
++
++

abc

cba

cba

cba  

By the AM-GM inequality, 

.)(3 3/1abccba ≥++  

Therefore, it suffices to show 

,34
3)()(3 3

33/1

≥+=
++

+
++

t
tabc

cba

cba

abc

where again by the AM-GM inequality, 

.3
)()(

3/13/1
≥

++
=

++
=

abc

cba

abc

cba
t  

By the AM-GM inequality a third time, 

.34
3

4

333

33 2333
3 ≥≥+++=+

tttt

t
t

t
 

 
Solution 2.  Alex O Kin-Chit (STFA 
Cheng Yu Tung Secondary School). 
 

By the AM-GM inequality, we have 

                3/1)(3 abccba ≥++           (1) 

and    .)(3 6/1abccba ≥++          (2) 

Applying (2), (1), the AM-GM 

inequality and (1) in that order below, 

we have 

 

  2)()( cbacbaabc +++++  

)()(3)(3 3/13/2 cbaabcabc +++≥  

( ) 4/133/2 ))(()(34 cbaabcabc ++≥  

( ) 4/123/13/2 )()(3)()(34 cbaabcabcabc ++≥

.)(34 cbaabc ++=  

 
 
Commended solvers:  Samuel Liló 
Abdalla (Brazil), CHAN Tsz Lung 
(Math, HKU), Koyrtis G. 
CHRYSSOSTOMOS (Larissa, 
Greece, teacher) and Anna Ying PUN 
(STFA Leung Kau Kui College, Form 
7). 
 

Problem 255.  Twelve drama groups are 
to do a series of performances (with some 
groups possibly making repeated 
performances) in seven days.  Each group 
is to see every other group’s performance 
at least once in one of its day-offs.  
 
Find with proof the minimum total 
number of performances by these groups. 

 
Solution.  CHAN Tsz Lung (Math, HKU). 
 
Here are three important observations: 
 
(1)  Each group perform at least once. 
 
(2)  If more than one groups perform on the 

same day, then each of these groups will 

have to perform on another day so the other 

groups can see its performance in their 

day-offs. 
 
(3)  If a group performs exactly once, on the 

day it performs, it is the only group 

performing. 
 

We will show the minimum number of 

performances is 22.  The following 

performance schedule shows the case 22 is 

possible. 
 

Day 1:  Group 1 

Day 2:  Group 2 

Day 3:  Groups 3, 4, 5, 6 

Day 4:  Groups 7, 8, 9,    3 

Day 5:  Groups 10, 11,   4, 7 

Day 6:  Groups 12,       5, 8, 10 

Day 7:  Groups             6, 9, 11, 12. 

 

Assume it is possible to do at most 21 

performances.  Let k groups perform 

exactly once, then k + 2(12 − k) ≤ 21 will 

imply k ≥ 3. 

 

Case 1:  Exactly 3 groups perform exactly 

once, say group 1 on day 1, group 2 on day 

2 and group 3 on day 3.  

 

(a)  If at least 4 groups perform on one of 

the remaining 4 days, say groups 4, 5, 6, 7 

on day 4, then by (2), each of them has to 

perform on one of the remaining 3 days.  By 

the pigeonhole principle, two of groups 4, 5, 

6, 7 will perform on the same day again 

later, say groups 4 and 5 perform on day 5. 

Then they will have to perform separately 

on the last 2 days for the other to see.  Then 

groups 1, 2, 3 once each, groups 4, 5 thrice 

each and groups 6, 7, …, 12 twice each at 

least , resulting in at least  
 

3 + 2 × 3 + 7 × 2 = 23 
 
performances, contradiction. 

 

(b)  If at most 3 groups perform on each of 

the remaining 4 days, then there are at most 

3 × 4 = 12 slots for performances.  

However, each of groups  4 to 12  has to 

perform at least twice, yielding at least  

9 × 2 = 18 ( > 12 ) performances, 

contradiction.  

 

Case 2:  More than 3 groups perform 

exactly once, say k groups with k > 3.  

By argument similar to case 1(a), we see 

at most 3 groups can perform on each of 

the remaining 7 − k days (meaning at 

most 3(7 − k) performance slots).  Again, 

the remaining 12 − k groups have to 

perform at least twice, yielding 2(12 − k) 

≤ 3(7 − k), which implies k ≤ −3, 

contradiction. 
 

Commended solvers:  Anna Ying PUN 

(STFA Leung Kau Kui College, Form 7) 

and Raúl A. SIMON (Santiago, 

Chile). 

 

Comments:  This was a problem in the 

1994 Chinese IMO team training tests.  

In the Chinese literature, there is a 

solution using the famous Sperner’s 

theorem which asserts that for a set 

with n elements, the number of subsets 

so  that  no  two  with  one contains the   

other is at most   
[ ]⎟⎟⎠

⎞
⎜⎜
⎝

⎛
2/n

n .  We  hope  to  

 
present this solution in a future article. 
 

 

 

Olympiad Corner 

(continued from page 1) 

 

Day 2 (July 13, 2006) 

 

Problem 4.  Determine all pairs (x,y) 

of integers such that  
 

1 + 2x + 22x+1 = y2. 

 

Problem 5.  Let P(x) be a polynomial 

of degree n > 1 with integer 

coefficients and let k be a positive 

integer.  Consider the polynomial Q(x) 

= P ( P ( ⋯ P ( P (x) ) ⋯ ) ), where P 

occurs k times.  Prove that there are at 

most n integers t such that Q(t) = t. 

 

Problem 6.  Assign to each side b of a 

convex polygon P the maximum area 

of a triangle that has b as a side and is 

contained in P.  Show that the sum of 

the areas assigned to the sides of P is at 

least twice the area of P.  
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Pole and Polar 
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Olympiad Corner 
 
The 9th China Hong Kong Math 

Olympiad was held on Dec. 2, 2006. 

The following were the problems. 
 
Problem 1.   Let M  be a subset of    
{1, 2, …, 2006} with the following 
property:  For any three elements x, y 
and z (x < y < z) of M, x + y does not 
divide z.  Determine the largest possible 
size of M.  Justify your claim. 
 
Problem 2.  For a positive integer k, let 
f1(k) be the square of the sum of the 
digits of k. (For example f1(123) = 
(1+2+3)2 = 36.)  Let fn+1(k) = f1(fn(k)).  
Determine the value of f2007(2

2006). 
Justify your claim. 

 
Problem 3.  A convex quadrilateral 

ABCD with AC ≠ BD is inscribed in a 

circle with center O.  Let E be the 

intersection of diagonals AC and BD.  If 

P is a point inside ABCD such that  

,90o=∠+∠=∠+∠ PDCPBCPCBPAB

prove that O, P and E are collinear. 
 
Problem 4.  Let a1, a2, a3,… be a 

sequence of positive numbers.  If there 

exists a positive number M such that for 

every n = 1, 2, 3, …,  
2 2 2 2

1 2 1... ,n na a a M a ++ + + <  

then prove that there exists a positive 
number M’ such that for every n = 1, 2, 
3, …,  

1 2 1... ' .n na a a M a ++ + + <  
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     Let C be a circle with center O and 

radius r.  Recall the inversion with 

respect to C (see Mathematical 

Excalibur, vol. 9, no. 2, p.1) sends every 

point P≠O in the same plane as C to the 

image point P’ on the ray OP such that 

OP·OP’=r2.  The polar of P is the line p 

perpendicular to the line OP at P’. 

Conversely, for any line p not passing 

through O, the pole of p is the point P 

whose polar is p.  The function sending 

P to p is called the pole-polar 

transformation (or reciprocation) with 

respect to O and r (or with respect to C).

 

p

r

O
P

X

Y

P'

 
 
Following are some useful facts: 
 
(1)  If P is outside C, then recall P’ is 

found by drawing tangents from P to C, 

say tangent at X and Y.  Then P’ = OP 

∩XY, where ∩ denotes intersection. By 

symmetry, OP⊥XY.  So the polar p of P 

is the line XY.  
 
Conversely, for distinct points X, Y on 

C, the pole of the line XY is the 

intersection of the tangents at X and Y. 

Also, it is the point P on the 

perpendicular bisector of XY such that 

O, X, P, Y are concyclic since ∠OXP = 

90°=∠OYP.  
 
(2)  (La Hire’s Theorem)  Let x and y 

be the polars of X and Y, respectively. 

Then X is on line y ⇔ Y is on line x. 
 
Proof.  Let X’, Y’ be the images of X, Y 

for the inversion with respect to C. 

Then OX·OX’ = r2 = OY·OY’ implies X, 

X’, Y, Y’ are concyclic.  Now  

       X is on y ⇔∠ XY’Y = 90° 

                     ⇔∠ XX’Y = 90° 

                 ⇔ Y is on x. 

(3)  Let x,y,z be the polars of distinct 

points X,Y,Z respectively.  Then Z = 

x∩y ⇔ z = XY. 
 
Proof.  By La Hire’s theorem, Z on x∩y 

⇔ X on z and Y on z ⇔ z = XY.    
 
(4)  Let W, X, Y, Z be on C.  The polar p 

of P = XY∩WZ is the line through Q = 

WX∩ZY and R = XZ∩YW. 
 
Proof.  Let S, T be the poles of s = XY, t 

= WZ respectively.  Then P = s∩t.  By 

fact (3), S = x∩y, T = w∩z and p = ST.  

For hexagon WXXZYY, we have  
 
Q=WX∩ZY,   S=XX∩YY,   R=XZ∩YW, 
 
where XX denotes the tangent line at X.  

By Pascal’s theorem (see Mathematical 

Excalibur, vol. 10, no. 3, p.1), Q,S,R are 

collinear.  Similarly, considering the 

hexagon XWWYZZ, we see Q,T,R are 

collinear.  Therefore, p = ST = QR. 
 

Next we will present some examples 

using the pole-polar transformation. 
 
Example 1.  Let UV be a diameter of a 

semicircle.  P,Q are two points on the 

semicircle with UP<UQ.  The tangents 

to the semicircle at P and Q meet at R. 

If S=UP∩VQ, then prove that RS⊥UV.
 

VUK

Q

P

S

R

 
Solution (due to CHENG Kei Tsi).  Let 

K=PQ∩UV.  With respect to the circle, 

by fact (4), the polar of K passes through 

UP∩VQ=S.  Since the tangents to the 

semicircle at P and Q meet at R, by fact 

(1), the polar of R is PQ.  Since K is on 

line PQ, which is the polar of R, by La 

Hire’s theorem, R is on the polar of K. 

So the polar of K is the line RS. As K is 

on the diameter UV extended, by the 

definition of polar, we get RS⊥UV.  
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Example 2.  Quadrilateral ABCD has 

an inscribed circle Γ with sides AB, BC, 

CD, DA tangent to Γ at G, H, K, L 

respectively.  Let AB∩CD =E, AD∩BC 

= F and GK∩HL = P.  If O is the center 

of Γ, then prove that OP⊥EF. 

O

A

B

F

D

E

H

L

K

G

P

C

 

Solution. Consider the pole-polar 

transformation with respect to the 

inscribed circle.  By fact (1), the polars 

of E, F are lines GK, HL respectively. 

Since GK∩HL = P, by fact (3), the 

polar of P is line EF.  By the definition 

of polar, we get OP⊥EF. 
 

Example 3.  (1997 Chinese Math 

Olympiad)  Let ABCD be a cyclic 

quadrilateral.  Let AB∩CD = P and 

AD∩BC = Q.  Let the tangents from Q 

meet the circumcircle of ABCD at E 

and F.  Prove that P, E, F are collinear. 

A

B

C

D

P

QF

E

 

Solution.  Consider the pole-polar 

transformation with respect to the 

circumcircle of ABCD.  Since P = 

AB∩CD, by fact (4), the polar of P 

passes through AD∩BC = Q.  By La 

Hire’s theorem, P is on the polar of Q, 

which by fact (1), is the line EF. 
 

Example 4.  (1998 Austrian-Polish 

Math Olympiad)  Distinct points A, B, 

C, D, E, F lie on a circle in that order. 

The tangents to the circle at the points 

A and D, the lines BF and CE are 

concurrent. Prove that the lines AD, BC, 

EF are either parallel or concurrent. 
 

O

D

X

A
B

C

F

E

 

 

Solution.  Let O be the center of the circle 

and X = AA∩DD∩BF∩CE.  
 
If BC||EF, then by symmetry, lines BC and 

EF are perpendicular to line OX.  Since 

AD⊥OX, we get  BC||EF||AD. 
 
If lines BC, EF intersect, then by fact (4), 

the polar of X = CE∩BF passes through 

BC∩EF.  Since the tangents at A and D 

intersect at X, by fact (1), the polar of X is 

line AD.  Therefore, AD, BC and EF are 

concurrent in this case.  

 

Example 5.  (2006 China Western Math 

Olympiad)  As in the figure below, AB is a 

diameter of a circle with center O.  C is a 

point on AB extended.  A line through C 

cuts the circle with center O at D, E. OF is 

a diameter of the circumcircle of ∆BOD 

with center O1.  Line CF intersect the 

circumcircle again at G.  Prove that 

O,A,E,G are concyclic. 

OA C

E
D

B
O1

F
G

 

Solution (due to WONG Chiu Wai).  Let 

AE∩BD=P.  By fact (4), the polar of P 

with respect to the circle having center O 

is the line through BA∩DE = C and 

AD∩EB = H.  Then OP⊥CH.  Let Q = 

OP∩CH. 

Q

OA C

E

D

B
O1

F
G

P

H

 
We claim Q = G.  Once this shown, we 

will have P = BD ∩ OG.  Then PE·PA = 

PD·PB = PG·PO, which implies O, A, E, 

G are concyclic.  
 
To show Q = G, note that ∠ PQH, 

∠ PDH and ∠ PEH are 90°, which 

implies P, E, Q, H, D are concyclic.  Then 
∠ PQD = ∠ PED = ∠ DBO, which 

implies Q, D, B, O are concyclic.  

Therefore, Q = G since they are both the 

point of intersection (other than O) of the 

circumcircle of ∆BOD and the circle with 

diameter OC.  
 

Example 6.  (2006 China Hong Kong 

Math Olympiad) A convex 

quadrilateral ABCD with AC ≠ BD is 

inscribed in a circle with center O.  Let 

E be the intersection of diagonals AC 

and BD.  If P is a point inside ABCD 

such that  

,90o=∠+∠=∠+∠ PDCPBCPCBPAB

prove that O, P and E are collinear. 

P

O

A
B

C

DE

O1 O2

 

Solution (due to WONG Chiu Wai). 

Let Γ, Γ1, Γ2 be the circumcircles of 

quadrilateral ABCD, ∆PAC, ∆PBD 

with centers O, O1, O2 respectively.  

We first show that the polar of O1 with 

respect to Γ is line AC.  Since OO1 is 

the perpendicular bisector of AC, by 

fact (1), all we need to show is that 
  

∠ AOC +∠ AO1C = 180°. 
 

For this, note  

 

     ∠ APC  

    = 360°− (∠ PAB +∠ PCB+∠ ABC)  

    = 270°−∠ ABC  

    = 90° +∠ ADC   

 

and so 
 
     ∠ AO1C =2(180°−∠ APC) 

                      =2(90°−∠ ADC) 

                      =180°−2∠ ADC 

                      =180°−∠ AOC. 
 
Similarly, the polar of O2 with respect 

to Γ is line BD.  By fact (3), since E = 

AC∩BD, the polar of E with respect to 

Γ is line O1O2.  So OE⊥O1O2. 
 

(Next we will consider radical axis and 

radical center, see Mathematical 

Excalibur, vol. 4, no. 3, p. 2.)  Among 

Γ, Γ1, Γ2, two of the pairwise radical 

axes are lines AC and BD.  This implies 

E is the radical center.  Since Γ1, Γ2 

intersect at P, so PE is the radical axis 

of Γ1, Γ2, which implies PE⊥O1O2. 

Combining with OE⊥O1O2 proved 

above, we see O, P and E are collinear. 
 

(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is January 25, 

2007. 

 

Problem 261.  Prove that among any 

13 consecutive positive integers, one of 

them has sum of its digits (in base 10) 

divisible by 7. 
 

Problem 262.  Let O be the center of 

the circumcircle of ∆ABC and let AD 

be a diameter.  Let the tangent at D to 

the circumcircle intersect line BC at P. 

Let line PO intersect lines AC, AB at M, 

N respectively.  Prove that OM = ON. 
 
Problem 263.  For positive integers m, 
n, consider a (2m+1)×(2n+1) table, 
where in each cell, there is exactly one 
ant.  At a certain moment, every ant 
moves to a horizontal or vertical 
neighboring cell.  Prove that after that 
moment, there exists a cell with no ant.  
 
Problem 264.  For a prime number p > 

3 and arbitrary integers a, b, prove that 
pp baab −  is divisible by 6p. 

 
Problem 265.  Determine (with proof) 
the maximum of  

∑
=

−
n

j

jj xx
1

54 )( , 

where x1, x2, …, xn are nonnegative real 

numbers whose sum is 1. 

 

 

***************** 

Solutions 

**************** 
 

Problem 256.  Show that there is a 

rational number q such that 
 

.1090sin89sin2sin1sin q=oooo L  

 
Solution 1. Jeff CHEN (Virginia, USA),  
Koyrtis G. CHRYSSOSTOMOS 
(Larissa, Greece, teacher), G.R.A. 20 
Math Problem Group (Roma, Italy) and 
D. Kipp JOHNSON (Valley Catholic 
School, Teacher, Beaverton, Oregon, 
USA). 

Let .180/2 ie πω =   Then  
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Solution 2.  Jeff CHEN (Virginia, USA), 
Koyrtis G. CHRYSSOSTOMOS 
(Larissa, Greece, teacher). 

Let S be the left-handed side.  Note 

θθθθθ 2sincos2cossin3sin +=     

          

).60sin()60sin(sin4
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So,  .
4

3sin
)60sin()60sin(sin

θθθθ =+− oo  

Using this, we have 
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Problem 257.  Let n > 1 be an integer. 

Prove that there is a unique positive 

integer A < n2 such that [n2/A] + 1 is 

divisible by n, where [x] denotes the 

greatest integer less than or equal to x.  

(Source: 1993 Jiangsu Math Contest) 
 
Solution. Jeff CHEN (Virginia, USA), 
G.R.A. 20 Math Problem Group (Roma, 
Italy) and Fai YUNG. 

We claim the unique number is A =n+1. 

If  n = 2, then 1 ≤ A < n2 = 4 and only A 

= 3 works.  If n > 2, then [n2/A]+1 

divisible by n implies 

.11
22

n
A

n

A

n
≥+⎥

⎦

⎤
⎢
⎣

⎡
≥+   This leads to 

.
1

1
1

1

2

−
++=

−
≤

n
n

n

n
A   So A ≤ n + 1. 

The case A = n + 1 works because 

.1)1(1
1

2

nn
n

n
=+−=+⎥

⎦

⎤
⎢
⎣

⎡
+

  

The case A = n does not work because 

[n2/n] + 1 = n + 1 is not divisible by n 

when n >1.  
 
For 0 < A < n, assume [n2/A]+1=kn for 

some positive integer k. This leads to 

,11
222

kn
A

n

A

n

A

n
kn =+⎥

⎦

⎤
⎢
⎣

⎡
<≤⎥

⎦

⎤
⎢
⎣

⎡
=−  

which implies n < kA ≤ (n2+A)/n < n+1. 

This is a contradiction as kA is an 

integer and cannot be strictly between 

n and n + 1.  

 

Problem 258.  (Due to Mihaiela 

Vizental and Alfred Eckstein, Arad, 

Romaina)  Show that if A, B, C are in 

the interval (0, π/2), then 
 

f (A,B,C)+f (B,C,A)+f (C,A,B) ≥ 3, 
 

where 

zyx

zyx
zyxf

sin4sin3sin2

sin2sin3sin4
),,(

++
++

= . 

 
Solution. Samuel Liló Abdalla (Brazil), 
Koyrtis G. CHRYSSOSTOMOS 
(Larissa, Greece, teacher) and Fai 
YUNG. 

 

Note 

.
sin4sin3sin2

sin6sin6sin6
1),,(

zyx

zyx
zyxf

++
++

=+

For a, b, c > 0, by the AM-HM 

inequality, we have 

( ) .9
111

≥⎟
⎠
⎞

⎜
⎝
⎛ ++++

cba
cba  

Multiplying by 
3

2 on both sides, we get 

( ) .6
111

3

2
≥⎟

⎠
⎞

⎜
⎝
⎛ ++++

cba
cba   (*) 

Let r = sin A, s = sin B, t = sin C, a = 

1/(2r + 3s + 4t), b = 1/(2s + 3t + 4r) and 
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c = 1/(2t + 3r + 4s).  Then 

.666
111

3

2
tsr

cba
++=⎟

⎠
⎞

⎜
⎝
⎛ ++  

Using (*), we get 
 

.6

432

666

432

666

432

666

3),,(),,(),,(

≥
++
++

+
++
++

+
++
++

=

+++

srt

tsr

rts

tsr

tsr

tsr

BACfACBfCBAf

 

The result follows. 

 
Problem 259.  Let AD, BE, CF be the 
altitudes of acute triangle ABC. 
Through D, draw a line parallel to line 
EF intersecting line AB at R and line 
AC at Q.  Let P be the intersection of 
lines EF and CB.  Prove that the 
circumcircle of ∆PQR passes through 
the midpoint M of side BC. 

(Source: 1994 Hubei Math Contest) 

 
Solution. Jeff CHEN (Virginia, USA). 

A

B CD

E

F

P
R

Q

M
 

Observe that 

(1)  ∠ BFC = 90° = ∠ BEC implies B, 

F, E, C concyclic; 
 
(2)  ∠ AEB = 90° = ∠ ADB implies 

A,B,D,E concyclic. 
  

By (1), we have ∠ ACB = ∠ AFE. 

From EF||QR, we get ∠ AFE = 

∠ ARQ.  So ∠ ACB = ∠ ARQ.  Then 

B, Q, R, C are concyclic.  By the 

intersecting chord theorem, 
 

         RD·QD=BD·CD          (*) 
 

Since ∠ BEC = 90° and M is the 

midpoint of BC, we get MB = ME and 

∠EBM = ∠ BEM.  Now 
 
      ∠EBM = ∠EPM + ∠ BEP 

∠ BEM = ∠DEM + ∠ BED. 
 
By (1) and (2),∠BEP = ∠ BCF = 90° 

− ∠ ABC = ∠ BAD = ∠ BED.  So 

∠ EPM = ∠ DEM.  Then right 

triangles EPM and DEM are similar. 

We have ME/MP = MD/ME and so 
 
MB2=ME2=MD·MP=MD(MD+PD) 

                   =MD2+MD·PD. 
 
Then MD·PD = MB2− MD2 

                      = (MB−MD)(MB+MD) 

                      = BD(MC+MD) 

                      = BD·CD. 

Using (*), we get RD·QD=MD·PD.  By 

the converse of the intersecting chord 

theorem, P, Q, R, M are concyclic. 
 
Commended solvers: Koyrtis G. 
CHRYSSOSTOMOS (Larissa, Greece, 
teacher). 
 
Problem 260.  In a class of 30 students, 
number the students 1, 2, …, 30 from best 
to worst ability (no two with the same 
ability).  Every student has the same 
number of friends in the class, where 
friendships are mutual.  Call a student 
good if his ability is better than more than 
half of his friends.  Determine the 
maximum possible number of good 
students in this class. 
(Source: 1998 Hubei Math Contest) 

 
Solution.  Jeff CHEN (Virginia, USA) and 
Fai YUNG. 
 

Suppose each student has m friends and n is 

the maximum number of good students. 

There are 15m pairs of friendship.  

 

For m odd, m = 2k − 1 for some positive 

integer k.  For j = 1, 2, …, k, student j has at 

least (2k−j) ≥ k > m/2 worse friends, hence 

student j is good.  For the other n − k good 

students, every one of them has at least k 

worse friends.  Then 

).12(15)()2(
1

−≤−+−∑
=

kkknjk
k

j

 

Solving for n, we get  

.26305.30
2

15
5.30 <−≤⎟

⎠
⎞

⎜
⎝
⎛ +−≤

k

k
n  

For m even, m = 2k for some positive 

integer k. For j = 1, 2, …, k, student j has at 

least (2k + 1 − j) > k = m/2 worse friends, 

hence student j is good.  For the other n − k 

good students, every one of them has at 

least k + 1 worse friends.  Then 

.215)1)(()12(
1

kkknjk
k

j

⋅≤+−+−+∑
=

 

Solving for n, we get  

.24625.31
2

1

1

31
5.31 <−≤⎟

⎠
⎞

⎜
⎝
⎛ +

+
+

−≤
k

k
n  

Therefore, n ≤ 25.  For an example of n = 25, 

in the odd case, we need to take k = 5 (so m 

= 9).  Consider the 6×5 matrix M with Mij= 

5(i − 1) + j.  For M1j, let his friends be M6j, 

M1k and M2k for all k ≠ j.  For Mij with 1 < i < 

6, let his friends be M6j, M(i−1)k and M(i+1)k 

for all k ≠ j.  For M6j, let his friends be Mij 

and M5k for all i < 6 and k ≠ j.  It is easy to 

check 1 to 25 are good. 

 

 

Pole and Polar 

(continued from page 2) 

 

Example 7.  (1998 IMO)  Let I be the 

incenter of triangle ABC.  Let the 

incircle of ABC touch the sides BC, 

CA and AB at K, L and M respectively.  

The line through B parallel to MK 

meets the lines LM and LK at R and S 

respectively.  Prove that angle RIS is 

acute. 

I

L

B

A C

M
K

R
S

B'

T
 

Solution.  Consider the pole-polar 

transformation with respect to the 

incircle.  Due to tangency, the polars 

of B, K, L, M are lines MK, BC, CA, 

AB respectively.  Observe that B is 

sent to B’ = IB∩MK under the 

inversion with respect to the incircle.  

Since B’ is on line MK, which is the 

polar of B, by La Hire’s theorem, B is 

on the polar of B’.  Since MK||RS, so 

the polar of B’ is line RS.  Since R,B,S 

are collinear, their polars concur at B’. 
 

Next, since the polars of K, L intersect 

at C and since L, K, S are collinear, 

their polars concur at C.  Then the 

polar of S is B’C.  By the definition of 

polar, we get IS⊥B’C.  By a similar 

reasoning, we also get IR⊥B’A.  Then 

∠RIS = 180° − ∠AB’C. 
 
To finish, we will show B’ is inside the 
circle with diameter AC, which 
implies ∠ AB’C > 90° and hence 
∠ RIS < 90°.  Let T be the midpoint of 
AC.  Then 
 

 ABCBTB '''2 +=                    

          )'()'( MAMBKCKB +++=  

          .MAKC +=  
 

Since KC  and MA  are nonparallel,  
 

.
222

'
ACALCLMAKC

TB =
+

=
+

<  

Therefore, B’ is inside the circle with 

diameter AC. 
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Olympiad Corner 
 
Below are the 2006 British Math 

lympiad (Round 2) problems. O
 
Problem 1.   Find the minimum possible 

value of x2 + y2 given that x and y are real 

numbers satisfying xy(x2 − y2) = x2 + y2 

nd x ≠ 0. a
 
Problem 2.  Let x and y be positive 

integers with no prime factors larger 

than 5.  Find all such x and y which 

satisfy x2 − y2 = 2k for some 

non-negative integer k. 
 

Problem 3.   Let ABC be a triangle with 

AC > AB.  The point X lies on the side 

BA extended through A, and the point Y 

lies on the side CA in such a way that BX 

= CA and CY = BA.  The line XY meets 

the perpendicular bisector of side BC at 

P.  Show that  .180o=∠+∠ BACBPC
 
Problem 4. An exam consisting of six 

questions is sat by 2006 children.  Each 

question is marked right or wrong.  Any 

three children have right answers to at 

least five of the six questions between 

them.  Let N be the total number of right 

answers achieved by all the children (i.e. 

the total number of questions solved by 

child 1 + the total solved by child 2 + ⋯ 

+ the total solved by child 2006).  Find 

the least possible value of N.  
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     Let h be a nonzero real number and 

f(x) be a function.  When f(x + h) and 

f(x) are real numbers, we call  

)()()( xfhxfxfh −+=Δ  

the  first difference of f at x with step h.  

For functions f, g and real number c, we 

have 

)()())(( xgxfxgf hhh Δ+Δ=+Δ  and 

).())(( xfcxcf hh Δ=Δ  

Also, or I f(x) stands for f(x). )(0 xfhΔ
For any integer n ≥ 1, we define the n-th 

difference by  

For example,  

).)(()( 1 xfxf n

hh

n

h

−ΔΔ=Δ

),()(2)2()(2 xfhxfhxfxfh ++−+=Δ  

).()(3)2(3)3()(3 xfhxfhxfhxfxfh −+++−+=Δ  

By induction, we can check that 

          (α) ,)()1()(
0

∑ +−=Δ
=

−n

k

k
n

knn
h khxfCxf

where  and for k > 0, 10 =nC

.
!

)1()1(

k

knnn

k

n
C k

n

+−−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

L  

(Note: for these formulas, we may even 

et n be a real number!!!) l
 
If h=1, we simply write Δ  and omit the 

subscript h.  For example, in case of a 

sequence {xn}, we have Δ xn=xn+1 − xn. 
 
Facts.(1) For function f (x), n=0,1,2,…,

;)()(
0

∑
=

Δ=+
n

k

kk

n xfCnxf  

in particular, if is a nonzero 

constant for every positive integer n, 

then ;  

)(nfmΔ

)0()(
0

∑
=

Δ=
m

k

kk

n fCnf

(2) if P(x) = axn + ⋯ is a polynomial of 

degree n, then for all x, 
nn

h hanxP !)( =Δ  and for m>n.0)( =Δ xPm

h
 
   Let k be a positive integer.  As a 

unction of x,  has the properties: f
 

k

xC

(a) (so ); k

x

k

x

k

x CCC 1

1

+
− =+ 1−=Δ k

x

k

x CC

(b) for 0 ≤ r ≤ k, ;  rk

x

k

x

r CC −=Δ

      for r > k,  ;0=Δ k

x

rC

(c) (just add 1

121

+
+=+++ k

n

k

n

kk CCCC L 01

1 =+kC  

     to the left and apply (a) repeatedly).

 

Similar to fact (1), if f(x) is a degree m 

polynomial, then  

             .           (β) )0()(
0

∑
=

Δ=
m

k

kk

x fCxf

(This is because both sides are degree 

m polynomials and from property (b), 

the k-th differences at 0 are the same 

for k = 0 to m, which implies the values 

of both sides at 0, 1, 2, …, m are the 

same.) 
 
Example 1.  Sum Sn = 14 + 24 + ⋯ + n4 

n terms of n. i
 
Solution.  Let f(x) = x4.  By (β) and (c), 

∑∑∑
= ==

Δ==
n

j k

kk

j

n

j

n fCjfS
1
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01
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0 1
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 x :                  0     1      2       3      4     

 f(x)  :             0     1     16     81   256 

:)(xfΔ            1    15    65   175 

:)(2 xfΔ         14    50  110 

:)(3 xfΔ         36    60 

:)(4 xfΔ
 

        24 

Therefore, 
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1
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1
36

3

1
14

2

1 nnnn
Sn

 
 
     = n(n+1)(2n+1)(3n2+3n−1)/30. 

Example 2.  (2000 Chinese IMO Team 

Selection Test)  Given positive integers 

k, m, n satisfying 1 ≤ k ≤ m ≤ n.  Find 
 

  ∑
= +−

++
++

−
n

i

i

imini

inm

ikn0

.
)!()!(!

)!(1
)1(  

 
Solution.  Define 

 

.
)()2)(1(

)(
kn

 

x

nmxmxmx
xg

++
+ +++++

=
L  

 
From 1 ≤ k ≤ m ≤ n, we see m + 1 ≤ n + k 

≤ m + n.   So g(x) is a polynomial of 

degree n−1.  By fact (2) and formula (α),

∑ −=Δ−=
=

n

i

i
n

inn igCg
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The required sum is (-1)n 

nΔ g(0)/n! = 0.
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Example 3. (1949 Putnam Exam)  The 

sequence x0, x1, x2, … is defined by the 

onditions x0 = a, x1 = b and for n ≥ 1, c 

,
2

)12(1
1

n

xnx
x nn

n

−+
= −

+
 

 
where a and b are given numbers. 

Express limn→∞ xn in terms of a and b. 
 
Solution.  The recurrence relation can 

be written as  

.
2

1

n

x
x n

n
−Δ

−=Δ  

Repeating this n − 2 times, we get 
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Using the fact 

,
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=
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i
x
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x
e  

we get limn→∞ xn = a + (b − a)e−1/2. 

 

Example 4.  (2004 Chinese Math 

Olympiad)  Given a positive integer c, 

let x1, x2, x3, … satisfy x1 = c and 

1
)2(2 1

1 +⎥⎦
⎤

⎢⎣
⎡ +−

+= −
−

n

nx
xx n

nn
 

for n = 2,3,…, where [x] is the greatest 

integer less than or equal to x.  Find a 

eneral formula of xn in terms of n. g
 
Solution.  First tabulate some values. 
 
               x1    x2    x3     x4     x5    x6 

  c=1        1     1     1     1     1     1 

  c=2        2     3     4     5     6     7 

  c=3        3     5     7    10   13   17 

  c=4        4     7    11   16   22   29 

  c=5        5     9    14   20   27   35 

  c=6        6    11   17   25   34   45 

  c=7        7    13   21   31   43   57   

 

Next tabulate first differences in each 

olumn. c
 
column 1:  1,1,1,1,1,1,… 

column 2:  2,2,2,2,2,2,… 

column 3:  3,3,4,3,3,4,… 

column 4:  4,5,6,4,5,6,… 

column 5:  5,7,9,5,7,9,… 

column 6:  6,10,12,6,10,12,… 

 

We suspect they are periodic with 

period 3.  Let x(c,n) be the value of xn 

for the sequence with x1 = c.  For rows 

1 and 2, the first differences seem to be 

constant and for row 4, the second 

differences seem to be constant.  Using 

act (1) and induction, we get 

Since a ≥ 3, we get 2n+1 ≥ 1+Δn f(0).  

Assume |ak−g(k)| < 1 for k = 0,1,…, 

n+1.  Then  

f
 

      x(1,n) = 1,   x(2 n) = n + 1         (i) ,
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1

0
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knn kgaCf  and x(4,n) = (n2+3n+4)/2 for all n. Now 
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To check the column difference 

eriodicity, we claim that for a fixed c,  p
 which is a contradiction. 

 
x(c + 3, n) = x(c, n) + (n + 1)(n + 2)/2. 

Example 6.  (1984 USAMO)  Let P(x) 

e a polynomial of degree 3n such that 

 
If n = 1, then x(c + 3,1) = c + 3 = x(c,1) + 3 

and so case n = 1 is true.  Suppose the case 

n−1 is true.  By the recurrence relation, 

x(c+3,n) equals 

b
 
       P(0) = P(3) = ⋯ = P(3n) = 2,     

       P(1) = P(4) = ⋯ = P(3n−2) = 1, 

 
 
      P(2) = P(5) = ⋯ = P(3n−1) = 0.  

.1
)2()1,3(2

)1,3( +⎥⎦
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⎡ +−−+

+−+
n

nncx
ncx  

f P(3n + 1), then find n.  I
 
Solution.

From the case n − 1, we get x(c + 3, n − 1) 

= x(c, n − 1) + n(n + 1)/2.  Using this, the 

displayed expression simplifies to 

  By fact (2) and (α), 
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which is x(c, n) + (n + 1)(n + 2)/2 by the 

recurrence relation.  This completes the 

induction for the claim.  

We can write this as 2a+b = −36, where 

,   . )1(
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Now the claim implies 

To find a and b, we consider the cube 

root of unity ω=e2πi/3, the binomial 

expansion of f(x) = (1−x)3n+1 and let 

,
2

)2)(1(

3
),(),(
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⎟
⎠
⎞

⎜
⎝
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nndc

ndxncx      (ii) 

where d = 1,2 or 3 subject to c ≡ d(mod 3). 

Since x(1,n) and x(2,n) are known, all we 

need to find is x(3,n). 
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 Now 0 = f(1)=b−a−c, f(ω)= b−aω−cω2 
For the case c = 3, studying x1,x3,x5,… and 

x2,x4,x6,… separately, we can see that the 

second differences of these sequences 

seem to be constant.  Using fact (1) and 

nduction, we get 

a
 
nd f(ω2)= b−aω2−cω.  Solving, we see 

       a  = − ( f(1) + ω2f(ω) + ωf(ω2) )/3 

          ( ) π
6

13
cos32

13 −
=

− nn
 

i
 
x(3,n) = (n2+4n+7)/4 if n is odd and and  b = ( f(1) + f(ω) + f(ω2) )/3 
 x(3,n) = (n2+4n+8)/4 if n is even.     (iii) 

 
          ( ) .

6

13
cos32

13

π+
=

− nn
 Formula (ii) along with formulas (i) and 

(iii) provided the required answer for the 

problem. 

  

Example 5.  Let g(x) be a polynomial of 

degree n with real coefficients.  If a ≥ 3, 

then prove that one of the numbers           

|1 − g(0)|, |a − g(1)|, |a2 − g(2)|, … , |an+1 − 

g(n+1)| is at least 1. 

  

Studying the equation 2a + b = −36, we 

find that it has no solution when n is 

odd and one solution when n is even, 

namely when n = 4. 
 
Example 7.  (1980 Putnam Exam)  For 

which real numbers a does the 

sequence defined by the initial 

condition u0=a and the recursion 

un+1=2un−n2 have un>0 for all n ≥ 0? 

  
Solution.  Let f(x) = ax − g(x).  We have  
 
          Δax = ax+1−ax = (a−1)ax,  

Solution.  Among all sequences 

satisfying un+1 = 2un−n2 for all n ≥ 0, the 

difference vn of any two such 

sequences will satisfy vn+1 = 2vn for all 

n ≥ 0.  Then vn=2nv0 for all n ≥ 0. 

         ax = (a−1)2Δ Δax = (a−1)2ax,  

           …,  

 
 
        ax = (a−1)n+1ax. 1+Δn

n particular, 1+Δn a0 = (a−1)n+1. Now I
 
   f(0)=1+Δn 1+Δn a0 − 1+Δn g(0) = (a−1)n+1.  (continued on page 4) 
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h 

P

?  Give a proof. 

Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is March 25, 

2007. 

 

Problem 266.  Let 
 

N = 1+10+10
2+⋯+101997. 

 
Determine the 1000th digit after the 

decimal point of the square root of N in 

base 10. 
 

Problem 267.  For any integer a, set 
 

na = 101a − 100·2a. 
 

S
 

how that for 0 ≤ a, b, c, d ≤ 99, if 

na + nb ≡  nc+ n  (mod 10100), d 
 

then {a,b} = {c,d}. 
 
Problem 268.  In triangle ABC, 

ABC = ACB = 40˚.  Points P and 

Q are inside the triangle suc that 

∠ AB = ∠ QAC = 20˚ and ∠ PCB 

= ∠ QCA = 10˚.  Must B, P, Q be 

collinear

∠ ∠

 

Problem 269.  Let f(x) be a polynomial 

with integer coefficients.  Define a 

sequence a0, a1, … of integers such that 

a0 = 0, an+1 = f (an) for all n ≥ 0.  Prove 

that if there exists a positive integer m 

for which am = 0, then either a1 = 0 or 

a2 = 0. 

 

Problem 270.  The distance between 

any two of the points A, B, C, D on a 

plane is at most 1.  Find the minimum 

of the radius of a circle that can cover 

these four points.  

 

***************** 

Solutions 

**************** 
 

Problem 261.  Prove that among any 

13 consecutive positive integers, one of 

them has sum of its digits (in base 10) 

divisible by 7. 
 
Solution. Jeff CHEN (Virginia, USA), 

CHEUNG Wang Chi (Raffles Junior 

College, Singapore), G.R.A. 20 Math 

Problem Group (Roma, Italy), Naoki S. D. 

LING, Anna Ying PUN (HKU, Math, 

Year 1), Simon YAU Chi Keung, YIM 

Wing Yin (HKU, Year 1) and Fai YUNG. 

O

A

D

P P'

C

B

N M

 

 
Consider the tens digits of the 13 

consecutive positive integers.  By the 

pigeonhole principle, there are at least 

[13/2] + 1 = 7 of them with the same tens 

digit.  The sums of digits for these 7 

numbers are consecutive.  Hence, one of 

the sums of digits is divisible by 7. 

The equation of the circumcircle as a 

conic section is of the form x2+y2−r2=0. 

The equation of the pair of lines AP’ 

and BC as a (degenerate) conic section 

is  

( )( ) ,0)()( =−−+− pxnypxmy   

Problem 262.  Let O be the center of the 

circumcircle of ∆ABC and let AD be a 

diameter.  Let the tangent at D to the 

circumcircle intersect line BC at P.  Let 

line PO intersect lines AC, AB at M, N 

respectively.  Prove that OM=ON. 

where m is the slope of line AP’ and n 

is the slope of line BC.  Since these two 

conic sections intersect at A, B, C, so 

the equation of the pair of lines AB and 

AC as a (degenerate) conic section is of 

he form t
  

Solution 1.  Jeff CHEN (Virginia, USA). ( )( ),)()(222 pxnypxmyryx −−+−=−+ λ  

       

O

D

A

B

C

P

M

N

Q

R

L

 

for some real number λ.  When we set y 

= 0, we see the x-coordinates of M and 

N satisfies x2 −r2 = λmn(x2 − p2), whose 

roots are some positive number and its 

negative.  Therefore, OM = ON.  
 
Commended solvers: Courtis G. 
CHRYSSOSTOMOS (Larissa, 
Greece, teacher) and Anna Ying PUN 
(HKU, Math, Year 1).  

 
We may assume B is between P and C 

(otherwise interchange B and C, then N 

and M).  Through C, draw a line parallel to 

line MN and intersect line AN at Q.  Let 

line AO intersect line CQ at R.  Since 

MN||CQ, triangles AMN and ACQ are 

similar.  To show OM = ON, it suffices to 

show RC = RQ. 

Problem 263.  For positive integers m, 
n, consider a (2m+1)×(2n+1) table, 
where in each cell, there is exactly one 
ant.  At a certain moment, every ant 
moves to a horizontal or vertical 
neighboring cell.  Prove that after that 
moment, there exists a cell with no ant. 
 
Solution.  Jeff CHEN (Virginia, USA), 

CHEUNG Wang Chi (Raffles Junior 

College, Singapore), G.R.A. 20 Math 

Problem Group (Roma, Italy), Naoki S. 

D. LING, Anna Ying PUN (HKU, 

Math, Year 1), YIM Wing Yin (HKU, 

Year 1) and Fai YUNG. 

 

Let L be the midpoint of BC.  We will 

show LR || BQ (which implies RC = RQ). 

 

Now ∠ OLP =∠ OLB = 90˚ =∠ ODP, 

which implies O, P, D, L are concyclic. 

Then ∠ODL = ∠OPL.  From OP || RC, 

we get ∠ RDL =∠ RCL, which implies 

L,R,D,C are concyclic.  Then 

 

Assign the value (−1)i+j to the cell in 

the i-th row, j-th column of the table.  

Then two horizontal or vertical 

neighboring cells will have values of 

opposite sign.  Since 2m+1 and 2n+1 

are odd, there is exactly one more cell 

with negative values than cells with 

positive values.  Before the moment, 

there is one more ant in cells with 

negative values than ants in cells with 

positive values.  After the moment, two 

of the ants from cells with negative 

values will occupy a common cell with 

a positive value.  Then there exists a 

cell with no ant. 

 
∠RLC =180˚−∠RDC = 180˚−∠ADC 

               = 180˚−∠ABC = ∠QBC.  
 
Therefore, LR || BQ as claimed. 

 

Solution 2.  CHEUNG Wang Chi 

(Raffles Junior College, Singapore). 

 

Set O as the origin and line MN as the 

x-axis.  

 

Let P’ be the reflection of P with respect 

to O.  Then the coordinates of P and P’ are 

of the form (p,0) and (−p,0).   
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( ) ),,,(0,,0,1 21 nxxx KfK−  Problem 264.  For a prime number p > 

3 and arbitrary integers a, b, prove that 

 is divisible by 6p. pp baab − by the majorization inequality,  

 

).1()()( 11

1

xfxfxf
n

i

i −+≤∑
=

 Solution.  Samuel Liló ABDALLA 
(São Paulo, Brazil), Claudio 
ARCONCHER (Jundiaí, Brazil), Jeff 
CHEN (Virginia, USA), CHEUNG 
Wang Chi (Raffles Junior College, 
Singapore), G.R.A. 20 Math Problem 
Group (Roma, Italy), HO Ka Fai 
(Carmel Divine Grace Foundation 
Secondary School, Form 6), D. Kipp 
JOHNSON (Valley Catholic School, 
Teacher, Beaverton, Oregon, USA), 
Anna Ying PUN (HKU, Math, Year 1), 
Simon YAU Chi Keung, YIM Wing 
Yin (HKU, Year 1) and Fai YUNG. 

Thus the problem is reduced to the case n 

= 2.  So now consider nonnegative a, b 

with a + b = 1.  We have 
 

f(a) + f(b) = a4(1−a) + b4(1−b) 

                        = a4b+b4a = ab(a3+b3) 

 

Observe that 

)].1()1[( 11 −−−=− −− pppp ababbaab  

For q = 2, 3 or p, if a or b is divisible by 

q, then the right side is divisible by q.  

 

Otherwise, a and b are relatively prime 

to q.  Now p − 1 is divisible by q − 1, 

which is 1, 2 or p − 1.  By Fermat’s 

little theorem, both ≡ 1 (mod 

q).  So ≡ 1 (mod q).  Hence, the 

bracket factor above is divisible by q. 

Thus  is divisible by 2, 3 and 

p.  Therefore, it is divisible by 6p. 

11, −− qq ba
11, −− pp ba

pp baab −

 
 
Problem 265.  Determine (with proof) 
the maximum of  

∑
=

−
n

j

jj xx
1

54 )( , 

where x1, x2, …, xn are nonnegative real 
numbers whose sum is 1. 
(Source: 1999 Chinese IMO Team 
Selection Test) 

 

Solution.  Jeff CHEN (Virginia, USA), 

D. Kipp JOHNSON (Valley Catholic 

School, Teacher, Beaverton, Oregon, 

USA), Anna Ying PUN (HKU, Math, 

Year 1) and YIM Wing Yin (HKU, 

Year 1). 
 

Let f ( x ) = x4 − x5 = x4 (1 − x).  Since 

, we see that f(x) 

is strictly convex on [0, 3/5].  Suppose 

n ≥ 3.  Without loss of generality, we 

may assume x1≥ x2≥ ⋯ ≥ xn.  If x1 ≤ 3/5, 

then since 

)53(4)( 2 xxxf −=′′

),,,,(0,,0,
5

2
,

5

3
21 nxxx LfL ⎟

⎠
⎞

⎜
⎝
⎛  

by the majorization inequality (see 

Math Excalibur, vol. 5, no. 5, pp. 2,4),  

).
5
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5
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1

ffxf
n

i
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If x1 > 3/5, then 1 − x1, x2, …, xn are in 

[0, 2/5].  Since  

                        = ab[(a+b)3−3ab(a+b)] 

                        = 3ab(1−3ab)/3 

 
 
                       ≤ 1/12 

by the AM-GM inequality.  Equality case 

holds when ab = 1/6 in addition to a + b = 

1, for example when 
 

).
6

33
,

6

33
(),(

−+
=ba  

Therefore, the maximum is 1/12. 
 
 

 

 

Difference Operator 

(continued from page 2) 

 

Next we look for a particular solution of 

un+1 = 2un−n2 for all n ≥ 0.  Observe that n2 

= un − (un+1 − un) = (I −Δ )un.  From the 

sum of geometric series, we guess 
 

2221 )()( nInIun L+Δ+Δ+=Δ−= −  

 
        = n2+(2n+1)+2= n2+2n+3 
 
should work.   Indeed,  this  is  true since  

(n + 1)2 + 2(n + 1) + 3 = 2(n2 + 2n + 3) − n2. 

 

Combining, we see that the general 

solution to un+1 = 2un − n2 for all n ≥ 0 is 

   un = n2 + 2n + 3 + 2nv0 for any real v0.  

Finally, to have u0 = a, we must choose v0 

= a − 3. Hence, the sequence we seek is 
 
   un =  n2+2n+3+2n(a−3)  for all n ≥ 0. 

Since       ,
32

2
lim

2
+∞=

++∞→ nn

n

n

 

un will be negative for large n if a − 3 < 0. 

Conversely, if a − 3 ≥ 0, then all un  > 0. 

Therefore, the answer is a ≥ 3. 

 

Example 8.  (1971 Putnam Exam)  Let c 

be a real number such that nc is an integer 

for every positive integer n.  Show that c is 

a non-negative integer. 

 

Solution.  2c is an integer implies c ≥ 0.  
 
Next we will do the case c is between 0 

and 1 using the mean value theorem.  This 

motivates and clarifies the general 

argument for the case c ≥ 1.  Assume     

0 ≤ c < 1.  Then choose a positive 

integer n > c1/(1−c).  Applying the mean 

value theorem to f(x) = xc on [n, n + 1], 

we know there exists a number w 

between n and n + 1 such that  = 

(n+1)c − nc = cwc−1.  On the left side, we 

have an integer, but on the right side, 

since w > n > c1/(1−c), we have 0 ≤ cwc−1 

< 1.  Hence, c = 0. 

cnΔ

 

For c ≥ 1, let us mention there is an 

extension of the mean value theorem, 

which asserts that if f is continuous on 

[a,b], k-times differentiable on (a,b),    

0<h ≤ (b−a)/k and x + kh ≤ b, then there 

exists a number v such that a < v < b 

and  

).(
)( )( vf

h

xf k

k

k

h =
Δ  

Taking this for the moment, we will 

finish the argument as follows. Let k be 

the integer such that k−1≤ c < k. 

Choose an integer n so large that 
 

c(c−1)(c−2)⋯(c−k+1)nc−k < 1. 
 
Applying the extension of the mean 

value theorem mentioned above to f(x) 

= xc on [n, n + k], there is a number v 

between n and n + k such that  
 

. )1()2)(1( kcck vkccccn −+−−−=Δ L
 
Again, the left side is an integer, but the 

right side is in the interval [0, 1). 

Therefore, both sides are 0 and c = k−1.  

 

Now the extension of the mean value 

theorem can be proved by doing math 

induction on k.  The case k = 1 is the 

mean value theorem.  Next, suppose 

the extension is true for the case k−1. 

et 0<h ≤(b−a)/k.  On [a,b−h], define L  

.
)()()(

)(
h

xfhxf

h

xf
xg h −+

=
Δ

=  

Applying the case k−1 to g(x), we 

know there exists a number v0 such that 

a < v0 < b−h and  

).(
)()(

0

)1(

1

1
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h

xg

h

xf k

k

k
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k

k
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−

=
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=
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By the mean value theorem, there 

exists h0 such that 0 < h0 < h and 

h

vfhvf
vg

kk
k )()(

)( 0

)1(

0

)1(

0

)1(
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− −+
=         

              ).( 00

)( hvf k +=

Finally, v = v0 + h0 is between a and b. 
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Olympiad Corner 
 
Below are the 2007 Asia Pacific Math 

Olympiad problems. 
 
Problem 1.  Let S be a set of 9 distinct 

integers all of whose prime factors are at 

most 3.  Prove that S contains 3 distinct 

integers such that their product is a 

perfect cube.  
 
Problem 2.  Let ABC be an acute angled 

triangle with o60=∠BAC and AB > AC. 

Let I be the incenter, and H be the 

orthocenter of the triangle ABC.  Prove 

that .32 ABCAHI ∠=∠  
 

Problem 3.  Consider n disks C1, C2, ⋯, 

Cn in a plane such that for each 1 ≤ i < n, 

the center Ci is on the circumference of 

Ci+1, and the center of Cn is on the 

circumference of C1.  Define the score of 

such an arrangement of n disks to be the 

number of pairs (i, j) for which Ci 

properly contains Cj.  Determine the 

maximum possible score.   
 
Problem 4.  Let x, y and z be positive 

real numbers such that zyx ++  = 

1.  Prove that  
 

.1
)(2)(2)(2 2

2

2

2

2

2

≥
+

+
+

+

+
+
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yxz

xyz

xzy
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Geometry is the science of 

correct reasoning on 

incorrect figures. 

 

If you can’t solve a problem, 

then there is an easier 

problem you can solve, find 

it. 

George Pölya

幾何是：在靜止中看出動態，從變幻
中覓得永恆 

數學愛好者，強
 
Example 1.  In the figure below, C is a 

point on AE.  ΔABC and ΔCDE are 

equilateral triangles.  F and G are the 

midpoints of BC and DE respectively.  If 

the area of ΔABC is 24 cm2, the area of 

ΔCDE is 60 cm2, find the area of ΔAFG.

 
Idea and solution outline: 

This question is easy enough and can be 

solved by many different approaches. 

One of them is to recognize that the 

extensions of AF and CG are parallel. 

(Why? At what angles do they intersect 

line AE?)  Thus [AFC] = [AFG]. 

 

Example 2.  In ΔABC, AB = AC.  A 

point P on the plane satisfies ∠ABP = 

∠ACP.  Show that P is either on BC or 

on the perpendicular bisector of BC. 

 

Solution: 

Apply the sine law to ΔABP and ΔACP, 

we have  
    
         sin ∠APB 

=
AB sin∠ABP

AP
=

AC sin∠ACP

AP
 

      = sin ∠APC.

 

Thus, either ∠APB = ∠APC or ∠APB +

∠APC = 180o.  The first case implies 

ΔABP ≅ ΔACP, so BP = CP and P lies 

on the perpendicular bisector of BC. 

The second case implies P lies on BC. 

 

Example 3.[Tournament of Towns1993]

Vertices A, B and C of a triangle are 

connected to points A′, B′ and C′ lying 

in their respective opposite sides of the 

triangle (not at vertices).  Can the 

midpoints of the segments AA′, BB′ and 

CC′ lie in a straight line? 

 

 

Solution outline: 

Let D, E and F be midpoints of BC, AC, 

and AB respectively.  Given any point A′ 
on BC, let AA′ intersect EF at A′′.  Then 

it is easy to see that A′′ is indeed the 

midpoint of AA′.  
 

Therefore, the midpoints of the 

segments AA′, BB′ and CC′ lie 

respectively on EF, DF and DE, and 

cannot be collinear. 

 

Example 4.  [Tournament of Towns 

1993]  Three angles of a non-convex, 

non-self-intersecting quadrilateral are 

equal to 45 degrees (i.e. the last equals 

225 degrees).  Prove that the midpoints 

of its sides are vertices of a square. 
 

Idea: 

Do you know a similar, but easier 

problem?  For example, the famous 

Varignon Theorem: By joining the 

midpoints of the sides of an arbitrary 

quadrilateral, a parallelogram is formed. 

G
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Solution outline: 

Extend BC to cut AD at O.  Then ΔOAB 

and ΔOCD are both isosceles 

right-angled triangle.  It follows that a 

90o rotation about O will map A into B 

and C into D, so that AC = BD and they 

are perpendicular to each other. 

 

Example 5.  [Tournament of Towns 

1994]  Two circles intersect at the 

points A and B.  Tangent lines drawn to 

both of the circles at the point A 

intersect the circles at the points M and 

N.  The lines BM and BN intersect the 

circles once more at the points P and Q 

respectively.  Prove that the segments 

MP and NQ are equal. 

 

Idea: 

MP and NQ are sides of the triangles 

ΔAQN and ΔAMP respectively, so it is 

natural for us to prove that the two 

triangles are congruent.  It is easy to 

observe that the two triangles are 

similar, so what remains to prove is 

either AQ = AM or AP = AN.  Note that 

we can transmit the information 

between the two circles by using the 

theorem on alternate segment at A. 

 

Solution outline: 

(1) Observe that ΔAQN ∼ ΔAMP. 

(2) AP = AN follows from computing 

    ∠APN  = ∠APB + ∠BPN  

  =∠ANB+∠BAN[∠s in same segment] 

  = ∠ANB + ∠AQN  [∠ in alt. segment] 

  = 180o − ∠QAN  

 = 180o − ∠MAP  [by step (1)] 

 = ∠AMB + ∠APB  

 = ∠AMB + ∠MAB [∠ in alt. segment] 

 = ∠ABP  [ext. ∠ of Δ] 

 = ∠ANP  [∠s in the same segment]. 

Example 6.  ABCD is a trapezium with 

AD // BC.  It is known that BC = BD = 1, 

AB = AC, CD < 1 and ∠BAC + ∠BDC = 

180o, find CD. 

 

Idea:  

The condition ∠BAC + ∠BDC = 180o 

leads us to consider a cyclic quadrilateral.  

If we reflect ΔBDC across BC, a cyclic 

quadrilateral is formed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution outline: 

(1) Let E be the reflection of D across BC. 
 
(2) ∠BAC + ∠BDC = 180o  

           ⇒ ∠BAC + ∠BEC = 180o  

           ⇒ ABEC is cyclic, 
 
    AD // BC ⇒ AF = FE, 
 
    AB = AC ⇒ ∠BEF = ∠FEC   

                   ⇒ EC
BE

EC

BF

FC
== . 

 

(3) Let AF = FE = m, AB = AC = n and DC 

= EC = x.  It follows from Ptolemy’s 

theorem that AE×BC = AC×BE + AB×EC, 

i.e. 2m = n (1 + x).  Now 

 

BF

FCBF

BF

BC

BF

BE

AF

AC

m

n

x

+
=====

+1

2

         x
BE

EC

BF

FC
+=+=+= 111 , 

i.e. (1 + x)2 = 2.  Therefore, 12 −=x . 

 

Example 7.  [Tournament of Towns 1995] 

Let P be a point inside a convex 

quadrilateral ABCD.  Let the angle 

bisector of ∠APB, ∠BPC, ∠CPD and 

∠DPA meet AB, BC, CD and DA at K, L, 

M and N respectively.  Find a point P such 

that KLMN is a parallelogram. 

 

Idea: 

The angle bisector theorem enables us 

to replace the ratios that K, L, N and M 

divided the sides of the quadrilateral by 

the ratios of the distance from P to A, B, 

C and D.  For instance, we have 
 

BP

AP

KB

AK
=  and 

DP

AP

ND

AN
=  

If BP = DP, we have 
ND

AN

KB

AK
=  and 

hence KN//BD.  Similarly, we have 

LM//BD and so KN//LM. 

 

Therefore, we shall look for a point P 

such that BP = DP and AP = CP. 

 

Solution outline: 
(1)  Let P be the point of intersection of 

the perpendicular bisectors of the 

diagonals AC and BD.  Then AP = CP 

and BP = DP. 

 

(2)  By the angle bisector theorem, we 

have 

ND

AN

DP

AP

BP

AP

KB

AK
===  

 

and so KN // BD.  Similarly, LM//BD, 

KL//AC and MN//AC.  

 

Hence KN//LM and KL//NM, which 

means that KLMN is a parallelogram. 

  

Remark:  Indeed, point P in the 

solution above is the only point that 

satisfies the condition given in the 

problem. 

 

Example 8.  [IMO 2001]  Let a, b, c, d 

be integers with a > b > c > d > 0. 
Suppose that 
 

ac + bd = (b + d + a − c)(b + d − a + c). 
 
Prove that ab + cd is not prime. 

 

Remark:  This is a difficult problem in 

number theory.  However, we would 

like to present a solution aided by 

geometrical insights! 

 

                             (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is May 31, 2007. 

 

Problem 271.  There are 6 coins that 

look the same.  Five of them have the 

same weight, each of these is called a 

good coin.  The remaining one has a 

different weight from the 5 good coins 

and it is called a bad coin.  Devise a 

scheme to weigh groups of the coins 

using a scale (not a balance) three 

times only to determine the bad coin 

and its weight. 
 

Problem 272.  ∆ABC is equilateral.  

Find the locus of all point Q inside the 

triangle such that  
 

.90o=∠+∠+∠ QCAQBCQAB  

 
Problem 273.  Let R and r be the 

circumradius and the inradius of 

triangle ABC.  Prove that  

.
sin

cos

sin

cos

sin

cos
222 r

R

C

C

B

B

A

A
≥++  

(Source: 2000 Beijing Math Contest) 
 

Problem 274.  Let n < 11 be a positive 

integer.  Let p1, p2, p3, p be prime 

numbers such that npp 31 + is prime.  If 

p1+p2=3p, )( 31132 ppppp n +=+  and 

p2>9, then determine .321

nppp    

(Source: 1997 Hubei Math Contest) 

 

Problem 275.  There is a group of 

children coming from 11 countries (at 

least one child from each of the 11 

countries).  Their ages are from 7 to 13.  

Prove that there are 5 children in the 

group, for each of them, the number of 

children in the group with the same age 

is greater than the number of children 

in the group from the same country.  

 

***************** 

Solutions 

**************** 

 

Problem 266.  Let 
 

N = 1+10+102+⋯+101997. 
 

Determine the 1000th digit after the 

decimal point of the square root of N in 

base 10.  (Source: 1998 Putnam Exam) 
 
Solution.  Jeff CHEN (Virginia, USA), 
Irfan GLOGIC (Sarajevo College, 4th 
grade, Sarajevo, Bosnia and Herzegovina), 
Salem MALIKIĆ (Sarajevo College, 3rd  
grade, Sarajevo, Bosnia and Herzegovina), 
Anna Ying PUN (HKU, Math, Year 1) 
and Fai YUNG. 
 
The answer is the same as the unit digit of 

.101000 N   We have 

.
3

1010

9

110
1010

200039981998
10001000 −

=
−

=N  

Since  

(101999−7)2 <103998−102000 <(101999−4)2, 
 

so it follows that N100010  is between 

(101999−7)/3=33⋯31 and (101999−4)/3= 

33⋯32.  Therefore, the answer is 1. 
 

Commended solvers: Simon YAU and 
YEUNG Wai Kit (STFA Leung Kau Kui 
College, Form 6). 

 

Problem 267.  For any integer a, set 
 

na = 101a − 100·2a. 
 

Show that for 0 ≤ a, b, c, d ≤ 99, if 
 

na+ nb ≡  nc+ nd  (mod 10100), 
 

then {a,b}={c,d}.  (Source: 1994 Putnam 

Exam) 
 
Solution.  Jeff CHEN (Virginia, USA), 
Irfan GLOGIC (Sarajevo College, 4th 
grade, Sarajevo, Bosnia and Herzegovina), 
Salem MALIKIĆ (Sarajevo College, 3rd  
grade, Sarajevo, Bosnia and Herzegovina), 
Anna Ying PUN (HKU, Math, Year 1) 
and YEUNG Wai Kit (STFA Leung Kau 
Kui College, Form 6). 
 
If na+ nb ≡  nc+ nd  (mod 10100), then a+b 

≡ na+ nb ≡  nc+ nd  ≡ c+d (mod 100) and 

2a+2b≡ na+ nb ≡  nc+ nd ≡2c+2d
 (mod 101). 

 
By Fermat’s little theorem, 2100 ≡ 1 (mod 

101) and so 2a+b ≡ 2c+d (mod 101).  Next 
     
  (2a −2c)(2a −2d) = 2a(2a −2c −2d)+2c+d 

                            ≡ 2a(−2b)+2a+b 

                                           = 0  (mod 101). 
 
So 2a ≡ 2c (mod 101) or 2a ≡ 2d (mod 101). 
 
Now we claim that if 0 ≤ s ≤ t ≤ 99 and 2s ≡ 

2t (mod 101), then s=t.  To see this, let k be 

the least positive integer such that 2k≡1 

(mod 101).  Dividing 100 by k, we get 100 

= kq+r with 0 ≤ r < k.  Since 2r = 2100−kq ≡ 1 

(mod 101) too, so r = 0, then k is a 

divisor of 100.  

 

Clearly, 1 < 21, 22, 24, 25 < 101 and 210 = 

1024 ≡ 14 (mod 101), 220 ≡ 142 ≡ −6 

(mod 101), 225≡ (−6)32 ≡ 10 (mod 101), 

250 ≡ 102 ≡ − 1 (mod 101).  Hence 

k=100.  Finally 2t−s ≡ 1 (mod 101) and 

0 ≤ t−s < 100 imply t−s=0, proving the 

claim.  
 
By the claim, we get a=c or a=d.  From 

a+b ≡ c+d (mod 100) and 0 ≤ a, b, c, d 

≤ 99, we get a = c implies b = d and 

similarly a = d implies b = c.  The 

conclusion follows. 

 

Problem 268.  In triangle ABC, 

∠ABC =∠ACB = 40˚.  Points P and 

Q are inside the triangle such that 

∠ PAB = ∠ QAC = 20˚ and ∠ PCB 

= ∠ QCA = 10˚.  Must B, P, Q be 

collinear?  Give a proof.  (Source: 1994 

Shanghai Math Competition) 
 
Solution. Jeff CHEN (Virginia, USA), 
Courtis G. CHRYSSOSTOMOS 
(Larissa, Greece, teacher), Irfan 
GLOGIC (Sarajevo College, 4th grade, 
Sarajevo, Bosnia and Herzegovina), 
Kelvin LEE (Winchester College, 
England) Salem MALIKIĆ (Sarajevo 
College, 3rd  grade, Sarajevo, Bosnia 
and Herzegovina) and NG Ngai Fung 
(STFA Leung Kau Kui College). 
 

Since lines AP, BP, CP concur, by the 

trigonometric form of Ceva’s theorem, 

,1
sinsinsin

sinsinsin
=

∠∠∠
∠∠∠

PCBPACPBA

PCABAPCBP  

which implies 

.1
220sin

10sin10cos

30sin20sin

10sin80sin

sin

sin
===

∠
∠

o

oo

oo

oo

PBA

CBP

So .20o=∠=∠ PBACBP   Replacing P 

by Q above, we similarly have 

.1
10sin80sin

30sin20sin

sin

sin
==

∠
∠

oo

oo

QBA

CBQ  

So .20o=∠=∠ CBQQBA   Then B, P, 

Q are on the bisector of .ABC∠  

 
Commended solvers: CHIU Kwok 
Sing (Belilios Public School), FOK 
Pak Hei (Pui Ching Middle School), 
Anna Ying PUN (HKU, Math, Year 1) 
and Simon YAU.  

 

Problem 269.  Let f(x) be a polynomial 

with integer coefficients.  Define a 

sequence a0, a1, … of integers such that 

a0 = 0, an+1 = f (an) for all n ≥ 0.  Prove 

that if there exists a positive integer m 

for which am = 0, then either a1 = 0 or 
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a2 = 0. (Source: 2000 Putnam Exam) 
 
Solution. Irfan GLOGIC (Sarajevo 
College, 4th grade, Sarajevo, Bosnia 
and Herzegovina), Salem MALIKIĆ 
(Sarajevo College, 3rd  grade, Sarajevo, 
Bosnia and Herzegovina) and Anna 
Ying PUN (HKU, Math, Year 1). 
 

Observe that for any integers m and n, 

m−n divides f(m)−f(n) since for all 

nonnegative integer k, mk−nk has m−n 

as a factor.  For nonnegative integer n, 

let bn=an+1−an, then by the last 

sentence, bn divides bn+1 for all n.  
 
Since a0 = am = 0, a1 = am+1 and so 

b0=bm.  If b0 = 0, then a1 = am+1 = bm+am 

= 0.  
 
If b0 ≠ 0, then using bn divides bn+1 for 

all n and b0=bm, we get bn = ± b0 for 

n=1,2,⋯,m.  Since b0+b1+⋯+bm = 

am−a0 = 0, half of the integers b0, ⋯, bm 

are positive and half are negative.  

Then there is k < m such that bk−1 = −bk, 

which implies ak−1=ak+1.  Then am=am+2 

and so 0=am=am+2=f(f(am))=f(f(a0))=a2. 
 
Problem 270.  The distance between 

any two of the points A, B, C, D on a 

plane is at most 1.  Find the minimum 

of the radius of a circle that can cover 

these four points.  (Source 1998 Tianjin 

Math Competition) 

 

Solution.  Jeff CHEN (Virginia, USA). 
 

Case 1:  (one of the point, say D, is inside 

or on a side of ABCΔ )  If ABCΔ is 

acute, then one of the angle, say 
o60≥∠BAC .  By the extended sine law, 

the circumcircle of ABCΔ covers the 

four points with diameter 

 .
3

2

sin
2 ≤

∠
=

BAC

BC
R  

 
(Note equality occurs in case 

ABCΔ is equilateral.)  If ABCΔ is 

right or obtuse, then the circle using the 

longest side as diameter covers the four 

points with R ≤ 1/2.  

 

Case 2:  (ABCD is a convex 

quadrilateral)  If there is a pair of 

opposite angles, say angles A and C, 

are at least 90°, then the circle with BD 

as diameter will cover the four points 

with R ≤ 1/2.  Otherwise, there is a pair 

of neighboring angles, say angles A 

and B, both of which are less than 90°.  
 
If ,90o≥∠≥∠ ACBADB  then the 

circle with AB as diameter covers the 

four points and radius R ≤ 1/2.  
 

If ACBADB ∠≥∠ and ,90o<∠ACB  

then D is in or on the circumcircle of 

ABCΔ with radius 31≤R as in case 1. 
 
So summarizing all cases, we see the 

minimum radius that works for all 

possible arrangements of A,B,C and D is R 

= .31   
 
Commended solvers: NG Ngai Fung 
(STFA Leung Kau Kui College) and Anna 
Ying PUN (HKU, Math, Year 1). 
 
 

 

 

Olympiad Corner 
                          (continued from page 1) 

 

Problem 5.  A regular (5×5)-array of 

lights is defective, so that toggling the 

switch for one light causes each adjacent 

light in the same row and in the same 

column as well as the light itself to change 

state, from on to off, or from off to on.  

Initially all the lights are switched off. 

After a certain number of toggles, exactly 

one light is switched on.  Find all possible 

positions of this light.  
 

 
 

From How to Solve It to 

Problem Solving in Geometry  

(continued from page 2) 
 
Idea: 

Observe that 
 

ac + bd = (b + d + a − c)(b + d − a + c)    

      ⇔ a2 + c2 − ac = b2 + d2 + bd  

 

The last equality suggests one to think 

about using the cosine law as follow: 
 

           a2 + c2 − 2accos 60o 

        = a2 + c2 − ac 

        = b2 + d2 + bd 

        = b2 + d2 − 2bd cos 120o. 
 

Solution:  

 

(1)  Lemma:  Let x, y, and z be positive 

integers with z < x and z < y.  If xy/z is an 

integer, then xy/z is composite.  

[Can you prove this lemma?  Is there any 

trivial case you can see immediately?  

How about proving the lemma by 

mathematical induction in z?] 
 

The case z = 1 is trivial.  In case z > 1, 

inductively suppose the lemma is true for 

all positive integers z’ less than z.  Then z 

has a prime divisor p, say z = pz’.  Since 

xy/z is an integer, either p divides x or p 

divides y, say p divides x.  Then x = px’.  

So xy/z=x’y/z’ with z’ < x’ and z’ < z < 

y.  By the induction hypothesis, 

xy/z=x’y/z’ is composite.  

 

(2)  The equality  
 
ac + bd = (b + d + a − c)(b + d − a + c)  
 
is equivalent to   

a2 + c2 − ac = b2 + d2 + bd 
 
In view of this, we can construct cyclic 

quadrilateral ABCD with AB = a, BC = 

c, CD = d, DA = b, ∠ABC = 60o and 

∠ADC = 120o. 

 

 

 

 

 

 

 

 

 

 

 

 

(3)  Considering the ratios of areas and 

using Ptolemy’s theorem, we have 

 

bdac

cdab

BD

AC

+
+

=  and  AC×BD = ad + bc. 

 

(4)  Therefore, 
 

BDAC

AC

BD

AC

bdac

cdab

×
==

+
+ 2

    

        
bcad

acca

+
−+

=
22

, 

 
which implies 

bcad

accabdac
cdab

+
−++

=+
))(( 22

       (*). 

 
(5)  To get the conclusion from the 

lemma, it remains to show   
 

ad + bc < ac +bd 
 
and           ad + bc < a2 + c2 − ac. 

 

Now     

           (ac + bd ) − (ad + bc)  

         = (a − b)(c − d) > 0   

⇒ ad + bc < ac + bd. 
 

Also, 

             (ab + cd) − (ac + bd)  

           = (a − d)(b − c) > 0   

     ⇒  ab + cd > ac + bd    

     ⇒  ad + bc < a2 + c2 − ac   (by (*)). 
 
Now the result follows from the 

lemma. 

c

d

b

a
B

D
C

A
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Problem Solving in Geometry (II)  
K. K. Kwok 
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Olympiad Corner 
 
Below are the problems of the 2006 

Belarussian Math Olympiad, Final 

Round, Category C. 
 
Problem 1.  Is it possible to partition the 

set of all integers into three nonempty 

pairwise disjoint subsets so that for any 

two numbers a and b from different 

subsets, 
 
a)  there is a number c in the third subset 

such that a + b = 2c? 

b)  there are two numbers c1 and c2 in the 

third subset such that a + b = c1 + c2?  
 
Problem 2.  Points X, Y, Z are marked 

on the sides AB, BC, CD of the rhombus 

ABCD, respectively, so that XY||AZ. 

Prove that XZ, AY and BD are 

concurrent. 
 

Problem 3.  Let a, b, c be real positive 

numbers such that abc = 1.  Prove that 
 

2(a2+b2+c2)+a+b+c ≥ 6+ab+bc+ca. 
 
Problem 4.  Given triangle ABC with 

,60o=∠A AB = 2005, AC = 2006.  Bob 

and Bill in turn (Bob is the first) cut the 

triangle along any straight line so that 

two new triangles with area more than or 

equal to 1 appear. 
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We will continue with more examples. 

 

Example 9.  In the trapezium ABCD, 

AB||CD and the diagonals intersect at O. 

P, Q are points on AD and BC 

respectively such that ∠APB = ∠CPD 

and∠AQB=∠CQD. Show that OP=OQ.

 

Idea: 

We shall try to find OP in terms of 

“more basic” lengths, e.g. AB, CD, OA, 

OC, ….  To achieve that, we can 

construct a triangle that is similar to 

ΔDPC. 

 

 

  

 

 

 

 

 

 

 

 

Solution Outline: 

(1)  Extend DA to B′ such that BB′ = BA. 

Then ∠PB′B = ∠B′AB = ∠PDC.  So 

ΔDPC ∼ ΔB′PB. 
 
(2)  It follows that 

BO

DO

BA

CD

BB

CD

BP

DP
==

′
=

′
 

 and so PO || BB′. 
 
(3)  Since ΔDPO ∼ ΔDB′B, we have 

DB

DO
AB

DB

DO
BBOP ×=×′= . 

 

(4) Similarly, we have 
CA

CO
ABOQ ×=  

and the result follows. 
 
Example 10.  In quadrilateral ABCD, 

the diagonals intersect at P. M and N are 

midpoint of BD and AC respectively. Q 

is the reflected image of P about MN. 

The line through P and parallel to MN 

cuts AB and CD at X and Y respectively. 

The line through Q parallel to MN cuts 

AB, BD, AC and CD at E, F, G and H 

respectively.  Prove that EF = GH. 

  

Idea: 

The diagram is not simple. We shall try 

to express the lengths involved in terms 

of “more basic” lengths, e.g. PA, PB, PC 

and PD. 

Solution Outline: 

 (1)  First observe that PM = MF and PN 

= NG, hence BF = PD and CG = PA. 

(2) 
BP

PD

BP

BF

XP

EF
== , 

BP

XPPD
EF

×
= . 

Similarly, we have  
CP

YPPA
GH

×
= . 

 

(3)  Let the line MN cuts AB and CD at S 

and T respectively.  Then 

 

BP

BD

BP

BM

XP

SM

2
== ,

AP

AC

AP

AN

XP

SN

2
== . 

 

Subtracting the equalities get  

⎟
⎠
⎞

⎜
⎝
⎛ −=

BP

BD

AP

AC

XP

MN

2

1
. 

 

Similarly, we have  

⎟
⎠
⎞

⎜
⎝
⎛ −=

PC

AC

PD

BD

YP

MN

2

1
. 

D C

A

P

B

O

B'

A

D

CB

P

M

N

Q

X

Y

H

E

F

G

A

D

CB

P

M

N

X

Y

S

T
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(4) EF = GH  ⇔ 
CP

YPPA

BP

XPPD ×
=

×
 

⇔
XPCP

MNPA

YPBP

MNPD

×
×

=
×
×

.  By (3), 

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −

BP

BD

AP

AC

CP

PA

PC

AC

PD

BD

BP

PD

⇔  
BPCP

BDPA

CP

AC

PCBP

ACPD

BP

BD

×
×

−=
×
×

−  

⇔ 
PCBP

ACPD

CP

AC

BPCP

BDPA

BP

BD

×
×

+=
×
×

+ . 

 

By addition, both sides of the last 

equation equal 
CPBP

BDAC

×
×

. 

 

Example 11. [IMO 2000]  Two circles 

Γ1 and Γ2 intersect at M and N.  Let L 

be the common tangent to Γ1 and Γ2 so 

that M is closer to L than N is.  Let L 

touch Γ1 at A and Γ2 at B.  Let the line 

through M parallel to L meet the circle 

Γ1 again at C and the circle Γ2 again at 

D.  Lines CA and DB meet at E; lines 

AN and CD meet at P; lines BN and CD 

meet at Q.  Show that EP = EQ. 

 

Idea: 

First, note that if EP = EQ, then E lies 

on the perpendicular bisector of PQ.  
 

Observe that AB || CD implies A and B 

are the midpoints of arc CAM and arc 

DBM respectively, from which we see 

ΔACM and ΔBDM are isosceles. 

 

Second, we have ∠EAB = ∠ECM = 

∠AMC = ∠BAM and similarly, ∠EBA 

= ∠ABM. That means E is the reflected 

image of M about AB.  In particular, 

EM ⊥ AB and hence EM ⊥ PQ. 

 

Therefore, the result follows if we can 

show that M is the midpoint of PQ. 

 

Solution outline: 

(1)  Extend NM to meet AB at K. 

 

(2)  AK2 = KN×KM = BK2 ⇒ K is the 

midpoint of AB ⇒ M is the midpoint of 

PQ. 

 

(3)  Following the steps discussed above, 

we get EM ⊥ PQ and hence EP = EQ. 

 

Example 12. [IMO 2001]  Let ABC be an 

acute-angled triangle with circumcentre O. 

Let P on BC be the foot of the altitude 

from A.  Suppose that ∠BCA ≥ ∠ABC + 

30o.  Prove that ∠CAB + ∠COP < 90o. 

 

 

 

 

 

 

 

 

 

 

 

Idea: 

(1) Examine the conclusion ∠CAB + 

∠COP < 90o, which is equivalent to 

2∠CAB + 2∠COP < 180o.  That is,  
 

∠COB + 2∠COP < 180o.  
On the other hand, we have ∠COB + 

2∠OCP = 180o.  Therefore, we shall show 

∠COP < ∠OCP or PC < OP. 
 

(2) Examine the condition ∠BCA ≥ ∠ABC 

+ 30o, which is equivalent to 2∠BCA − 

2∠ABC ≥ 60o.  That is,  
 

∠BOA − ∠AOC ≥ 60o. 
 
What is the meaning of ∠BOA − ∠AOC ? 

 

 

 

 

 

 

 

 

 

 

 

Solution outline: 

(1)  Let D and E be the reflected image of 

A and P about the perpendicular bisector 

of BC respectively.  Let R be the 

circumradius. 

 

(2)     ∠BCA ≥ ∠ABC + 30o  

     ⇒ ∠BOA − ∠AOC ≥ 60o  

     ⇒ ∠DOA ≥ 60o 

     ⇒ EP = DA ≥ R. 

 

(3)  OP + R = OP + OC = OE + OC  

                   > EC = EP + PC ≥ R + PC 

    ⇒ OP > PC   ⇒ ∠COP < ∠OCP. 

 

(4)           2∠CAB + 2∠COP 

            = ∠COB + 2∠COP                

            < ∠COB + 2∠OCP < 180o  

and the result follows. 

Example 13. [Simson’s Theorem]  The 

feet of the perpendiculars drawn from 

any point on the circumcircle of a 

triangle to the sides of the triangle are 

collinear. 
 
Solution: 

In the figure below, D is a point on the 

circumcircle of ΔABC, P, Q, and R are 

feet of perpendiculars from D to BC, 

AC, and BA respectively.  

 

Note that DQAR, DCPQ, and DPBR 

are cyclic quadrilaterals.  So 
 
       ∠DQR = ∠DAR = ∠BCD 

                   = 180o − ∠PQD , 
 
i.e. ∠DQR + ∠PQD = 180o.  Thus, P, 

Q, and R are collinear. 

 

D

C

A

B

Q

P

R  
 

Example 14. [IMO 2003]  Let ABCD 

be a cyclic quadrilateral.  Let P, Q and 

R be the feet of the perpendiculars from 

D to the lines BC, CA and AB 

respectively.  Show that PQ = QR if 

and only if the bisector of ∠ABC and 

∠ADC meet on AC. 
 
Solution : 

From Simson’s theorem, P, Q, and R 

are collinear.  Now 
 
          ∠DPC = ∠DQC = 90o  

      ⇒ D, P, C and Q are concyclic 

      ⇒ ∠DCA = ∠DPQ = ∠DPR. 
 
Similarly, since D, Q, R and A are 

concyclic, we get ∠DAC = ∠DRP.  It 

follows that ΔDCA ∼ ΔDPR. 
 
Similarly, ΔDAB ∼ ΔDQP and ΔDBC ∼ 

ΔDRQ.  So, 

DA

DC
=

DR

DP
=

DB ⋅
QR

BC

DB ⋅
PQ

BA

=
QR

PQ
⋅

BA

BC
. 

 

Therefore, PQ = QR ⇔
DA

DC
=

BA

BC
. 

 

Example 15. [IMO 2001]  In a triangle 

ABC, let AP bisect ∠BAC, with P on 

BC, and let BQ bisect ∠ABC, with Q 

on CA.  It is known that ∠BAC = 60o 

and that AB + BP = AQ + QB.  What are 

the possible angles of triangle ABC? 

 

     (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is August 20, 

2007. 

 

Problem 276.  Let n be a positive 

integer.  Given a (2n−1)×(2n−1) square 

board with exactly one of the following 

arrows ↑, ↓, →, ← at each of its cells.  

A beetle sits in one of the cells.  Per 

year the beetle creeps from one cell to 

another in accordance with the arrow’s 

direction.  When the beetle leaves the 

cell, the arrow at that cell makes a 

counterclockwise 90-degree turn.  

Prove that the beetle leaves the board 

in at most 23n−1(n−1)! −3 years. 

(Source: 2001 Belarussian Math 

Olympiad) 
 

Problem 277. (Due to Koopa Koo, 

Univ. of Washington, Seattle, WA, USA) 

Prove that the equation 
 

x2 + y2 + z2
  + 2xyz = 1 

 
has infinitely many integer solutions 

(then try to get all solutions – Editiors). 
 
Problem 278.  Line segment SA is 

perpendicular to the plane of the square 

ABCD.  Let E be the foot of the 

perpendicular from A to line segment 

SB.  Let P, Q, R be the midpoints of SD, 

BD, CD respectively.  Let M, N be on 

line segments PQ, PR respectively. 

Prove that AE is perpendicular to MN. 
 

Problem 279.  Let R be the set of all 

real numbers.  Determine (with proof) 

all functions f: R→R such that for all 

real x and y,  
 

( ) ( ).))((2)( xyfffxyxff −+=+  

 

Problem 280.  Let n and k be fixed 

positive integers.  A basket of peanuts is 

distributed into n piles.  We gather the 

piles and rearrange them into n+k new 

piles.  Prove that at least k+1 peanuts are 

transferred to smaller piles than the 

respective original piles that contained 

them.  Also, give an example to show 

the constant k+1 cannot be improved. 

***************** 

Solutions 

**************** 
 

Problem 271.  There are 6 coins that look 

the same.  Five of them have the same 

weight, each of these is called a good coin.  

The remaining one has a different weight 

from the 5 good coins and it is called a bad 

coin.  Devise a scheme to weigh groups of 

the coins using a scale (not a balance) 

three times only to determine the bad coin 

and its weight. 

(Source: 1998 Zhejiang Math Contest) 
 
Solution.  Jeff CHEN (Virginia, USA), St. 

Paul’s College Math Team, YIM Wing 

Yin (HKU, Year 1) and Fai YUNG. 
 
Number the coins 1 to 6.  For the first 

weighting, let us weigh coins 1, 2, 3 and 

let the weight be 3a.  For the second 

weighting, let us weigh coins 1, 2, 4, 5 and 

let the weight be 4b. 
 
If a = b, then coin 6 is bad and we can use 

the third weighting to find the weight of 

this coin. 
 
If a ≠ b, then the bad coin is among coins 1 

to 5.  For the third weighting, let us weigh 

coins 2, 4 and let the weight be 2c.  
 
If coin 1 is bad, then c and 4b−3a are both  

the weight of a good coin.  So 3a−4b+c=0.  

Similarly, if coin 2 or 3 or 4 or 5 is bad, we 

get respective equations 3a−2b−c=0, 

b−c=0, a−2b+c=0 and a−c=0. 
 
We can check that if any two of these 

equations are satisfied simultaneously, 

then we will arrive at a=b, a contradiction. 

Therefore, exactly one of these five 

equations will hold.  
 
If the first equation 3a−4b+c=0 holds, 

then coin 1 is bad and its weight can be 

found by the first and third weightings to 

be 3a−2c.  Similarly, for k = 2 to 5, if the 

k-th equation holds, then coin k is bad and 

its weight can be found to be 3c−2b, 

3a−2c, 4b−3a and 4b−3a respectively. 
 

Problem 272.  Δ ABC is equilateral.  

Find the locus of all point Q inside the 

triangle such that   

.90o=∠+∠+∠ QCAQBCQAB  
 

(Source: 2000 Chinese IMO Team 

Training Test) 
 
Solution.  Alex Kin-Chit O (STFA 

Cheng Yu Tung Secondary School) and 

YEUNG Wai Kit (STFA Leung Kau Kui 

College, Form 6).  
 

We take the origin at the center O of 

Δ ABC.  Let ω ≠ 1 be a cube root of 

unity and A,B,C,Q correspond to the 

complex numbers 1, ω, ω2= ω , z 

respectively.  Then 

o90=∠+∠+∠ QCAQBCQAB  

if and only if  

1

|1|)(1

1

1
3

2

−
−−

=
−
−

⋅
−
−

⋅
−
−

zzzz

ωωω
ω
ω

ω
ωωω  

is purely imaginary, which is 

equivalent to z3 is real.  These are the 

complex numbers whose arguments 

are multiples of π/3.  Therefore, the 

required locus is the set of points on the 

three altitudes. 
 
Commended solvers: Jeff CHEN 
(Virginia, USA), St. Paul’s College 
Math Team, Simon YAU and YIM 
Wing Yin (HKU, Year 1). 

 

Problem 273.  Let R and r be the 

circumradius and the inradius of 

triangle ABC.  Prove that  

.
sin

cos

sin

cos

sin

cos
222 r

R

C

C

B

B

A

A
≥++  

(Source: 2000 Beijing Math Contest) 
 
Solution.  Jeff CHEN (Virginia, USA), 

Kelvin LEE (Winchester College, 

England), NG Eric Ngai Fung (STFA 

Leung Kau Kui College), YEUNG Wai 

Kit (STFA Leung Kau Kui College, Form 

6) and YIM Wing Yin (HKU, Year 1). 
 

Without loss of generality, let a, b, c be 

the sides and a ≥ b ≥ c.  By the 

extended sine law, R = a/(2sin A) = 

b/(2sin B) = c/(2sin C).  Now the area 

of the triangle is (bc sin A)/2=abc/(4R) 

and is also rs, where s = (a + b + c)/2 is 

the semi- perimeter.  So abc=4Rrs. 

 

Next, observe that for any positive x 

and y, we have (x2 − y2)(1/x − 1/y) ≤ 0, 

which after expansion yields  

                   .
22

yx
x

y

y

x
+≥+            (*) 

By the cosine law and the extended 

sine law, we get 

2

222

2 )2/(

2/)(

sin

cos

Ra

bcacb

A

A −+
=  

.
2

2 222222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+
= a

a

c

a

b

rs

R

a

acb

abc

R  

Adding this to the similar terms for B 

and C, we get 



Mathematical Excalibur, Vol. 12, No. 2, May 07 – Aug. 07 Page 4

 

   
C

C

B

B

A

A
222 sin

cos

sin

cos

sin

cos
++     

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+++++= cba

a

c

c

a

c

b

b

c

b

a

a

b

rs

R 222222

2

r

R
cba

rs
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=++≥ )(

2
  by (*). 

Commended solvers:  CHEUNG Wang 

Chi (Singapore). 

 

Problem 274.  Let n < 11 be a positive 

integer.  Let p1, p2, p3, p be prime 

numbers such that npp 31 + is prime.  If 

p1 + p2 = 3p, )( 31132 ppppp n +=+  

and p2> 9, then determine .321

nppp    

(Source: 1997 Hubei Math Contest) 
 
Solution. CHEUNG Wang Chi 

(Singapore), NG Eric Ngai Fung 

(STFA Leung Kau Kui College), YIM 

Wing Yin (HKU, Year 1) and Fai 

YUNG. 
 

Assume p1≥ 3.  Then p1+p2 > 12 and 3p 

is even, which would imply p is even 

and at least 5, contradicting p is prime.  

So p1=2 and p2=3p−2. 

 

Modulo 3, the given equation p2 + p3 = 

p1
n(p1+p3) leads to 

 
     0 ≡ 3p  

        = p2+2 = 2n(2+p3)+2 

        = 2n+1 + 2 + (2n−1)p3 

        ≡ (−1)n+1+2+((−1)n−1)p3 (mod 3).  
 

The case n is even results in the 

contradiction 0 ≡ 1 (mod 3).  So n is odd 

and we get 0 ≡ p3 (mod 3).  So p3 = 3. 

 

Finally, the cases n = 1, 3, 5, 7, 9 lead to 

p1 + p3
n = 5, 29, 245, 2189, 19685 

respectively.  Since 245, 19685 are 

divisible by 5 and 2189 is divisible by 

11, n can only be 1 or 3 for p1+p3
n to be 

prime.  Now p2 = p1
n(p1+p3) −p3 = 2n5−3 

> 9 implies n = 3.  Then the answer is  

.19983372 3

321 =⋅⋅=nppp
 

 
Problem 275.  There is a group of 

children coming from 11 countries (at 

least one child from each of the 11 

countries).  Their ages are from 7 to 13.  

Prove that there are 5 children in the 

group, for each of them, the number of 

children in the group with the same age 

is greater than the number of children 

in the group from the same country.  

 

Solution.  Jeff CHEN (Virginia, USA). 
 
For i =7 to 13 and j = 1 to 11, let aij be the 
number of children of age i from country j 
in the group.  Then  

    ∑
=

≥=
11

1

0
j

iji ab  and 1
13

7

≥=∑
=i

ijj ac  

are the number of children of age i in the 

group and the number of children from 

country j respectively.  Note that 

  ∑∑
≠=

==
0

13

7 ib

ij

i

ijj aac  ,  where ∑
≠0ib

is 

used to denote summing i from 7 to 13 

skipping those i for which bi=0.  Now 

         ∑∑
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⎟
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Since aij(1/cj − 1/bi) < aij/cj ≤ 1, there are at 

least five terms aij(1/cj − 1/bi) > 0.  So 

there are at least five ordered pairs (i,j) 

such that aij > 0 (so we can take a child of 

age i from country j) and  we have bi > cj.  
 

 

 

Olympiad Corner 
  (continued from page 1) 

 

Problem 4. (Cont.)  After that an 

obtused-angled triangle (or any of two 

right-angled triangles) is deleted and the 

procedure is repeated with the remained 

triangle.  The player loses if he cannot do 

the next cutting.  Determine, which player 

wins if both play in the best way. 

 

Problem 5.  AA1, BB1 and CC1 are the 

altitudes of an acute triangle ABC.  Prove 

that the feet of the perpendiculars from C1 

onto the segments AC, BC, BB1 and AA1 

lie on the same straight line. 

 

Problem 6.  Given real numbers a, b, k 

(k>0).  The circle with the center (a,b) has 

at least three common points with the 

parabola y = kx2; one of them is the origin 

(0,0) and two of the others lie on the line 

y=kx+b.  Prove that b ≥ 2. 

 

Problem 7.  Let x, y, z be real numbers 

greater than 1 such that 

    ,400444422 =−++− yxxyyxy  

  and  .100969622 =−++− zxxzzxz  

Determine all possible values of the 

expression xyz+3xy+2xz−yz+6x−3y−2z. 

Problem 8.  A 2n×2n square is divided 

into 4n2 unit squares.  What is the 

greatest possible number of diagonals 

of these unit squares one can draw so 

that no two of them have a common 

point (including the endpoints of the 

diagonals)? 
 

 
 

From How to Solve It to 

Problem Solving in 

Geometry (II) 
   (continued from page 2) 

 

Idea: 

By examining the conditions given, we 

may see that the point C is not too 

important. 

     

C

A P'B

P
Q

B'

 
 

We will focus on how to represent the 

condition AB + BP = AQ + QB in the 

diagram.  For that, we construct points 

P′ and B′ on AB and AQ extended 

respectively so that PB = P′B and QB′ 
= QB.  Then 
 
     AB + BP = AQ + QB  

⇒ AB + BP′ = AQ + QB′ ⇒ AP′ = AB′ 
⇒AP′B′is equilateral (as∠B′AP′= 60o). 

 

Solution outline: 

(1)  Let ∠ABQ = ∠QBP = θ. Since PB 

= P′B, we have ∠PP′B = θ. 

 

(2) Since AP bisects ∠QAB and 

ΔAB′P′ is equilateral, it follows that B′ 
is the reflected image of P′ about AP.  

So, PP′ = PB′ and ∠QB′P =∠AP′P = θ. 

 

(3) Since QB = QB′ and ∠QBP = θ 

=∠QB′P, by Example 2, P lies on 

either BB′ or the perpendicular bisector 

of BB′.  If P does not lie on BB′, we will 

have PB = PB′ = PP′.  This will imply 

ΔBPP′ is equilateral, θ = 60o and 

∠QAB + ∠ABP = 60o + 2θ = 180o, 

which is absurd. So, P must lie on BB′. 
Therefore, B′ = C. 

 

(4) Since QB=QB′=QC, ∠QCB = 

∠QBC = θ. So ∠QAB + 2θ + θ = 180o 

⇒  60o + 3θ = 180o ⇒  θ = 40o. 

Therefore, ∠ABC = 80o, ∠ACB = 40o. 
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Kin Yin Li  

 

Olympiad Corner 
 
Below were the problems of the 2007 

International Math Olympiad, which 

was held in Hanoi, Vietnam. 
 
 
Day 1 (July 25, 2007) 
 
 

Problem 1.  Real numbers a1, a2, …, an 

are given.  For each i (1 ≤ i ≤ n) define 
  

}1:min{}1:max{ njaijad jji ≤≤−≤≤=  

 
and let d = max{di : 1≤ i ≤ n}.  
 
(a)  Prove that, for any real numbers x1≤  

x2≤…≤ xn,  

.
2

}1|:max{|
d

niax ii ≥≤≤−      (*) 

(b)  Show that there are real numbers x1≤  

x2≤…≤ xn such that equality holds in (*). 
 
 

Problem 2.  Consider five points A, B, 

C, D and E such that ABCD is a 

parallelogram and BCED is a cyclic 

quadrilateral.  Let ℓ be a line passing 

through A.  Suppose that ℓ intersects the 

interior of the segment DC at F and 

intersects line BC at G.  Suppose also 

that EF=EG=EC.  Prove that ℓ is the 

bisector of angle DAB. 
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     A set S in a plane or in space is 

convex if and only if whenever points X 

and Y are in S, the line segment XY must 

be contained in S.  The intersection of 

any collection of convex sets is convex. 

For an arbitrary set W, the convex hull of 

W is the intersection of all convex sets 

containing W.  This is the smallest 

convex set containing W.  For a finite set 

W, the boundary of the convex hull of W 

is a polygon, whose vertices are all in W.

 

In a previous article (see pp. 1-2, vol. 5, 

no. 1 of Math. Excalibur), we solved 

problem 1 of the 2000 IMO using 

convex hull.  Below we will discuss 

more geometric combinatorial problems 

that can be solved by studying convex 

hulls of sets. 

 

Example 1.  There are n > 3 coplanar 

points, no three of which are collinear 

and every four of them are the vertices 

of a convex quadrilateral.  Prove that the 

n points are the vertices of a convex 

n-sided polygon.  
 
Solution.  Assume one of these points, 

say P, is inside the convex hull of the n 

points.  Let Q be a vertex of the convex 

hull.  The diagonals from Q divide the 

convex hull into triangles.  Since no 

three points are collinear, P is inside 

some △QRS, where RS is a side of the 

boundary.  Then P,Q,R,S cannot be the 

vertices of a convex quadrilateral, a 

contradiction.  So all n points can only 

be the vertices of the boundary polygon.

 

Example 2. (1979 Putnam Exam)  Let A 

be a set of 2n points in the plane, no 

three of which are collinear, n of them 

are colored red and the other blue.  

Prove that there are n line segments, no 

two with a point in common, such that 

the endpoints of each segment are points 

of A having different colors. 
 
Solution.  The case n = 1 is true.  

Suppose all cases less than n are true.  

For a vertex O on the boundary polygon 

of the convex hull of these 2n points, it 

is one of the 2n points, say its color is 

red.  Let P1, P2n−1 be adjacent vertices to 

O.  If one of them, say P1, is blue, then 

draw line segment OP1 and apply 

induction to the other 2(n−1) points to 

finish. Otherwise, 

d=1

n=4

d=0
d=1

d=-1

d=-2

d=0

O d=-1

P
1

P
4

P
7

P
2 P

5

P
6

P
3

 
let d = 1 and rotate the line OP1 toward 

line OP2n−1 about O hitting the other 

2n−3 points one at a time.  When the 

line hits a red point, increase d by 1 and 

when it hits a blue point, decrease d by 

1.  When the line hits P2n−1, d = (n−1) − 

n = −1.  So at some time, d = 0, say 

when the line hits Pj.  Then P1,…,Pj are 

on one side of line OPj and O, Pj+1,…, 

P2n−1 are on the other side.  The 

inductive step can be applied to these 

two sets of points, which leads to the 

case n being true. 

 

Example 3. (1985 IMO Longlisted 

Problem)  Let A and B be finite disjoint 

sets of points in the plane such that any 

three distinct points in A∪B are not 

collinear.  Assume that at least one of 

the sets A, B contains at least five points. 

Show that there exists a triangle all of 

whose vertices are contained in A or in B 

that does not contained in its interior 

any point from the other set. 

 

Solution.  Suppose A has at least five 

points.  Take a side A1A2 of the boundary 

of the convex hull of A.  For any other Ai 

in A, let αi=∠A1A2Ai, say α3 < α4< ⋯ < 

180°.  Then the convex hull H of A1, A2, 

A3, A4, A5 contains no other points of A. 
A
5

A
3

A
1

A
2

A
4

A
6

A
7

 
  (continued on page 4)
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Perpendicular Lines 
 

Kin Yin Li 
 

In geometry, sometimes we are asked 

to prove two lines are perpendicular.  If 

the given facts are about right angles 

and lengths of segments, the following 

theorem is often useful. 

 

Theorem.  On a plane, for distinct 

points R, S, X, Y, we have RX2−SX2 = 

RY2 − SY2 if and only if RS ⊥XY. 
 

Proof.  Let P and Q be the feet of the 

perpendicular from X and Y to line RS 

respectively.  If RS ⊥XY, then P = Q 

and RX2 − SX2 = RP2 − SP2 = RY2 − SY2. 
 
Conversely, if RX2 − SX2 = RY2 − SY2 = 

m, then m = RP2 − (SR±RP)2.  So RP = 

∓(SR2+m)/2SR.  Replacing P by Q, we 

get RQ =∓(SR2+m)/2SR.  Hence, RP = 

RQ.  Interchanging R and S, we also get 

SP=SQ. So P=Q.  Therefore, RS ⊥XY. 

 

Here are a few illustrative examples. 

 

Example 1.  (1997 USA Math 

Olympiad)  Let ABC be a triangle, and 

draw isosceles triangles BCD, CAE, 

ABF externally to ABC, with BC, CA, 

AB as their respective bases.  Prove the 

lines through A, B, C, perpendicular to 

the lines EF, FD, DE, respectively, are 

concurrent. 

A

B

C

F

E

D

P

 
Solution.  Let P be the intersection of 

the perpendicular line from B to FD 

with the perpendicular line from C to 

DE.  Then PB⊥FD and PC⊥DE.  By 

the theorem above, we have PF2−PD2= 

BF2−BD2 and PD2−PE2= CD2−CE2. 
 

Adding these and using AF = BF, BD 

= CD and CE = AE, we get PF2−PE2 = 

AF2−AE2. So PA⊥EF and P is the 
desired concurrent point. 

 

Example 2. (1995 Russian Math 

Olympiad)  ABCD is a quadrilateral 

such that AB = AD and ∠ABC and 

CDA∠  are right angles.  Points F and 

E are chosen on BC and CD 

respectively so that DF⊥AE.  Prove 

that AF⊥ BE.  

 

A

B

C

D

E
F

 
Solution.  We have AE⊥DF, AB⊥BF 

and AD⊥DE, which are equivalent to 
  
          AD2−AF2 = ED2 −EF2 ,        (a)                 

           AB2−AF2 = −BF2 ,               (b) 

           AD2−AE2 = −DE2.               (c) 
 
Doing (a) − (b) + (c) and using AD = AB, 

we get AB2 − AE2 = BF2 − EF2 , which 

implies AF⊥BE. 
 

Example 3.  In acute △ABC, AB = AC 

and P is a point on ray BC.  Points X and Y 

are on rays BA and AC such that PX||AC 

and PY||AB.  Point T is the midpoint of 

minor arc BC on the circumcircle of △

ABC.  Prove that PT⊥XY. 

T

B C
P

X

Y

A

 
Since AT is a diameter, ∠ABT = 90˚ =     

∠ACT.  Then TX2 = XB2 + BT2 and TY2 = 

TC2 + CY2.  So TX2−TY2 = BX2−CY2. 
 
Since PX || AC, we have ∠ABC = ∠ACB 

= ∠XPB, hence BX = PX.  Similarly, CY 

= PY.  Therefore, TX2 − TY2 = PX2 − PY2, 

which is equivalent to PT⊥XY. 

 

Example 4. (1994 Jiangsu Province Math 

Competition)  For △ABC, take a point M 

by extending side AB beyond B and a 

point N by extending side CB beyond B 

such that AM = CN = s, where s is the 

semiperimeter of △ ABC.  Let the 

inscribed circle of △ABC have center I 

and the circumcircle of △ ABC have 

diameter BK.  Prove that KI⊥MN. 
 

K

A C

I

P Q

MN

 
 

Solution.  Let the incircle of △ABC 

touch side AB at P and side BC at Q. 

We will show KM 2 −KN 2=IM 2−IN 2. 
 
Now since ∠MAK = ∠BAK = 90˚ and  

∠NCK = ∠BCK = 90˚, we get  
 
KM 2 −KN 2=(KA2+AM2) −(KC2+CN2) 

                   = KA2 −KC2 

                   =(KA2−KB2)+(KB2−KC2) 

                   =BC 2 −AB2. 
 
Also, since ∠MPI = ∠BPI = 90˚ and    

∠NQI = ∠BQI = 90˚, we get 
 
   IM 2 −IN 2=(IP2+PM2) −(IQ2+QN2) 

                   = PM 2 −QN2 

                   =(AM−AP)2+(CN−QC)2. 

Now  

BC
BCCAAB

sAPAM =
−+

−=−
2

 

and        

.
2

AB
ABBCCA

sQCCN =
−+

−=−  

 
So IM 2 −IN 2=BC2−AB2 = KM 2 −KN 2. 

 

Example 5. (2001 Chinese National 

Senior High Math Competition)  As in 

the figure, in △ ABC, O is the 

circumcenter.  The three altitudes AD, 

BE and CF intersect at H.  Lines ED 

and AB intersect at M.  Lines FD and 

AC intersect at N.  Prove that (1) OB⊥
DF and OC⊥DE; (2) OH⊥MN. 

A

B C
D

EH
F

M N

O

 
Solution.  (1) Since ∠AFC = 90°=   

∠ADC, so A,C,D,F are concyclic. 

Then ∠BDF =∠BAC.  Also, 
 
∠OBC = ½(180˚−∠BOC)  

          = 90°−∠BAC = 90°−∠BDF. 
 

So OB⊥DF.  Similarly, OC⊥DE. 
 

(2) Now CH⊥MA, BH⊥NA, DA⊥
BC, OB⊥DF=DN and OC⊥DE = 

DM. So    
 

 MC2−MH2 = AC2−AH2       (a) 

  NB2−NH2 =AB2−AH2         (b) 

       DB2−DC2  = AB2−AC2        (c) 

  BN2−BD2 =ON2−OD2        (d) 

       CM2−CD2=OM2−OD2.       (e) 
 
Doing (a) − (b) + (c) + (d) − (e), we get 

NH2−MH2 = ON2−OM2. So OH⊥MN. 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is November 25, 

2007. 

 

Problem 281.  Let N be the set of all 

positive integers.  Prove that there 

exists a function f : N → N such that      

f ( f (n)) = n2 for all n in N. (Source: 

1978 Romanian Math Olympiad) 
 

Problem 282.  Let a, b, c, A, B, C be 

real numbers, a ≠ 0 and A ≠ 0.  For 

every real number x,  
 

|ax2+bx+c| ≤ |Ax2+Bx+C|. 
 
Prove that |b2−4ac| ≤ |B2−4AC|. 
 
Problem 283.  P is a point inside 

∆ABC.  Lines AC and BP intersect at 

Q.  Lines AB and CP intersect at R.  It is 

known that AR=RB=CP and CQ=PQ. 

Find ∠BRC with proof.  (Source: 2003 

Japanese Math Olympiad)  
 

Problem 284.  Let p be a prime number. 

Integers x, y, z satisfy 0 < x < y < z < p. 

If x3, y3, z3 have the same remainder 

upon dividing by p, then prove that x2+ 

y2 + z2 is divisible by x + y + z. (Source: 

2003 Polish Math Olympiad) 
 

Problem 285.  Determine the largest 

positive integer N such that for every 

way of putting all numbers 1 to 400 

into a 20×20 table (1 number per cell), 

one can always find a row or a column 

having two numbers with difference 

not less than N. (Source: 2003 Russian 

Math Olympiad) 

 

***************** 

Solutions 

**************** 
 

Problem 276.  Let n be a positive 

integer.  Given a (2n−1)×(2n−1) square 

board with exactly one of the following 

arrows ↑, ↓, →, ← at each of its cells.  

A beetle sits in one of the cells.  Per 

year the beetle creeps from one cell to 

another in accordance with the arrow’s 

direction.  When the beetle leaves the cell, 

the arrow at that cell makes a 

counterclockwise 90-degree turn.  Prove 

that the beetle leaves the board in at most 

23n−1(n−1)! −3 years. 

(Source: 2001 Belarussian Math 

Olympiad) 
 
Solution. Jeff CHEN (Virginia, USA), 

GRA20 Problem Solving Group (Roma, 

Italy), PUN Ying Anna (HKU, Math Year 1) 

and Fai YUNG. 
 
Let a(n) be the maximum number of years 

that the beetle takes to leave the (2n − 1) × 

(2n − 1) board.  Then a(1) = 1.  For n > 1, 

apart from 1 year necessary for the final 

step, the beetle can stay 
 
(1)  in each of the 4 corners for at most 2 

years (two directions that do not point 

outside) 
 
(2)  in each of the other 4(2n−3) cells of 

the outer frame for at most 3 years (three 

directions that do not point outside) 
 
(3)  in the inner (2n−3)×(2n−3) board for 

at most  a(n−1) years (when the starting 

point is inside the inner board) plus 

4(2n−3)a(n−1) years (when the arrow in a 

cell of the outer frame points inward the 

beetle enters the inner board). 
 
Therefore, a(n) ≤ 1 + 4·2 + 3·4(2n − 3) + 

(4(2n − 3)+1)a(n−1).  Since a(n−1) ≥ 0, 
 
   a(n)+3 ≤ 8(n−1)(a(n−1)+3) −3a(n−1) 

               ≤ 8(n−1)(a(n−1)+3). 
 
Since a(1) + 3 = 4, we get a(n) + 3 ≤  

23n−1(n−1)! and so a(n) ≤ 23n−1(n−1)!−3. 
 

Problem 277. (Due to Koopa Koo, Univ. 

of Washington, Seattle, WA, USA)  Prove 

that the equation 
 

x2 + y2 + z2
  + 2xyz = 1  

has infinitely many integer solutions (then 

try to get all solutions – Editors). 
 
Solution. Jeff CHEN (Virginia, USA), 

FAN Wai Tong and GRA20 Problem 

Solving Group (Roma, Italy). 
 
It is readily checked that if n is an integer, 

then (x, y, z) = (n, −n, 1) is a solution.  
 
Comments: Trying to get all solutions, we 

can first rewrite the equation as  
 

(x2 − 1)(y2 − 1) = (xy + z)2. 
 

For any solution (x, y, z), we must have 

x2− 1 = du2, y2 − 1 = dv2, xy + z = ±duv for 

some integers d, u, v.  The cases d is 

negative, 0 or 1 lead to trivial solutions. 

For d > 1, we may suppose it is 

square-free (that is, no square divisor 

greater than 1).  Then we can find all 

solutions of Pell’s equation s2 −dt2 = 1 

(see vol. 6, no. 3 of Math Excalibur,      

page 1).  Any two solutions (s0, t0) and 

(s1, t1) of Pell’s equation yield a 

solution (x, y, z)=(s0, s1, ±dt0t1−s0s1) of  
  

x2 + y2 + z2
  + 2xyz = 1. 

    
Commended solvers: PUN Ying Anna 
(HKU, Math Year 1) and WONG Kam 
Wing (TWGH Chong Ming Thien 
College). 

 

Problem 278.  Line segment SA is 

perpendicular to the plane of the square 

ABCD.  Let E be the foot of the 

perpendicular from A to line segment 

SB.  Let P, Q, R be the midpoints of SD, 

BD, CD respectively.  Let M, N be on 

line segments PQ, PR respectively.  

Prove that AE is perpendicular to MN. 
 
Solution 1. Stephen KIM (Toronto, 

Canada).  
 
Below when we write XY⊥IJK…, we 
mean line XY is perpendicular to the 
plane containing I, J, K,….  Also, we 
write XY ⊥WZ for vectors XY and WZ 
to mean their dot product is 0. 
 
Since SA⊥ABCD, so SA ⊥BC.  Since 
AB⊥BC, so BC⊥SAB.  Since A,E are 
in the plane of SAB, AE⊥BC.  This 
along with the given fact AE⊥ SB 
imply AE⊥SBC. 
 
Since P, Q are midpoints of SD, BD 
respectively, we get PQ||SB.  Similarly, 
we have QR||BC.  Then the planes SBC 
and PQR are parallel.  Since MN is on 
the plane PQR, so MN is parallel to the 
plane SBC.  Since AE⊥SBC from the 
last paragraph, so AE⊥MN. 
 

Solution 2. Kelvin LEE (Winchester 

College, England) and PUN Ying Anna 

(HKU, Math Year 1). 
 
Let A be the origin, AD be the x-axis, AB 

be the y-axis and AS be the z-axis.  Let    

B = (0, a, 0) and S = (0, 0, s).  Then C = 

(a, a, 0) and E = (0, rs, ra) for some r.  

The homothety with center D and ratio 2 

sends P to S, Q to B and R to C.  Let it 

send M to M’ and N to N’.  Then M’ is on 

SB, N’ is on SC and M’N’||MN.  So M’ = 

(0, 0, s) + (0, a, −s)u = (0, au, s(1−u)) 

for some u and N’ = (0, 0, s) + (a, a, −s)v 

= (av, av, s(1−v)) for some v.  Now the 

dot product of AE and M’N’ is  
 

(0, rs, ra)·(av, a(v−u), s(u−v)) = 0. 
 
So AE⊥M’N’ .  Therefore, AE⊥MN. 
 
Commended solvers: WONG Kam 
Wing (TWGH Chong Ming Thien 
College). 
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Problem 279.  Let R be the set of all 

real numbers.  Determine (with proof) 

all functions f: R→R such that for all 

real x and y,  
 

( ) ( ).))((2)( xyfffxyxff −+=+  

 
Solution. Jeff CHEN (Virginia, USA), 

Salem MALIKIĆ (Sarajevo College, 

3rd Grade, Sarajevo, Bosnia and 

Herzegovina) and PUN Ying Anna 

(HKU, Math Year 1).  
 
Setting y = 0, we get 
 
    f ( f (x)) = 2x + f ( f (f (0)) −x).         (1) 

 
Then putting x = 0 into (1), we get 

           f ( f (0)) = f ( f ( f (0))).           (2) 
 
In (1), setting, x = f ( f (0)), we get 

f ( f ( f ( f (0)))) = 2f ( f (0)) + f (0). 
 
Using (2), we get f ( f (0)) = 2f ( f (0)) + 

f (0).  So f ( f (0)) = −f (0).  Using (2), 

we see f (k)(0) = −f (0) for k = 2,3,4,…. 
 
In the original equation, setting x = 0 

and y = −f (0), we get 
 
     f (0) = −2f (0) + f ( f ( f (−f (0)))) 

             = −2f (0) + f (5)(0) 

             = −2f (0) −f (0) = −3f (0). 
  
So f (0) = 0.  Then (1) becomes  

             f ( f (x)) = 2x + f (−x).            (3) 
 

In the original equation, setting x = 0, 

we get f (y) = f ( f ( f (y))).                (4) 
 
Setting x = f (y) in (3), we get  

f (y) = f ( f ( f (y))) = 2f (y) + f (−f(y)). 
 

So f (− f (y)) = −f (y).  Setting y = −f (x) 

in the original equation, we get  

           0 = 2x+f ( f ( f (−f (x))) −x). 
 
For every real number w, setting x = 

−w/2, we see w = f ( f ( f (−f (x))) − x). 

Hence, f is surjective.  Then by (4), w = 

f ( f (w)) for all w.  By (3), setting x = 

−w, we get f (w) = w for all w. 

Substituting this into the original 

equation clearly works.  So the only 

solution is f (w) = w for all w. 
 
Commended solvers: Kelvin LEE 

(Winchester College, England), 
 
Problem 280.  Let n and k be fixed 

positive integers.  A basket of peanuts 

is distributed into n piles.  We gather 

the piles and rearrange them into n + k 

new piles.  Prove that at least k + 1 

peanuts are transferred to smaller piles 

than the respective original piles that 

contained them.  Also, give an example 

to show the constant k + 1 cannot be 

improved. 

 

Solution.  Jeff CHEN (Virginia, USA), 

Stephen KIM (Toronto, Canada) and PUN 

Ying Anna (HKU, Math Year 1).  
 

Before the rearrangement, for each pile, if 

the pile has m peanuts, then attach a label 

of 1/m to each peanut in the pile.  So the 

total sum of all labels is n.  

 

Assume that only at most k peanuts were 

put into smaller piles after the 

rearrangement.  Since the number of piles 

become n + k, so there are at least n of 

these n + k piles, all of its peanuts are now 

in piles that are larger or as large as piles 

they were in before the rearrangement. 

Then the sum of the labels in just these n 

piles is already at least n.  Since there are k 

> 0 more piles, this is a contradiction.    

 

For an example to show k + 1 cannot be 

improved, take the case originally one of 

the n piles contained k + 1 peanuts.  Let us 

rearrange this pile into k +1 piles with 1 

peanut each and  leave the other n − 1 piles 

alone.  Then only these k + 1 peanuts go 

into smaller piles.   
 
Commended solvers: WONG Kam Wing 

(TWGH Chong Ming Thien College). 

 
 

 

Olympiad Corner 
 (continued from page 1) 

 

Problem 3.  In a mathematical 

competition some competitors are friends. 

Friendship is always mutual.  Call a group 

of competitors a clique if each two of 

them are friends. (In particular, any group 

of fewer than two competitors is a clique.) 

The number of members of a clique is 

called its size. 
 
Given that, in this competition, the largest 

size of a clique is even, prove that the 

competitors can be arranged in two rooms 

such that the largest size of a clique 

contained in one room is the same as the 

largest size of a clique in the other room. 

 

Day 2 (July 26, 2007) 
 
Problem 4.  In triangle ABC the bisector of 

angle BCA intersects the circumcircle 

again at R, the perpendicular bisector of BC 

at P, and the perpendicular bisector of AC 

at Q.  The midpoint of BC is K and the 

midpoint of AC is L.  Prove that the 

triangles RPK and RQL have the same area. 

 

Problem 5.  Let a and b be positive 

integers.  Show that if 4ab − 1 divides (4a2 

− 1)2, then a = b.  

Problem 6.  Let n be a positive integer. 

Consider 

}0},,,1,0{,,:),,{( >++∈= zyxnzyxzyxS K  

as a set of (n + 1)3 − 1 points in the 

three-dimensional space.  Determine 

the smallest possible number of planes, 

the union of which contains S but does 

not include (0, 0, 0). 
 

 
 

Convex Hull 
  (continued from page 1) 
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Case 1: (The boundary of H is the 

pentagon A1A2A3A4A5.)  If △A1A2A3 or 

△ A1A3A4 or △ A1A4A5 does not 

contain any point of B in its interior, 

then we are done.  Otherwise, there 

exist B1, B2, B3 in their interiors 

respectively.  Then we see △B1B2B3 is 

a desired triangle. 
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Case 2: (The boundary of H is a 

quadrilateral, say A1A2A4A5 with A3 

inside.)  If △A1A3A2 or △A2A3A4 or 

△ A4A3A5 or △ A5A3A1 does not 

contain any point of B in its interior, 

then we are done.  Otherwise, there 

exist B1, B2, B3, B4 in their interiors 

respectively.  Then either △B1B2B3 or 

△B3B4B1 does not contain A3 in its 

interior.  That triangle is a desired 

triangle. 
A
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A
5

A
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A
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Case 3: (The boundary of H is a 

triangle, say A1A2A5 with A3, A4 inside, 

say A3 is closer to line A1A2 than A4.)  If 

△A1A2A3 or △A1A3A4 or △A1A4A5 or 

△ A2A3A5 or △ A3A4A5 does not 

contain any point of B in its interior, 

then we are done.  Otherwise, there 

exists a point of B in each of their 

interiors respectively.  Then three of 

these points of B lie on one side of line 

A3A4.  The triangle formed by these 

three points of B is a desired triangle. 
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Olympiad Corner 
 
Below were the problems of the 10th 

China Hong Kong Math Olympiad, 

which was held on November 24, 

2007. It was a three hour exam. 
 

Problem 1.  et D be a point on the side 

BC of triangle ABC such that AB+BD 

= AC+CD.  The line segment AD cut 

the incircle of triangle ABC at X and Y 

with X closer to A.   Let E be the point 

of contact of the incircle of triangle 

ABC on the side BC.   Show that  
 
(i) EY is perpendicular to AD, 
(ii) XD is 2IA', where I is the incentre of 

the triangle ABC and A' is the midpoint 

of BC. 

 

Problem 2.  Is there a polynomial f of 

degree 2007 with integer coefficients, 

such that f(n), f(f(n)), f(f(f(n))), … are 

pairwise relatively prime for every 

integer n? Justify your claims. 

 

Problem 3.  In a school there are 2007 

male and 2007 female students.  Each 

student joins not more than 100 clubs 

in the school. It is known that any two 

students of opposite genders have 

joined at least one common club.  
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      There are many inequality problems 

that have n positive variables a1, a2, …, 

an (generally n = 3) such that their 

product is 1.  There are several ways to 

solve this kind of problems.  One 

common method is to change these 

variables by letting 
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where x1, x2, …, xn are positive real 

numbers and generally α=1. Here are 

some examples on the usage of these 

substitutions. 

 

Example 1.  If a, b, c are positive real 

numbers such that abc = 1, then prove 

that 

.
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Solution.  Since abc = 1, we can find 

positive x, y, z such that a = x/y, b = y/z, 

c = z/x (for example, x=1=abc, y=bc 

and  z=c).  Then 
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where the inequality follows from 

Nesbitt’s inequality applied to zx, xy 

and yz. (Editor—Nesbitt’s inequality 

asserts that if r,s,t > 0, then  
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It follows by writing the left side as 
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where the inequality sign is due to the 

Cauchy-Schwarz inequality.)  

 

Equality occurs if and only if the three 

variables are equal. 

 

Example 2. (2004 Russian Math 

Olympiad)  Prove that if n > 3 and x1, 

x2, …, xn > 0 have product 1, then 
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Solution. Again we use the substitutions 

x1 = a2/a1, x2 = a3/a2, …, xn = a1/an (say 

a1=1 and for i > 1, ai=x1x2⋯xi−1). Then 

the inequality is equivalent to 
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where the inequality sign is because n > 

3 and ai > 0 for all i so that ai+ai+1+ai+2 < 

a1+a2+⋯+an. 
 
Example 3.  If a, b, c > 0 and abc = 1, 

then prove that 
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Solution.  Since abc = 1, we can find 

positive x, y, z such that a = x/y, b = z/x, 

c = y/z (for example, x = 1 = abc, y = bc 

and z=b). After doing the substitution, 

the inequality can be rewritten as  
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Multiplying by xyz on both sides, we get
 
   xyzzyx 3333 +++  

          ,222222 zxxzyzzyxyyx +++++≥  
 
which is just Schur’s inequality (see vol. 

10, no. 5, p. 2 of Math Excalibur).  Since 

x,y,z are positive, equality holds if and 

only if x = y = z, that is a = b = c. 
 
Example 4. (Mathlinks Contest)  Prove 

that if a,b,c,d > 0 and abcd = 1, then 
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Solution.  Let us perform the following 

substitutions  
 

t
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t
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x
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with x,y,z,t > 0 (for example, x = 1 = 

abcd, y=bcd, z=b and  t=bc).  Then 

after simple transformations, our 

inequality becomes 
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Let I be the left side of this inequality 

and  
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By the Cauchy-Schwarz inequality, we 

easily get IJ ≥ (x+y+z+t)2. Then 
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So it is enough to prove that  
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which is equivalent to 
 

)(22222 xtyztzyx +≥+++ . 
 

This one is equivalent to 
 

,0)()( 22 ≥−+− zytx  
 

which is obviously true. 
 
For equality case to occur, we must 

have x = t and y = z, which directly 

imply a = c and b = d so ab = 1 and 

therefore b = d = 1/a = 1/c is the 

equality case. 

 

Example 5. (Crux 3147)  Let n ≥ 3 and 

let x1, x2, …, xn be positive real 

numbers such that x1x2⋯xn =1.  For n = 

3 and n = 4 prove that 
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Solution. We consider the substitutions 
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The inequality becomes 
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2
,,

2
2

2
31

31

aa
aa

aa
aa n

n

+
≤

+
≤ K  

 
by the AM-GM inequality, it suffices to 

show that 
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Let I be the left side of this inequality and  
 

).2()2( 213211 aaaaaaaaJ nn ++++++= L  

 

By the Cauchy-Schwarz inequality, we 

have IJ ≥ (a1+a2+⋯+an)
2.  Thus, to prove  

I ≥ n/4, it suffices to show that 

(a1+a2+⋯+an)
2/J ≥ n/4, which is 

equivalent to 
 

   ( )2214 naaa L++  
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For n = 4, by expansion, we can see the 

inequality is actually an identity.  For n = 3, 

the inequality is equivalent to 
 

,133221

2

3

2

2

2

1 aaaaaaaaa ++≥++  

 
which is true because 

 

     ( ) ( )133221

2

3

2

2

2

1 22 aaaaaaaaa ++−++  

  ( ) ( ) ( )
.0

2

13

2

32

2

21

≥
−+−+−= aaaaaa  

 
This completes the proof. Equality holds 

if and only if xi = 1 for all i. 

 

NOTE: This problem appeared in the May 

2006 issue of the Crux Mathematicorum. 

It was proposed by Vasile Cîrtoaje and 

Gabriel Dospinescu. No complete 

solution was received (except the above 

solution of the proposers). 

 

Example 6. (Crux 2023)  Let a,b,c,d,e be 

positive real numbers such that abcde = 1. 

Prove that 

 

cdeacd

cdec

bcdebc

bcdb

abcdab

abca

++
+

+
++

+
+

++
+

111
 

 

.
3

10

11
≥

++
+

+
++
+

+
eabcea

eabe

deabde

dead  

 

Solution.  Again we consider the standard 

substitutions  
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where x,y,z,t,u > 0.  

 

Now we have 
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Writing the other relations and letting  
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we have to show that if a1, a2, a3, a4, a5  

> 0, then 

            ∑ ≥
++

+

cyclic aaa

aa
.

3

10

531

42          (*) 

 
(Editor—The notation  
 

∑
cyclic

naaaf ),,,( 21 K  

for n variables a1, a2, …, an is a 

shorthand notation for 

∑
=

++

n

i

niii aaaf
1

1 ),,,,( K  

where ai+j = ai+j−n when i+j > n.) 

  

Let I be the left side of inequality (*), 
 

∑ +++=
cyclic

aaaaaJ ))(( 53142
 

 
and S = a1 + a2 + a3 + a4 + a5.  Using the 

Cauchy-Schwarz inequality, we easily 

get  

.4)2()( 22

2

42 SSaaIJ
cyclic

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≥ ∑  

 
So to prove I ≥ 10/3, it is enough to 

show 
 

                      .
3

104 2

≥
J

S               (**) 

 
Now comparing S2 and J, we can 

observe that 2S2 − J equals 
 

2

53

2

41

2

42 )()()( aaaaaaT +++++=  

.)()( 2

31

2

52 aaaa ++++  

 

Using this relation, (**) can be 

rewritten as  
 

12S2  ≥ 10J = 10(2S2 − T)  

                   =  20S2 − 10T. 
 
This simplifies to 5T ≥ 4S2.  Finally, 

writing 5=12+12+12+12+12, we can get 

5T ≥ 4S2 from the Cauchy-Schwarz 

inequality easily. 

 

Again equality occurs if and only if all 

the ai’s are equal, which corresponds to 

the case a = b = c = d = e = 1. 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is January 15, 

2008. 

 
Problem 286.  Let x1, x2, …, xn be real 

numbers.  Prove that there exists a real 

number y such that the sum of { x1−y}, 

{ x2−y}, …, { xn−y} is at most (n−1)/2. 

(Here {x} = x − [x], where [x] is the 

greatest integer less than or equal to x.) 
 
Can y always be chosen to be one of the 

xi’s ? 
 

Problem 287.  Determine (with proof) 

all nonempty subsets A, B, C of the set 

of all positive integers ℤ+ satisfying 
 
(1) A∩B=B∩C=C∩A=∅; 

(2) A∪B∪C=ℤ+; 

(3) for every a∈ A, b∈ B and c∈ C, we 

have c+a∈ A, b+c∈ B and a+b∈ C.  
 
Problem 288.  Let H be the 

orthocenter of triangle ABC.  Let P be a 

point in the plane of the triangle such 

that P is different from A, B, C.  
 
Let L, M, N be the feet of the 

perpendiculars from H to lines PA, PB, 

PC respectively.  Let X, Y, Z be the 

intersection points of  lines LH, MH, 

NH with lines BC, CA, AB respectively. 
 
Prove that X, Y, Z are on a line 

perpendicular to line PH.  
 
Problem 289.  Let a and b be positive 

numbers such that a+b < 1.  Prove that 
 

.,min
)2()1(

)2()1(
2

2

⎭
⎬
⎫

⎩
⎨
⎧≥

−+−
−+−

a

b

b

a

abab

baba  

 

Problem 290.  Prove that for every 

integer a greater than 2, there exist 

infinitely many positive integers n such 

that an − 1 is divisible by n. 

 

***************** 

Solutions 

**************** 
 

Due to an editorial mistake in the last 

issue, solution to problems 279 by Li 
ZHOU (Polk Community College, Winter 

Haven, Florida USA) was overlooked and 

his name was not listed among the solvers. 

We express our apology to him. 
 
Problem 281.  Let N be the set of all 

positive integers.  Prove that there exists a 

function f : N → N such that  f ( f (n)) = n2 

for all n in N. (Source: 1978 Romanian 

Math Olympiad) 
 
Solution 1. George Scott ALDA, Jeff 
CHEN (Virginia, USA), NGOO Hung 
Wing (HKUST, Math Year 1), YEUNG 
Wai Kit (STFA Leung Kau Kui College, 

Form 7) and Fai YUNG. 
 
Let xk be the k-th term of the sequence  
 
2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,… 
 
of all positive integers that are not perfect 

squares in increasing order.  By taking 

square roots (repeatedly) of an integer n > 

1, we will eventually get to one of the xk’s. 

So every integer n > 1 is of the 2m-th 

power of xk for some nonnegative integer 

m and positive integer k.  
 
We define f(1)=1.  For n > 1, if n is the 

2m-th power of xk, then we define f(n) as 

follow: 
 
case 1: if k is odd, then f(n) is the 2m-th 

power of xk+1;  
case 2: if k is even, then f(n) is the 2m+1-st 

power of xk−1. 
 
Observe that if n is under case 1, then f(n) 

will be under case 2.  Similarly, if n is 

under case 2, then f(n) will be under case 1. 

In computing f ( f (n)), we have to apply 

case 2 once so that m increases by 1 and 

the k value goes up once and down once. 

Therefore, we have  f ( f (n)) = n2 for all n 

in N. 
 
Solution 2. GRA20 Problem Solving 
Group (Roma, Italy) and Kelvin LEE 
(Trinity College, Cambridge, England). 

 

We first define a function g: N→N such 

that g(g(n)) = 2n.  Let p be an odd prime 

and let ordp(n) be the greatest nonnegative 

integer α such that pα | n.  If ordp(n) is even, 

then let g(n)=2pn, otherwise let g(n)=n/p. 

 

Next we will check g(g(n)) = 2n. If ordp(n) 

is even, then ordp(g(n)) = ordp(2pn) is odd 

and so g(g(n)) = g(2pn) = 2pn/p = 2n.  

 

If ordp(n) is odd, then ordp(g(n)) = 

ordp(n/p) is even and so g(g(n)) = g(n/p) = 

2p(n/p) = 2n. 

Define f(1)=1.  For an integer n > 1, let 

∏
=

=
r

k

k
kpn

1

α , where all αk > 0,  

be the prime factorization of n, then we 

define 

.)(
1

)(∏
=

=
r

k

g

k
kpnf

α  

Finally, we have 

( ) ( ) ∏∏
==

===
n

k

k

r

k

gg

k nppnff kk

1

22

1

)(
.)(
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Problem 282.  Let a, b, c, A, B, C be 

real numbers, a ≠ 0 and A ≠ 0.  For 

every real number x,  
 

|ax2+bx+c| ≤ |Ax2+Bx+C|. 
 
Prove that |b2−4ac| ≤ |B2−4AC|.  

(Source: 2003 Putnam Exam) 
 
Solution. Samuel Liló ABDALLA (ITA, 

São Paulo, Brazil), Jeff CHEN (Virginia, 

USA), Salem MALIKIĆ (Sarajevo 

College, 4th Grade, Sarajevo, Bosnia and 

Herzegovina) and YEUNG Wai Kit 
(STFA Leung Kau Kui College, Form 7). 
 

We have  

.||limlim||
2

2

2

2

A
x

CBxAx

x

cbxax
a

xx
=

++
≤

++
=

∞→∞→

 

If B2−4AC > 0, then Ax2+Bx+C=0 has 

two distinct real roots x0 and x1. By the 

given inequality, these will also be 

roots of ax2+bx+c=0.  So b2−4ac > 0. 

Then 
 

    2

10

22 )(|4| xxAACB −=−  

             .|4|)( 22

10

2 acbxxa −=−≥  

If B2−4AC ≤ 0, then by replacing A by 

−A or a by −a if necessary, we may 

assume A ≥ a > 0.  Since A > 0 and 

B2−4AC ≤ 0, so for every real number x, 

Ax2+Bx+C ≥ 0.  Then the given 

inequality implies for every real x, 
 
      Ax2+Bx+C ≥ ±(ax2+bx+c) .     (*) 

 

Then (A−a)x2 + (B−b)x + (C−c) ≥ 0. 

This implies  
 
          (B−b)2 ≤ 4(A−a)(C−c).     (**) 

 
Similarly, 
  
          (B+b)2 ≤ 4(A+a)(C+c).    (***) 

Then  

        (B2−b2)2 ≤ 16(A2−a2)(C 2−c2) 

                       ≤ 16(AC−ac)2, 
 
which implies B2−b2 ≤ 4|AC−ac|. 

 

Taking x = 0 in (*), we get C ≥ |c|.  

Since A ≥ a > 0, we get B2−b2 ≤ 
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4(AC−ac).  Hence,  

              4ac −b2 ≤ 4AC −B2.         (†) 
 
Using (**) and (***), we have 

         
2

)()( 22
22 bBbB

bB
++−

=+  

         ( )))(())((2 cCaAcCaA +++−−≤  

          ).(4 acAC +=  

 

Then −(4ac −b2) ≤ 4AC −B2. Along 
with (†), we have 
 
       |b2−4ac| = ±(4ac −b2)  
                     ≤ 4AC −B2 = |B2−4AC|. 

 

Problem 283.  P is a point inside 

∆ABC.  Lines AC and BP intersect at 

Q. Lines AB and CP intersect at R.  It is 

known that AR=RB=CP and CQ=PQ. 

Find ∠BRC with proof.  (Source: 2003 

Japanese Math Olympiad)  
 
Solution. Stephen KIM (Toronto, 

Canada). 

A

B C

Q

R
S

P

 

Let S be the point on segment CR such 

that RS=CP=AR. Since CQ=PQ, we 

have 
 

∠ACS=∠QPC=∠BPR. 
 

Also, since RS=CP, we have  
 

SC=CR−RS=CR−CP = RP. 
 

Considering line CR cutting ABQ⊿ , by 

Menelaus’ theorem, we have  

.1=⋅⋅
CQ

AC

BP

PQ

AR

RB  

Since AR=RB and CQ=PQ, we get AC = 

BP.  Hence, ⊿ACS≅⊿BPR.  Then AS 

= BR = AR = CP = RS and so ⊿ARS is 

equilateral.  Therefore, ∠BRC=120°.  

 
Commended solvers: FOK Pak Hei 
(Pui Ching Middle School, Form 6), 
Kelvin LEE (Trinity College, 
Cambridge, England), Salem 
MALIKIĆ (Sarajevo College, 4th Grade, 
Sarajevo, Bosnia and Herzegovina), NG 
Ngai Fung (STFA Leung Kau Kui 
College, Form 5) and YEUNG Wai Kit 
(STFA Leung Kau Kui College, Form 7). 

 

Problem 284.  Let p be a prime number. 

Integers x, y, z satisfy 0 < x < y < z < p.  

If x3, y3, z3 have the same remainder 

upon dividing by p, then prove that x2+ 

y2+ z2 is divisible by x+y+z. (Source: 

2003 Polish Math Olympiad) 

Solution. George Scott ALDA, José 
Luis DÍAZ-BARRERO (Universitat 

Politècnica de Catalunya, Barcelona, 

Spain),  EZZAKI Mahmoud (Omar Ibn 

Abdelaziz, Morocco), Stephen KIM 
(Toronto, Canada), Kelvin LEE (Trinity 

College, Cambridge, England) and Salem 
MALIKIĆ (Sarajevo College, 4th Grade, 

Sarajevo, Bosnia and Herzegovina).  
 
Since x3 ≡ y3 ≡ z3 (mod p), so  
 

p | x3−y3 = (x−y)(x2+xy+y2). 
 
Since 0 < x < y < z < p and p is prime, we 

have p ∤ x−y and hence  
 

                p | x2+xy+y2.                  (1) 
 
Similarly,  

                   p | y2+yz+z2                    (2) 

and   

                  p | z2+zx+x2.                    (3) 

By (1) and (2), p divides 
 

(x2+xy+y2)−(y2+yz+z2)=(x−z)(x+y+z). 
 
Since 0 < z−x < p, we have p | x+y+z. 
 
Also, 0 < x < y < z < p implies x+y+z = p 

or 2p and p > 3. Now  
 

x+y+z ≡ x2+y2+z2 (mod 2). 
 
Thus, it remains to show p | x2+y2+z2. 

 

Now x2+xy+y2 = x(x+y+z)+ y2−xz.  From 

(1), we get  
 
                        p |  y2−xz .                   (4) 

 
Similarly,  

                          p |  x2−zy                     (5) 

and  

                          p |  z2−yx .                   (6) 

 

Adding the right sides of (1) to (6), we get 
 
                          p | 3(x2+y2+z2).  
 
Since p > 3 is prime, we get p | x2+y2+z2 as 

desired. 
 
Commended solvers: YEUNG Wai Kit 
(STFA Leung Kau Kui College, Form 7). 
 
Problem 285.  Determine the largest 

positive integer N such that for every way 

of putting all numbers 1 to 400 into a 

20×20 table (1 number per cell), one can 

always find a row or a column having two 

numbers with difference not less than N. 

(Source: 2003 Russian Math Olympiad) 

 

Solution.  Jeff CHEN (Virginia, USA) and 

Stephen KIM (Toronto, Canada).  
 

The answer is 209.  We first show N ≤ 209. 

Divide the table into a left and a right half, 

each of dimension 20×10.  Put 1 to 200 

row wise in increasing order into the left 

half.  Similarly, put 201 to 400 row 

wise in increasing order into the right 

half.  Then the difference of two 

numbers in the same row is at most 

210−1=209 and the difference of two 

numbers in the same column is at most 

191−1=190.  So N ≤ 209. 

 

Next we will show N ≥ 209.  Let M1 = 

{1,2,…,91} and M2 = {300, 301, …, 

400}. 
 

Color a row or a column red if and only 

if it contains a number in M1.  Similarly, 

color a row or a column blue if and 

only if it contains a number in M2.  We 

claim that  
 
(1) the number of red rows plus the 

number of red columns is at least 20 

and 

(2) the number of blue rows plus the 

number of blue columns is at least 21. 
  
Hence, there is a row or a column that 

is colored red and blue.  So two of the 

numbers in that row or column have a 

difference of at least 300−91=209. 

 

For claim (1), let there be i red rows 

and j red columns.  Since the numbers 

in M1 can only be located at the 

intersections of these red rows and 

columns, we have ij ≥ 91.  By the 

AM-GM inequality,  
 

.199122 >≥≥+ ijji  

 
Similarly, claim (2) follows from the 

facts that there are 101 numbers in M2 

and .201012 >  
 
 

 

 

Olympiad Corner 
                       (continued from page 1) 

 

Problem 3. (Cont.)  Show that there is a 

club with at least 11 male and 11 female 

members. 

 

Problem 4.  Determine if there exist 

positive integer pairs (m,n), such that 
 
(i)    the greatest common divisor of m 

and n is 1, and m ≤ 2007,  

(ii)   for any k=1,2, …, 2007,  

2 .
nk

k
m

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎣ ⎦⎣ ⎦
 

(Here [x] stands for the greatest integer 

less than or equal to x.) 
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Olympiad Corner 
 
Below were the problems of the 

2007Estonian IMO Team Selection 

Contest. 
 

First Day 
 
Problem 1.  On the control board of a 

nuclear station, there are n electric 

switches (n > 0), all in one row.  Each 

switch has two possible positions: up 

and down.  The switches are connected 

to each other in such a way that, 

whenever a switch moves down from 

its upper position, its right neighbor (if 

it exists) automatically changes 

position.  At the beginning, all switches 

are down.  The operator of the board 

first changes the position of the 

leftmost switch once, then the position 

of the second leftmost switch twice 

etc., until eventually he changes the 

position of the rightmost switch n 

times.  How many switches are up after 

all these operations? 

 

Problem 2.  Let D be the foot of the 

altitude of triangle ABC drawn from 

vertex A.  Let E and F be points 

symmetric to D with respect to lines AB 

and AC, respectively.  Let  R1 and R2  be  
 

 (continued on page 4) 
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     Inequalities involving square roots 

of the form 
 

kDCBA ≤+++  
 

can be solved using the Cauchy- 

Schwarz inequality.  However, solving 

inequalities of the following form 
 

kDCBA ≥+++  
 

is far from straightforward.  In this 

article, we will look at such problems. 

We will solve them by squaring and 

making more delicate use of the 

Cauchy-Schwarz inequality. 

 

Example 1.  Three nonnegative real 

numbers x, y and z satisfy x2+y2+z2=1. 

Prove that   
 

.6
2

1
2

1
2

1

222

≥⎟
⎠
⎞

⎜
⎝
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−+⎟
⎠
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⎜
⎝
⎛ +

−+⎟
⎠
⎞

⎜
⎝
⎛ +

−
xzzyyx  

 
Solution.  Squaring both sides of the 

inequality and  simplifying, we get the 

equivalent inequality 
 

∑ ++
+≥⎟
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where  
 

∑ ++=
cyclic

yxzfxzyfzyxfzyxf ).,,(),,(),,(),,(  

 
Notice that 
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By the Cauchy-Schwarz inequality, 
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1
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Similarly, we obtain two other such 

inequalities.  Multiplying each of them

 

by 2, adding them together, simplifying 

and finally using x2 + y2 + z2 = 1, we get 

the equivalent inequality in the 

beginning of this solution. 
 
Example 2. For a, b, c > 0, prove that 
 

   
ba

c

ac

b

cb

a

+
+

+
+

+
 

        .
))()((

12
accbba

abc

+++
+≥  

 

Solution.  Multiplying both sides by 

,))()(( accbba +++ we have to show
 
    ∑ ++

cyclic

baaca ))((  

              .))((2 cabcabcba ++++≥  
 
Squaring both sides, we get the 

equivalent inequality 
 

∑∑ ++++
cycliccyclic

cbcaabbaa ))(()(23  

          ∑ ++≥
cyclic

abcbaab .9)(3         (*) 

 
By the Cauchy-Schwarz inequality and 

the AM-GM inequality, we have 
 

))(()( cbcaabba +++  

       2)()( cababba ++≥  

       abcabba ))(( ++=  

       abcbabaab )()( +++=  

       .2)( abcbaab ++≥  
   
Using this, we have 

 
 ∑∑ ++++

cycliccyclic

bcacabbaa ))(()(23  

          ∑∑ +++≥
cycliccyclic

abcbaaba .12)(23  

 
Comparing with (*), we need to show 
 

∑∑ ≥++−
cycliccyclic

abcbaaba .03)(3  

This is just Schur’s inequality 
 

∑ ≥−−
cyclic

cabaa .0))((  

 
(See Math. Excalibur, vol.10, no.5, p.2)
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From the last example, we saw that 

other than the Cauchy-Schwarz 

inequality, we might need to recall 

Schur’s inequality 

.0))(( ≥−−∑
cyclic

r zxyxx  

Here we will also point out a common 

variant of Schur’s inequality, namely 
 

.0))()(( ≥−−+∑
cyclic

r zxyxzyx  

This variant can be proved in the same 

way as Schur’s inequality (again see 

Math. Excalibur, vol.10, no.5, p.2). 

Both inequalities become equality if 

and only if either the variables are all 

equal or one of them is zero, while the 

other two are equal.  In the next two 

examples, we will use these. 

 

Example 3.  Let a, b, c be nonnegative 

real numbers such that a + b + c = 1. 

Prove that 
 

.3)()()( 222 ≥−++−++−+ bacacbcba  
 

When does equality occur? 

 
Solution.  Squaring both sides of the 

inequality and using  
 

a2+b2+c2 = (a+b+c)2 −2(ab+bc+ca) 

  = 1 − 2(ab+bc+ca), 
 

we get the equivalent inequality 

∑ ++≥−+−+
cyclic

cabcabacbcba ).(3)()( 22

By the Cauchy-Schwarz inequality, 
 

   22 )()( acbcba −+−+  

bcbaacacbacb )()()()( 22 +++−+++−=

.)(|))((| abcbaaccb +++−−≥  

 
Similarly, we can obtain two other such 

inequalities.  Adding them together, the 

right side is  
 

.)(|))((| ∑∑ +++−−
cycliccyclic

abcbaaccb  

 
By the triangle inequality and the case 

r = 0 of Schur’s inequality, we get 

).()(

))((

))((|))((|

222 cabcabcba

acbc
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cyclic

cycliccyclic
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∑

∑∑
    (**) 

 
Thus, to finish, it will be enough to 

show 
 

))((222 cabcabcbacba +++++++                   

).(4 cabcab ++≥  
 
Now we make the substitutions 
 

,ax =   by =   and  .cz =  
 

In terms of x, y, z, the last inequality 

becomes 

.0)4( 222334 ≥−+++∑
cyclic

yxyzxzxyxx  (***) 

Since the terms are of degree 4, we 

consider the case r = 2 of Schur’s 

inequality, which is 
 

        ∑ −−
cyclic

zxyxx ))((2  

    ∑ ≥+−−=
cyclic

yzxzxyxx .0)( 2334  

This is not quite equal to (***).  So next 

(due to degree 4 consideration again), we 

will look at the case r = 1 of the variant 

∑ −−+
cyclic

zxyxzyx ))()((  

.0)2( 2233 ≥−+= ∑
cyclic

yxzxyx  

Readily we see (***) is just the sum of 

Schur’s inequality with twice its variant.  

 

Finally, tracing back, we see equality 

occurs if and only if a = b = c= 1/3 or 

one of them is 0, while the other two are 

equal to 1/2. 

 

Example 4.  Three nonnegative real 

numbers a, b, c satisfy a + b + c = 2. 

Prove that  
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Solution.  Squaring both sides of the 

inequality and using a + b + c = 2, we get 

the equivalent inequality 
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Note that 
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=  

                
4

)(

4

)( 2 bacba +
+

−
= . 

 

Applying twice the Cauchy-Schwarz 

inequality, we have 
 

   ⎟
⎠
⎞

⎜
⎝
⎛ −

+
⎟
⎠
⎞

⎜
⎝
⎛ −

+
bc

cb
ab

ba
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4

))((

4

|))((| cbbacacbba ++
+

−−
≥  

⎟
⎠
⎞⎜

⎝
⎛ ++−−≥ 2)())((

4

1
cabcacbba  

( ).))((
4

1
cababccbba ++−−=  

 
Similarly, we can obtain two other such 

inequalities.  Adding them together and 

using (**) in example 3, we get  

 

∑ ⎟
⎠
⎞

⎜
⎝
⎛ −

+
⎟
⎠
⎞

⎜
⎝
⎛ −

+

cyclic

bc
cb

ab
ba

22
4

( )∑ ∑∑ ++−−≥
cyclic cycliccyclic

cababccbba ))((

).(222 cbaabccba +++++≥  

 

Substituting  
 

,ax =   by =   and  cz =  
 

and using Schur’s inequality and its 

variant, we have 
 

      )(222 cbaabccba +++++  

  222444 xyzzxyyzxzyx +++++=  

  ( )∑ +≥
cyclic

zxyx 33  

  ).(22 22 cabcabyx
cyclic

++=≥ ∑  

 

Combining this with the last displayed 

inequalities, we can obtain the 

equivalent inequality in the beginning 

of this solution. 

 

To conclude this article, we will give 

two exercises for the readers to 

practice. 

 

Exercise 1.  Three nonnegative real 

numbers x, y and z satisfy x2+y2+z2=1. 

Prove that   

.211 ≥−−∑
cyclic

yzxy  

 
Exercise 2.  Three nonnegative real 

numbers x, y and z satisfy x + y + z = 1. 

Prove that   

.
3

22
111 ≥−+−+− xyzzxyyzx  
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is February 25, 

2008. 

 

Problem 291.  Prove that if a convex 

polygon lies in the interior of another 

convex polygon, then the perimeter of 

the inner polygon is less than the 

perimeter of the outer polygon.  
 

Problem 292.  Let k1 < k2 < k3 < ⋯ be 

positive integers with no two of them 

are consecutive.  For every m = 1, 2, 

3, …, let Sm = k1+k2+⋯+km.  Prove that 

for every positive integer n, the interval 

[Sn , Sn+1) contains at least one perfect 

square number. 

(Source: 1996 Shanghai Math Contest) 
 
Problem 293.  Let CH be the altitude 

of triangle ABC with ∠ACB = 90°. 

The bisector of ∠BAC intersects CH, 

CB at P, M respectively.  The bisector 

of ∠ABC intersects CH, CA at Q, N 

respectively.  Prove that the line 

passing through the midpoints of PM 

and QN is parallel to line AB. 
 
Problem 294.  For three nonnegative 

real numbers x, y, z satisfying the 

condition xy + yz + zx = 3, prove that 
 

.63222 ≥+++ xyzzyx  

 

Problem 295.  There are 2n distinct 

points in space, where n ≥ 2.  No four 

of them are on the same plane.  If n2 + 1 

pairs of them are connected by line 

segments, then prove that there are at 

least n distinct triangles formed.   

(Source: 1989 Chinese IMO team 

training problem) 

 

***************** 

Solutions 

**************** 
 

Problem 286.  Let x1, x2, …, xn be real 

numbers.  Prove that there exists a real 

number y such that the sum of { x1−y}, 

{ x2−y},  …, { xn−y} is at most (n−1)/2. 

(Here {x} = x − [x], where [x] is the 

greatest integer less than or equal to x.) 
 
Can y always be chosen to be one of the 

xi’s ? 
 
Solution.  Jeff CHEN (Virginia, USA), 
CHEUNG Wang Chi (Magdalene 
College, University of Cambridge, 
England), HO Kin Fai (HKUST, Math 
Year 3), Anna Ying PUN (HKU, Math Year 
2), Salem MALIKIĆ (Sarajevo College, 
4th Grade, Sarajevo, Bosnia and 
Herzegovina) and Fai YUNG. 
 
For i = 1, 2, …, n, let 

.}{
1

∑
=

−=
n

j

iji xxS  

For all real x, {x} + {−x} ≤ 1 (since the left 

side equals 0 if x is an integer and equals 1 

otherwise).  Using this, we have 

∑∑
≤<≤=

−+−=
nji

jiij

n

i

i xxxxS
11

}){}({  

                 .
2

)1(
1

1

−
=≤ ∑

≤<≤

nn

nji

 

So the average value of Si is at most 

(n−1)/2.  Therefore, there exists some y = 

xi such that Si is at most (n − 1)/2. 

 

Problem 287.  Determine (with proof) all 

nonempty subsets A, B, C of the set of all 

positive integers ℤ+ satisfying 
 
(1)  A∩B = B∩C = C∩A = ∅; 

(2)  A∪B∪C = ℤ+; 

(3)  for every a∈ A, b∈ B and c∈ C, we 

have c + a ∈ A, b + c ∈ B and a + b ∈ C. 
 
Solution.  Jeff CHEN (Virginia, USA), 
CHEUNG Wang Chi (Magdalene 
College, University of Cambridge, 
England), HO Kin Fai (HKUST, Math 
Year 3), Anna Ying PUN (HKU, Math Year 
2), Salem MALIKIĆ (Sarajevo College, 
4th Grade, Sarajevo, Bosnia and 
Herzegovina) and Fai YUNG. 
 
Let the minimal element of C be x.  Then 

{1, 2, …, x − 1}⊆ A∪B.  Since for every 

a∈ A, b∈ B, we have x + a∈ A, b + x∈ B.  

So all numbers not divisible by x are in 

A∪B.  Then every c∈ C is a multiple of x.  

By (3), the sum of every a∈ A and b∈ B is 

a multiple of x. 

 

Assume x = 1.  Then a∈ A, b∈ B imply 

a+1∈ A, b + 1∈ B, which lead to a + b ∈ 

A∩B contradicting (1). 

 

Assume x = 2.  We may suppose 1∈ A. 

Then by (3), all odd positive integers are 

in A.  For b ∈ B, we get 1 + b ∈ C.  Then 

b is odd, which lead to b∈ A∩B 

contradicting (1). 

 

Assume x ≥ 4.  Then {1,2,3}⊆ A∪B, 

say y,  z∈ {1,2,3}∩ A.  Taking a b ∈ B, 

we get y+b, z+b ∈ C by (3).  Then 

(y+b) − (z+b) = y − z is a multiple of x. 

But |y − z| < x leads to a contradiction. 

 

Therefore, x = 3.  We claim 1 and 2 

cannot both be in A (or both in B).  If 1, 

2∈ A, then (3) implies 3k + 1, 3k + 2∈ 

A for all k∈ ℤ+.  Taking a b∈ B, we get 

1 + b∈ C, which implies b = 3k + 2∈ A. 

Then b∈ A∩B contradicts (1).  

 

Therefore, either 1∈A and 2∈B (which 

lead to A = {1,4,7,…}, B = {2,5,8,…}, 

C = {3,6,9,…}) or 2∈ A and 1∈ B 

(which similarly lead to A = {2,5,8,…}, 

B = {1,4,7,…}, C = {3,6,9,…}). 

 

Problem 288.  Let H be the 

orthocenter of triangle ABC.  Let P be a 

point in the plane of the triangle such 

that P is different from A, B, C.  
 
Let L, M, N be the feet of the 

perpendiculars from H to lines PA, PB, 

PC respectively.  Let X, Y, Z be the 

intersection points of lines LH, MH, 

NH with lines BC, CA, AB respectively. 
 
Prove that X, Y, Z are on a line 

perpendicular to line PH.  

A

B C

H

P
L

X

M

Y

Z

N

 

Solution 1.  Jeff CHEN (Virginia, USA) 

and CHEUNG Wang Chi (Magdalene 

College, University of Cambridge, 

England).  
 
Since XH = LH ⊥PA,  AH ⊥CB = XB, 

BH⊥AC=AY and YH=MH⊥BP, we 

have respectively (see Math. Excalibur, 

vol.12, no.3, p.2) 
 
              XP2−XA2=HP2−HA2            (1) 

              AX2−AB2=HX2−HB2                (2) 

             BA2−BY2=HA2−HY2                 (3) 

             YB2−YP2=HB2−HP2             (4) 
 
Doing (1)+(2)+(3)+(4), we get 
 

XP2−YP2=XH2−YH2, 
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which implies XY⊥PH.  Similarly, 

ZY⊥PH.  So, X, Y, Z are on a line 

perpendicular to line PH. 
 
Solution 2.  Anna Ying PUN (HKU, 

Math Year 2) and Stephen KIM 

(Toronto, Canada). 
 
Set the origin of the coordinate plane at 

H.  For a point J, let (xJ, yJ) denote its 

coordinates.  Since the slope of line PA 

is (yP −yA)/(xP−xA), the equation of line 

HL is  
 

      (xP −xA)x + (yP −yA)y = 0.      (1) 

 

Since the slope of line HA is yA/xA, the 

equation of line BC is  
 
        xAx + yAy = xAxB + yAyB.          (2) 

 

Let t = xAxB + yAyB.  Since point C is on 

line BC, we get xAxC + yAyC = xAxB + 

yAyB=t.  Similarly,  xBxC + yByC=t. 
 
Since X is the intersection of lines BC 

and HL, so the coordinates of X satisfy 

the sum of equations (1) and (2), that is 
 
                  xPx + yPy = t.                  

 
(Since the slope of line PH is yP/xP, this 

is the equation of a line that is 

perpendicular to line PH.)  Similarly, 

the coordinates of Y and Z satisfy xPx + 

yPy = t.  Therefore, X, Y, Z lie on a line 

perpendicular to line PH. 

 
Commended solvers:  Salem 
MALIKIĆ (Sarajevo College, 4th 
Grade, Sarajevo, Bosnia and 
Herzegovina). 
 
Problem 289.   Let a and b be positive 

numbers such that a + b < 1.  Prove 

that 
 

.,min
)2()1(

)2()1(
2

2

⎭
⎬
⎫

⎩
⎨
⎧≥

−+−
−+−

a

b

b

a

abab

baba  

 
Solution.  Samuel Liló ABDALLA 

(ITA, São Paulo, Brazil), Jeff CHEN 

(Virginia, USA), CHEUNG Wang Chi 

(Magdalene College, University of 

Cambridge, England), Anna Ying PUN 

(HKU, Math Year 2), Salem 

MALIKIĆ (Sarajevo College, 4th 

Grade, Sarajevo, Bosnia and 

Herzegovina), Simon YAU Chi 

Keung (City University of Hong Kong) 

and Fai YUNG. 
 
Since 0 < a, b < a + b < 1, we have 
 
(b−1)2 + a(2b−a) = b2+2(a−1)b−a2+1 

          = (b+a−1)2+2a(1−a) > 0. 
 
In case a ≥ b > 0, we have 

a

b

a

b

b

a

abab

baba
=

⎭
⎬
⎫

⎩
⎨
⎧≥

−+−
−+−

,min
)2()1(

)2()1(
2

2

 

     ⇔  a(a−1)2+ab(2a−b) 

                      ≥ b(b−1)2+ab(2b−a) 

       ⇔ (a−b)[(a+b−1)2+2ab] ≥ 0, 

which is true.  In case b > a > 0, we have 

b

a

a

b

b

a

abab

baba
=

⎭
⎬
⎫

⎩
⎨
⎧≥

−+−
−+−

,min
)2()1(

)2()1(
2

2

 

     ⇔  b(a−1)2+b2(2a−b) 

                      ≥ a(b−1)2+a2(2b−a) 

       ⇔ (b−a)(1 −a2 −b2) ≥ 0, 

which is also true as a2 +b2 < a+b < 1. 

 
Problem 290.  Prove that for every 

integer a greater than 2, there exist 

infinitely many positive integers n such 

that a n − 1 is divisible by n. 
 
Solution 1.  Jeff CHEN (Virginia, USA), 
CHEUNG Wang Chi (Magdalene 
College, University of Cambridge, 
England), GRA20 Problem Solving 
Group (Roma, Italy) and HO Kin Fai 
(HKUST, Math Year 3).  
 

We will show by math induction that n = 

(a − 1)k for k = 1, 2, 3, … satisfy the 

requirement.  For k = 1, since a − 1 > 1 and 

a ≡ 1 (mod a − 1), so  
 

aa−1 −1 ≡ 1a−1 − 1 = 0 (mod a − 1). 
 

Next, suppose case k is true.  Then 

1)1( −− kaa  is divisible by (a − 1)k.  For 

the case k + 1, all we need to show is  

).1(mod0
1

1
)1(

)1( 1

−≡
−
−

−

− +

a
a

a
k

k

a

a

 

Note ).1(mod1)1( −≡= − aab
ka   The left 

side of the above displayed congruence is 

).1(mod011
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This completes the induction. 
 
Solution 2.  Anna Ying PUN (HKU, Math 
Year 2) and Salem MALIKIĆ (Sarajevo 
College, 4th Grade, Sarajevo, Bosnia and 
Herzegovina).  
 
Note n = 1 works.  We will show if n 

works, then an − 1( > 2n − 1 ≥ n) also 

works.  If n works, then an − 1 = nk for 

some positive integer k.  Then  

,)1(11
1

0

1 ∑
−

=

− −=−=−
k

j

njnnka aaaa
n

 

which shows an − 1 works. 

Comments: Cheung Wang Chi pointed 

out that interestingly n = 1 is the only 

positive integer such that 2n−1 is 

divisible by n (denote this by n | 2n−1). 

[This fact appeared in the 1972 Putnam 

Exam.-Ed.]  To see this, he considered 

a minimal n > 1 such that n | 2n−1.  He 

showed if a, b, q ∈ ℤ+ and a = bq + r 

with 0 ≤ r < b, then 2a − 1 = ((2b)q − 1)2r 

+ (2r − 1) = (2b − 1)N + (2r − 1) for some 

N ∈ ℤ+.  Hence, 
 

gcd(2a−1,2b−1) = gcd(2b−1,2r−1) 

                              = ⋯ = 2gcd(a,b)−1  
 
by the Euclidean algorithm.  Since 

n|2n−1 and n|2φ(n)−1 by Euler’s theorem, 

so n|2d −1, where d = gcd(n, φ(n)) ≤ φ(n) 

< n.  Then n | 2d − 1 implies d > 1 and 

d|2d − 1, contradicting minimality of n.  
 
Commended solvers:  Samuel Liló 
ABDALLA (ITA, São Paulo, Brazil) 
and Fai YUNG. 
 

 
 

Olympiad Corner 
(continued from page 1) 

 

Problem 2. (Cont.)  the circumradii of 

triangles BDE and CDF, respectively, 

and r1 and r2 be the inradii of the same 

triangles.  Prove that 
 

|SABD-SACD| ≥ |R1r1-R2r2|, 
 

where SK is the area of figure K. 
 
Problem 3.  Let n be a natural number, 

n ≥ 2.  Prove that if (bn
-1)/(b-1) is a 

prime power for some positive integer 

b, then n is prime. 
 
Second Day 
 
Problem 4.  In square ABCD, points E 

and F are chosen in the interior of sides 

BC and CD, respectively.  The line 

drawn from F perpendicular to AE 

passes through the intersection point G 

of AE and diagonal BD.  A point K is 

chosen on FG such that AK = EF.  Find 

∠EKF. 

 

Problem 5.  Find all continuous 

functions f:  Թ →  Թ such that for all 

reals x and y,   f (x + f (y)) = y + f (x + 1). 

 

Problem 6.  Consider a 10×10 grid.  

On every move, we color 4 unit squares 

that lie in the intersection of some two 

rows and two columns.  A move is 

allowed if at least one of the 4 squares 

is previously uncolored.  What is the 

largest possible number of moves that 

can be taken to color the whole grid? 
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Olympiad Corner 
 
The 2008 APMO was held in March. 

Here are the problems. 
 

Problem 1.  Let ABC be a triangle with 

∠A < 60°.  Let X and Y be the points on 

the sides AB and AC, respectively, such 

that CA+AX = CB+BX and BA+AY = 

BC+CY.  Let P be the point in the plane 

such that the lines PX and PY are 

perpendicular to AB and AC, 

respectively. Prove that ∠BPC < 120°. 

 

Problem 2.  Students in a class form 

groups each of which contains exactly 

three members such that any two 

distinct groups have at most one 

member in common. Prove that, when 

the class size is 46, there is a set of 10 

students in which no group is properly 

contained.  
 

Problem 3.  Let Γ be the circumcircle of 

a triangle ABC.  A circle passing through 

points A and C meets the sides BC and 

BA at D and E, respectively.  The lines 

AD and CE meet Γ again at G and H, 

respectively.  The tangent lines of Γ at A 

and C meet the line DE at L and M, 

respectively.  Prove that the lines LH and 

MG meet at Γ.   
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     Problems involving sets of points in 

the plane or in space often appear in 

math competitions. We will look at 

some typical examples. The solutions of 

these problems provide us the basic 

ideas to attack similar problems. 

 

      The following are some interesting 

examples. 

 

Example 1. (2001 USA Math Olympiad) 

Each point in the plane is assigned a real 

number such that, for any triangle, the 

number at the center of its inscribed 

circle is equal to the arithmetic mean of 

the three numbers at its vertices.  Prove 

that all points in the plane are assigned 

the same number. 

 

Solution.  Let A, B be arbitrary distinct 

points and consider a regular hexagon 

ABCDEF in the plane.  Let lines CD and 

EF intersect at G.  Let L be the line 

through G perpendicular to line DE.  
 

L

A B

C

DE

F

G

 
Observe that ∆CEG and ∆DFG are 

symmetric with respect to L and hence 

they have the same incenter.  So c+e+g 

= d+f+g.  Also, ∆ACE and ∆BDF are 

symmetric with respect to L and have 

the same incenter.  So a+c+e=b+d+f. 

Subtracting these two equations, we see 

a=b. 
 
Comments:  This outstanding elegant 

solution was due to Michael Hamburg, 

who was given a handsome cash prize 

as a Clay Math Institute award by the 

USAMO Committee.

 

Example 2. (1987 IMO Shortlisted 

Problem)  In space, is there an infinite 

set M of points such that the intersection 

of M with every plane is nonempty and 

finite? 

 

Solution.  Yes, there is such a set M.  For 

example, let 
 

M = {(t 5, t 3, t) : t ∊ }. 
 

Then, for every plane with equation Ax 

+ By + Cz + D = 0, the intersection 

points are found by solving 
 

At5 + Bt3 + Ct + D = 0, 
 

which has at least one solution (since A 

or B or C is nonzero) and at most five 

solutions (since the degree is at most 

five). 

 

Example 3. (1963 Beijing Mathematics 

Competition)  There are 2n + 3 (n ≥ 1) 

given points on a plane such that no 

three of them are collinear and no four 

of them are concyclic.  
 
      Is it always possible to draw a circle 

through three of them so that half of the 

other 2n points are inside and half are 

outside the circle? 
 
Solution. Yes, it is always possible.  
 
Take the convex hull of these points, 

i.e. the smallest convex set containing 

them.  The boundary is a polygon with 

vertices from the given points.  
 
Let AB be a side of the polygon.  Since 

no three are collinear, no other given 

points are on AB. By convexity, the 

other points C1, C2, ⋯, C2n+1 are on the 

same side of line AB. Since no four are 

collinear, angles ACiB are all distinct, 

say  
 

∠AC1B < ∠AC2B < ⋯ <∠AC2n+1B. 
 
Then C1, C2, ⋯, Cn are inside the circle 

through A, B and Cn+1 and Cn+2, Cn+3, ⋯, 

C2n+1 are outside. 
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Example 4. (1941 Moscow Math. 

Olympiad)  On a plane are given n 

points such that every three of them is 

inside some circle of radius 1.  Prove 

that all these points are inside some 

circle of radius 1. 

 

Solution.  For every three of the n 

given points, consider the triangle they 

formed.  If the triangle is an acute 

triangle, then draw their circumcircle, 

otherwise take the longest side and 

draw the circle having that side as the 

diameter.  By the given condition, all 

these circles have radius less than 1. 

 

Let S be one of these circles with 

minimum radius, say S arose from 

considering points A, B, C.  

 

Assume one of the given points D is 

not inside S.  

 

If ∆ABC is acute, then D is on the 

same side as one of A,B,C with respect 

to the line through the other two points, 

say D and A are on the same side of line 

BC.  Then the circle drawn for B,C,D 

would be their circumcircle and would 

have a radius greater than the radius of 

S, a contradiction. 

 

If ∆ABC is not acute and S is the circle 

with diameter AB, then the circle 

drawn for A, B, D would have AB as a 

chord and not as a diameter, which 

implies that circle has a radius greater 

than the radius of S, a contradiction. 

 

Therefore, all n points are inside or on 

S. Since the radius of S was less than 1, 

we can take the circle of radius 1 at the 

same center as S to contain all n points. 

 

       In the next example, we will 

consider a problem in space and the 

solution will involve a basic fact from 

solid geometry. Namely,  

A

B
C

D

 

about vertex A of a tetrahedron ABCD, 

we have 
 
∠BAC ≤ ∠BAD +∠DAC ≤ 360°. 

 

Nowadays, very little solid geometry is 

taught in school. So let’s recall Euclid’s 

proofs in Book XI, Problems 20 and 21 of 

his Elements.  

A

B C

D

E

Z

X
W

Y

 

For the left inequality, we may assume 

that ∠BAC is the largest of the three 

angles about vertex A.  Let E be on side 

BC so that ∠BAD=∠BAE.  Let X, Y, Z be 

on rays AB, AC, AD respectively, and 

AX=AY =AZ.  Then ∆AXZ≅∆AXY and 

we have XZ=XY.  Let line XY intersect line 

AC at W. Since XZ + ZW > XW, cancelling 

XZ = XY from both sides, we have ZW > 

YW.  Comparing triangles WAZ and WAY, 

we have WA=WA, AZ=AY, so ZW > YW 

implies ∠ZAW >∠YAW.  Then  
 

∠BAC =∠XAY+∠YAW 

                          < ∠XAZ+∠ZAW 

                          = ∠BAD+∠DAC. 
 
For the right inequality, by the left 

inequality, we have  
 

∠DBC ≤ ∠DBA +∠ABC, 

∠BCD ≤ ∠BCA +∠ACD, 

∠CDB ≤ ∠CDA +∠ADB. 
 

Adding them, we get 180° is less than or 

equal to the sum of the six angles on the 

right.  Now the sum of these six angles 

and the three angles about A is 3×180°.  So 

the sum of the three angles about A is less 

than or equal to 360°. 

 

Example 5. (1969 All Soviet Math. 

Olympiad)  There are n given points in 

space with no three collinear.  For every 

three of them, they form a triangle having 

an angle greater than 120°.  Prove that 

there is a way to order the points as A1, 

A2, …, An such that whenever 1 ≤ i < j < k 

≤ n, we have 

∠AiAjAk  > 120°. 

 

Solution.  Take two furthest points among 

these n points and call them A1 and An.  

 

For every two points X, Y among the other 

n−2 points, since A1An is the longest side 

in both ∆A1XAn and ∆A1YAn, we have 

∠XA1An < 60° and ∠YA1An < 60°.  About 

vertex A1 of the tetrahedron A1AnXY, we 

have 
 
          ∠XA1Y ≤∠XA1An+∠YA1An 

                       < 60°+60°= 120°.  
 
Similarly, ∠XAnY < 120°. 

Also, A1X≠A1Y (since otherwise, the 

two equal angles in ∆XA1Y cannot be 

greater than 90° and so only ∠XA1Y 

can be greater than 120°, which will 

contradict the inequality above).  Now 

order the points by its distance to A1 so 

that A1A2<A1A3<⋯<A1An. 

 

For 1< j < k ≤ n, taking X=Aj and Y=Ak 

in the inequality above, we get 

∠AjA1Ak < 120°.  Since A1Ak > A1Aj, so 

in ⊿A1AjAk, ∠A1AjAk >120°.   

 

For 1 < i < j < k ≤ n, we have ∠A1AiAj 

>120° and ∠A1AiAk >120° by the last 

paragraph.  Then, about vertex Ai of the 

tetrahedron AiAjAkA1, we have ∠AjAiAk 

< 120°.  Next since A1Ak > A1Aj > A1Ai, 

about vertex Ak of the tetrahedron 

AkAjAiA1, we have  
 
    ∠AiAkAj ≤∠AiAkA1+∠AjAkA1 

                   < 60°+60°= 120°. 
 
Hence, in ∆AiAjAk, we have ∠AiAjAk  > 

120°. 

  

Example 6. (1994 All Russian Math. 

Olympiad)  There are k points, 2 ≤ k ≤ 

50, inside a convex 100-sided polygon. 

Prove that we can choose at most 2k 

vertices from this 100-sided polygon 

so that the k points are inside the 

polygon with the chosen points as 

vertices. 
 

Solution.  Let M = A1A2⋯An be the 

boundary of the convex hull of the k 

points.  Hence, n ≤ k.  Let O be a point 

inside M.  From i=1 to n, let ray OAi 

intersect the 100-sided polygon at Bi. 

Let M’ be the boundary of the convex 

hull of B1, B2, ⋯, Bn. 

 

For every point P on or inside M, the 

line OP intersects M at two sides, say 

AiAi+1 and AjAj+1.  By the definition of 

the points Bi’s, we see the line OP 

intersects BiBi+1 and BjBj+1, say at 

points S and T respectively.  Since Bi, 
Bi+1, Bj and Bj+1 are in M’, so S, T are in 

M’.  Then O and P are in M’. Thus M’ 

contains M. 
 

Let M’ = C1C2⋯Cm.  Then m ≤ n ≤ k.  

Observe that all Ci’s are on the 100- 

sided polygon.  Now each Ci is a vertex 

or between two consecutive vertices of 

the 100-sided polygon.  Let G be the 

set of all these vertices.  Then G has at 

most 2k points and the polygon with 

vertices from G contains the k points. 

  
  (Continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is May 20, 2008. 

 

Problem 296.  Let n > 1 be an integer. 

From a n×n square, one 1×1 corner 

square is removed.  Determine (with 

proof) the least positive integer k such 

that the remaining areas can be 

partitioned into k triangles with equal 

areas. 

(Source 1992 Shanghai Math Contest)  
 

Problem 297.  Prove that for every 

pair of positive integers p and q, there 

exist an integer-coefficient polynomial 

f(x) and an open interval with length 

1/q on the real axis such that for every x 

in the interval, |f(x) − p/q| < 1/q2.  

(Source:1983 Finnish Math Olympiad) 
 
Problem 298.  The diagonals of a 

convex quadrilateral ABCD intersect at 

O.  Let M1 and M2 be the centroids of 

∆AOB and ∆COD respectively.  Let 

H1 and H2 be the orthocenters of 

∆BOC and ∆DOA respectively.  

Prove that M1M2⊥H1H2. 
 

Problem 299.  Determine (with proof) 

the least positive integer n such that in 

every way of partitioning S = {1,2,…,n} 

into two subsets, one of the subsets will 

contain two distinct numbers a and b 

such that ab is divisible by a+b. 
 

Problem 300.  Prove that in base 10, 

every odd positive integer has a 

multiple all of whose digits are odd. 

 

***************** 

Solutions 

**************** 
 

Problem 291.  Prove that if a convex 

polygon lies in the interior of another 

convex polygon, then the perimeter of 

the inner polygon is less than the 

perimeter of the outer polygon.  
 
Solution. Jeff CHEN (Virginia, USA), 

HO Kin Fai (HKUST, Math Year 3) and 

Fai YUNG. 

A
i+1

A
i

B
i

B
i+1

 

We will define a sequence of convex 

polygons P0, P1, …, Pn−1.  Let the outer 

convex polygon be P0 and the inner 

convex polygon be A1A2…An.  For i = 1 to 

n−1, let the line AiAi+1 intersect Pi−1 at Bi, 
Bi+1.  The line AiAi+1 divides Pi−1 into two 

parts with one part enclosing A1A2…An. 

Let Pi be the polygon formed by putting 

the segment BiBi+1 together with the part 

of Pi−1 enclosing A1A2…An.  Note Pn−1 is 

A1A2…An.  Finally, the perimeter of Pi is 

less than the perimeter of Pi−1 because the 

length of BiBi+1, being the shortest 

distance between Bi and Bi+1, is less than 

the length of the part of Pi−1 removed to 

form Pi. 

 
Commended solvers: Salem MALIKIĆ 
(Sarajevo College, 4th Grade, Sarajevo, 
Bosnia and Herzegovina), Raúl A. 
SIMON (Santiago, Chile) and Simon 
YAU Chi-Keung (City University of 
Hong Kong). 

 

Problem 292.  Let k1 < k2 < k3 < ⋯ be 

positive integers with no two of them are 

consecutive.  For every m = 1, 2, 3, …, let 

Sm = k1+k2+⋯+km.  Prove that for every 

positive integer n, the interval [Sn , Sn+1) 

contains at least one perfect square 

number. 

(Source: 1996 Shanghai Math Contest) 
 
Solution. Jeff CHEN (Virginia, USA), 

G.R.A. 20 Problem Solving Group (Roma, 

Italy), HO Kin Fai (HKUST, Math Year 3), 

Salem MALIKIĆ (Sarajevo College, 4th 

Grade, Sarajevo, Bosnia and Herzegovina) 

and Raúl A. SIMON (Santiago, Chile). 
 
There is a nonnegative integer a such that 

a2 < Sn  ≤ (a+1)2.  We have 
 
       Sn = kn + kn−1 + ⋯ + k1 

 < kn + (kn −2) +⋯+ (kn −2n+2)  

            = n(kn−n+1). 
 
By the AM-GM inequality,  

.
2

1

2

)1( +
=

+−+
<< nn

n

knkn
Sa  

Then 

(a+1)2  = a2+2a+1 < Sn+ (kn+1) +1 

                    ≤  Sn+kn+1 = Sn+1. 

 

Commended solvers: Simon YAU 

Chi-Keung (City University of Hong 

Kong). 

 

Problem 293.  Let CH be the altitude 

of triangle ABC with ∠ACB = 90°.  

The bisector of ∠BAC intersects CH, 

CB at P, M respectively.  The bisector 

of ∠ABC intersects CH, CA at Q, N 

respectively. Prove that the line passing 

through the midpoints of PM and QN is 

parallel to line AB. 

(Source: 52nd Belorussian Math. 

Olympiad) 
 
Solution. Jeff CHEN (Virginia, USA) 

and CHEUNG Wang Chi (Magdalene 

College, University of Cambridge, 

England) and Salem MALIKIĆ 

(Sarajevo College, 4th Grade, Sarajevo, 

Bosnia and Herzegovina).  

A B

C

H

M
N Q

P
E F

X Y
 

Let E, F be the midpoints of QN, PM 

respectively.  Let X, Y be the intersection 

of CE, CF with AB respectively. Now  
 
      ∠CMP  = 90° −∠CAM  

                    = 90° − ∠BAM 

                    = ∠APH =∠CPM.  
 
So CM=CP.  Then CF⊥AF. Since AF 

bisects ∠CAY, by ASA, ∆CAF ≅ 

∆YAF. So CF=FY.  Similarly, CE=EX. 

By the midpoint theorem, we have EF 

parallel to line XY, which is the same as 

line AB. 

 

Commended solvers: Konstantine 

ZELATOR (University of Toledo, 

Toledo, Ohio, USA).  
 
Problem 294.  For three nonnegative 

real numbers x, y, z satisfying the 

condition xy+yz+zx = 3, prove that 
 

.63222 ≥+++ xyzzyx  

 
Solution. Jeff CHEN (Virginia, USA), 

CHEUNG Wang Chi (Magdalene 

College, University of Cambridge, 

England), Ovidiu FURDUI (Cimpia - 

Turzii, Cluj, Romania), MA Ka Hei 

(Wah Yan College, Kowloon) and 

Salem MALIKIĆ (Sarajevo College, 

4th Grade, Sarajevo, Bosnia and 

Herzegovina). 
 
Let p = x+y+z, q = xy+yz+zx and r = 

xyz. Now  
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p2 − 9 = x2 + y2 + z2 − xy − yz − zx 

        ,0
2

)()()( 222

≥
−+−+−

=
xzzyyx  

So p ≥ 3.  By Schur’s inequality (see 

Math Excalibur, vol. 10, no. 5, p. 2, 

column 2), 12p= 4pq ≤ p3+9r.  Since 
 

p2 = x2+y2+z2+2(xy+yz+zx) 

             = x2+y2+z2+6,  

we get 
 
      3xyz = 3r ≥ 9r/p 

              ≥ 12 − p2 

                     = 6 − (x2 + y2 + z2). 

   

Problem 295.  There are 2n distinct 

points in space, where n ≥ 2. No four of 

them are on the same plane.  If n2 + 1 

pairs of them are connected by line 

segments, then prove that there are at 

least n distinct triangles formed.   

(Source: 1989 Chinese IMO team 

training problem) 
 
Solution. Jeff CHEN (Virginia, USA) 

and CHEUNG Wang Chi (Magdalene 

College, University of Cambridge, 

England).  
 

We prove by induction on n.  For n=2, 

say the points are A,B,C,D.  For five 

segments connecting them, only one 

pair of them is not connected, say they 

are A and B.  Then triangles ACD and 

BCD are formed. 
 
Suppose the case n=k is true.  Consider 

the case n=k+1.  We first claim there is 

at least one triangle.  Suppose AB is 

one such connected segment.  Let α, β 
be the number of segments connecting 

A, B to the other 2n−2=2k points 

respectively.  
 
If α+β > 2k+1, then A, B are both 

connected to one of the other 2k points, 

hence a triangle is formed. 
 
If α+β ≤ 2k, then the other 2k points 

have at least (k+1)2 + 1 − (2k+1) = k2 + 

1 segments connecting them.  By the 

case n=k, there is a triangle in these 2k 

points. 
 
So the claim is established.  Now take 

one such triangle, say ABC.  Let α, β, γ 
be the number of segments connecting 

A, B, C to the other 2k−1 points 

respectively.  
 
If α+β+γ ≥ 3k−1, then let D1, D2, …, 

Dm (m ≤ 2k−1) be all the points among 

the other 2k−1 points connecting to at 

least one of A or B or C.  The number of 

segments to Di from A or B or C is ni = 

1 or 2 or 3.  Checking each of these 

three cases, we see there are at least ni−1 

triangles having Di as a vertex and the two 

other vertices from A, B, C.  So there are  

∑
=

≥−−≥−
m

i

i kmkn
1

13)1(  

triangles, each having one Di vertex, plus 

triangle ABC, resulting in at least k+1 

triangles. 
  
If α+β+γ ≤ 3k−2, then the sum of α+β, 
γ+α, β+γ is at most 6k−4.  Hence the least 

of them cannot be 2k−1 or more, say α+β 
≤ 2k−2.  Then removing A and B and all 

segments connected to at least one of them, 

we have at least (k+1)2+1−(2k+1)=k2+1 

segments left for the remaining 2k points.  

By the case n=k, we have k triangles. 

These plus triangle ABC result in at least 

k+1 triangles.  The induction is complete. 

 

Commended solvers: Raúl A. SIMON 

(Santiago, Chile) and Simon YAU 

Chi-Keung (City University of Hong 

Kong). 
 

 

 

Olympiad Corner 
                            (continued from page 1) 

 

Problem 4. Consider the function 

f:ℕ0→ℕ0, where  ℕ0 is the set of all 

non-negative integers, defined by the 

following conditions:  
 
  (i)   f(0) = 0,    (ii) f(2n) = 2f(n)    and 

(iii)  f(2n+1) = n+2f(n) for all n ≥ 0. 
 
(a)  Determine the three sets L:={ n | f(n) < 

f(n+1)}, E:={ n | f(n) = f(n+1)}, and G:={n | 

f(n) > f(n+1)}. 
 
(b)  For each k ≥ 0, find a formula for ak:= 

max{ f(n) |  0 ≤ n ≤ 2k} in terms of k. 

 

Problem 5.  Let a, b, c be integers 

satisfying 0 < a < c−1 and 1 < b < c.  For 

each k, 0 ≤ k ≤ a, let rk, 0 ≤ rk <  c, be the 

remainder of kb when dived by c.  Prove 

that the two sets {r0, r1, r2, …, ra} and {0, 

1, 2, …, a} are different. 
 

 
 

Point Set Combinatorics  
                            (continued from page 2) 

 

Example 7. (1987 Chinese IMO Team 

Selection Test)  There are 2n distinct 

points in space, where n ≥ 2.  No four of 

them are on the same plane.  If n2 + 1 pairs 

of them are connected by line segments, 

then prove that there are two triangles 

sharing a common side. 

Solution.  We prove by induction on n.  

For n=2, say the points are A,B,C,D.  

For five segments connecting them, 

only one pair of them is not connected, 

say they are A and B.  Then triangles 

ACD and BCD are formed and the side 

CD is common to them. 

 

Suppose the case n=k is true.  Consider 

the case n=k+1.  Suppose AB is one 

such connected segment.  Let α, β be 

the number of segments connecting A, 

B to the other 2n − 2 = 2k points 

respectively.  

 

Case 1.  If α+β ≥ 2k+2, then there are 

points C, D among the other 2k points 

such that AC, BC, AD, BD are 

connected.  Then triangles ABC and 

ABD are formed and the side AB is 

common to them. 

 

Case 2.  If  α+β ≤ 2k, then removing A, 

B and all segments connecting to at 

least one of them, there would still be 

at least (k+1)2 +1 − (2k+1) = k2+1 

segments left for the remaining 2k 

points.  By the case n = k, there would 

exist two triangles sharing a common 

side among them. 

 

Case 3.  Assume cases 1 and 2 do not 

occur for all the connected segments. 

Then take any connected segment AB 

and we have α+β = 2k+1.  There would 

then be a point C among the other 2k 

points such that triangle ABC is 

formed.   

 

Let γ be the number of segments 

connecting C to the other 2k−1 points 

respectively.  Since cases 1 and 2 do 

not occur, we have  
 

β + γ = 2k+1 and γ +α = 2k+1, 
 
too. However, this would lead to  
 

(α + β) + (β + γ) + (γ +α) = 6k + 3, 

 

which is contradictory as the left side is 

even and the right side is odd. 

 

       One cannot help to notice the 

similarity between the last example 

and problem 295 in the problem corner. 

Naturally this raise the question: when 

n is large, again if n2 + 1 pairs of the 

points are connected by line segments, 

would we be able to get more pairs of 

triangles sharing common sides? Any 

information or contribution for this 
question from the readers will be 

appreciated. 
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Olympiad Corner 
 
The following are the four problems 

of the 2008 Balkan Mathematical 

Olympiad. 
 

Problem 1.  An acute-angled scalene 

triangle ABC is given, with AC > BC. 

Let O be its circumcenter, H its 

orthocenter and F the foot of the 

altitude from C.  Let P be the point 

(other than A) on the line AB such that 

AF=PF and M be the midpoint of AC. 

We denote the intersection of PH and 

BC by X, the intersection of OM and 

FX by Y and the intersection of OF and 

AC by Z.  Prove that the points F, M, Y 

and Z are concyclic. 

 

Problem 2.  Does there exist a 

sequence a1, a2, a3, …, an, … of  

positive real numbers satisfying both of 

the following conditions: 
 

(i) ,2

1

na
n

i

i ≤∑
=

for every positive 

integer n; 

(ii) ,2008
1

1

≤∑
=

n

i ia
for every positive 

integer n ? 
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    Too often we stare at a figure in 

solving a geometry problem.  In this 

article, we will move parts of the figure 

to better positions to facilitate the way 

to a solution. 

 

     Below we shall denote the vector 

from X to Y by the boldface italics XY. 

On a plane, a translation by a vector v 

moves every point X to a point Y such 

that XY = v.  We denote this translation 

by T(v). 
 
Example 1.  The opposite sides of a 

hexagon ABCDEF are parallel.  If 

BC−EF = ED−AB = AF−CD > 0, show 

that all angles of ABCDEF are equal. 
 
Solution.  One idea is to move the side 

lengths closer to do the subtractions.  

Let T(FA) move E to P, T(BC) move A 

to Q and T(DE) move C to R.  

A

B

C D

E

F

Q
P

R

 
Hence, EFAP, ABCQ, CDER are 

parallelograms.  Since the opposite 

sides of the hexagon are parallel, P is on 

AQ, Q is on CR and R is on EP.  Then, 

we get BC − EF = AQ − AP = PQ.  

Similarly, ED − AB = QR and AF − CD 

= RP.  Hence, ΔPQR is equilateral.  
 

Now, ∠ ABC =∠ AQC = 120°.  Also, 

∠ BCD=∠ BCQ+∠DCQ = 60° + 60° 

= 120°.  Similarly, ∠CDE = ∠DEF = 

∠ EFA = ∠ FAB = 120°.  
 

Example 2. ABCD is a convex 

quadrilateral with AD =BC.  Let E, F 

be midpoints of CD, AB respectively. 

Suppose rays AD, FE intersect at H and 

rays BC, FE intersect at G.  Show that  
 

∠ AHF =∠ BGF. 

 

Solution.  One idea is to move BC 

closer to AD.  Let T(CB) move A to I. 
 

A B

C
D E

F

G

H

I  
Then BCAI is a parallelogram.  Since F 

is the midpoint of AB, so F is also the 

midpoint of CI.  Applying the midpoint 

theorem to ∆CDI, we get EF||DI.  

Using this and CB||AI, we get ∠ BGF 

= ∠ AID. From AI = BC = AD, we 

get∠ AID =∠ ADI.  Since EF || DI, 

∠ AHF =∠ ADI =∠ AID =∠ BGF. 

 

Example 3.  Let M and N be the 

midpoints of sides AD and BC of 

quadrilateral ABCD respectively.  If  
 

2MN = AB+CD, 
 
then prove that AB||CD. 
 
Solution.  One idea is to move AB, CD 

closer to MN.  Let T(DC) move M to E 

and T(AB) move M to F.  
 

A B

C
D

E

FM

N
K

 
 

Then we can see CDME and BAMF are 

parallelograms. Since EC = ½AD = BF, 

BFCE is a parallelogram.  Since N is the 

midpoint of BC, so N is also the 

midpoint of EF. 

 

Next, let T(ME) move F to K.  Then 

EMFK is a parallelogram and 
 
            MK = 2MN = AB+CD 

          = MF+EM = MF+FK. 
 
So F, M, K, N are collinear and AB||MN. 

Similarly, CD||MN. Therefore, AB||CD.
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    On a plane, a rotation about a center 

O by angle α moves every point X to a 

point Y such that OX = OY and ∠XOY 

= α (anticlockwise if α > 0, clockwise 

if α < 0).  We denote this rotation by 

R(O,α). 
 
Example 4.  Inside an equilateral 

triangle ABC, there is a point P such 

that PC=3, PA=4 and PB=5.  Find the 

perimeter of ∆ABC. 
 
Solution.  One idea is to move PC, PA, 

PB to form a triangle.  Let R(C,60°) 

move ∆CBP to ∆CAQ.  

5

4 3

3

35

A

B

C

P

Q  

Now CP=CQ and ∠PCQ = 60° imply 

∆PCQ is equilateral.  As AQ = BP = 5, 

AP = 4 and PQ = PC = 3, so ∠APQ = 

90°.  Then ∠APC  =∠APQ +∠QPC 

= 90°+60° = 150°.  So the perimeter of 

∆ABC is 

o150cos124333 22 −+=AC  

                .312253 +=  

 

For our next example, we will point out 

a property of rotation, namely  

P B
1

O

B

A
1

A

 

if R(O,α) moves a line AB to the line 

A1B1 and P is the intersection of the 

two lines, then these lines intersect at 

an angle α. 
 
    This is because ∠OAB=∠OA1B1 

implies O,A,P,A1 are concyclic so that 

∠BPB1=∠AOA1=α. 
 

Example 5.  ABCD is a unit square.  

Points P,Q,M,N are on sides AB, BC, 

CD, DA respectively such that  
 

AP + AN + CQ + CM = 2. 
 

Prove that PM⊥QN. 
 
Solution.  One idea is to move AP, AN 

together and CQ, CM together.  Let 

R(A,90°) map B→D, C→C1, D→D1, 

Q→Q1, N→N1 as shown below. 
 

A B

CDC
1

D
1 P

M

N

Q

Q
1

N
1  

 
Then AN=AN1 and CQ=C1Q1.  So 
 
PN1= AP+AN1=AP+AN = 2−(CM+CQ) 

        = CC1−(CM+C1Q1) = MQ1. 
 
Hence, PMQ1N1 is a parallelogram and 

MP||Q1N1.  By the property before the 

example, lines QN and Q1N1 intersect at 

90°.  Therefore, PM⊥QN. 

  

Example 6. (1989 Chinese National 

Senoir High Math Competition)  In 

∆ABC, AB > AC.  An external bisector of 

∠ BAC intersects the circumcircle of 

∆ABC at E.  Let F be the foot of 

perpendicular from E to line AB.  Prove 

that  
 

2AF = AB−AC. 
 
Solution.  One idea is to move AC to 

coincide with a part of AB.  To do that, 

consider R(E,∠CEB).  

CB

A

T

E

F
D

 

Observe that ∠EBC=∠EAT=∠EAB= 
∠ECB implies EC=EB. So R(E,∠CEB) 

move C to B.  Let R(E,∠CEB) move A to 

D. Since ∠CAB =∠CEB, by the property 

above and AB > AC, D is on segment AB.  
 
So R(E,∠CEB) moves ∆AEC to ∆DEB. 

Then ∠DAE =∠EAT =∠EDA implies 

∆AED is isosceles.  Since EF⊥AD, 
 

2AF=AD=AB −BD=AB −AC. 
 

**************** 
 
On a plane, a reflection across a line 

moves every point X to a point Y such that 

the line is the perpendicular bisector of 

segment XY.  We say Y is the mirror image 

of X with respect to the line. 

 

Example 7. (1985 IMO)  A circle with 

center O passes through vertices A and C 

of ∆ABC and cuts sides AB, BC at K, N 

respectively.  The circumcircles of ∆ABC 

and ∆KBN intersect at B and M.  Prove 

that ∠OMB = 90°. 

 
Solution.  Let L be the line through O 

perpendicular to line BM.  We are done 

if we can show M is on L.  

L

O C

A

B

K
N

M

C'
K'

 

Let the reflection across L maps C 

→C’ and K →K’.  Then CC’⊥L and 

KK’⊥L, which imply lines CC’, KK’, 

BM are parallel. We have 
 
∠KC’C=∠KAC = ∠BNK=∠BMK, 
 
which implies C’,K,M collinear.  Now 
 
 ∠C’CK’= ∠CC’K=∠CAK 

                = ∠CAB=180 ° −∠BMC 
                = ∠C’CM, 
 
which implies C,K’,M collinear.  Then 

lines C’K and CK’ intersect at M.  

Since lines C’K and CK’ are symmetric 

with respect to L, so M is on L. 

 

Example 8.  Points D and E are on 

sides AB and AC of ∆ABC respectively 

with∠ABD = 20°, ∠DBC = 60°, ∠
ACE = 30° and ∠ECB = 50°.   Find  

∠EDB. 
 
Solution.  Note ∠ ABC= ∠ ACB. 

Consider the reflection across the 

perpendicular bisector of side BC.  Let 

the mirror image of D be F.  Let BD 

intersect CF at G.  Since BG = CG, 

lines BD, CF intersect at 60° so that 

∆BGC and ∆DGF are equilateral. 

Then DF=DG. 
 

20°
30°

60° 50°

A

B C

D

E

F

G

 

     We claim EF = EG 

(which implies ∆EFD 

≅ ∆EGD. So ∠EDB 

= ½ ∠ FDG = 30°).  

For the claim, we have 

∠EFG=∠CDG = 40° 

and ∠FGB = 120°.  
 
Next ∠BEC = 50°.  So 

BE=BC. As ∆BGC is  
equilateral, so BE = BC = BG .This 

gives ∠EGB = 80 °. Then 
 

∠EGF =∠FGB −∠EGB 

                      = 40° =∠EFG , 
 
which implies the claim. 

 
(Continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for 

submitting solutions is August 20, 

2008. 
 

Problem 301.  Prove that it is possible 

to decompose two congruent regular 

hexagons into a total of six pieces such 

that they can be rearranged to form an 

equilateral triangle with no pieces 

overlapping. 
 

Problem 302.  Let ℤ denotes the set of 

all integers.  Determine (with proof) all 

functions f:ℤ→ℤ such that for all x, y 

in ℤ, we have f (x+f (y)) = f (x) − y.  
 
Problem 303.  In base 10, let N be a 

positive integer with all digits nonzero.  

Prove that there do not exist two 

permutations of the digits of N, 

forming numbers that are different 

(integral) powers of two. 
 

Problem 304.  Let M be a set of 100 

distinct lattice points (i.e. coordinates 

are integers) chosen from the x-y 

coordinate plane.  Prove that there are 

at most 2025 rectangles whose vertices 

are in M and whose sides are parallel to 

the x-axis or the y-axis. 
 

Problem 305.  A circle Γ2 is internally 

tangent to the circumcircle Γ1 of ∆PAB 

at P and side AB at C.  Let E, F be the 

intersection of Γ2 with sides PA, PB 

respectively.  Let EF intersect PC at D. 

Lines PD, AD intersect Γ1 again at G, H 

respectively.  Prove that F, G, H are 

collinear. 

 

***************** 

Solutions 

**************** 
 

Problem 296.  Let n > 1 be an integer. 

From a n×n square, one 1×1 corner 

square is removed.  Determine (with 

proof) the least positive integer k such 

that the remaining areas can be 

partitioned into k triangles with equal 

areas. 

(Source 1992 Shanghai Math Contest) 

 
Solution. Jeff CHEN (Virginia, USA), O 
Kin Chit Alex (GT Ellen Yeung College), 
PUN Ying Anna (HKU Math Year 2), 
Simon YAU Chi-Keung (City University 
of Hong Kong) and Fai YUNG. 

A

B C

 

The figure above shows the least k is at 

most 2n+2.  Conversely, suppose the 

required partition is possible for some k.  

Then one of the triangles must have a side 

lying in part of segment AB or in part of 

segment BC.  Then the length of that side 

is at most 1.  Next, the altitude 

perpendicular to that side is at most n − 1. 

Hence, that triangle has an area at most 

(n−1)/2.   That is (n2 −1)/k ≤ (n−1)/2.   So  

k ≥ 2n + 2.  Therefore, the least k is 2n+2. 

 

Problem 297.  Prove that for every pair of 

positive integers p and q, there exist an 

integer-coefficient polynomial f(x) and an 

open interval with length 1/q on the real 

axis such that for every x in the interval, 

|f(x) − p/q| < 1/q2.  

(Source:1983 Finnish Math Olympiad) 
 
Solution. Jeff CHEN (Virginia, USA) and 

PUN Ying Anna (HKU Math Year 2). 
 
If q = 1, then take f(x) = p works for any 

interval of length 1/q.  If q > 1, then define 

the interval .
2

3
,

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

qq
I  

Choosing a positive integer m greater than 

(log q)/(log 2q/3), we get [3/(2q)]m  < 1/q. 

Let a = 1−[1/(2q)]m.  Then for all x in I, we 

have 0 < 1 − qxm < a < 1. 
 

Choosing a positive integer n greater than 

−(log pq)/(log a), we get an < 1/(pq).  Let 
 

].)1(1[)( nmqx
q

p
xf −−=  

Now  

∑
−

=

−−−=
1

0

)1()]1(1[)(
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has integer coefficients.  For x in I, we have 

.
1

)1()(
2q

a
q

p
qx

q

p

q

p
xf nnm <<−=−  

 

Problem 298.  The diagonals of a 
convex quadrilateral ABCD intersect at 
O.  Let M1 and M2 be the centroids of 
∆AOB and ∆COD respectively.  Let 
H1 and H2 be the orthocenters of 
∆BOC and ∆DOA respectively.  
Prove that M1M2⊥H1H2. 
 
Solution.  Jeff CHEN (Virginia, USA). 

A

B

C

D
O

A
1

C
1

B
1

H
1

D
1

H
2

E

F

M
1

M
2

 
Let A1, C1 be the feet of the 

perpendiculars from A, C to line BD 

respectively.  Let B1, D1 be the feet of the 

perpendiculars from B, D to line AC 

respectively.  Let E, F be the midpoints 

of sides AB, CD respectively. Since  
 

OM1/OE = 2/3 = OM2/OF, 
 

we get EF || M1M2.  Thus, it suffices to 

show H1H2⊥EF. 
 
Now the angles AA1B and BB1A are right 

angles.  So A, A1, B, B1 lie on a circle Γ1 

with E as center.  Similarly, C, C1, D, D1 

lie on a circle Γ2 with F as center.  
 
Next, since the angles AA1D and DD1A 

are right angles, points A,D,A1,D1 are 

concyclic.  By the intersecting chord 

theorem, AH2·H2A1=DH2·H2D1. 
 
This implies H2 has equal power with 

respect to Γ1 and Γ2.  Similarly, H1 has 

equal power with respect to Γ1 and Γ2. 

Hence, line H1H2 is the radical axis of Γ1 

and Γ2.  Since the radical axis is 

perpendicular to the line joining the 

centers of the circles, we get H1H2⊥EF. 
 
Comments: For those who are not 

familiar with the concepts of power and 

radical axis of circles, please see Math. 

Excalibur, vol. 4, no. 3, pp. 2,4. 
 
Commended solvers: PUN Ying Anna 
(HKU Math Year 2) and Simon YAU 
Chi-Keung (City University of Hong 
Kong).   
 
Problem 299.  Determine (with proof) 

the least positive integer n such that in 

every way of partitioning S = {1,2,…,n} 

into two subsets, one of the subsets will 

contain two distinct numbers a and b 

such that ab is divisible by a+b. 
 

Solution.  Jeff CHEN (Virginia, USA), 
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PUN Ying Anna (HKU Math Year 2). 
 
Call a pair (a,b) of distinct positive 

integers a good pair if and only if ab is 

divisible by a+b.  Here is a list of good 

pairs with 1 < a < b < 50 : 
 
(3,6), (4,12), (5,20), (6,12), (6,30), 

(7,42), (8,24), (9,18), (10,15), (10,40), 

(12,24), (12,36), (14,35), (15,30), 

(16,48), (18,36), (20,30), (21,28), 

(21,42), (24,40), (24,48), (30,45), 

(36,45). 
 
Now we try to put the positive integers 

from 1 to 39 into one of two sets S1, S2 

so that no good pair is in the same set. 

If a positive integer is not in any good 

pair, then it does not matter which set it 

is in, say we put it in S1.  Then we get  
 
S1={1, 2, 3, 5, 8, 10, 12, 13, 14, 18, 19, 

21, 22, 23, 30, 31, 32, 33, 34, 36} and 

S2={4, 6, 7, 9, 11,15, 17, 20, 24, 25, 26, 

27, 28, 29, 35, 37, 38, 39}.  
 
So 1 to 39 do not have the property.  
 
Next, for n = 40, we observe that any 

two consecutive terms of the sequence 

6, 30, 15, 10, 40, 24, 12, 6 forms a good 

pair.  So no matter how we divide the 

numbers 6, 30, 15, 10, 40, 24, 12 into 

two sets, there will be a good pair in 

one of them. So, n = 40 is the least case. 
   

Problem 300.  Prove that in base 10, 

every odd positive integer has a 

multiple all of whose digits are odd. 
 
Solution. Jeff CHEN (Virginia, USA) 
and G.R.A. 20 Problem Solving Group 
(Roma, Italy), PUN Ying Anna (HKU 
Math Year 2).  
 
We first show by induction that for 

every positive integer k, there is a 

k-digit number nk whose digits are all 

odd and nk is a multiple of 5k.  We can 

take n1=5.  Suppose this is true for k. 

We will consider the case k + 1.  If nk is 

a multiple of 5k+1, then take nk+1 to be nk 

+ 5×10k.  Otherwise, nk is of the form 

5k(5i+j), where i is a nonnegative 

integer and j = 1, 2, 3 or 4.  Since 

gcd(5,2k) = 1, one of the numbers 

10k+nk, 3×10k+nk, 7×10k+nk, 9×10k+nk 

is a multiple of 5k+1.  Hence we may 

take it to be nk+1, which completes the 

induction. 
 
Now for the problem, let m be an odd 

number.  Let N(a,b) denote the number 

whose digits are those of a written b 

times in a row.  For example, N(27,3) = 

272727.  
 
Observe that m is of the form 5kM, 

where k is a nonnegative integer and 

gcd(M,5) = 1.  Let n0 = 1 and for k > 0, let 

nk be as in the underlined statement above.  

Consider the numbers N(nk,1), N(nk,2), …, 

N(nk, M + 1).  By the pigeonhole principle, 

two of these numbers, say N(nk, i) and 

N(nk, j) with 1 ≤ i < j ≤ M + 1, have the 

same remainder when dividing by M.  

Then N(nk, j) − N(nk, i) = N(nk, j−i) × 10ik 

is a multiple of M and 5k.  
 
Finally, since gcd(M, 10) = 1, N(nk, j−i) is 

also a multiple of M and 5k. Therefore, it is 

a multiple of m and it has only odd digits. 
 
 

 

 

Olympiad Corner 
 (continued from page 1) 

 

Problem 3.  Let n be a positive integer.  The 

rectangle ABCD with side lengths 

AB=90n+1 and BC=90n+5 is partitioned 

into unit squares with sides parallel to the 

sides of ABCD.  Let S be the set of all points 

which are vertices of these unit squares. 

Prove that the number of lines which pass 

through at least two points from S is 

divisible by 4. 

 

Problem 4.  Let c be a positive integer.  The 

sequence a1, a2, …, an, … is defined by 

a1=c and an+1=an
2+an+c for every positive 

integer n.  Find all values of c for which 

there exist some integers k ≥ 1 and m ≥ 2 

such that ak
2+c3 is the mth power of some 

positive integer.   
 

 
 

Geometric Transformations I  
    (continued from page 2) 

 

On a plane, a spiral similarity with center 

O, angle α and ratio k moves every point X 

to a point Y such that ∠XOY = α and 

OY/OX = k, i.e. it is a rotation with a 

homothety.  We denote it by S(O,α, k). 

 

Example 9. (1996 St. Petersburg Math 

Olympiad)  In ∆ABC, ∠BAC=60°.  A 

point O is inside the triangle such that     

∠AOB = ∠BOC = ∠COA.  Points D 

and E are the midpoints of sides AB and 

AC, respectively.  Prove that A, D, O, E 

are concyclic. 

120°

120°

B

A C

O
D

E  

Solution. Since ∠AOB=∠COA=120° 

and ∠OBA=60°−∠OAB=∠OAC, we 

see ∆AOB~∆COA.  Then the spiral 

similarity S(O,120°,OC/OA) maps 

∆AOB→∆COA and also D→E.  Then 

∠DOE = 120° = 180°−∠BAC, which 

implies A, D, O, E concyclic. 

 

Example 10. (1980 All Soviet Math 

Olympiad)  ∆ABC is equilateral.  M is 

on side AB and P is on side CB such 

that MP||AC. D is the centroid of 

∆MBP and E is the midpoint of PA. 

Find the angles of ∆DEC. 

A

B

C

M P

D

E

K

H

 

Solution.  Let H and K be the 

midpoints of PM and PB respectively.  

Observe that S(D,−60°,1/2) maps 

P→H, B→K and so PB→HK.  Now H, 

K, E are collinear as they are midpoints 

of PM, PB, PA.  Note BC/BP = BA/BM 

= KE/KH, which implies S(D,−60°,1/2) 

maps C→E.  Then ∠EDC = 60° and 

DE=½DC. So we have∠DEC = 90° 

and ∠DCE = 30°. 

 

Example 11. (1998 IMO Proposal by 

Poland)  Let ABCDEF be a convex 

hexagon such that ∠B+∠D+∠F = 

360° and (AB/BC)(CD/DE)(EF/FA)=1. 

Prove (BC/CA)(AE/EF)(FD/DB)=1. 

F

A

B
C

D

E

A''

A'

 

Solution. Since ∠B+∠D+∠F =360°, 

S(E, ∠ FED,ED/EF) maps ∆FEA→ 

∆DEA’ and S(C,∠BCD,CD/CB) maps 

∆BCA→ ∆DCA’’. So ∆FEA ~∆DEA’ 

and ∆BCA~∆DCA’’. These yield 

BC/CA=DC/CA’’, DE/EF=DA’/FA and 

using the given equation, we get 

,
'''

CD

DA

EF

FA

CD

DE

BC

AB

DC

DA
===  

which implies A’=A’’.  Next ∠AEF = 

∠A’ED implies ∠DEF = ∠A’EA.  As 

DE/FE=A’E/AE, so ∆DEF~∆A’EA 

and AE/FE=AA’/FD.  Similarly, we get 

∆DCB~∆A’CA and DC/A’C=DB/A’A. 

Therefore, 

.1
'

''
==

DB

AA

CA

DC

DB

FD

EF

AE

CA

BC  
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Olympiad Corner 
 
The following are the problems of the 

2008 IMO held at Madrid in July. 
 

Problem 1.  An acute-angled triangle 

ABC has orthocenter H.  The circle 

passing through H with centre the 

midpoint of BC intersects the line BC at 

A1 and A2.  Similarly, the circle passing 

through H with centre the midpoint of 

CA intersects the line CA at B1 and B2, 

and the circle passing through H with 

the centre the midpoint of AB intersects 

the line AB at C1 and C2.  Show that A1, 

A2, B1, B2, C1, C2 lie on a circle.  
 

Problem 2.  (a) Prove that  

1
)1()1()1( 2

2

2

2

2

2

≥
−

+
−

+
− z

z

y

y

x

x  

for all real numbers x, y, z, each 

different from 1, and satisfying xyz = 1. 
 
(b) Prove that equality holds above for 

infinitely many triples of rational 

numbers x, y, z, each different from 1, 

and satisfying xyz = 1. 

 

Problem 3.  Prove that there exist 

infinitely many positive integers n such 

that n2+1 has a prime divisor which is 

greater than 2n+ .2n  
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     Below the vector from X to Y will be 

denoted as XY.  The notation ∡ABC = α 

means the ray BA after rotated an angle 

|α| (anticlockwise if α > 0, clockwise if  

α < 0) will coincide with the ray BC.  
 
On a plane, a translation by a vector v 

(denoted as T(v)) moves every point X 

to a point Y such that XY = v. On the 

complex plane ℂ, if the vector v 

corresponds to the vector from 0 to v, 

then T(v) has the same effect as the 

function  f :ℂ→ℂ  given by  f (w)= w +v.
 
A homothety about a center C and ratio r 

(denoted as H(C,r)) moves every point 

X to a point Y such that CY = r CX.  If C 

corresponds to the complex number c in 

ℂ, then H(C,r) has the same effect as 

f(w) = r(w − c)+ c = rw + (1−r)c. 
 

A rotation about a center C by angle α 

(denoted as R(C,α)) moves every point 

X to a point Y such that CX = CY and 

∡XCY = α. In ℂ, if C corresponds to the 

complex number c, then R(C,α) has the 

same effect as f (w) =  eiα(w − c) + c = 

eiαw + (1− eiα)c. 
 
A reflection across a line ℓ (denoted as 

S(ℓ)) moves every point X to a point Y 

such that the line ℓ is the perpendicular 

bisector of segment XY. In ℂ, let S(ℓ) 

send 0 to b.  If  b = 0 and  ℓ  is the line 

through  0  and  eiθ/2, then  S(ℓ)  has  the 

same effect as .)( wewf iθ=   If  b  ≠  0, 

then let b = |b| eiβ,  eiθ  = −e2iβ and L be 

the vertical line through |b|/2. In ℂ, S(L) 

sends w to wb −|| . Using that, S(ℓ) is 
 

.)|(|)( bwewebewf iii +=−= − θββ  
 
      We have the following useful facts: 
 
Fact 1. If ℓ1∥ ℓ2, then    

S(ℓ2) ◦ S(ℓ1) = T(2A1A2),   
where A1 is on ℓ1 and A2 is on ℓ2 such 
that the length of A1A2 is the distance d 
from ℓ1 to ℓ2.  
 
(Reason: Say ℓ1, ℓ2 are vertical lines 
through A1 = 0, A2 = d. Then S(ℓ1), S(ℓ2) 

are wwf −=)(1
 and .2)(2 dwwf +−=  

So S(ℓ2) ◦ S(ℓ1) is 
 

( ) ,22))(( 12 dwdwwff +=+−−=  
 

which is T(2A1A2). ) 
 
Fact 2.  If ℓ1∦ ℓ2, then  
 

S(ℓ2) ◦ S(ℓ1) = R(O,α), 
 
where ℓ1 intersects ℓ2 at O and α is 
twice the angle from ℓ1 to ℓ2 in the 
anticlockwise direction.  
 
(Reason: Say O is the origin, ℓ1 is the 
x-axis.  Then S(ℓ1) and S(ℓ2) are  
 

 wwf =)(1
 and ,)(2 wewf iα=  

 
so S(ℓ2) ◦ S(ℓ1) is f2(f1(w)) = eiαw, which 
is R(O,α). ) 
 

Fact 3.  If α + β is not a multiple of 360°, 

then  

R(O2, β) ◦ R(O1, α) = R(O, α+ β), 
 

where ∡OO1O2 = α/2,  ∡O1O2O = β/2. 

If α + β is a multiple of 360°, then  
 

R(O2, β) ◦ R(O1,α) = T(O1O3), 
 

where R(O2, β) sends O1 to O3.  
 
(Reason: Say O1 is 0, O2 is −1.  Then 

R(O1, α), R(O2, β) are f1(w) = eiαw, f2(w) 

= eiβw+(eiβ−1), so f2(f1(w)) = ei(α+β)w + 

(eiβ−1). If ei(α+β) ≠ 1, this is a rotation 

about c’ = (eiβ−1)/(1−ei(α+β)) by angle 

α+β. We have 
 

,
)2/)sin((

)2/sin( )2/( απ

βα
β −

+
=′ iec  

.
)2/)sin((

)2/sin(
1 2/β

βα
α iec
+

=−′  

 
If ei(α+β) = 1, this is a translation by eiβ−1 

= f2(0). ) 
 
Fact 4.  If O1, O2, O3 are noncollinear, 

α1, α2, α3 > 0, α1+α2+α3=360° and 
 

R(O3,α3) ◦ R(O2,α2) ◦ R(O1, α1) = I, 
 

where I is the identity transformation, 

then ∡O3O1O2= α1/2,  ∡O1O2O3= α2/2 

and ∡O2O3O1= α3/2.  
 
(This is just the case α3=360°−(α1+α2) 

of fact 3.) 
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Fact 5.  Let O1 ≠ O2. For r1r2 ≠ 1,  
 

H(O2,r2) ◦ H(O1,r1) = H(O,r1r2)  
for some O on line O1O2.  For r1r2 = 1,  
  
H(O2,r2) ◦ H(O1,r1) = T((1−r2)O1O2). 

 
(Reason: Say O1 is 0, O2 is c.  Then 

H(O1,r1), H(O2,r2) are f1(w) = r1w, f2 (w) 

= r2w+(1−r2)c, so f2 (f1(w)) = r1r2w 

+(1−r2)c.  For r1r2 ≠ 1, this is a 

homothety about c’ = (1− r2)c/(1− r1r2) 

and ratio r1r2.  For r1r2 = 1, this is a 

translation by (1− r2)c. ) 

 

   Next we will present some examples. 
 
Example 1.  In ∆ABC, let E be onside 

AB such that AE:EB=1:2 and D be on 

side AC such that AD:DC = 2:1.  Let F 

be the intersection of BD and CE. 

Determine FD:FB and FE:FC.  

A

B C

E

D

F

 

Solution.  We have H(E, −1/2) sends B 

to A and H(C, 1/3) sends A to D.  Since 

(1/3)×(−1/2) ≠ 1, by fact 5,  
 
H(C, 1/3) ◦ H(E, −1/2) = H(O, −1/6), 

 
where the center O is on line CE. 

However, the composition on the left 

side sends B to D. So O is also on line 

BD. Hence, O must be F.  Then we 

have FD: FB = OD: OB =1:6.  
 
Similarly, we have 
 

H(B, 2/3) ◦ H(D, −2) = H(F, −4/3) 
 

sends C to E, so FE:FC = 4:3. 

 

Example 2.  Let E be inside square 

ABCD such that ∠EAD =∠EDA =15°. 

Show that ∆EBC is equilateral. 

B

A D

C
O

E

 

Solution.  Let O be inside the square 

such that ∆ADO is equilateral.  Then 

R(D, 30°) sends C to O and R(A, 30°) 

sends O to B.  Since ∡EDA = 15° 

=∡DAE, by fact 3, 
 

R(A, 30°) ◦ R(D, 30°) = R(E, 60°), 
 

So R(E, 60°) sends C to B.  Therefore, 

∆EBC is equilateral. 

Example 3.  Let ABEF and ACGH be 

squares outside ∆ABC.  Let M be the 

midpoint of EG.  Show that MB = MC and 

MB⊥MC. 

A

B
C

E

F

H

G

M

 
Solution.  Since GC = AC and ∡GCA = 

90°, so R(C,90°) sends G to A. Also, R(B, 

90°) sends A to E.  Then R(B, 90°) ◦ 
R(C,90°) sends G to E. By fact 3,  
 

R(B, 90°) ◦ R(C, 90°) = R(O, 180°), 
 

where O satisfies ∡OCB = 45° and 

∡CBO = 45°.  Since the composition on 

the left side sends G to E, O must be M. 

Now ∡BOC = 90°.  So MB⊥MC.   

 

Example 4.  On the edges of a convex 

quadrilateral ABCD, construct the 

isosceles right triangles ABO1, BCO2, 

CDO3, DAO4 with right angles at O1, O2, 

O3, O4 overlapping with the interior of the 

quadrilateral.  Prove that if O1 = O3, then 

O2 = O4. 

O
3

C

D

B

A

O
1

 

Solution.  Now R(O1, 90°) sends A to B, 

R(O2, 90°) sends B to C, R(O3, 90°) sends 

C to D and R(O4, 90°) sends D to A.  By 

fact 3,  
 

R(O2, 90°) ◦ R(O1, 90°) = R(O, 180°), 
 

where O satisfies ∠ OO1O2 = 45° and 

∠ O1O2O = 45° (so ∠ O2OO1 = 90°). 

Now the composition on the left side 

sends A to C, which implies O must be the 

midpoint of AC.  Similarly, we have 
 

R(O4, 90°) ◦ R(O3, 90°) = R(O, 180°). 
 

By fact 3, ∡O4OO3 = 90° and ∡OO3O4 = 

45°=∡O3O4O.  Hence, R(O, 90°) sends 

O4O2  to O3O1.  Therefore, if O1 = O3, then 

O2 = O4. 
 
Example 4. (1999-2000 Iranian Math 

Olympiad, Round 2)  Two circles intersect 

in points A and B. A line ℓ that contains 

the point A intersects again the circles in 

the points C and D, respectively.  Let M, N 

be the midpoints of the arcs BC and BD, 

which do not contain the point A, and let K 

be the midpoint of the segment CD.  Show 

that ∠MKN = 90°. 

B

A
C

D

M N

K

 

Solution.  Since ∠ CAB  +∠ BAD = 

180°, it follows that ∠BMC +∠DNB 

=180°. 
 
Now R(M, ∡BMC) sends B to C, R(K, 

180°) sends C to D and R(N, ∡DNB) 

sends D to B.  However, by fact 3, 
 
R(N,∡DNB) ◦R(K,180°) ◦ R(M,∡BMC) 
 
is a translation and since it sends B to B, 

it must be the identity transformation I. 

By fact 4, ∡MKN = 90°. 

 

Example 6.  Let H be the orthocenter 

of ∆ABC and lie inside it.  Let A’, B’, 

C’ be the circumcenters of ∆BHC, 

∆CHA, ∆AHB respectively.  Show 

that AA’, BB’, CC’ are concurrent and 

identify the point of concurrency.  

O

A

B C

H

D

E
F

A'

C'

B'

A"  

Solution.  For ∆ABC, let O be its 

circumcenter and G be its centroid.  Let 

the reflection across line BC sends A to 

A”. Then ∠BAC =∠BA”C.  Now 
 
   ∠BHC 

= ∠ABH +∠BAC +∠ACH 

= (90°−∠BAC)+∠BAC+(90°−∠BAC) 

= 180°−∠BA”C. 
 
So A” is on the circumcircle of ∆HBC.  

 

Now the reflection across line BC 

sends O to A’, the reflection across line 

CA sends O to B’ and the reflection 

across line AB sends O to C’.  Let D, E, 

F be the midpoints of sides BC, CA, AB 

respectively.  Then H(G, −1/2) sends 

∆ABC to ∆DEF and H(O, 2) sends 

∆DEF to ∆A’B’C’.  Since (−1/2)×2≠1, 

by fact 5, 
 

H(O, 2) ◦ H(G, −1/2) = H(X, −1) 
 
for some point X. Since the 

composition on the left side sends 

∆ABC to ∆A’B’C’, segments AA’, BB’, 

CC’ concur at X and in fact X is their 

common midpoint. 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is October 31, 2008. 
 

Problem 306.  Prove that for every 

integer n ≥ 48, every cube can be 

decomposed into n smaller cubes, 

where every pair of these small cubes 

does not have any common interior 

point and has possibly different 

sidelengths.  
 

Problem 307.  Let  
 

f (x) = a0x
n + a1x

n−1 + ⋯ + an 
 

be a polynomial with real coefficients 

such that a0≠0 and for all real x, 
 

f (x) f (2x2) = f (2x3+x). 
 

Prove that f(x) has no real root. 
 
Problem 308.  Determine (with proof) 

the greatest positive integer n >1 such 

that the system of equations  

.)()2()1( 222

2

22

1

2

nynxyxyx ++==++=++ L

has an integral solution (x,y1, y2, ⋯, yn). 

 

Problem 309.  In acute triangle ABC, 

AB > AC.  Let H be the foot of the 

perpendicular from A to BC and M be 

the midpoint of AH.  Let D be the point 

where the incircle of ∆ABC is tangent 

to side BC.  Let line DM intersect the 

incircle again at N.  Prove that ∠BND 

= ∠CND. 
 

Problem 310.  (Due to Pham Van 

Thuan)  Prove that if p, q are positive 

real numbers such that p + q = 2, then 
  

3pqqp + ppqq ≤ 4. 

 

***************** 

Solutions 

**************** 
 

Problem 301.  Prove that it is possible 

to decompose two congruent regular 

hexagons into a total of six pieces such 

that they can be rearranged to form an 

equilateral triangle with no pieces 

overlapping. 

Solution.  G.R.A. 20 Problem Solving 

Group (Roma, Italy). 
 

A B C

D

E

F
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E F
 

Commended solvers: Samuel Liló 
ABDALLA (ITA-UNESP, São Paulo, 
Brazil), Glenier L. BELLO- BURGUET 
(I.E.S. Hermanos D`Elhuyar, Spain), 
CHEUNG Wang Chi (Magdalene 
College, University of Cambridge, 
England), Victor FONG (CUHK Math 
Year 2), KONG Catherine Wing Yan 
(G.T. Ellen Yeung College, Grade 9), O 
Kin Chit Alex (G.T. Ellen Yeung College) 
and  PUN Ying Anna (HKU Math Year 3).   

 

Problem 302.  Let ℤ denotes the set of all 

integers.  Determine (with proof) all 

functions f:ℤ→ℤ such that for all x, y in ℤ, 

we have f (x+f (y)) = f (x) − y.  

(Source:2004 Spanish Math Olympiad) 
 
Solution. Glenier L. BELLO-BURGUET 
(I.E.S. Hermanos D`Elhuyar, Spain), 
CHEUNG Wang Chi (Magdalene 
College, University of Cambridge, 
England), Victor FONG (CUHK Math 
Year 2), G.R.A. 20 Problem Solving 
Group (Roma, Italy), Ozgur KIRCAK 
(Jahja Kemal College, Teacher, Skopje, 
Macedonia), NGUYEN Tho Tung (High 
School for Gifted Education, Ha Noi 
University of Education), PUN Ying 
Anna (HKU Math Year 3), Salem 
MALIKIĆ (Sarajevo College, Sarajevo, 
Bosnia and Herzegovina) and Fai YUNG. 
 
Assume there is a function f satisfying 
 

       f (x+f (y)) = f (x) − y.     (*) 
 
If f(a) = f(b), then  
 

f(x)−a = f (x+f(a)) = f (x+f(b))= f(x)−b, 
 
which implies a = b, i.e.  f is injective. 

Taking y = 0 in (*),  f (x+f (0)) = f (x).  By 

injectivity, we see f (0) = 0.  Taking x=0 in 

(*), we get  
 

     f ( f (y)) = −y.      (**) 
 
Applying f to both sides of (*) and using 

(**), we have  
 

f ( f (x) − y) = f ( f (x+ f(y)) = −x − f (y). 
 

Taking x = 0 in this equation, we get 

  
f (−y) = −f (y).       (***) 

 
Using (**), (*) and (***), we get  
 
 f (x+y) = f (x+f (f(−y)) = f (x) − f(−y) 

              = f(x) + f(y). 
 
Thus, f satisfies the Cauchy equation. 

By mathematical induction and (***),  

f(n) = n f(1) for every integer n.  Taking 

n = f (1) in the last equation and y = 1 

into (**), we get f (1)2 = −1.  This 

yields a contradiction. 

 

Problem 303.  In base 10, let N be a 

positive integer with all digits nonzero. 

Prove that there do not exist two 

permutations of the digits of N, 

forming numbers that are different 

(integral) powers of two. 

(Source:2004 Spanish Math Olympiad) 
 
Solution. Glenier L. BELLO- 
BURGUET (I.E.S. Hermanos 
D`Elhuyar, Spain), CHEUNG Wang 
Chi (Magdalene College, University of 
Cambridge, England), Victor FONG 
(CUHK Math Year 2), G.R.A. 20 
Problem Solving Group (Roma, Italy), 
NGUYEN Tho Tung (High School for 
Gifted Education, Ha Noi University of 
Education) and PUN Ying Anna (HKU 
Math Year 3). 
 
Assume there exist two permutations of 

the digits of N, forming the numbers 2k 

and 2m for some positive integers k and m 

with k > m. Then 2k < 10×2m. So k ≤ m+3. 
 
Since every number is congruent to its 

sum of digits (mod 9), we get 2k ≡ 2m 

(mod 9).  Since 2m and 9 are relatively 

prime, we get 2k−m ≡ 1 (mod 9).  

However, k − m = 1, 2 or 3, which 

contradicts 2k−m ≡ 1 (mod 9).  
 
Problem 304.  Let M be a set of 100 

distinct lattice points (i.e. coordinates 

are integers) chosen from the x-y 

coordinate plane.  Prove that there are 

at most 2025 rectangles whose vertices 

are in M and whose sides are parallel to 

the x-axis or the y-axis. 

(Source: 2003 Chinese IMO Team 

Training Test) 
 

Solution 1.  Glenier  L. BELLO- 
BURGUET (I.E.S. Hermanos 
D`Elhuyar, Spain) and PUN Ying Anna 
(HKU Math Year 3). 
 
Let O be a point in M. We say a 

rectangle is good if all its sides are 

parallel to the x or y-axis and all its 

vertices are in M, one of which is O. 

We claim there are at most 81 good 

rectangles. (Once the claim is proved, 

we see there can only be at most 

(81×100)/4=2025 desired rectangles. 
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The division by 4 is due to such 

rectangle has 4 vertices, hence counted 

4 times). 

 

For the proof of the claim, we may 

assume O is the origin of the plane. 

Suppose the x-axis contains m points in 

M other than O and the y-axis contains 

n points in M other than O.  For a point 

P in M not on either axis, it can only be 

a vertex of at most one good rectangle.  

There are at most 99−m−n such point P 

and every good rectangle has such a 

vertex. 
 
If m+n ≥ 18, then there are at most 99 − 

m − n ≤ 81 good rectangles. Otherwise, 

m+n ≤ 17.  Now every good rectangle 

has a vertex on the x-axis and a vertex 

on the y-axis other than O.  So there are 

at most mn ≤ (m+n)2/4 < 81 rectangles 

by the AM-GM inequality.  The claim 

follows. 

 

Solution 2.  G.R.A. 20 Problem 

Solving Group (Roma, Italy). 
 
Let f (x) = x(x−1)/2.  We will prove that 

if there are N lattice points, there are at 

most [f (N1/2)]2 such rectangles.  For N 

=100, we have [f(10)]2 = 452 = 2025 

(this bound is attained when the 100 

points form a 10×10 square). 

 

Suppose the N points are distributed on 

m lines parallel to an axis.  Say the 

number of points in the m lines are r1, 

r2, …, rm, arranged in increasing order. 

Now the two lines with ri and rj points 

can form no more than f(min{ri,rj}) 

rectangles.  Hence, the number of 

rectangles is at most 
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The second inequality follows by 

expansion and usage of the AM-GM 

inequality.  The first one can be proved 

by expanding and simplifying it to  
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We will prove this by induction on m. 

For m=2, 4r1(r1−1) ≤ (r1+r2)(r1−1+r2−1) 

follows from 1 ≤ r1 ≤ r2.  For the 

inductive step, we suppose (*) is true. 

To do the (m+1)-st case of (*), observe 

that ri ≤ rm+1 implies 
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Let L(m) and R(m) denote the left and 

right sides of (*) respectively.  Adding the 

last three inequalities, it turns out we get 

L(m+1) − L(m) ≤ R(m+1) − R(m).  Now (*) 

holds, so L(m) ≤ R(m).  Adding these, we 

get L(m+1) ≤ R(m+1) . 

 
Commended solvers: Victor FONG 
(CUHK Math Year 2), O Kin Chit Alex 
(G.T. Ellen Yeung College) and Raúl A. 
SIMON (Santiago, Chile). 
 
Problem 305.  A circle Γ2 is internally 

tangent to the circumcircle Γ1 of ∆PAB at 

P and side AB at C. Let E, F be the 

intersection of Γ2 with sides PA, PB 

respectively.  Let EF intersect PC at D. 

Lines PD, AD intersect Γ1 again at G, H 

respectively.  Prove that F, G, H are 

collinear. 
 
Solution. CHEUNG Wang Chi 
(Magdalene College, University of 
Cambridge, England), Glenier  L.  
BELLO-BURGUET (I.E.S. Hermanos 
D`Elhuyar, Spain), NGUYEN Tho Tung 
(High School for Gifted Education, Ha 
Noi University of Education) and PUN 
Ying Anna (HKU Math Year 3).  
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1 2

 

Let PT be the external tangent to both 

circles at P.  We have  
 

∠PAB = ∠BPT = ∠PEF, 
 

which implies EF||AB.  Let O be the 

center of Γ2.  Since OC ⊥ AB (because AB 

is tangent to Γ2 at C), we deduce that 

OC⊥EF and therefore OC is the 

perpendicular bisector of EF.  Hence C is 

the midpoint of arc ECF.  Then PC bisects 

∠EPF. On the other hand, 
  

∠HDF =∠HAB =∠HPB = ∠HPF, 
 

which implies H, P, D, F are concyclic. 

Therefore, 
 

∠DHF = ∠DPF = ∠EPD  

             = ∠APG = ∠AHG = ∠DHG, 
 
which implies F, G, H are collinear. 

 

Remarks.  A few solvers got EF||AB by 

observing there is a homothety with 

center P sending Γ2 to Γ1 so that E goes 

to A and F goes to B. 

 
Commended solvers: Victor FONG 
(CUHK Math Year 2) and Salem 
MALIKIĆ (Sarajevo College, 
Sarajevo, Bosnia and Herzegovina). 
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Problem 4.  Find all functions f: (0,∞) 

→ (0,∞) (so, f is a function from the 

positive real numbers to the positive real 

numbers) such that 
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for all positive real numbers w, x, y, z, 

satisfying wx = yz. 

  

Problem 5.  Let n and k be positive 

integers with k ≥ n and k−n an even 

number.  Let 2n lamps labeled 1, 2, …, 

2n be given, each of which can be either 

on or off.  Initially all the lamps are off. 

We consider sequences of steps: at each 

step one of the lamps is switched (from 

on to off or from off to on). 
 
Let N be the number of such sequences 

consisting of k steps and resulting in the 

state where lamp 1 through n are all on, 

and lamps n+1 through 2n are all off. 
 
Let M be the number of such sequences 

consisting of k steps, resulting in the 

state where lamps 1 through n are all on, 

and lamps n+1 through 2n are all off, but 

where none of the lamps n+1 and 2n is 

ever switched on. 
 
Determine the ratio N/M. 

 

Problem 6.  Let ABCD be a convex 

quadrilateral with |BA| ≠ |BC|.  Denote 

the incircles of triangles ABC and ADC 

by ω1 and ω2 respectively.  Suppose that 

there exists a circle ω tangent to the ray 

BA beyond A and to the ray BC beyond 

C, which is also tangent to the lines AD 

and CD. Prove that the common 

external tangents of ω1 and ω2 intersect 

on ω. 
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Double Counting 
 

Law Ka Ho, Leung Tat Wing and Li Kin Yin 
 

 

Olympiad Corner 
 
The following were the problems of 

the Hong Kong Team Selection Test 2, 

which was held on November 8, 2008 

for the 2009 IMO. 
 

Problem 1.  Let f:Z→Z (Z is the set of 

all integers) be such that f(1) = 1, f(2) = 

20, f(−4) = −4 and  
 
   f(x+y) = f(x) + f(y) + axy(x+y) + bxy  

                             + c(x+y) + 4  
 
for all x,y ∊Z, where a, b and c are 

certain constants.  
 
(a) Find a formula for f(x), where x is 

any integer. 
 
(b) If f(x) ≥ mx2 + (5m+1)x + 4m for all 

non-negative integers x, find the greatest 

possible value of m.  
 

Problem 2.  Define a k-clique to be a set 

of k people such that every pair of them 

know each other (knowing is mutual). 

At a certain party, there are two or more 

3-cliques, but no 5-clique.  Every pair of 

3-cliques has at least one person in 

common.  Prove that there exist at least 

one, and not more than two persons at 

the party, whose departure (or 

simultaneous departure) leaves no 

3-clique remaining.  
 (continued on page 4) 
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There are often different ways to 

count a quantity. By counting it in two 

ways (i.e. double counting), we thus 

obtain the same quantity in different 

forms.  This often yields interesting 

equalities and inequalities.  We begin 

with some simple examples. 
 
        Below we will use the notation  

).)!(!/(! rnrnC n

r −=  
 
Example 1.  (IMO HK Prelim 2003) 

Fifteen students join a summer course. 

Every day, three students are on duty 

after school to clean the classroom. 

After the course, it was found that every 

pair of students has been on duty 

together exactly once.  How many days 

does the course last for? 
 
Solution.  Let the answer be k.  We 

count the total number of pairs of 

students were on duty together in the k 

days.  Since every pair of students was 

on duty together exactly once, this is 

equal to 15

2 1 105C × = .  On the other 

hand, since 3 students were on duty per 

day, this is also equal to 3

2 3C k k× = .  

Hence 3k = 105 and so k = 35. 
 

Example 2.  (IMO 1987)  Let ( )np k  be 

the number of permutations of the set 

{1, 2, …, n}, 1n ≥ , which have exactly 

k fixed points. Prove that 

0

( ) !
n

n

k

k p k n
=

⋅ =∑ . 

(Remark: A permutation  f of a set S is a 

one-to-one mapping of S onto itself.  An 

element i in S is called a fixed point of 

the permutation f  if ( )f i i= .) 
 
Solution.  Note that the left hand side of 

the equality is the total number of fixed 

points in all permutations of {1,2,…, n}.  

To show that this number is equal to n!, 

note that there are ( 1)!n −  permutations 

of {1, 2, …, n} fixing 1, ( 1)!n −  

permutations fixing 2, and so on, and 

( 1)!n −  permutations fixing n.  It 

follows that the total number of fixed 

points in all permutations is equal to 

( 1)! !n n n⋅ − = .

       The simplest combinatorial identity 

is perhaps n n

r n rC C −= .  While this can be 

verified algebraically, we can give a 

proof in a more combinatorial flavour: 

to choose r objects out of n, it is 

equivalent to choosing n r−  objects out 

of n to be discarded.  There are n

rC  

ways to do the former and n

n rC −  ways to 

do the latter.  So the two quantities must 

be equal. 

 

Example 3.  Interpret the following 

equalities from a combinatorial point of 

view: 
 

(a)  1 1

1

n n n

k k kC C C− −
−= +  

(b)  1

1 22 2n n n n

nC C nC n −+ + + = ⋅L  

 

Solution.  (a) On one hand, the number 

of ways to choose k objects out of n 

objects is n

kC . On the other hand, we 

may count by including the first object 

or not.  If we include the first object, we 

need to choose 1k −  objects from the 

remaining 1n −  objects and there are 
1

1

n

k
C −

−  ways to do so.  
 
If we do not include the first object, we 

need to choose k objects from the 

remaining 1n −  objects and there are 
1n

k
C −  ways to do so. Hence 

1 1

1

n n n

k k kC C C− −
−= + . 

 

 (b) Suppose that from a set of n people, 

we want to form a committee with a 

chairman of the committee.  On one 

hand, there are n ways to choose a 

chairman, and for each of the remaining 

1n −  persons we may or may not 

include him in the committee.  Hence 

there are 12nn −⋅  ways to finish the task. 

 

On the other hand, we may choose k 

people to form a committee (1≤ k ≤ n), 

which can be done in n

kC  ways, and for 

each of these ways there are k ways to 

select the chairman.  Hence the number 

of ways to finish the task is also equal to 
 

.2 21

n

n

nn nCCC +++ L  
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Example 4. (IMO 1989)  Let n and k be 

positive integers and let S be a set of n 

points in the plane such that: 
 
(i)  no three points of S are collinear, 

and 
 
(ii)  for every point P of S, there are at 

least k points of S equidistant from P. 

Prove that 1
2 .

2
k n< +  

Solution. Solving for n, the desired 

inequality is equivalent to n > k(k−1)/2 

+ 1/8.  Since n and k are positive 

integers, this is equivalent to n − 1 ≥ 
kC 2

.  Now we join any two vertices of 

S by an edge and count the number of 

edges in two ways.  

 

On one hand, we have nC2
 edges. On 

the other hand, from any point of S 

there are at least k points equidistant 

from it.  Hence if we draw a circle with 

the point as centre and with the 

distance as radius then there are at least 
kC2

 chords as edges.  The total number 

of such chords, counted with 

multiplicities, is at least .2

knC   Any 

two circles can have at most one 

common chord and hence there could 

be a maximum nC2
 chords (for every 

possible pairs of circles) counted twice. 

Therefore,   

,222

nnk CCnC ≤−  

 
which simplifies to n − 1 ≥ kC 2

.  (Note 

that collinearity was not needed.) 

 

Example 5. (IMO 1998)  In a 

competition, there are m contestants 

and n judges, where n ≥ 3 is an odd 

integer.  Each judge rates each 

contestant as either “pass” or “fail”.  

Suppose k is a number such that, for 

any two judges, their ratings coincide 

for at most k contestants. Prove that 

1
.

2

k n

m n

−
≥  

Solution. We begin by considering 

pairs of judges who agree on certain 

contestants.  We study this from two 

perspectives. 
  
For contestant i, 1≤ i ≤ m, suppose 

there are xi judges who pass him, and yi 

judges who fail him.  On one hand, the 

number of pairs of judges who agree on 

him is  
 

 
2

22

22
iiiiyx yyxx

CC ii
−+−

=+  

       
22

2/)( 2

iiii yxyx +
−

+
≥  

         ( )221 1
1 1 .

4 2 4

n
n n⎡ ⎤= − = − −⎣ ⎦

 

Since n is odd and ii yx
CC 22 +  is an 

integer, it is at least (n − 1)2/4. 
 
On the other hand, there are n judges and 

each pair of judges agree on at most k 

contestants.  Hence the number of pairs of 

judges who agree on a certain contestant is 

at most 
2 .nkC   Thus,  

∑
=

−
≥+≥

m

i

yxn nm
CCkC ii

1

2

222 ,
4

)1(
)(  

which can be simplified to obtain the 

desired result. 

 

     Some combinatorial problems in 

mathematical competitions can be solved 

by double counting certain ordered triples. 

The following are two such examples.  

 

Example 6. (CHKMO 2007)  In a school 

there are 2007 male and 2007 female 

students.  Each student joins not more 

than 100 clubs in the school.  It is known 

that any two students of opposite genders 

have joined at least one common club. 

Show that there is a club with at least 11 

male and 11 female members. 

 

Solution.  Assume on the contrary that 

every club either has at most 10 male 

members or at most 10 female members. 

We shall get a contradiction via double 

counting certain ordered triples. 

 

Let S be the number of ordered triples of 

the form (m, f, c), where m denotes a male 

student, f denotes a female student and c 

denotes a club.  On one hand, since any 

two students of opposite genders have 

joined at least one common club, we have  
  

22007 4028049S ≥ = . 
 
On the other hand, we can consider two 

types of clubs: let X be the set of clubs 

with at most 10 male members, and Y be 

the set of clubs with at least 11 male 

members (and hence at most 10 female 

members).  Note that there are at most 

10×2007×100=2007000 triples (m, f, c) 

with c X∈ , because there are 2007 

choices for f, then at most 100 choices for 

c (each student joins at most 100 clubs), 

and then at most 10 choices for m (each 

club c X∈  has at most 10 male 

members).  In exactly the same way, we 

can show that there are at most 2007000 

triples (m, f, c) with c Y∈ .  This gives 

 
S ≤ 2007000+2007000=4014000, 

 
a contradiction. 

 

Example 7. (2004 IMO Shortlisted 

Problem)  There are 10001 students at a 

university.  Some students join together 

to form several clubs (a student may 

belong to different clubs).  Some clubs 

join together to form several societies (a 

club may belong to different societies). 

There are a total of k societies. Suppose 

the following conditions hold: 
 
(i)  Each pair of students is in exactly 

one club. 
 
(ii)  For each student and each society, 

the student is in exactly one club of the 

society. 
 
(iii)  Each club has an odd number of 

students.  In addition, a club with 2m+1 

students (m is a positive integer) is in 

exactly m societies.    
 
Find all possible values of k.  

 

Solution. An ordered triple (a, C, S) will 

be called acceptable if a is a student, C 

is a club and S is a society such that a∊C 

and C∊S.  We will count the number of 

acceptable ordered triples in two ways.  

 

On one hand, for every student a and 

society S, by (ii), there is a unique club 

C such that (a, C, S) is acceptable. 

Hence, there are 10001k acceptable 

ordered triples. 

 

On the other hand, for every club C, let 

the number of members in C be denoted 

by |C|.  By (iii), C is in exactly (|C|−1)/2 

societies. So there are |C|(|C|−1)/2 

acceptable ordered triples with C as the 

second coordinates.  Let Γ be the set of 

all clubs.  Hence, there are  
 

∑
Γ∈

−

C

CC

2

)2|(|||  

 
acceptable ordered triples.  By (i), this is 

equal to the number of pairs of students, 

which is 10001×5000.  Therefore, 
 

∑
Γ∈

−
=

C

CC
k

2

)2|(|||
10001  

 
                       = 10001×5000, 
 
which implies k = 5000. 

 

 

 

 
 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is January 10, 2009. 
 
Problem 311.  Let S = {1,2,…,2008}. 

Prove that there exists a function            

f : S → {red, white, blue, green} such 

that there does not exist a 10-term 

arithmetic progression a1,a2,…,a10 in S 

satisfying f(a1) = f(a2) = ⋯ = f(a10). 
 

Problem 312.  Let x, y, z > 1.  Prove 

that 

.48
)1()1()1( 2

4

2

4

2

4

≥
−

+
−

+
− x

z

z

y

y

x  

 
Problem 313.  In Δ ABC, AB < AC 

and O is its circumcenter.  Let the 

tangent at A to the circumcircle cut line 

BC at D.  Let the perpendicular lines to 

line BC at B and C cut the 

perpendicular bisectors of sides AB and 

AC at E and F respectively.  Prove that 

D, E, F are collinear. 
 
Problem 314.  Determine all positive 

integers x, y, z satisfying x3 − y3 = z2, 

where y is a prime, z is not divisible by 

3 and z is not divisible by y. 
 

Problem 315.  Each face of 8 unit 

cubes is painted white or black.  Let n 

be the total number of black faces. 

Determine the values of n such that in 

every way of coloring n faces of the 8 

unit cubes black, there always exists a 

way of stacking the 8 unit cubes into a 

2×2×2 cube C so the numbers of black 

squares and white squares on the 

surface of C are the same. 

 

***************** 

Solutions 

**************** 
 
Problem 306.  Prove that for every 

integer n ≥ 48, every cube can be 

decomposed into n smaller cubes, 

where every pair of these small cubes 

does not have any common interior 

point and has possibly different 

sidelengths.   

 
Solution. G.R.A. 20 Problem Solving 
Group (Roma, Italy) and LKL Problem 
Solving Group (Madam Lau Kam Lung 
Secondary School of Miu Fat Buddhist 
Monastery). 
 

For such an integer n, we will say cubes 

are n-decomposable.  Let r-cube mean a 

cube with sidelength r.  If a r-cube C is 

n-decomposable, then we can first 

decompose C into 8 r/2-cubes and then 

decompose one of these r/2-cubes into n 

cubes to get a total of n+7 cubes so that C 

is (n+7)-decomposable.  

 

Let C be a 1-cube.  All we need to show is 

C is n-decomposable for 48 ≤ n ≤ 54.  
 
For n=48, decompose C to 27 1/3-cubes 

and then decompose 3 of these, each into 8 

1/6-cubes.  
 
For n=49, cut C by two planes parallel to 

the bottom at height 1/2 and 1/6 from the 

bottom, which can produce 4 1/2-cubes at 

the top layer, 9 1/3-cubes in the middle 

layer and 36 1/6-cubes at the bottom layer.  
 
For n=50, decompose C to 8 1/2-cubes 

and then decompose 6 of these, each into 8 

1/4-cubes.  
 
For n=51, decompose C into 8 1/2-cubes, 

then take 3 of these 1/2-cubes on the top 

half to form a L-shaped prism and cut out 

5 1/3-cubes and 41 1/6-cubes. 
 
For n=52, decompose C into 1 3/4-cube 

and 37 1/4-cubes, then decompose 2 

1/4-cubes, each into 8 1/8-cubes.  
 
For n=53, decompose C to 27 1/3-cubes 

and then decompose 1 of these into 27 

1/9-cubes.  
 
For n=54, decompose C into 8 1/2-cubes, 

then take 2 of the adjacent 1/2-cubes, 

which form a 1×1/2×1/2 box, from which 

we can cut 2 3/8-cubes, 4 1/4-cubes and 

42 1/8-cubes.   

 
Comments: Interested readers may find 

more information on this problem by 

visiting mathworld.wolfram.com and by 

searching for Cube Dissection . 

 
Problem 307.  Let  
 

f (x) = a0x
n + a1x

n−1 + ⋯ + an 
 

be a polynomial with real coefficients 

such that a0 ≠ 0 and for all real x, 
 

f (x) f (2x2) = f (2x3+x). 
 

Prove that f(x) has no real root. 
 
Solution. José Luis DÍAZ-BARRERO 
(Universitat Politècnica de Catalunya, 
Barcelona, Spain), Glenier L. 
BELLO-BURGUET (I.E.S. Hermanos 

D`Elhuyar, Spain), G.R.A. 20 Problem 
Solving Group (Roma, Italy), Ozgur 
KIRCAK and Bojan JOVESKI 
(Jahja Kemal College, Skopje, 
Macedonia), LKL Problem Solving 
Group (Madam Lau Kam Lung 
Secondary School of Miu Fat Buddhist 
Monastery), NG Ngai Fung (STFA 
Leung Kau Kui College, Form 6),  O 
Kin Chit Alex (G.T. Ellen Yeung 
College) and Fai YUNG. 
 
For such polynomial f(x), let k be 

largest such that ak≠0. Then 
  

,22)2()( )(3232

0

2 knkn

k

nn xaxaxfxf −−++= L  

,2)2( 3

0

3 kn

k

nn xaxaxxf −++=+ L  

where the terms are ordered by 

decreasing degrees.  This can happen 

only if n − k = 0.  So f(0) = an ≠ 0. 

Assume f (x) has a real root x0 ≠ 0.  The 

equation f (x) f (2x2) = f (2x3+x) implies 

that if xn is a real root, then 

nnn xxx +=+
3

1 2 is also a real root.  

Since this sequence is strictly 

monotone, this implies f(x) has 

infinitely many real roots, which is a 

contradiction. 
 
Commended solvers:  Simon YAU Chi 
Keung (City U). 

 

Problem 308.  Determine (with proof) 

the greatest positive integer n >1 such 

that the system of equations  

.)()2()1( 222

2

22

1

2

nynxyxyx ++==++=++ L  

has an integral solution (x,y1, y2, ⋯, yn). 
 
Solution. Glenier L. BELLO- 
BURGUET (I.E.S. Hermanos 
D`Elhuyar, Spain), Ozgur KIRCAK 
and Bojan JOVESKI (Jahja Kemal 
College, Skopje, Macedonia) and LKL 
Problem Solving Group (Madam Lau 
Kam Lung Secondary School of Miu 
Fat Buddhist Monastery). 
 
We will show the greatest such n is 3.  

For n = 3, (x, y1, y2, y3) = (−2, 0, 1, 0) is a 

solution.  For n ≥ 4, assume the system 

has an integral solution.  Since x+1, 

x+2, …, x+n are of alternate parity, so 

y1, y2, …, yn are also of alternate parity. 

Since n ≥ 4, yk is even for k = 2 or 3. 

Consider 

.)1()()1( 2

1

2222

1

2

+− +++=+−=+−+ kkk ykxykxykx  

The double of the middle expression 

equals the sum of the left and right 

expressions.  Eliminating common 

terms in that equation, we get 

           .22 2

1

2

1

2 ++= +− kkk yyy       (*) 

Now yk−1 and yk+1 are odd.  Then the left 

side of (*) is 0 (mod 8), but the right 

side is 4 (mod 8), a contradiction.  
 
Commended solvers: O Kin Chit Alex 
(G.T. (Ellen Yeung) College), Raúl A. 
SIMON (Santiago, Chile) and Simon 
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YAU Chi Keung (City U). 
 
Problem 309.  In acute triangle ABC,    

AB > AC.  Let H be the foot of the 

perpendicular from A to BC and M be 

the midpoint of AH.  Let D be the point 

where the incircle of ∆ABC is tangent 

to side BC.  Let line DM intersect the 

incircle again at N.  Prove that ∠BND 

= ∠CND. 
 

Solution. 

I

D
B C

A

H

M

N

K

P  
Let I be the center of the incircle.  Let 

the perpendicular bisector of segment 

BC cut BC at K and cut line DM at P. 

To get the conclusion, it is enough to 

show DN·DP=DB·DC (which implies 

B,P,C,N are concyclic and since PB = 

PC, that will imply ∠BND  = ∠CND). 

 

Let sides BC=a, CA=b and AB=c.  Let 

s = (a+b+c)/2, then DB = s−b and DC 

= s−c.  Let r be the radius of the 

incircle and [ABC] be the area of 

triangle ABC.  Let α =∠CDN and AH 

= ha.  Then [ABC] equals 
 

.))()((2/ csbsassrsaha −−−==  

Now 

,
222
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Moreover, DN = 2r sin α, DP = 

DK/(cos α) = (c −b)/(2cos α). So 

DH
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Problem 310.  (Due to Pham Van Thuan) 

Prove that if p, q are positive real numbers 

such that p + q = 2, then 
  

3pqqp + ppqq ≤ 4. 

 
Solution 1.  Proposer’s Solution. 
 
As p, q > 0 and p + q = 2, we may assume 

2 > p ≥ 1 ≥ q > 0.  Applying Bernoulli’s 

inequality, which asserts that if x > −1 and 

r∊ [0,1], then 1+rx ≥ (1+x)r, we have 
 
pp = ppp−1 ≥ p(1+(p−1)2) = p(p2−2p+2), 

qq  ≤ 1+q(q−1) = 1+(2−p)(1−p) = p2−3p+3, 

pq ≤1+q(p−1)=1+(2−p)(p−1) = −p2+3p−1, 

qp = qqp−1 ≤ q(1+(p−1)(q−1)) = p(2−p)2.  
 
Then 

         3pqqp + ppqq −4  

      ≤ 3(−p2+3p−1)p(2−p)2 

                      +p(p2−2p+2)(p2−3p+3) − 4 

      = −2p5+16p4 −40p3+36p2 −6p −4 

      = −2(p −1)2(p −2)((p −2)2 −5) ≤ 0. 
 
(To factor with p−1 and p−2 was 

suggested by the observation that (p,q) = 

(1,1) and (p,q) → (2,0) lead to equality 

cases.)  
 
Comments:  The case r = m/n∊ℚ∩[0,1] 

of Bernoulli’s inequality follows by 

applying the AM-GM inequality to 

a1,…,an, where a1 = ⋯ = am = 1+x and am+1 

= ⋯ = an = 1.  The case r∊[0,1]∖ℚ follows 

by taking rational m/n converging to r. 
 
Solution 2.  LKL Problem Solving 
Group (Madam Lau Kam Lung 
Secondary School of Miu Fat Buddhist 
Monastery).  
 
Suppose 2 > p ≥ 1 ≥ q > 0.  Applying 

Bernoulli’s inequality with 1+x = p/q and 

r = p/2, we have  

.
2

1
2

1
222/
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q

pp
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Multiplying both sides by q and squaring 

both sides, we have 
  

.4/)( 222 qpqp qp +≤  

Similarly, applying Bernoulli’s inequality 

with 1+x = q/p and r = p/2, we can get ppqq 

≤ p2q2. So 
 

4/)14(3 4224 qqppqpqp qppq ++≤+  

               = (p4+6p2q2+q4+4pq(2pq))/4 

               ≤ ( p4+6p2q2+q4+4pq(p2 +q2))/4 

               = (p+q)4/4 = 4. 
 
Commended solvers: Paolo Perfetti 
(Dipartimento di Matematica, Università 

degli studi di Tor Vergata Roma, via della 

ricerca scientifica, Roma, Italy). 
 
 

Olympiad Corner 
 (continued from page 1) 

 

Problem 3.  Prove that there are 

infinitely many primes p such that Np = 

p2, where Np is the total number of 

solutions to the equation 
 

3x3+4y3+5z3−y4z ≡ 0 (mod p). 
 
Problem 4.  Two circles C1, C2 with 

different radii are given in the plane, 

they touch each other externally at T. 

Consider any points A∊C1 and B∊C2, 

both different from T, such that ∠ATB 

= 90°.  
 
(a)  Show that all such lines AB are 

concurrent. 
 
(b)  Find the locus of midpoints of all 

such segments AB. 
 

 
 

Double Counting 

 (continued from page 2) 

 

Example 8. (2003 IMO Shortlisted 

Problem)  Let x1, …, xn and y1, …, yn be 

real numbers.  Let A =(aij)1≤i,j≤n be the 

matrix with entries  

⎩
⎨
⎧

=
,0

,1
ija   

if

if
 

.0

;0

<+
≥+

ji

ji

yx

yx
 

 
Suppose that B is an n×n matrix with 

entries 0 or 1 such that the sum of the 

elements in each row and each column 

of B is equal to the corresponding sum 

for the matrix A.  Prove that A=B. 

 

Solution.  Let A = (aij)1≤i,j≤n.  Define 
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On one hand, we have 
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    = 0. 
 

On the other hand, if xi+yj ≥ 0, then aij = 

1, which implies aij−bij ≥ 0; if xi+yj < 0, 

then aij = 0, which implies aij−bij ≤ 0. 

Hence, (xi+yj)(aij−bij) ≥ 0 for all i,j. 

Since S = 0, all (xi+yj)(aij−bij) = 0.  

 

In particular, if aij=0, then  xi+yj < 0 and 

so bij = 0. Since aij, bij are 0 or 1, so aij ≥ 

bij for all i,j. Finally, since the sum of the 

elements in each row and each column 

of B is equal to the corresponding sum 

for the matrix A, so aij = bij for all i,j. 
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Olympiad Corner 
 
The following were the problems of 

the Final Round (Part 2) of the 

Austrian Mathematical Olympiad 

2008. 
 

First Day: June 6
th

, 2008 
 

Problem 1.  Prove the inequality 
 

3

1111 ≤−−− cba cba  

holds for all positive real numbers a, b 

and c with a+b+c = 1.  
 

Problem 2.  (a) Does there exist a 

polynomial P(x) with coefficients in 

integers, such that P(d) = 2008/d holds 

for all positive divisors of 2008? 
 
(b) For which positive integers n does a 

polynomial P(x) with coefficients in 

integers exists, such that P(d) = n/d 

holds for all positive divisors of n? 
 

Problem 3.  We are given a line g with 

four successive points P, Q, R, S, reading 

from left to right.  Describe a straight- 

edge and compass construction yielding 

a square ABCD such that P lies on the 

line AD, Q on the line BC, R on the line 

AB and S on the line CD. 
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   In some combinatorial problems, we 

may be asked to determine a certain 

sequence of numbers a0, a1, a2, a3, …. 

We can associate such a sequence with 

the following series 
 

f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯. 
 
This is called the generating function of 

the sequence. Often the geometric series

L++++=− 321)1/(1 tttt   for |t| < 1  

and its square  
2322 )1()1/(1 L++++=− tttt  

               L+++++= 432 54321 tttt  
 
will be involved in our discussions.  
 
Below we will provide examples to 

illustrate how generating functions can 

solve some combinatorial problems. 
 
Example 1.  Let a0=1, a1=1 and  
 

an = 4an−1 − 4an  for n ≥ 2. 
 

Find a formula for an in terms of n. 
  
Solution.  Let f(x) = a0 + a1x + a2x

2 + ⋯. 

Then we have 
 
f(x) − 1 − x = a2x

2 + a3x
3 + a4x

4 + ⋯ 

    = (4a1−4a0)x
2 + (4a2−4a1)x

3 + ⋯ 

    = (4a1x
2+4a2x

3+⋯)−(4a0x
2+4a1x

3+⋯) 

   = 4x( f(x) − 1) − 4x2 f(x). 
 
Solving for f(x) and taking |x| < ½,  
 

        f (x) = (1−3x)/(1−2x)2 
    
                = 1/(1−2x)−x/(1−2x)2 
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∞

=

−
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=

−=
1

1

0

)2()2(
n

n

n

n xnxx  

               .)22(
0

1∑
∞

=

−−=
n

nnn xn  

 
Therefore, an = 2n − n 2n−1.  

 

Example 2.  Find the number an of ways 

n dollars can be changed into 1 or 2 

dollar coins (regardless of order).  For 

example, when n = 3, there are 2 ways, 

namely three 1 dollar coins or one 1 

dollar coin and one 2 dollar coin. 
  
Solution.  Let f(x) = a0 + a1x + a2x

2 + ⋯.

To study this infinite series, let |x| < 1.  

For each way of changing n dollars into 

r 1 dollar and s 2 dollar coins, we can 

record it as xr x2s = xn.  Now r and s may 

be any nonnegative integers.  Adding all 

the recorded terms for all nonnegative 

integers n, then factoring, we get  
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On the other hand,  
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Therefore, an = [n/2] + 1. 

 

Example 3.  Let n be a positive integer. 

Find the number an of polynomials P(x) 

with coefficients in {0,1,2,3} such that 

P(2) = n. 
 
Solution.  Let f(t) be the generating 

function of the sequence a0, a1, a2, 

a3, ….  Let P(x) = c0 + c1x + ⋯ + ckx
k 

with ci∊{0,1,2,3}.  Now P(2) = n if and 

only if c0 + 2c1 + ⋯ + 2kck
  = n.  Taking 

t∊(−1,1), we can record this as 
 

.
22 10 k

k cccn tttt L=  
 

Note 2ici is one of the four numbers 0, 

2i, 2i+1, 3·2i.  Adding all the recorded 

terms for all nonnegative integers n and 

all possible c0, c1, …, ck ∊{0,1,2,3}, 

then factoring on the right, we have 
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Using 1+s+s2+s3=(1−s4)/(1−s), we see 
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As in example 2, we get an = [n/2] + 1.  
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       For certain problems, instead of 

using the generating function of a0, a1, 

a2, a3, …, we may consider the series 
 

.3210 L++++ aaaa
xxxx  

 

Example 4. (1998 IMO Shortlisted 

Problem)  Let a0, a1, a2, … be an 

increasing sequence of nonnegative 

integers such that every nonnegative 

integer can be expressed uniquely in 

the form ai+2aj+4ak, where i, j and k 

are not necessarily distinct. Determine 

a1998. 

Solution.  For |x| < 1, let .)(
0

∑
∞

=

=
i

aixxf   

The given condition implies 

.
1

1
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42

x
xxfxfxf

n
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==∑
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Replacing x by x2, we get 

.
1

1
)()()(

2

842

x
xfxfxf

−
=  

From these two equations, we get f(x) = 

(1+x) f(x8). Repeating this recursively, 

we get  

.)1)(1)(1)(1()(
32 888 Lxxxxxf ++++=   

 
In expanding the right side, we see the 

exponents a0, a1, a2, … are precisely 

the nonnegative integers whose base 8 

representations have only digit 0 or 1. 

Since 1998=2+22+23+26+27+28+29+210,  

so a1998=8+82+83+86+87+88+89+810. 

                  

     For our next examples, we need 

some identities involving p-th roots of 

unity, where p is a positive integer. 

These are complex numbers λ, which 

are all the solutions of the equation 

.1=pz  For a real θ, we will use the 

common notation eiθ = cos θ +i sin θ. 
Since the equation is of degree p, there 

are exactly p p-th roots of unity. We can 

easily check that they are eiθ with θ = 0, 

2π/p, 4π/p, …, 2(p−1)π/p.  
 
Below let λ be any p-th root of unity, 

other than 1.  When we have a series  
 

B(z) = b0 + b1z + b2z
2 + b3z

3 + ⋯, 
 

sometimes we need to find the value of 

L+++ ppp bbb 32
.  We can use the fact 

0
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1
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=++++ −
j
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(for any j not divisible by p) to get 
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λ L+++ ppp bbb 32
.    (*) 

 
For p odd, we have the factorization  

 )1()1)(1(1 1tttt pp −+++=+ λλ L     (**) 
 
since both sides have −1/λi (i=0,1,…, p−1) 

as roots and are monic of degree p. 
 
Example 5.  Can the set ℕ of all positive 

integers be partitioned into more than one, 

but still a finite number of arithmetic 

progressions with no two having the same 

common differences? 
 
Solution. (Due to Donald J. Newman)  

Assume the set ℕ can be partitioned into 

sets S1, S2,…,Sk, where Si={ai+ndi: n∊ℕ} 

with d1 > d2 > ⋯> dk.  Then for |z| < 1,  
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Summing the geometric series, this gives  
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Letting z tend to ,1/2 die π  we see the left 

side has a finite limit, but the right side goes 

to infinity.  That gives a contradiction. 

 
 
Example 6. (1995 IMO)  Let p be an odd 

prime number.  Find the number of 

subsets A of the set {1,2,…,2p} such that   
 (i)  A has exactly p elements, and  

(ii) the sum of all the elements in A is 

divisible by p. 
 

Solution.  Consider the polynomial  
 

Fa(x) = (1+ax)(1+a2x)(1+a3x)⋯(1+a2px)          
 
When the right side is expanded, let cn,k 

count the number of terms of the form 

)())(( 21 xaxaxa kiii L , where i1, i2, …, ik are 

integers such that 1≤ i1< i2 <⋯< ik ≤ 2p and 

i1+i2 +⋯+ik = n.  Then  
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Now, in terms of cn,k, the answer to the 

problem is .,3,2, L+++= pppppp cccC  

To get C, note the coefficient of 
px in 

Fa(x) is ∑
∞

=1

, .
n

n

pn ac   By (*) above, we see 
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Now the right side is the coefficient of xp 

in ,)(
1

1
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For j = 0, the term is (1+x)2p.  For 1 ≤  j  

≤ p−1, using (**) with λ = ωj  and t = λx, 

we see the j-th term is .)1( 2px+   

Using these, we have 
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Therefore, the coefficient of 
px is 
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       So far all generating functions were 
in one variable.  For the curious mind, 
next we will look at an example 
involving a two variable generating 
function 

∑∑
∞

=

∞

=

=
0 1

,),(
i j

ji

ji yxayxf  

of the simplest kind. 

 

Example 7.  An a×b rectangle can be 

tiled by a number of p×1 and 1×q types 

of rectangles, where a, b, p, q are fixed 

positive integers.  Prove that a is 

divisible by p or b is divisible by q. 

(Here a k×1 and a 1×k rectangles are 

considered to be different types.) 

 

Solution.  Inside the (i, j) cell of the a×b 

rectangle, let us put the term xiyj for 

i=1,2,…,a and j=1,2,…,b.  The sum of 

the terms inside a p×1 rectangle is 
 
xiyj+⋯+ xi+p−1y j= (1 + x + ⋯ + xp−1) xiyj, 
 
if the top cell is at (i, j), while the sum 

of the terms inside a 1×q rectangle is 
 

xiy j+⋯+ xiy j+q−1= xiyj (1 + y + ⋯ + y q−1), 
 
if the leftmost cell is at (i, j).  Now take 

 
piex /2π=  and ./2 qiey π=  

Then both sums become 0. If the desired 

tiling is possible, then the total sum of 

all terms in the a×b rectangle would be  
 

.
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This implies that a is divisible by p or b 

is divisible by q. 
  
    For the readers who like to know 
more about generating functions, we 
recommend two excellent references: 
 
T. Andreescu and Z. Feng, A Path to 

Combinatorics for Undergraduates, 

Birkhäuser, Boston, 2004. 
 
M. Novaković, Generating Functions, 

The IMO Compendium Group, 2007 

(www.imomath.com) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is March 7, 2009. 
 

Problem 316.  For every positive 

integer n > 6, prove that in every 

n-sided convex polygon A1A2…An, 

there exist i ≠ j such that 

.
)6(2

1
|coscos|

−
<∠−∠

n
AA ji

 

 

Problem 317.  Find all polynomial P(x) 

with integer coefficients such that for 

every positive integer n, 2n−1 is 

divisible by P(n).  
 
Problem 318.  In ΔABC, side BC has 

length equal to the average of the two 

other sides.  Draw a circle passing 

through A and the midpoints of AB, AC.  

Draw the tangent lines from the 

centroid of the triangle to the circle. 

Prove that one of the points of 

tangency is the incenter of ΔABC.  

(Source: 2000 Chinese Team Training 

Test)  
 
Problem 319.  For a positive integer n, 

let S be the set of all integers m such 

that |m| < 2n.  Prove that whenever 

2n+1 elements are chosen from S, there 

exist three of them whose sum is 0. 

(Source: 1990 Chinese Team Training 

Test) 
 

Problem 320.  For every positive 

integer k > 1, prove that there exists a 

positive integer m such that among the 

rightmost k digits of 2m in base 10, at 

least half of them are 9’s. 

(Source: 2005 Chinese Team Training 

Test)  

 

***************** 

Solutions 

**************** 
 

Problem 311.  Let S = {1,2,…,2008}. 

Prove that there exists a function            

f : S → {red, white, blue, green} such 

that there does not exist a 10-term 

arithmetic progression a1,a2,…,a10 in S 

satisfying f(a1) = f(a2) = ⋯ = f(a10). 
  
Solution 1. Kipp JOHNSON (Valley 
Catholic School, teacher, Beaverton, 
Oregon, USA) and PUN Ying Anna 
(HKU Math, Year 3).  
 

The number of 10-term arithmetic 

progressions in S is the same as the 

number of ordered pairs (a,d) such that a, 

d are in S and a+9d ≤ 2008.  Since d ≤ 

2007/9=223 and for each such d, a goes 

from 1 to 2008−9d, so there are at most 

         ∑
=

− −××
223

1

)102008( )92008(44
d

d  

       = 41999×223000  

functions f :S→{red, white, blue, green} 

such that there exists a 10-term arithmetic 

progression a1,a2,…,a10 in S satisfying 

f(a1) = f(a2) = ⋯ = f(a10), while there are 

more (namely 42008) functions from S to 

{red, white, blue, green}. So the desired 

function exists. 
 
Solution 2.  G.R.A. 20 Problem Solving 
Group (Roma, Italy). 
 

Replace red, white, blue, green by 0, 1, 2, 

3 respectively.  It can be seen by a direct 

checking that f:{1,2,…,2048}→ {0,1,2,3} 

given by 

2mod2mod 128

1
2

8

1
)( ⎥⎦

⎤
⎢⎣
⎡ −

+⎥⎦
⎤
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⎡ −

=
nn

nf  

avoids any 9-term arithmetic progression 

having the same value (where kmod 2 is 0 if 

k is even and 1 if k is odd). The range of f 

is ((0818)8(2838)8)8, where for any string x, 

x8 denotes the string obtained by putting 

eight copies of the string x one after 

another in a row and f(n) is the n-th digit in 

the specified string. 
 
Commended solvers: LKL Problem 

Solving Group (Madam Lau Kam Lung 

Secondary School of Miu Fat Buddhist 

Monastery). 

 

Problem 312.  Let x, y, z > 1.  Prove that 
 

.48
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Solution.  Glenier L. BELLO-BURGUET 
(I.E.S. Hermanos D`Elhuyar, Spain), Kipp 
JOHNSON (Valley Catholic School, 
teacher, Beaverton, Oregon, USA), 
Kelvin LEE (Trinity College, University 
of Cambridge, Year 2), LEUNG Kai 
Chung (HKUST Math, Year 2), LKL 
Problem Solving Group (Madam Lau 
Kam Lung Secondary School of Miu Fat 
Buddhist Monastery), MA Ka Hei (Wah 
Yan College, Kowloon), NGUYEN Van 
Thien (Luong The Vinh High School, Dong 

Nai, Vietnam) and PUN Ying Anna 
(HKU Math, Year 3). 
 
Let x = a + 1, y = b + 1 and z = c + 1. 

Applying the AM-GM inequality twice, 

we have 
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Commended solvers: CHUNG Ping 
Ngai (La Salle College, Form 5), 
G.R.A. 20 Problem Solving Group 
(Roma, Italy), NG Ngai Fung (STFA 
Leung Kau Kui College, Form 6),  
Paolo PERFETTI (Dipartimento di 
Matematica, Università degli studi di 
Tor Vergata Roma, via della ricerca 
scientifica, Roma, Italy), Dimitar 
TRENEVSKI (Yahya Kemal College, 
Skopje, Macedonia) and TSOI Kwok 
Wing (PLK Centenary Li Shiu Chung 
Memorial College, Form 6). 

 

Problem 313.  In Δ ABC, AB < AC 

and O is its circumcenter.  Let the 

tangent at A to the circumcircle cut line 

BC at D.  Let the perpendicular lines to 

line BC at B and C cut the 

perpendicular bisectors of sides AB and 

AC at E and F respectively.  Prove that 

D, E, F are collinear. 

O

C
B

A

D

N

F

EM

 

Solution. Glenier L. BELLO- 
BURGUET (I.E.S. Hermanos 
D`Elhuyar, Spain), CHUNG Ping Ngai 
(La Salle College, Form 5), Kelvin 
LEE (Trinity College, University of 
Cambridge, Year 2), NG Ngai Fung 
(STFA Leung Kau Kui College, Form 6) 
and  PUN Ying Anna (HKU Math, 
Year 3). 
 
Let M be the midpoint of AB and N be 

the midpoint of AC.  Using ∠ ABE 

=∠ ABC − 90°, ∠ FCA = 90° −∠ ABC 

and the sine law, we have 
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From ΔDCA~ΔDAB, we see  
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Then .CDFBDE ∠=∠ Therefore 

D,E,F are collinear. 
 
Commended solvers: Stefan 

LOZANOVSKI and Bojan 

JOVESKI (Private Yahya Kemal 

College, Skopje, Macedonia). 
 
Problem 314.  Determine all positive 

integers x, y, z satisfying x3 − y3 = z2, 

where y is a prime, z is not divisible by 

3 and z is not divisible by y. 
 
Solution. CHUNG Ping Ngai (La 
Salle College, Form 5) and PUN Ying 
Anna (HKU Math, Year 3). 
 

Suppose there is such a solution.  Then 

        z2 = x3 − y3 =(x−y)(x2+xy+y2) 

            = (x−y) ((x−y)2+3xy).          (*) 

Since y is a prime, z is not divisible by 

3 and z is not divisible by y, (*) implies 

(x,y)=1 and (x−y,3)=1. Then 
 
  (x2+xy+y2, x−y)=(3xy, x−y)=1.    (**) 
 
Now (*) and (**) imply  
 
     x−y=m2, x2+xy+y2=n2 and z=mn  
 
for some positive integers m and n. 

Consequently,  
 
     4n2= 4x2+4xy+4y2=(2x+y)2+3y2. 
 
Then 3y2=(2n+2x+y)(2n−2x−y).  Since 

y is prime, there are 3 possibilities: 
 

(1) 2n+2x+y = 3y2, 2n−2x−y = 1 

(2) 2n+2x+y = 3y, 2n−2x−y = y 

(3) 2n+2x+y = y2, 2n−2x−y = 3. 
 
In (1), subtracting the equations leads 

to 3y2−1 = 2(2x+y) = 2(2m2+3y).  Then 
 

m2 + 1 = 3y2 − 6y − 3m2 ≡ 0 (mod 3). 
 
 However, m2 + 1 ≡ 1 or 2 (mod 3).  We 

get a contradiction.   
 
In (2), subtracting the equations leads 

to x = 0, contradiction.  
 
In (3), subtracting the equations leads 

to y2−3 = 2(2x+y) = 2(2m2+3y), which can 

be rearranged as (y−3)2−4m2=12.  This 

leads to y = 7 and m = 1.  Then x = 8 and z 

= 13. Since 83−73=132, this gives the only 

solution.  
 
Commended solvers: LKL Problem 

Solving Group (Madam Lau Kam Lung 

Secondary School of Miu Fat Buddhist 

Monastery). 
 
Problem 315.  Each face of 8 unit cubes is 

painted white or black.  Let n be the total 

number of black faces.  Determine the 

values of n such that in every way of 

coloring n faces of the 8 unit cubes black, 

there always exists a way of stacking the 8 

unit cubes into a 2×2×2 cube C so the 

numbers of black squares and white 

squares on the surface of C are the same. 
 

Solution.  CHUNG Ping Ngai (La Salle 

College, Form 5) and PUN Ying Anna 

(HKU Math, Year 3).  
 
The answer is n = 23 or 24 or 25.  First 

notice that if n is a possible value, then so 

is 48−n.  This is because we can 

interchange all the black and white 

coloring and the condition can still be met 

by symmetry.  Hence, without loss of 

generality, we may assume n ≤ 24. 
 
For the 8 unit cubes, there are totally 24 

pairs of opposite faces.  In each pair, no 

matter how the cubes are stacked, there is 

one face on the surface of C and one face 

hidden.  

 

If n ≤ 22, there is a coloring that has [n/2] 

pairs with both opposite faces black.  

Then at least [n/2] black faces will be 

hidden so that there can be at most n−[n/2] 

≤ 11 black faces on the surface of C.  This 

contradicts the existence of a stacking 

with 12 black and 12 white squares on the 

surface of C. So only n = 23 or 24 is 

possible. 
 
Next, start with an arbitrary stacking.  Let 

b be the number of black squares on the 

surface of C.  For each of the 8 unit cubes, 

take an axis formed by the centers of a pair 

of opposite faces and rotate the cube about 

that axis by 90°.  Then take an axis formed 

by the centers of another pair of opposite 

faces of the same cube and rotate the cube 

about the axis by 90° twice.  These three 

90° rotations switch the three exposed 

faces with the three hidden faces.  So after 

doing the twenty-four 90° rotations for the 

8 unit cubes, there will be n−b black 

squares on the surface of C.   

 

For n = 23 or 24 and b ≤ n, the average of b 

and n−b is 11.5 or 12, hence 12 is 

between b and n−b inclusive.  

 

Finally, observe that after each of the 

twenty-four 90° rotations, one exposed 

square will be hidden and one hidden 

square will be exposed.  So the number 

of black squares on the surface of C can 

only increase by one, stay the same or 

decrease by one.  

 

Therefore, at a certain moment, there 

will be exactly 12 black squares (and 

12 white squares) on the surface of C. 
 
Commended solvers: G.R.A. 20 

Problem Solving Group (Roma, Italy) 

and LKL Problem Solving Group 

(Madam Lau Kam Lung Secondary 

School of Miu Fat Buddhist 

Monastery). 
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Second Day: June 7
th

, 2008 

 

Problem 4.  Determine all functions f 

mapping the set of positive integers to 

the set of non-negative integers 

satisfying the following conditions: 
 
(1)  f(mn) =  f(m)+f(n), 

(2)  f(2008) = 0, and 
(3)  f(n) = 0 for all n ≡ 39 (mod 2008). 
 
Problem 5.  Which positive integers 

are missing in the sequence {an}, with  
 

][][ 3 nnnan ++=  

for all n ≥ 1? ([x] denotes the largest 

integer less than or equal to x, i.e. g 

with g ≤ x < g+1.) 

 

Problem 6.  We are given a square 

ABCD.  Let P be a point not equal to a 

corner of the square or to its center M. 

For any such P, we let E denote the 

common point of the lines PD and AC, 

if such a point exists.  Furthermore, we 

let F denote the common point of the 

lines PC and BD, if such a point exists.  

 

All such points P, for which E and F 

exist are called acceptable points. 

Determine the set of all acceptable 

points, for which the line EF is parallel 

to AD. 
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Olympiad Corner 
 
The following were the problems of 

the 2009 Asia-Pacific Math Olympiad. 
 

Problem 1.  Consider the following 

operation on positive real numbers 

written on a blackboard: Choose a 

number r written on the blackboard, 

erase that number, and then write a pair 

of real numbers a and b satisfying the 

condition 2r2 = ab on the board. 
 
Assume that you start out with just one 

positive real number r on the black- 

board, and apply this operation k2−1 

times to end up with k2 positive real 

numbers, not necessarily distinct.  Show 

that there exists a number on the board 

which does not exceed kr. 
 

Problem 2.  Let a1, a2, a3, a4, a5 be real 

numbers satisfying the following 

equations: 
 

22

5

2

4

2

3

2

2

2

1 1

54321 kk

a

k

a

k

a

k

a

k

a
=

+
+

+
+

+
+

+
+

+
 

 
for k = 1,2,3,4,5.  Find the value of 
 

.
4140393837

54321 aaaaa
++++  

 
(Express the value in a single fraction.) 
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     There are many methods to prove 

inequalities.  In this paper, we would 

like to introduce to the readers some 

applications of a nice identity for 

solving inequalities. 
 

Theorem 0.  Let a, b, c be real numbers. 

Then  

            (a+b)(b+c)(c+a) 
 
         = (a+b+c)(ab+bc+ca) − abc. 
 
Proof. This follows immediately by 

expanding both sides. 

 

Corollary 1.  Let a, b, c be real numbers. 

If abc = 1, then  
 

.1))(())()(( −++++=+++ cabcabcbaaccbba  

 
Corollary 2.  Let a, b, c be real numbers. 

If ab + bc + ca = 1, then  
 

abccbaaccbba −++=+++ ))()((  . 

 
Next we will give some applications of 

these facts.  The first example is a useful 

well-known inequality. 
 
Example 1.  Let a, b, c be nonnegative 

real numbers.  Prove that 
 

).)((
9

8
))()(( cabcabcbaaccbba ++++≥+++  

 
Solution.  By the AM-GM inequality,  

       abccabcabcba −++++ ))((
9

1  

.0)3)(3(
9

1 3 2223 =−≥ abccbaabc  

Using Theorem 0, we have 

).)((
9

8
))()(( cabcabcbaaccbba ++++≥+++  

 
The next example was a problem on the 

third team selection test of Romania for 

the Balkan Mathematical Olympiad 

2005.  Subsequently, it also appeared in 

the Croatian Team Selection Test 2006. 
 
Example 2. (Cezar Lupu, Romania 

2005; Croatia TST 2006)  Let a, b, c be 

positive real numbers satisfying 

(a+b)(b+c)(c+a) = 1.  Prove that 
 

ab+bc+ca ≤ 3/4. 

Solution.  By the AM-GM inequality,  
 

   
222

accbba
cba

+
+

+
+

+
=++  

               
2

3

8

))()((
33 =

+++
≥

accbba  

 
and 

     cabcababc =  

            .
8

1

8

))()((
=

+++
≤

accbba  

 
Using Theorem 0, we get 
 

))()((1 accbba +++=  

  abccabcabcba −++++= ))((  

  .
8

1
)(

2

3
−++≥ cabcab  

 

Hence .
4

3
≤++ cabcab  

 
The following example was taken from 

the Vietnamese magazine, Mathematics 

and Youth Magazine.  
 

Example 3. (Proposed by Tran Xuan 

Dang)  Let a, b, c be nonnegative real 

numbers satisfying abc = 1.  Prove that 
 

).1(2))()(( cbaaccbba +++≥+++  

 

Solution.  Using Corollary 1, this is 

equivalent to  
 

.3)2)(( ≥−++++ cabcabcba  
 

We can obtain this by the AM-GM 

inequality as follows: 
 
  )2)(( −++++ cabcabcba  
 

        .3)23)(3(
3 2223 =−≥ cbaabc  

 

The inequality in the next example is 

very hard.  It was a problem in the 

Korean Mathematical Olympiad. 
 

Example 4. (KMO Winter Program Test 

2001)  Let a, b, c be positive real 

numbers.  Prove that  
 

))(( 222222 cabcabaccbba ++++

.))()((3 333 abccabcbabcaabc ++++≥
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Solution.  Dividing by abc, the 

given inequality becomes 
 

⎟
⎠
⎞

⎜
⎝
⎛ ++⎟
⎠
⎞

⎜
⎝
⎛ ++

c

b

b

a

a

c

b

c

a

b

c

a  

     .1111 3

222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++≥

ab

c

ca

b

bc

a  

 
After the substitution x = a/b, y = b/c 

and z = c/a, we get xyz = 1.  It takes the 

form 

))(( zxyzxyzyx ++++  

.1111 3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ ++≥

y

z

x

y

z

x  

 
Using Corollary 1, the previous 

inequality becomes 
 

1))()(( ++++ xzzyyx  

.1111 3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ ++≥

y

z

x

y

z

x  

 

Setting ,))()((3 xzzyyxt +++= we 

need to prove that  

.113 tt +≥+  
 

By the AM-GM inequality, we have 

 

3 ))()(( xzzyyxt +++=  

      .22223 =≥ zxyzxy  

Therefore, 

    )1)(1(1 23 +−+=+ tttt  

                .1)12)(1( tttt +=+−+≥  

 
In the next example, we will see a nice 

inequality.  It was from a problem in 

the 2001 USA Math Olympiad 

Summer Program. 
 
Example 5. (MOSP 2001)  Let a, b, c 

be positive real numbers satisfying 

abc=1.  Prove that 
 

).1(4))()(( −++≥+++ cbaaccbba  

 
Solution. Using Corollary 1, it suffices 

to prove that  
 

1))(( −++++ cabcabcba  

)1(4 −++≥ cba  

or  .4
3

≥
++

+++
cba

cabcab   

We will use the inequality  

),(3)( 2 zxyzxyzyx ++≥++      (*) 

 
which after expansion and cancelling 

common terms amounts to 
 

       zxyzxyzyx −−−++ 222  

( ) .0)()()(
2

1 222 ≥−+−+−= xzzyyx  

Using (*), it is easy to see that 
 

)(3)( 2 abcacabcbcabcabcab ⋅+⋅+⋅≥++

                        ).(3 cba ++=                (**) 
 

By the AM-GM inequality and (**),  

      
cba

cabcab
++

+++
3  

    
cba

cabcab

++
+⎟

⎠
⎞

⎜
⎝
⎛ ++

=
3

3
3  

    4
3

3

)(3

)(3
4

cba

cabcab

++
++

≥  

    .4
)(3

))(3)(3(3
44

3

3 222

=
++

++
≥

cba

cbacba  

 

Next, we will show some nice 

trigonometric inequalities can also be 

proved using Theorem 0. 

 

Example 6. For a triangle ABC, prove that 
 

      (i)  .2/33sinsinsin ≤++ CBA  

     (ii)  .2/3coscoscos ≤++ CBA  
 
Solution.  By the substitutions 
 
a = tan(A/2),  b = tan(B/2),  c = tan(C/2), 

 
we get ab+bc+ca = 1.  

 

Using the facts sin 2x= (2 tan x) / (1+tan2 x) 

and 1 + a2 = a2 + ab +bc +ca = (a+b)(a+c), 

inequality (i) becomes 

,
4

33

111 222
≤

+
+

+
+

+ c

c

b

b

a

a
 

 
which is the same as 

.
4

33

))(())(())((
≤

++
+

++
+

++ bcac

c

abcb

b

caba

a  

Clearing the denominators, this simplifies 

to .9/38))()(( ≥+++ accbba  

 

To prove this, use the AM-GM inequality 

to get  
3 22231 cbacabcab ≥++= , 

 

which is  

               .9/3≤abc            (***) 

 

Next, by (*), 
 

.3)(3 =++≥++ cabcabcba    (****) 

Finally, by Corollary 2, 

abccbaaccbba −++=+++ ))()((  

                    .
9

38

9

3
3 =−≥  

Next, using cos 2x=(1−tan2x)/(1+tan2x), 

inequality (ii) becomes 

.
2

3

1

1

1

1

1

1
2

2

2

2

2

2

≤
+
−

+
+
−

+
+
−

c

c

b

b

a

a  

Using 1 + a2 = a2 + ab +bc +ca = 

(a+b)(a+c) in the denominators, doing 

the addition on the left and applying 

Corollary 2 in the common 

denominator, we can see the above 

inequality is the same as 

.
2

3)]()()([)(2 222

≤
−++

+++++−++
abccba

bacacbcbacba  

Observe that a2(b+c)+b2(c+a)+c2(a+b) 

= (a+b+c)(ab+bc+ca)−3abc = a+b+c 

− 3abc. So the inequality becomes 

,
2

3)3()(2
≤

−++
−++−++

abccba

abccbacba  

which simplifies to a+b+c ≥ 9abc. 

This follows easily from (***) and 

(****). 

  

Finally, we have some exercises for the 

readers. 

 

Exercise 1. (Due to Nguyen Van Ngoc) 

Let a, b, c be positive real numbers. 

Prove that  

( )
.

16

))()((3
)(

3/4
accbba

cbaabc
+++

≤++  

Exercise 2. (Due to Vedula N. Murty) 

Let a, b, c be positive real numbers. 

Prove that 

.
)()()(

4

1

3
3

222

abc

accbbacba +++
≤

++  

Exercise 3. (Carlson’s inequality)  Let 

a, b, c be positive real numbers. Prove 

that 

.
38

))()((
3

cabcabaccbba ++
≥

+++  

Exercise 4.  Let ABC be a triangle. 

Prove that 

.3
2

tan
2

tan
2

tan
sin

1

sin

1

sin

1
+++≥++

CBA

CBA
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is May 7, 2009. 
 

Problem 321.  Let AA’, BB’ and CC’ 

be three non-coplanar chords of a 

sphere and let them all pass through a 

common point P inside the sphere. 

There is a (unique) sphere S1 passing 

through A, B, C, P and a (unique) 

sphere S2 passing through A’, B’, C’, P.  

 

If S1 and S2 are externally tangent at P, 

then prove that AA’=BB’=CC’.  
 

Problem 322. (Due to Cao Minh 

Quang, Nguyen Binh Khiem High 

School, Vinh Long, Vietnam)  Let a, b, c 

be positive real numbers satisfying the 

condition a+b+c = 3.  Prove that 
 

.2
)1()1()1( 222

≥
++
+

+
++
+

+
++
+

caac

ac

bccb

cb

abba

ba  

 
Problem 323.  Prove that there are 

infinitely many positive integers n such 

that 2n+2 is divisible by n.  
 
Problem 324.  ADPE is a convex 

quadrilateral such that ∠ ADP = 

∠ AEP.  Extend side AD beyond D to 

a point B and extend side AE beyond E 

to a point C so that ∠DPB = ∠ EPC. 

Let O1 be the circumcenter of ΔADE 

and let O2 be the circumcenter of 

ΔABC.  
 
     If the circumcircles of ΔADE and 

ΔABC are not tangent to each other, 

then prove that line O1O2 bisects line 

segment AP.  
 

Problem 325.  On a plane, n distinct 

lines are drawn.  A point on the plane is 

called a k-point if and only if there are 

exactly k of the n lines passing through 

the point.  Let k2, k3, …, kn be the 

numbers of 2-points, 3-points, …, 

n-points on the plane, respectively.  

 

Determine the number of regions the n 

lines divided the plane into in terms of 

n, k2, k3, …, kn.   

(Source: 1998 Jiangsu Province Math 

Competition) 

 

***************** 

Solutions 

**************** 
 

Problem 316.  For every positive integer 

n > 6, prove that in every n-sided convex 

polygon A1A2…An, there exist i ≠ j such 

that 

.
)6(2

1
|coscos|

−
<∠−∠

n
AA ji

 

  
Solution. CHUNG Ping Ngai (La Salle 
College, Form 5).  
 

Note the sum of all angles is  
 

(n−2)180° = 6×120°+(n−6)180°. 
 

So there are at most five angles less than 

120°.  The remaining angles are in [120°, 

180°) and their cosines are in (−1,−1/2]. 

Divide (−1,−1/2] into n−6 left open, right 

closed intervals with equal length.  By the 

pigeonhole principle, there exist two of 

the cosines in the same interval, which has 

length equal to 1/(2n−12).  The desired 

inequality follows.   

 

Problem 317.  Find all polynomial P(x) 

with integer coefficients such that for 

every positive integer n, 2n−1 is divisible 

by P(n).  
 
Solution. CHUNG Ping Ngai (La Salle 
College, Form 5). 
 
First we prove a fact: for all integers p and 

n and all polynomials P(x) with integer 

coefficients, p divides P(n+p)−P(n).  To 

see  this, let P(x) = akx
k + ⋯ + a0.  Then 

[ ]∑
=

−+=−+
k

i

ii

i npnanPpnP
1

)()()(  

                       .)(
1

1

0

1∑ ∑
=

−

=

−−
⎥
⎦

⎤
⎢
⎣

⎡
+=

k

i

i

j

jij

i npnpa  

Now we claim that the only polynomials 

P(x) solving the problem are the constant 

polynomials 1 and −1. 
 
Assume P(x) is such a polynomial and P(n) 

≠ ±1 for some integer n > 1.  Let p be a 

prime which divides P(n), then p divides 

2n−1.  So p is odd and 2n ≡ 1 (mod p).   

 

By the fact above, p also divides 

P(n+p)−P(n).  Hence, p divides P(n+p).  

Since P(n+p) divides 2n+p−1, p also 

divides 2n+p−1.  Then 2p ≡ 2n2p = 2n+p ≡ 1 

(mod p). 
 
By Fermat’s little theorem, 2p ≡ 2 (mod p).  

Thus, 1 ≡ 2 (mod p).  This leads to p 

divides 2−1=1, which is a contradiction. 

Hence, P(n) = 1 or −1 for every integer 

n > 1.  Then P(x)−1 or P(x)+1 has 

infinitely many roots, i.e. P(x) ≡ 1 or 

−1. 
 
Comments: Two readers pointed out 

that this problem appeared earlier as 

Problem 252 in vol. 11, no. 2. 
 
Problem 318.  In ΔABC, side BC has 

length equal to the average of the two 

other sides.  Draw a circle passing 

through A and the midpoints of AB, AC. 

Draw the tangent lines from the 

centroid of the triangle to the circle. 

Prove that one of the points of 

tangency is the incenter of ΔABC.  

(Source: 2000 Chinese Team Training 

Test) 
 

Solution. CHUNG Ping Ngai (La 
Salle College, Form 5). 

O

E

A

B C

F
I

D M

G

 
 
Let G be the centroid and I be the 

incenter of ΔABC.  Let line AI intersect 

side BC at D.  Let E and F be the 

midpoints of AB and AC respectively. 

Let O be the circumcenter of ΔAEF.  Let 

M be the midpoint of side BC. 
 
We claim I is the circumcenter of ΔDEF.  

To see this, note I is on line AD.  So 

.
22

λ=====
FC

DC

AC

DC

AI

DI

AB

DB

EB

DB  

Also,  DB + DC = BC = (AB + AC)/2 = 

EB + FC = 2λ(DB + DC) implies 

λ=1/2.  Then DB=EB and DC=FC.  So 

lines BI and CI are the perpendicular 

bisectors of DE and DF respectively. 

 

Now we show I is on the circumcircle 

of ΔAEF.  To see this, we compute 
 
  ∠ EIF = 2∠ EDB 

= 2(180°−∠ BDE−∠CDF) 

= (180°−2∠ BDE) + (180°−2∠CDF) 

= ∠DBE+∠DCF 

= 180°−∠ EAF. 
 
Finally, we show OI⊥IG.  Since IE=IF, 

OI⊥EF.  Since EF|| BC, we just need to 

show IG||BC, which follows from 

DI/AI = 1/2 =MG/AG. 
 
Problem 319.  For a positive integer n, 

let S be the set of all integers m such 
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that |m| < 2n.  Prove that whenever 

2n+1 elements are chosen from S, there 

exist three of them whose sum is 0. 

(Source: 1990 Chinese Team Training 

Test) 
 
Solution. CHUNG Ping Ngai (La 
Salle College, Form 5), G.R.A. 20 
Problem Solving Group (Roma, Italy), 
LKL Problem Solving Group 
(Madam Lau Kam Lung Secondary 
School of Miu Fat Buddhist Monastery) 
and Fai YUNG. 
 
For n = 1, S = {−1,0,1}.  If 3 elements 

are chosen from S, then they are −1,0,1, 

which have zero sum.   

 

Suppose case n is true. For the case n+1, 

S is the union of S’={m: −2n+1 ≤ m ≤ 

2n−1} and S”={−2n−1,−2n,2n,2n+1}.  

Let T be a 2n+3 element subset of S.  

 

Case 1: (T contains at most 2 elements 

of S”).  Then T contains 2n+1 elements 

of S’.  By case n, T has 3 elements with 

zero sum. 

 

Case 2: (T contains exactly 3 elements 

of S”.)  There are 4 subcases: 

 

Subcase 1: (±2n and 2n+1 are in T.)  If 

0 is in T, then ±2n and 0 are in T with 

zero sum.  If −1 is in T, then 2n+1, −2n, 
−1 are in T with zero sum.  

 

Otherwise, the other 2n numbers of T 

are among 1, ±2, ±3, …, ±(2n−1), 

which (after removing n) can be 

divided into the 2n−2 pairs {1, 2n−1}, 
{2, 2n−2}, …, {n−1, n+1}, {−2, 

−2n+1}, {−3, −2n+2}, …, {−n, −n−1}. 

By the pigeonhole principle, the two 

numbers in one of the pairs must both 

be in T.  Since the sums for these pairs 

are either 2n or −2n−1, we can add the 

pair to −2n or 2n+1 to get three 

numbers in T with zero sum. 

 

Subcase 2: (2n and ±(2n+1) are in T.)  

If 0 is in T, then ±(2n+1) and 0 are in T 

with zero sum.  If 1 is in T, then −2n−1, 

2n, 1 are in T with zero sum.  

 

Otherwise, the other 2n numbers of T 

are among −1, ±2, ±3, …, ±(2n−1), 

which (after removing −n) can be 

divided into the 2n−2 pairs {2, 2n−1}, 
{3, 2n−2}, …, {n, n+1}, {−1, −2n+1}, 

{−2, −2n+2}, …, {−n+1, −n−1}.  By 

the pigeonhole principle, the two 

numbers in one of the pairs must both 

be in T.  Since the sums for these pairs 

are either 2n+1 or −2n, we can add the 

pair to −2n−1 or 2n to get three numbers 

in T with zero sum. 

 

Subcase 3: (±2n and −2n −1 are in T.)  

This can be handled as in subcase 1. 

 

Subcase 4: (−2n and ±(2n+1) are in T.) 

This can be handled as in subcase 2. 
 
Case 3: (T contains S”.)  If 0 is in T, then 

−2n, 2n, 0 are in T with zero sum.  If 1 is 

in T, then −2n−1, 2n, 1 are in T with zero 

sum. If −1 is in T, then 2n+1, −2n, −1 are 

in T with zero sum.  

 

Otherwise, the other 2n−1 numbers of T 

are among ±2, ±3, …, ±(2n−1), which can 

be divided into the 2n−2 pairs {2, 2n−1}, 

{3, 2n−2}, …, {n, n+1}, {−2, −2n+1}, 

{−3, −2n+2}, …, {−n, −n−1}.  By the 

pigeonhole principle, the two numbers in 

one of the pairs must both be in T.  Since 

the sums for these pairs are either 2n+1 or 

−2n−1, we can add the pair to −2n−1 or 

2n+1 to get three numbers in T with zero 

sum. 
 
This completes the induction and we are 

done. 
 
Problem 320.  For every positive integer 

k > 1, prove that there exists a positive 

integer m such that among the rightmost k 

digits of 2m in base 10, at least half of them 

are 9’s. 

(Source: 2005 Chinese Team Training 

Test) 
 
Solution. CHUNG Ping Ngai (La Salle 

College, Form 5) and G.R.A. 20 Problem 

Solving Group (Roma, Italy).  
 
We claim m=2×5k−1+k works.  Let f(k)= 

2×5k−1. We check by induction that  
 

        2f(k)  ≡ −1 (mod 5k).           (*) 

 

First f(2)=10, 210=1024 ≡ −1 (mod 52). 

Next, suppose case k is true.  Then 2f(k)  = 

−1 + 5kn for some integer n.  We get 
       
      2f(k+1) = (−1 + 5kn)5  

              jkjj

j

n
j

5)1(
5

5
5

0

−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑  

               ≡ −1 (mod 5k+1), 
 
completing the induction.  

 

By (*), we get 2m ≡ −2k (mod 5k).  Also, 

clearly 2m ≡ 0 ≡ −2k (mod 2k).  Hence, 
 

2m ≡ −2k ≡ 10k − 2k (mod 10k). 
 

This implies the k rightmost digits in base 

10 of 2m and 10k − 2k are the same.  For k > 

1, 2k < 10(k−1)/2.  So 
 

10k −1 ≥ 10k − 2k > 10k −10(k−1)/2. 
 

The result follows from the fact that the 

k-digit number 10k − 10(k−1)/2 in base 10 

has at least half of its digits are 9’s on 

the left.  
 

 
 

Olympiad Corner 
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Problem 3.  Let three circles Γ1, Γ2, Γ3, 

which are non-overlapping and 

mutually external, be given in the plane. 

For each point P in the plane, outside 

the three circles, construct six points A1, 
B1, A2, B2, A3, B3 as follows:  For each 

i= 1,2,3,  Ai, Bi are distinct points on the 

circle Γi such that the lines PAi and PBi 

are both tangents to Γi.  Call the point P 

exceptional if, from the construction, 

three lines A1B1, A2B2, A3B3 are 

concurrent. Show that every 

exceptional point of the plane, if exists, 

lies on the same circle.  
 
Problem 4.  Prove that for any positive 

integer k, there exists an arithmetic 

sequence 

k

k

b

a

b

a

b

a
,,,

2

2

1

1 L  

of rational numbers, where ai, bi are 

relatively prime positive integers for 

each i = 1, 2, …, k, such that the 

positive integers a1, b1, a2, b2, … , ak, bk 

are all distinct.  

 

Problem 5.  Larry and Bob are two 

robots travelling in one car from 

Argovia to Zillis.  Both robots have 

control over the steering and steer 

according to the following algorithm: 

Larry makes a 90° left turn after every l 

kilometer driving from the start; Rob 

makes a 90° right turn after every r 

kilometer driving from the start, where 

l and r are relatively prime positive 

integers.  In the event of both turns 

occurring simultaneously, the car will 

keep going without changing direction. 

Assume that the ground is flat and the 

car can move in any direction. 

 

Let the car start from Argovia facing 

towards Zillis.  For which choices of 

the pair (l, r) is the car guaranteed to 

reach Zillis, regardless of how far it is 

from Argovia?  
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Olympiad Corner 
 
The following were the problems of 

the first day of the 2008 Chinese Girls’ 

Math Olympiad. 
 

Problem 1.  (a) Determine if the set 

{1,2,⋯,96} can be partitioned into 32 

sets of equal size and equal sum. 
 
(b) Determine if the set {1,2,⋯,99} can 

be partitioned into 33 sets of equal size 

and equal sum. 
 

Problem 2.  Let φ(x) = ax3+bx2+cx+d be 

a polynomial with real coefficients. 

Given that φ(x) has three positive real 

roots and that φ(x) < 0, prove that 2b3 + 

9a2d − 7abc ≤ 0. 
 
Problem 3.  Determine the least real 

number a greater than 1 such that for any 

point P in the interior of square ABCD, 

the area ratio between some two of the 

triangles PAB, PBC, PCD, PDA lies in 

the interval [1/a, a]. 
 
Problem 4.  Equilateral triangles ABQ, 

BCR, CDS, DAP are erected outside the 

(convex) quadrilateral ABCD.  Let X, Y, 

Z, W be the midpoints of the segments 

PQ, QR, RS, SP respectively.  Determine 

the maximum value of 
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      The 50th International Mathematical 

Olympiad (IMO) was held in Bremen, 

Germany from 10th to 22nd July 2009.  I 

arrived Bremen amid stormy and chilly 

(16°C) weather. Our other team 

members arrived three days later.  The 

team eventually obtained 1 gold, 2 

silver and 2 bronze medals, ranked 

(unofficially) 29 out of 104 

countries/regions.  This was the first 

time more than 100 countries 

participated. Our team, though not 

among the strongest teams, did 

reasonably well.  But here I mainly want 

to give some remarks about this year’s 

IMO, before I forget.  
 

First, the problems of the contest: 
 
Problem 1.  Let n be a positive integer 

and let a1, a2, …, ak (k ≥ 2) be distinct 

integers in the set {1,2,…,n} such that n 

divides ai(ai+1−1) for i=1,…, k−1.  Prove 

that n does not divide ak(a1−1).  
 
          This nice and easy number theory 

problem was the only number theory 

problem in the contest.  Indeed it is not 

easy to find a sequence satisfying the 

required conditions, especially when k 

is close to n, or n is prime.  Since adding 

the condition n divides ak(a1−1) should 

be impossible, it was natural to prove 

the statement by contradiction.  Clearly 

2 ≤ k ≤ n, and we have a1 ≡ a1a2 (mod n), 

a2 ≡ a2a3 (mod n), …, ak−1 ≡ ak−1ak (mod 

n).  The extra condition ak ≡ aka1 (mod 

n) would in fact “complete the circle”. 

Now a1 ≡ a1a2 (mod n).  Using the 

second condition, we get a1 ≡ a1a2 ≡ 

a1a2a3 (mod n) and so on, until we get a1 

≡ a1a2⋯ak (mod n).  However, in a circle 

every point is a starting point. So 

starting from a2, using the second 

condition we have a2 ≡ a2a3 (mod n).  By 

the third condition, we then have a2 ≡ 

a2a3a4 (mod n).  As now the circle is 

complete, we eventually have a2 ≡ 

a2a3⋯aka1 (mod n).  Arguing in this 

manner we eventually have a1 ≡ a2 ≡ ⋯ 

≡ ak (mod n), which is of course a 

contradiction! 

Problem 2.  Let ABC be a triangle with 

circumcenter O.  The points P and Q are 

interior points of the sides CA and AB, 

respectively. Let K, L and M be 

midpoints of the segments BP, CQ and 

PQ, respectively, and let Γ be the circle 

passing through K, L and M.  Suppose 

that PQ is tangent to the circle Γ.  Prove 

that OP=OQ.  

 

The nice geometry problem was 

supposed to be a medium problem, but it 

turned out it was easier than what the 

jury had thought. The trick was to 

understand the relations involved. A 

very nice solution provided by one of 

our members went as follows.  

 
 

 

 

 

 

 

 

 

 

 

 

As KM||BQ (midpoint theorem), we 

have ∠ AQP = ∠QMK.  Since PQ is 

tangent to Γ, we have ∠ QMK = 

∠ MLK (angle of alternate segment). 

Therefore, ∠ AQP = ∠MLK.  By the 

same argument, we have ∠ APQ = 

∠ MKL. Hence, ΔAPQ ~ ΔMKL. 

Therefore,  

 

2
.

2

AP MK MK BQ

AQ ML ML CP
= = =  

 
This implies AP·PC = AQ·QB.  But by 

considering the power of P with respect 

to the circle ABC, we have 

  

AP·PC = (R+OP)(R−OP)  

 = R2 − OP2, 

 

where R is the radius of the circumcircle 

of ΔABC. 

γ

M

L

K
O

A

C

B
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Q
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Likewise, 
 

AQ·QB = (R+OQ)(R−OQ) 

   = R2−OQ2. 
 
These force OP2 = OQ2, or OP = OQ, 

done! 

 

Problem 3.  Suppose that s1, s2, s3, … 

is a strictly increasing sequence of 

positive integers such that the 

subsequences  

1 2 3
, , ,...s s ss s s and 

1 2 31 1 1, , ,...s s ss s s+ + +  

are both arithmetic progressions.  

Prove that the sequence s1, s2, s3, … is 

itself an arithmetic progression. 

 

This was one of the two hard 

problems (3 and 6).  Fortunately, it 

turned out that it was still within reach. 

 

One trouble is of course the 

notation. Of course, 
1s

s  stands for the 

1

ths  term of the si sequence and so on. 

Starting from an arithmetic progression 

(AP) with common difference d, then it 

is easy to check that both  

1 2 3
, , ,...s s ss s s and 

1 2 31 1 1, , ,...s s ss s s+ + +  

are APs with common difference d2. 

The question is essentially proving the 

“converse”.  So the first step is to prove 

that the common differences of the two 

APs 
iss  and 1iss +  are in fact the same, 

say s.  It is not too hard to prove and is 

intuitively clear, for two lines of 

different slopes will eventually meet 

and cross each other, violating the 

condition of strictly increasing 

sequence.  The next step is the show 

the difference between two 

consecutive terms of si is indeed ,s  

(thus s is a square). One can achieve 

this end by the method of descent, or 

max/min principle, etc. 

 

Problem 4.  Let ABC be a triangle with 

AB = AC. The angle bisectors of 

∠CAB and ∠ ABC meet the sides BC 

and CA at D and E, respectively.  Let K 

be the incenter of triangle ADC. 

Suppose that ∠ BEK = 45°.  Find all 

possible values of ∠CAB.  

 

This problem was also relatively 

easy. It is interesting to observe that an 

isosceles triangle can be the starting 

point of an IMO problem. With 

geometric software such as Sketchpad, 

one can easily see that ∠CAB should 

be 60° or 90°.  To prove the statement of 

the problem, one may either use synthetic 

method or coordinate method. One 

advantage of using the coordinate method 

is after showing the possible values of 

∠CAB, one can go back to show these 

values do work by suitable substitutions. 

Some contestants lost marks either 

because they missed some values of 

∠ CAB or forgot to check the two 

possible cases do work. 

 

Problem 5.  Determine all functions f 

from the set of positive integers to the set 

of positive integers such that, for all 

positive integers a and b, there exists a 

non-degenerate triangle with sides of 

lengths a,  f(b) and f(b+f(a)−1). (A triangle 

is non-degenerate if its vertices are not 

collinear.) 

 

The Jury worried if the word 

triangle may be allowed to be degenerate 

in some places.  But I supposed all our 

secondary school students would consider 

only non-degenerate triangles.  This was a 

nice problem in functional inequality 

(triangle inequality).  One proves the 

problem by establishing several basic 

properties of f.  Indeed the first step is to 

prove f(1)=1, which is not entirely easy. 

Then one proceeds to show that f is 

injective and/or f(f(x)) = x, etc, and finally 

shows that the only possible function is 

the identity function f(x) = x for all x. 

 

Problem 6.  Let a1, a2, …, an be distinct 

positive integers and let M be a set of         

n−1 positive integers not containing 

s=a1+a2+⋯+an.  A grasshopper is to jump 

along the real axis, starting from the point 

O and making n jumps to the right with 

lengths a1, a2, …, an  in some order.  Prove 

that the order can be chosen in such a way 

that the grasshopper never lands on any 

point in M. 

 

     It turned out that this problem was one 

of the most difficult problems in IMO 

history.  Only three of the 564 contestants 

received full scores. (Perhaps it was 

second to problem 3 posed in IMO 2007, 

for which only 2 contestants received full 

scores.)  

 

     When I first read the solution provided 

by the Problem Committee, I felt I was 

reading a paper of analysis.  Without 

reading the solution, of course I would say 

we could try to prove the problem by 

induction, as the cases of small n were 

easy.  The trouble was how to establish the 

induction step.  Later the Russians 

provided a solution by induction, by 

separating the problem into sub-cases 

min M < an or min M ≥ an, and then 

applying the principle-hole principle, 

etc judiciously to solve the problem. 

Terry Tao said (jokingly) that the six 

problems were easy.  But in his blog, he 

admitted that he had spent sometime 

reading the problem and he even wrote 

an article about it (I have not seen the 

article.) 

 

     The two hard problems (3 and 6) 

were more combinatorial and/or 

algebraic in nature.  I had a feeling that 

this year the Jury has been trying to 

avoid hard number theory problems, 

which were essentially corollaries of 

deep theorems (for example, IMO 

2003 problem 6 by the Chebotarev 

density theorem or IMO 2008 problem 

3 by a theorem of H. Iwaniec) or hard 

geometry problem using sophisticated 

geometric techniques (like IMO 2008 

problem 6). 

 

The Germans ran the program 

vigorously (obstinately).  They had an 

organization (Bildung und Begabung) 

that looked after the entire event.  They 

had also prepared a very detailed 

shortlist problem set and afterwards 

prepared very detailed marking 

schemes for each problem.  The 

coordinators were very professional 

and they studied the problems well.  

Thus, there were not too many 

arguments about how many points 

should be awarded for each problem.  

 

Three of the problems (namely 1, 

2 and 4) were relatively easy, problems 

3 and 5 were not too hard, so although 

problem 6 was hard, contestants still 

scored relatively high points.  This 

explained why the cut-off scores were 

not low, 14 for bronze, 24 for silver and 

32 for gold.  

 

It might seem that we still didn’t 

do the hard problems too well.  But 

after I discussed with my team 

members, I found that they indeed had 

the potential and aptitude to do the hard 

problems.  What may still be lacking 

are perhaps more sophisticated skills 

and/or stronger will to tackle such 

problems. 

 

 
(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is October 3, 2009. 
 

Problem 326.   Prove that 
65 54 43 + is  

the product of two integers, each at 

least 102009. 
 

Problem 327.  Eight pieces are placed 

on a chessboard so that each row and 

each column contains exactly one 

piece.  Prove that there is an even 

number of pieces on the black squares 

of the board. 

(Source: 1989 USSR Math Olympiad) 
 

Problem 328.  (Due to Tuan Le, 

Fairmont High School, Anaheim, Ca., 

USA)  Let a,b,c > 0.  Prove that 
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Problem 329.  Let C(n,k) denote the 

binomial coefficient with value 

n!/(k!(n−k)!).  Determine all positive 

integers n such that for all k = 1, 2, ⋯, 

n−1, we have C(2n,2k) is divisible by 

C(n,k). 
 
Problem 330.  In ΔABC, AB = AC = 1 

and ∠BAC = 90°.  Let D be the 

midpoint of side BC.  Let E be a point 

inside segment CD and F be a point 

inside segment BD.  Let M be the point 

of intersection of the circumcircles of 

ΔADE and ΔABF, other than A.  Let N 

be the point of intersection of the 

circumcircle of ΔACE and line AF, 

other than A.  Let P be the point of 

intersection of the circumcircle of 

ΔAMN and line AD, other than A. 

Determine the length of segment AP 

with proof. 

(Source: 2003 Chinese IMO team test)  
 

***************** 

Solutions 

**************** 

 

Problem 321.  Let AA’, BB’ and CC’ be 

three non-coplanar chords of a sphere and 

let them all pass through a common point 

P inside the sphere.  There is a (unique) 

sphere S1 passing through A, B, C, P and a 

(unique) sphere S2 passing through A’, B’, 

C’, P.  
 
If S1 and S2 are externally tangent at P, 

then prove that AA’=BB’=CC’.  
  
Solution.  NGUYEN Van Thien (Luong 
The Vinh High School, Dong Nai, 
Vietnam) and Jim Robert STUDMAN 
(Hanford, Washington, USA).  
 
Consider the intersection of the 3 spheres 

with the plane through A, A’, B, B’ and P. 

B

A

A'

B'

P

M

N  

Let MN be the common external tangent 

through P to the circle through A, B, P and 

the circle through A’, B’ P as shown above.  

We have∠ABP = ∠APM = ∠A’PN =     

∠A’B’P = ∠A’B’B = ∠BAA’ = ∠BAP.  

Hence, AP=BP.  Similarly, A’P = B’P. So 

AA’ = AP+A’P = BP+B’P = BB’. 

Similarly, BB’ = CC’.   
 
Other commended solvers:  CHUNG 

Ping Ngai (La Salle College, Form 6) and 

LAM Cho Ho (CUHK Math Year 1).  

 

Problem 322. (Due to Cao Minh Quang, 

Nguyen Binh Khiem High School, Vinh 

Long, Vietnam)  Let a, b, c be positive real 

numbers satisfying the condition a+b+c = 

3.  Prove that 
 

.2
)1()1()1( 222
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++
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Solution. CHUNG Ping Ngai (La Salle 
College, Form 6), NGUYEN Van Thien 
(Luong The Vinh High School, Dong Nai, 
Vietnam) and the proposer independently. 
 
Observe that 

           .
)1(2

abba
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+        (*) 

Applying the AM-GM inequality twice, 

we have 
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By (*), we have 
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Adding two other similar inequalities 

and using a+b+c = 3 on the right, we 

get the desired inequality. 
 
Other commended solvers:  LAM Cho 
Ho (CUHK Math Year 1), Manh Dung 
NGUYEN (Special High School for 
Gifted Students, HUS, Vietnam), 
Paolo PERFETTI (Math Dept, 
Università degli studi di Tor Vergata 
Roma, via della ricerca scientifica, 
Roma, Italy), Stefan STOJCHEVSKI 
(Yahya Kemal College, Skopje, 
Macedonia), Jim Robert STUDMAN 
(Hanford, Washington, USA) and 
Dimitar TRENEVSKI (Yahya Kemal 
College, Skopje, Macedonia). 
 

Problem 323.  Prove that there are 

infinitely many positive integers n such 

that 2n+2 is divisible by n.  
  
Solution.  CHUNG Ping Ngai (La 
Salle College, Form 6), LAM Cho Ho 
(CUHK Math Year 1) and WONG Ka 
Fai (Wah Yan College Kowloon, Form 
4). 
 
We will prove the stronger statement that 

there are infinitely many positive even 

integers n such that 2n+2 is divisible by 

n and also that 2n+1 is divisible by n−1.  

Call such n a good number.  Note n = 2 is 

good.  Next, it suffices to prove that if n 

is good, then the larger integer m = 2n+2 

is also good.  
 
Suppose n is good.  Since n is even and m 

= 2n+2 is twice an odd integer, so m = nj 

for some odd integer j.  Also, the odd 

integer m−1 = 2n+1 = (n−1)k for some 

odd integer k.  Using the factorization 

ai+1 = (a+1)(ai−1−ai−2+⋯+1) for positive 

odd integer i, we see that 
 
      2m+2 = 2(2(n−1)k+1) 

                = 2(2n−1+1) (2(n−1)(k−1)−⋯ +1)  
 
is divisible by 2(2n−1+1) = m and 
 

2m+1 = 2nj+1 = (2n+1)(2n(j−1)−⋯+1) 
 
is divisible by 2n+1= m−1.  Therefore, m 

is also good. 
 
Problem 324.  ADPE is a convex 

quadrilateral such that ∠ ADP = 

∠ AEP.  Extend side AD beyond D to 

a point B and extend side AE beyond E 

to a point C so that ∠DPB = ∠ EPC.  

Let O1 be the circumcenter of ΔADE 

and let O2 be the circumcenter of 

ΔABC.  
 
     If the circumcircles of ΔADE and 

ΔABC are not tangent to each other, 
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then prove that line O1O2 bisects line 

segment AP.   
 
Solution.  Jim Robert STUDMAN 
(Hanford, Washington, USA). 
 
Let the circumcircle of ΔADE and the 

circumcircle of ΔABC intersect at A 

and Q.  

 

Observe that line O1O2 bisects chord 

AQ and O1O2⊥AQ.  Hence, line O1O2 

bisects line segment AP will follow if 

we can show that O1O2 || PQ, or 

equivalently that PQ⊥AQ. 
 

O
2
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P
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Q
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N

 
 

Let points M and N be the feet of 

perpendiculars from P to lines AB and 

AC respectively.  Since ∠ANP = 90° =

∠AMP, points A, N, P, M lie on a circle 

Г with AP as diameter.  We claim that 

∠MQN =∠MAN.  This would imply 

Q is also on circle Г, and we would 

have PQ⊥AQ as desired. 

 

Since we are given ∠ ADP = ∠ AEP, 

we get ∠ BDP = ∠ CEP.  This 

combines with the given fact ∠DPB = 

∠ EPC imply ∆DPB and ∆EPC are 

similar, which yields DB/EC = 

DP/EP=DM/EN. 

 

Since A,E,D,Q are concyclic, we have    
 
    ∠ BDQ =180°−∠ ADQ  

                  =180°−∠ AEQ =∠CEQ.  
 
This and ∠DBQ=∠ABQ =∠ACQ = 

∠ ECQ imply ∆DQB and ∆EQC are 

similar.  So we have QD/QE=DB/EC. 

Combining with the equation at the end 

of the last paragraph, we get  
 

QD/QE=DM/EN. 
 
Using ∆DQB and ∆EQC are similar, 

we get∠ MDQ =∠ BDQ = ∠ CEQ 

= ∠ NEQ. These imply ∆MDQ and 

∆NEQ are similar. Then ∠ MQD = 

∠NQE. 

  

Finally, for the claim, we now have 

 

     ∠MQN = ∠MQD +∠DQN 

                    =∠NQE +∠DQN 

                    = ∠DQE  

                    = ∠DAE 

                    =∠MAN. 

 

Comments: Some solvers used a bit of 

homothety to simplify the proof. 

 

Other commended solvers:  CHUNG 

Ping Ngai (La Salle College, Form 6), 

LAM Cho Ho (CUHK Math Year 1), NG 

Ngai Fung (STFA Leung Kau Kui 

College, Form 7). 
 

Problem 325.  On a plane, n distinct lines 

are drawn.  A point on the plane is called a 

k-point if and only if there are exactly k of 

the n lines passing through the point.  Let 

k2, k3, …, kn be the numbers of 2-points, 

3-points, …, n-points on the plane, 

respectively.  

 

Determine the number of regions the n 

lines divided the plane into in terms of n, 

k2, k3, …, kn.   

(Source: 1998 Jiangsu Province Math 

Competition) 
 
Solution. LAM Cho Ho (CUHK Math 

Year 1). 
 
Take a circle of radius r so that all 

intersection points of the n lines are inside 

the circle and none of the n lines is tangent 

to the circle.  Now each line intersects the 

circle at two points.  These 2n points on 

the circle are the vertices of a convex 

2n-gon (call it M) as we go around the 

circle, say clockwise.  Let the n lines 

partition the interior of M into P3 triangles, 

P4 quadrilaterals, ⋯, Pj j-gons, ⋯.  These 

polygonal regions are all convex since the 

angles of these regions, which were 

formed by intersecting at least two lines, 

are all less than 180°.  By convexity, no 

two sides of any polygonal region are 

parts of the same line. So we have Pj = 0 

for j>3n. 
 
Consider the sum of all the angles of these 

regions partitioning M.  On one hand, it is 

180°(P3+2P4+3P5+⋯) by counting region 

by region.  On the other hand, it also 

equals 360°(k2+k3+⋯+kn)+(2n−2)180° by 

counting all the angles around each 

vertices of the regions. Cancelling 180°, 

we get 
 
P3+2P4+3P5+⋯=2(k2+k3+⋯+kn)+(2n−2). 

 
Next, consider the total number of all the 

edges of these regions partitioned M (with 

each of the edges inside M counted twice). 

On one hand, it is 3P3+4P4+5P5+⋯ by 

counting region by region. On the other 

hand, it is also (4k2+6k3+⋯2nkn)+4n by  

counting the number of edges around 

the k-points and around the vertices of 

M.  The 4n term is due to the 2n edges 

of M and each vertex of M (being not a 

k-point) issues exactly one edge into 

the interior of M. So we have 
 
3P3+4P4+5P5+⋯=4k2+6k3+⋯2nkn+4n. 
 
Subtracting the last two displayed 

equations, we can obtain 
 

.1)1(2 32543 ++−++=+++ nknkkPPP nL  
 
Finally, the number of regions these n 

lines divided the plane into is the limit 

case r tends to infinity.  Hence, it is 

exactly  k2+2k3+⋯+(n−1)kn+n+1. 
 
Other commended solvers:  CHUNG 

Ping Ngai (La Salle College, Form 6) 

and YUNG Fai. 
 
 

 

Remarks on IMO 2009 
 (continued from page 2) 

 

          As I found out from the stronger 

teams (Chinese, Japanese, Korean, or 

Thai, etc.), they were obviously more 

heavily or vigorously trained.  For 

instance, a Thai boy/girl had to go 

through more like 10 tests to be 

selected as a team member. 
 
     Another thing I learned from the 

meeting was several countries were 

interested to host the event (South-East 

Asia countries and Asia-Minor 

countries).  In fact, one country is 

going to host three international 

competitions of various subjects in a 

row for three years.  Apparently they 

think hosting these events is good for 

gifted education. 
 
     The first IMO was held in Romania 

in 1959.  Throughout these 51 years, 

only one year IMO was not held (1980). 

To commemorate the fiftieth 

anniversary of IMO in 2009, six 

notable mathematicians related to IMO 

(B. Bollabas, T. Gowers, L. Lovasz, S. 

Smirnov, T. Tao and J. C. Yoccoz) were 

invited to talk to the contestants.  Of 

course, Yoccoz, Gowers and Tao were 

Fields medalists.  The afternoon of 

celebration then became a series of 

(rather) heavy lectures (not bad).  They 

described the effects of IMOs on them 

and other things.  The effect of IMO on 

the contestants is to be seen later, of 

course! 
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Olympiad Corner 
 
The 2009 Czech-Polish-Slovak Math 

Competition was held on June 21-24. 

The following were the problems. 
 

Problem 1.  Let ℝ+ be the set of all 
positive real numbers.  Find all 
functions f:ℝ+→ℝ+ satisfying 
 

1))(1))((1( =+−+ yxyfxyf  
 
for all x,y∊ℝ+. 
 
Problem 2.  Given positive integers a 
and k, the sequence a1, a2, a3, … is 
defined by a1=a and an+1=an+kρ(an), 
where ρ(m) stands for the product of 
the digits of m in its decimal  
representation (e.g. ρ(413) = 12, ρ(308) 
= 0).  Prove that there exist positive 
integers a and k such that the sequence 
a1, a2, a3, … contains exactly 2009 
different numbers.  
 
Problem 3.  Given ∆ABC, let k be the 
excircle at the side BC.  Choose any 
line p parallel to BC intersecting line 
segments AB and AC at points D and E. 
Denote by ℓ the incircle of ∆ADE.  
The tangents from D and E to the circle 
k not passing through A intersect at P. 
The tangents from B and C to the circle 
ℓ not passing through A intersect at Q. 
Prove that the line PQ passes through a 
point independent of p.  

(continued on page 4) 
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Roughly speaking, the probabilistic 

method helps us solve combinatorial 

problems via considerations related to 

probability. 

We know that among any 6 people, 

there exist 3 who know each other or 3 

who don’t know each other (we assume 

if A knows B, then B knows A).  When 6 

is replaced by 5, this is no longer true, as 

can be seen by constructing a counter- 

example.  When the numbers get large, 

constructing counterexamples becomes 

difficult.  In this case the probabilistic 

method helps. 

Example 1.  Show that among 
1002  

people, there do not necessarily exist 

200 people who know each other or 200 

people who don’t know each other. 

Solution.  Assign each pair of people to 

be knowing each other or not by 

flipping a fair coin.  Among a set of 200 

people, the probability that they know 

each other or they don’t know each 

other is thus 
200
2 198992 2 2

C− −× = .  As 

there are 
100

2

200C  choices of 200 people, 

the probability that there exist 200 

people who know each other or 200 

people who don’t know each other is at 

most 

100
100 200

2 19899 19899

200

101

(2 )
2 2

200!

2
1

200!

C − −× < ×

= <
 

Hence the probability for the non- 

existence of 200 people who know each 

other or 200 people who don’t know 

each other is greater than 0, which 

implies the result. 

Here we see that the general 

rationale is to show that in a random 

construction of an example, the 

probability that it satisfies what we want 

is positive, which means that there 

exists such an example.  Clearly, the 

 

Example 2.  In each cell of a 100 100×  

table, one of the integers 1, 2, …, 5000 

is written.  Moreover, each integer 

appears in the table exactly twice. Prove 

that one can choose 100 cells in the table 

satisfying the three conditions below: 
 

(1) Exactly one cell is chosen in each 

row. 

(2) Exactly one cell is chosen in each 

column. 

(3) The numbers in the cells chosen are 

pairwise distinct. 

 

Solution.  Take a random permutation 

1a , …, 100a  of {1, …, 100} and choose 

the ai-th cell in the i-th row.  Such 

choice satisfies (1) and (2).  For j = 

1, …, 5000, the probability of choosing 

both cells written  j is 
 

they are in the same 
0

row or column

1 1
otherwise

100 99

⎧
⎪⎪
⎨
⎪ ×⎪⎩

 

 

Hence the probability that such choice 

satisfies (3) is at least  
 

1 1
1 5000 0

100 99
− × × > . 

 

Of course, one can easily transform 

the above two probabilistic solutions to 

merely using counting arguments (by 

counting the number of ‘favorable 

outcomes’ instead of computing the 

probabilities), which is essentially the 

same.  But a probabilistic solution is 

usually neater and more natural. 

 

Another common technique in the 

probabilistic method is to compute the 

average (or expected value) – the total is 

the average times the number of items, 

and there exists an item which is as good 

as the average.  These are illustrated in 

the next two examples. 
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Example 3.  (APMO 1998)  Let F be the 

set of all n-tuples ( 1A , 2A , …, nA ) 

where each iA , i = 1, 2, …, n, is a subset 

of {1, 2, …, 1998}.  Let | |A  denote the 

number of elements of the set A.  Find 

the number 

1 2

1 2

( , , , )

| |
n

n

A A A

A A A∪ ∪ ∪∑
K

L . 

 

Solution. (Due to Leung Wing Chung, 

1998 Hong Kong IMO team member) 

Note that the set {1, 2, …, 1998} has 
19982  subsets because we may choose to 

include or not to include each of the 

1998 elements in a subset.  Hence there 

are altogether 19982 n  terms in the 

summation.  

Now we compute the average value of 

each term.  For i = 1, 2, …, 1998, i is an 

element of 1 2 nA A A∪ ∪ ∪L  if and 

only if i is an element of at least one of 

1A , 2A , …, nA .  The probability for this 

to happen is 1 2 n−− .  Hence the average 

value of each term in the summation is 

1998(1 2 )n−− , and so the answer is 

19982 1998(1 2 )n n−⋅ − . 

 

Example 4.  In a chess tournament there 

are 40 players.  A total of 80 games have 

been played, and every two players 

compete at most once.  For certain 

integer n, show that there exist n players, 

no two of whom have competed. (Of 

course, the larger the n, the stronger the 

result.) 

 

Solution 4.1.  If we use a traditional 

counting approach, we can prove the 

case 4n = . Assume on the contrary that 

among any 4 players, at least one match 

is played.  Then the number of games 

played is at least 40 38

4 2 260C C÷ = , a 

contradiction.  Note that this approach 

cannot prove the 5n =  case since 
40 38

5 3 78 80C C÷ = < . 

 

Solution 4.2.  We use a probabilistic 

approach to prove the 5n =  case. 

Randomly choose some players such 

that each player has probability 0.25 to 

be chosen.  Then discard all players who 

had lost in a match with another chosen 

player.  In this way no two remaining 

players have played with each other. 

What is the average number of players 

left?  On average 40 0.25 10× =  players 

would be chosen.  For each match played, 

the probability that both players are chosen 

is 20.25 , so on average there are 
280 0.25 5× =  matches played among the 

chosen players.  After discarding the losers, 

the average number of players left is at least 

5 (in fact greater than 5 since the losers 

could repeat).  That means there exists a 

choice in which we obtain at least 5 players 

who have not played against each other. 

(Note: if we replace 0.25 by p, then the 

average number of players left would be 
2 240 80 5 80( 0.25)p p p− = − −  and this 

explains the choice of the number 0.25.) 

 

Solution 4.3.  This time we use another 

probabilistic approach to prove the 8n =  

case. (!!)  We assign a random ranking to 

the 40 players, and we pick those who have 

only played against players with lower 

ranking.  Note that in this way no two of the 

chosen players have competed. 

Suppose the i-th player has played id  

games.  Since 80 games have been played, 

we have 1 2 40 80 2d d d+ + + = ×L .  Also, 

the i-th player is chosen if and only if he is 

assigned the highest ranking among himself 

and the players with whom he has 

competed, and the probability for this to 

happen is 1/( 1)id + .  Hence the average 

number of players chosen is 

2

1 40 1 40

2

1 1 40

1 1 ( 1) ( 1)

40
8

160 40

d d d d
+ + ≥

+ + + + + +

= =
+

L
L

 

Here we made use of the Cauchy- Schwarz 

inequality.  This means there exists 8 

players, no two of whom have competed. 

 

Remark.  Solution 4.3 is the best possible 

result.  Indeed, we may divide the 40 

players into eight groups of 5 players each.  

If two players have competed if and only if 

they are from the same group, then the 

number of games played will be 
5

28 80C× =  and it is clear that it is 

impossible to find 9 players, no two of 

whom have competed. 

 

The above example shows that the 

probabilistic method can sometimes be 

more powerful than traditional methods. 

We conclude with the following example, 

which makes use of an apparently trivial 

property of probability, namely the 

probability of an event always lies 

between 0 and 1. 

 

Example 5.  In a public examination 

there are n subjects, each offered in 

Chinese and English.  Candidates may 

sit for as many (or as few) subjects as 

they like, but each candidate may only 

choose one language version for each 

subject.  For any two different subjects, 

there exists a candidate sitting for 

different language versions of the two 

subjects.  If there are at most 10 

candidates sitting for each subject, 

determine the maximum possible value 

of n. 

 

Solution.  The answer is 1024.  The 

following example shows that n = 1024 

is possible.  Suppose there are 10 

candidates (numbered 1 to 10), each 

sitting for all 1024 subjects (numbered 0 

to 1023).  For student i, the j-th subject 

is taken in Chinese if the i-th digit from 

the right is 0 in the binary representation 

of j, and the subject is taken in English 

otherwise.  In this way it is easy to check 

that the given condition is satisfied. 

(The answer along with the example is 

not difficult to get if one begins by 

replacing 10 with smaller numbers and 

then observe the pattern.) 

To show that 1024 is the maximum, we 

randomly assign each candidate to be 

‘Chinese’ or ‘English’.  Let jE  be the 

event ‘all candidates in the j-th subject 

are sitting for the language version 

which matches their assigned identity’. 

As there are at most 10 candidates in 

each subject, we have the probability  

10 1
( ) 2

1024
j

P E −≥ = . 

Since ‘for any two different subjects, 

there exists a candidate sitting for 

different language versions of the two 

subjects’, no two jE  may occur 

simultaneously. It follows that 

1 2

(at least one  happens)

( ) ( ) ( )

1024

j

n

P E

P E P E P E

n

= + + +

≥

L  

 

But since the probability of an event is at 

most 1, the above gives 1
1024

n
≥ , so we 

have 1024n ≤  as desired! 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is December 1, 2009. 
 
 
Problem 331.  For every positive 

integer n, prove that    

∑
−

=
−=−

1

0
1
.

2
)/(cos)1(

n

k
n

nk n
nkπ  

 
Problem 332.  Let ABCD be a cyclic 

quadrilateral with circumcenter O.  Let 

BD bisect OC perpendicularly.  On 

diagonal AC, choose the point P such 

that PC=OC.  Let line BP intersect line 

AD and the circumcircle of ABCD at E 

and F respectively.  Prove that PF is 

the geometric mean of EF and BF in 

length. 
 

Problem 333.  Find the largest positive 

integer n such that there exist n 

4-element sets A1, A2, …, An such that 

every pair of them has exactly one 

common element and the union of 

these n sets has exactly n elements. 
 
Problem 334.  (Due to FEI Zhenpeng, 

Northeast Yucai School, China)  Let x,y 

∊(0,1) and x be the number whose n-th 

dight after the decimal point is the nn-th 

digit after the decimal point of y for all 

n =1,2,3,….  Show that if y is rational, 

then x is rational. 
 
Problem 335. (Due to Ozgur KIRCAK, 

Yahya Kemal College, Skopje, 

Macedonia)  Find all a∊ℝ for which 

the functional equation  f: ℝ→ ℝ 
 

( ) )())(()( yfxxfayfxf −−=−  

 
for all x, y ∊ℝ has a unique solution. 

 

***************** 

Solutions 

**************** 
 

Problem 326.  Prove that 
65 54 43 + is  

the product of two integers, each at 

least 102009. 
  
Solution.  CHAN Ho Lam Franco 

(GT (Ellen Yeung) College, Form 3), D. 
Kipp JOHNSON (Valley Catholic 
School, Teacher, Beaverton, Oregon, 
USA),  Manh Dung NGUYEN (Hanoi 
University of Technology, Vietnam), 
NGUYEN Van Thien (Luong The Vinh 
High School, Dong Nai, Vietnam), O Kin 
Chit Alex (GT(Ellen Yeung) College) and 
Pedro Henrique O. PANTOJA (UFRN, 
Brazil).  
 
Let a = 3256 and b = 43906.  Then 
 

4454 443
65

ba +=+  

              = (a4+4a2b2+4b4) − 4a2b2 

              = (a2+2b2+2ab)(a2+2b2−2ab). 

 

Note that a2+2b2+2ab > a2+2b2−2ab > 

2b2−2ab = 2b(b−a) > b > 27800 > (103)780 > 

102009.  The result follows. 

 

Problem 327.  Eight pieces are placed on 

a chessboard so that each row and each 

column contains exactly one piece.  Prove 

that there is an even number of pieces on 

the black squares of the board. 

(Source: 1989 USSR Math Olympiad) 
 
Solution. G.R.A. 20 Problem Solving 
Group (Roma, Italy), HUNG Ka Kin 
Kenneth (Diocesan Boys’ School), LKL 
Problem Solving Group (Madam Lau 
Kam Lung Secondary School of MFBM) 
and YUNG Fai. 
 
Without loss of generality, we may 

assume the square in row 1, column 1 is 

not black.  Then, for all i, j = 1,2,…,8, the 

square in row i, column j is black if and 

only if i + j ≡ 1 (mod 2).  Since the pieces 

are in different columns, the position of 

the piece contained in the i-th row is in 

column p(i), where p is some permutation 

of {1,2,…,8}.  Therefore, the number of 

pieces on the black squares in mod 2 is 

congruent to 
 

,72)())((
8

1

8

1

8

1

=+=+ ∑∑∑
=== iii

ipiipi  

 
which is even. 
 
Other commended solvers: Abby LEE 
(SKH Lam Woo Memorial Secondary 
School) and NGUYEN Van Thien 
(Luong The Vinh High School, Dong Nai, 
Vietnam). 
 
Problem 328. (Due to Tuan Le, Fairmont 

High School, Anaheim, Ca., USA)  Let 

a,b,c > 0.  Prove that 
  

       
22

33

22

33

22

33

ac

ac

cb

cb

ba

ba

+
+

+
+
+

+
+
+  

    .
))()(()(

)(6

accbbacba

cabcab

+++++
++

≥  

Solution 1.  Manh Dung NGUYEN 
(Hanoi University of Technology, 
Vietnam), NGUYEN Van Thien 
(Luong The Vinh High School, Dong 
Nai, Vietnam), 
 
Below we will use the cyclic notation 

.),,(),,(),,(),,(∑ ++=
cyc

bacfacbfcbafcbaf  

By the Cauchy-Schwarz inequality, we 

have (a3+b3)(a+b) ≥ (a2+b2)2.  Using this, 

the left side is  

   ∑ ∑ +
≥

+
+

cyc cyc baba

ba 1
22

33
      

                     .
))()((

))((

accbba

cbba
cyc

+++

++
=
∑

 

So it suffices to show 

 .
)(6

))((
cba

cabcab
cbba

cyc ++
++

≥++∑   (*) 

First we claim that 

))((
9

8
))()(( cabcabcbaaccbba ++++≥+++  

and ).(3)( 2 cabcabcba ++≥++  

These follow from 

  ))((8))()((9 cabcabcbaaccbba ++++−+++  

= a(b−c)2+b(c−a)2+c(a−b)2 ≥ 0   

and 

   (a+b+c)2−3(ab+bc+ca) 

.0
2

)()()( 222

≥
−+−+−

=
accbba  

By the AM-GM inequality, 

.))()((3))(( 3 accbbacbba
cyc

+++≥++∑  

To get (*), it remains to show 

).(2))()(()( 3 cabcabaccbbacba ++≥+++++  

 
This follows by cubing both sides and 

using the two inequalities in the claim 

to get 
 

   (a+b+c)3(a+b)(b+c)(c+a) 

)()(
9

8 4 cabcabcba ++++≥  

.)(8 3cabcab ++≥  

 
Solution 2.  LEE Ching Cheong 

(HKUST, Year 1).  

 

Due to the homogeneity of the original 

inequality, without loss of generality 

we may assume ab+bc+ca = 1.  Then 



Mathematical Excalibur, Vol. 14, No. 3, Oct.-Nov. 09 Page 4

 

(a+b)(b+c) = 1+b2.  The inequality (*) 

in solution 1 becomes 

.
6

1 2

cba
b

cyc ++
≥+∑  

Observe that 

,
2

3

3

2

3

1

2

1
1 2 +

=+⎟
⎠

⎞
⎜
⎝

⎛
−≥+

x
xx  

which can be checked by squaring both 

sides and simplified to ( 3 x−1)2 ≥ 0 

(or alternatively, f(x) = 21 x+ is a 

convex function on ℝ and y = 

(x+ 3 )/2 is the equation of the tangent 

line to the graph of f(x) at ( 3/1 , 

3/2 ).)  

 

Now )(3)( 2 cabcabcba ++≥++  can 

be expressed as  

.3≥++=∑ cbab
cyc

 

Using these, inequality (*) follows as 

    
2

33

1 2

+
≥+
∑

∑ cyc

cyc

b

b    

                      .
6

32
cba ++

≥≥  

 
Other commended solvers: Salem 

MALIKIĆ (Student, University of 

Sarajevo, Bosnia and Herzegovina) 

and Paolo PERFETTI (Math Dept, 

Università degli studi di Tor Vergata 

Roma, via della ricerca scientifica, 

Roma, Italy). 

 

Problem 329.  Let C(n,k) denote the 

binomial coefficient with value 

n!/(k!(n−k)!).  Determine all positive 

integers n such that for all k = 1, 2, ⋯, 

n−1, we have C(2n,2k) is divisible by 

C(n,k). 
 
Solution. HUNG Ka Kin Kenneth 
(Diocesan Boys’ School). 
 
For n < 6, we can check that n = 1, 2, 3 

and 5 are the only solutions.  For n ≥ 6, 

we will show there are no solutions. 

Observe that after simplification, 
 

.
1)32)(12(

)122()32)(12(

),(

)2,2(

L

L

−−
+−−−

=
kk

knnn

knC

knC   

Let n be an even integer with n ≥ 6. 

Then n−1 ≥ 5.  So n−1 has a prime 

factor p ≥ 3.  Now 1 < (p+1)/2 ≤ n/2 < 

n−1.  Let k = (p+1)/2.  Then p = 2k−1, 

but p is not a factor of 2n−1, 2n−3, …, 

2n−2k+1 since the closest consecutive 

multiples of p are 2n−2k−1 = 2(n−1)−p 

and 2n − 2 = 2(n−1).  Hence, C(2n, 

2k)/C(n, k) is not an integer.  So such n 

cannot a solution for the problem.  

 

For an odd integer n ≥ 7, we divide into 

three cases. 

 

Case 1 : (n−1 ≠ 2a for all a=1,2,3,…)  

Then n−1 has a prime factor p ≥ 3.  We 

repeat the argument above. 

 

Case 2 : (n−2 ≠ 3b for all b=1,2,3,…)  

Then n−2 has a prime factor p ≥ 5.  Now 1 

< (p+1)/2 ≤ n/2 < n−1.  Let k = (p+1)/2. 

Then p=2k−1, but p is not a factor of 2n−1, 

2n−3, …, 2n−2k+1 since again  2n −2k −3 

= 2(n − 2) − p and 2n − 4 = 2(n − 2) are 

multiples of p.  Hence, C(2n,2k)/C(n,k) is 

not an integer. 

 

Case 3 : (n−1 = 2a and n−2 = 3b for some 

positive integers a and b)  Then 2a −3b=1. 

Consider mod 3, we see a is even, say a = 

2c.  Then 
 

3b = 2a−1 = 22c−1 = (2c−1)(2c+1). 
 
Since 2c+1 and 2c−1 have a difference of 2 

and they are powers of 3 by unique prime 

factorization, we must have c = 1.  Then a 

= 2 and n = 5, which contradicts n ≥ 7.  

 

Other commended solvers:  G.R.A. 20 

Problem Solving Group (Roma, Italy) 

and O Kin Chit Alex (GT(Ellen Yeung) 

College). 
 
Problem 330.  In ΔABC, AB = AC = 1 and 

∠BAC = 90°.  Let D be the midpoint of 

side BC.  Let E be a point inside segment 

CD and F be a point inside segment BD. 

Let M be the point of intersection of the 

circumcircles of ΔADE and ΔABF, other 

than A.  Let N be the point of intersection 

of the circumcircle of ΔACE and line AF, 

other than A.  Let P be the point of 

intersection of the circumcircle of ΔAMN 

and line AD, other than A.  Determine the 

length of segment AP with proof. 

(Source: 2003 Chinese IMO team test) 
 
Official Solution. 
 
We will show A, B, P, C are concyclic. 

(Then, by symmetry, AP is a diameter of 

the circumcircle of ΔABC.  We see ∠ABP 

= 90°, AB = 1 and ∠BAP = 45°, which 

imply AP = .2 ) 

 

Consider inversion with center at A and r 

= 1.  Let X* denote the image of point X. 

Let the intersection of lines XY and WZ be 

denoted by XY∩WZ.  We have B*= B and 

C*= C.  The line BC is sent to the 

circumcircle ω of ΔABC.  The points F, D, 

E are sent to the intersection points F*, 

D*, E* of lines AF, AD, AE with ω 

respectively.  

 

The circumcircles of ΔADE and ΔABF 

are sent to lines D*E* and BF*.  So M* 

= D*E* ∩ BF*.  Also, the circumcircle 

of ΔACE and line AF are sent to lines 

CE* and AF*.  Hence, N* = CE* ∩ 

AF*.  Next, the circumcircle of ΔAMN 

and line AD are sent to lines M*N* and 

AD*.  So, P* = M*N* ∩ AD*. 

 

Now D*, E*, C, B, F*, A are six points 

on ω.  By Pascal’s theorem, M* = 

D*E*∩BF*, N* = E*C∩F*A and D = 

CB∩AD* are collinear.  Since P* = 

M*N* ∩ AD*, we get D = P*.  Then P 

= D* and A, B, P, C are all on ω.  
 
 

 

Olympiad Corner 
(continued from page 1) 

 

Problem 4.  Given a circle k and its 

chord AB which is not a diameter, let C 

be any point inside the longer arc AB of 

k.  We denote by K and L the reflections 

of A and B with respect to the axes BC 

and AC.  Prove that the distance of the 

midpoints of the line segments KL and 

AB is independent of the location of 

point C. 

 

Problem 5.  The n-tuple of positive 

integers a1,…,an satisfies the following 

conditions: 
 
(i)   1≤ a1< a2 < ⋯ < an ≤ 50; 
 
(ii)  for any n-tuple of positive integers 

b1,…, bn, there exist a positive integer 

m and an n-tuple of positive integers 

c1,…, cn such that  
 

ia

ii cmb =  for i = 1,…,n. 

 

Prove that n ≤ 16 and find the number 

of different n-tuples a1,…, an satisfying 

the given conditions for n = 16. 

 

Problem 6.  Given an integer n ≥ 16, 

consider the set 
 

G ={(x,y): x,y∊{1,2,…,n}} 
 
consisting of n2 points in the plane.  Let 

A be any subset of G containing at least 

nn4  points.  Prove that there are at 

least n2 convex quadrangles with all 

their vertices in A such that their 

diagonals intersect in one common 

point. 
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A Refinement of Bertrand’s Postulate  
Neculai Stanciu 

(Buzău, Romania) 

 

Olympiad Corner 
 
The 2010 Chinese Mathematical 

Olympiad was held on January. Here 

are the problems. 
 

Problem 1.  As in the figure, two 

circles Γ1, Γ2 intersect at points A, B.  A 

line through B intersects Γ1, Γ2 at C, D 

respectively. Another line through B 

intersects Γ1, Γ2 at E, F respectively. 

Line CF intersects Γ1, Γ2 at P, Q 

respectively. Let M, N be the midpoints 

of arcs PB, arc QB respectively.  Prove 

that if CD = EF, then C, F, M, N are 

concyclic. 
 

Γ Γ

B
C

D

F

A
P

E
Q M

N

2
1

 
 

Problem 2.  Let k ≥ 3 be an integer. 

Sequence {an} satisfies ak=2k and for 

all n > k, an= an−1 + 1 if an−1 and n are 

coprime and an=2n if an−1 and n are not 

coprime. Prove that the sequence 

{an−an−1} contains infinitely many 

prime numbers. 
 

(continued on page 4)
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     In this article, we give an elementary 

demonstration of the famous Bertrand’s 

postulate by using a theorem proved by 

the mathematician M. El Bachraoni in 

2006. 

      Interesting is the distribution of 

prime numbers among the natural 

numbers and problems about their 

distributions have been stated in very 

simple ways, but they all turned out to 

be very difficult. The following open 

problem was stated by the Polish 

mathematician W. Sierpiński in 1958:  
 
For all natural numbers n > 1 and k ≤ n, 

there is at least one prime in the range 

[kn,(k+1)n]. 

 

      The case k=1 (known as Bertrand’s 

postulate) was stated in 1845 by the 

French mathematician J. Bertrand and 

was proved by the Russian 

mathematician P. L. Chebysev. Simple 

proofs have been given by the 

Hungarian mathematician P. Erdos in 

1932 and recently by the Romanian 

mathematician M. Tena [3]. The case 

k=2 was proved in 2006 by M. El 

Bachraoni (see [1]). His proof was 

relatively short and not too complicated. 

It is freely available on the internet [4]. 

 

       Below we will present a refinement 

of Bertrand’s postulate and it is perhaps 

the simplest demonstration of the 

postulate based on the following 

 

Theorem 1.  For any positive integer n > 

1, there is a prime number between 2n 

and 3n. (For the proof, see [1] or [4].) 

 

     The demonstration in [1] was typical 

of many theorems in number theory and 

was based on multiple inequalities valid 

for large values of n which can be 

calculated effectively. For the rest of the 

values of n, there are many basic 

improvisations, some perhaps difficult 

to follow.          

 

Theorem 2.  For n ≥ 1, there is a prime 

number p such that n < p < 3(n+1)/2. 

(Since 3(n+1)/2<2n for n > 3, this is a 

refinement of the Bertrand’s postulate.) 

 

     For the proof, the case n=1 follows 

from 1<p=2<3.  The case n=2 follows 

from 2<p=3<9/2.  For n even, say n=2k, 

by Theorem 1, we have a prime p such 

that n=2k <p < 3k <3(2k+1)/2=3(n+1)/2. 

Similarly, for n odd, say n=2k+1, we 

have a prime p such that n = 2k+1 < 

2k+2=2(k+1) < p < 3(k+1)=3(n+1)/2. 

 

     Concerning the distribution of prime 

numbers among the natural numbers, 

recently (in 2008) Rafael Jakimczuk has 

proved a formula (see [2] or [4]) for the 

n-th prime pn, which provided a better 

error term than previous known 

approximate formulas for pn. His 

formula is for n≥4, 
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and Qk−1(x) are polynomials.  
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Max-Min Inequalities 

Pedro Henrique O. Pantoja 

(UFRN, NATAL, BRAZIL) 

There are many inequalities.  In this 
article, we would like to introduce the 
readers to some inequalities that 
involve maximum and minimum. 

The first example was a problem 
from the Federation of Bosnia for 
Grade 1 in 2008. 

Example 1 (Bosnia-08)  For arbitrary 

real numbers x, y and z, prove the 

following inequality: 

zxyzxyzyx −−−++ 222          

.
4

)(3
,

4

)(3
,

4

)(3
max

222

⎭
⎬
⎫

⎩
⎨
⎧ −−−

≥
xzzyyx  

Solution.  Without loss of generality, 

suppose x ≥ y ≥ z. Then 

.)(
4

3

4

)(3
,

4

)(3
,

4

)(3
max 2

222

xz
xzzyyx

−=
⎭
⎬
⎫

⎩
⎨
⎧ −−−  

Let a = x−y, b = y−z and c = z−x.  

Then c = −(a+b).  Hence, (z−x)2 = c2  = 

(a+b)2 = a2+2ab+b2 and 

    zxyzxyzyx −−−++ 222  

          ])()()[(
2

1 222 xzzyyx −+−+−=  

          )2(
2

1 2222 bababa ++++=  

          .22 baba ++=  

So it suffices to show 

),2(
4

3 2222 babababa ++≥++  

which is equivalent to (a−b)2 ≥ 0.  

The next example was a problem on 
the 1998 Iranian Mathematical 
Olympiad. 

Example 2. (Iran-98)  Let a, b, c, d be 

positive real numbers such that abcd=1. 

Prove that  

  3333 dcba +++       

.
1111

,max
⎭
⎬
⎫

⎩
⎨
⎧ ++++++≥

dcba
dcba  

Solution. It suffices to show  
 

dcba
dcba

11113333 +++≥+++  

and 

 .3333 dcbadcba +++≥+++  

 

For the first inequality, we observe that 
 

abcd

abcabdacdbcd

dcba

+++
=+++

1111  

                        .abcabdacdbcd +++=  
 

Now, by the AM-GM inequality, we have 

a3+b3+c3 ≥ 3abc, a3+b3+d3 ≥ 3abd, 

a3+c3+d3 ≥ 3acd and b3+c3+d3 ≥ 3bcd. 

Adding these four inequalities, we get the 

first inequality. 

 

Next, let S=a+b+c+d.  Then we have 
 

4)(4 4/1 =≥+++= abcddcbaS  
 

by the AM-GM inequality and so S3 = S2S 

≥ 16S.  The second inequality follows by 

applying the power mean inequality to 

obtain 
 

.
46444

333333 SSdcbadcba
≥=⎟

⎠
⎞

⎜
⎝
⎛ +++

≥
+++  

 

Example 3.  Let a, b, c be positive real 

numbers.  Prove that if x = max{a,b,c} 

and y = min{a,b,c}, then 
 

.
))((

18
222 cbacba

abc

x

y

y

x

++++
≥+  

 

Solution.  Suppose a ≥ b ≥ c.  Then x = a 

and y = c. Using the AM-GM inequality 

and the Cauchy-Schwarz inequality, we 

have 

abc

bca

ac

ca

a

c

c

a )( 2222 +
=

+
=+  

          
33 )(

54

]3/)[(

)2(

cba

abc

cba

bac

++
=

++
≥  

          .
))((3

54
222 cbacba

abc

++++
≥  

 

The next example was problem 4 in the 

2009 USA Mathematical Olympiad. 

 

Example 4.  (USAMO-09) For n ≥ 2, let a1, 

a2, …, an be positive real numbers such that  
 

( ) .
2

1111
2

21

21 ⎟
⎠
⎞

⎜
⎝
⎛ +≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++++++ n

aaa
aaa

n

n LL  

Prove that  

 max{a1,a2,…,an}≤ 4 min{a1, a2,…, an}. 

 

Solution.  Without loss of generality, we 

may assume 

m=a1 ≤ a2 ≤ ⋯ ≤ an = M. 
 

By the Cauchy-Schwarz inequality, 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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m

M
n

M
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Taking square root of both sides, 
 

.2
2

1

m

M
n

M

m
n +−+≥+   

 

Simplifying, we get .5)(2 mMMm ≤+  

Squaring both sides, we can get 
 

4M 2−17mM+4m2 ≥ 0. 
 

Factoring, we see 
 

             (4M−m)(M−4m) ≥ 0. 
 

Since 4M−m ≥ 0, we get M−4m ≥ 0, 

which is the desired inequality.  
 

The next example was problem 1 on the 

2008 Greek National Math Olympiad. 
  

Example 5. (Greece-08)  For positive 

integers a1, a2, …, an, prove that if 

k=max{a1,a2,…,an} and t=min{a1,a2,…, 

an}, then 

∏∑
∑

=
=

= ≥⎟
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⎛ n
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When does equality hold? 

Solution.  By the Cauchy-Schwarz 

inequality,  

.1
1

2

1 1
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Hence,  
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= ≥  

Since each ai ≥ 1, the right side of the 

above inequality is at least one. Also, we 

have kn/t ≥ n. So, applying the above 

inequality and the AM-GM inequality 

we have 

∏∑
∑
∑
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Equality holds if and only if all ai’s are 

equal. 

 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is April 17, 2010. 
 

Problem 336. (Due to Ozgur Kircak, 

Yahya Kemal College, Skopje, 

Macedonia) Find all distinct pairs (x,y) 

of integers satisfying the equation  
 

.20092009 33 xyyx +=+  

 
Problem 337.  In triangle ABC,∠ABC 

=∠ACB =40°. P and Q are two points 

inside the triangle such that∠PAB =  

∠QAC =20° and ∠PCB =∠QCA 

=10°. Determine whether B, P, Q are 

collinear or not. 
 

Problem 338.  Sequences {an} and {bn} 

satisfies a0=1, b0=0 and for n=0,1,2,…, 

.478

,367

1

1

−+=
−+=

+

+

nnn

nnn

bab

baa
 

Prove that an is a perfect square for all 

n=0,1,2,… 
 
Problem 339.  In triangle ABC,∠ACB 

=90°. For every n points inside the 

triangle, prove that there exists a 

labeling of these points as P1, P2, …, Pn 

such that  
 

.22

1

2

32

2

21 ABPPPPPP nn ≤+++ −L  

 
Problem 340.  Let k be a given positive 

integer. Find the least positive integer 

N such that there exists a set of 2k+1 

distinct positive integers, the sum of all 

its elements is greater than N and the 

sum of any k elements is at most N/2. 

 

***************** 

Solutions 

**************** 
 
Problem 331.  For every positive 

integer n, prove that    

∑
−

=
−=−

1

0
1
.

2
)/(cos)1(

n

k
n

nk n
nkπ  

  
Solution. Federico BUONERBA 
(Università di Roma “Tor Vergata”, 
Roma, Italy),  CHUNG Ping Ngai (La 
Salle College, Form 6), Ovidiu 

FURDUI (Campia Turzii, Cluj, Romania), 
HUNG Ka Kin Kenneth (Diocesan 
Boys’ School), LKL Problem Solving 
Group (Madam Lau Kam Lung 
Secondary School of MFBM), Paolo 
PERFETTI (Math Dept, Università degli 
studi di Tor Vergata Roma, via della 
ricerca scientifica, Roma, Italy).  
 
Let ω = cos(π/n) + i sin(π/n).  Then we 

have ωn = −1 and (ωk + ω−k)/2 = cos(kπ/n). 

So 
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Problem 332.  Let ABCD be a cyclic 

quadrilateral with circumcenter O. Let BD 

bisect OC perpendicularly. On diagonal 

AC, choose the point P such that PC = OC. 

Let line BP intersect line AD and the 

circumcircle of ABCD at E and F 

respectively. Prove that PF is the 

geometric mean of EF and BF in length. 
 
Solution. HUNG Ka Kin Kenneth 

(Diocesan Boys’ School) and Abby LEE 

(SKH Lam Woo Memorial Secondary 

School). 

θ
θ

O
C

D

B
A

P

F

E

 

Since PC=OC=BC and ΔBCP is similar 

to ΔAFP, we have PF=AF.  
 
Next, CB = CD = CP implies P is the 

incenter of ΔABD. Then BF bisects          

∠ABD yielding ∠FAD =∠ADF, call it θ. 
(Alternatively, we have∠FAD = ∠PBD 

= ½∠PCD. Then  
 

∠AFD = 180°−∠ACD 

                            = 180°−∠PCD  

                            = 180°− 2∠PBD  

                            = 180°− 2θ.  
 
Hence, ∠ADF = θ.)  Also, we see ∠AFE 

= ∠BFA and ∠EAF = θ = ∠ADF =∠
ABF, which imply ΔAFE is similar to 

ΔBFA. So AF/EF=BF/AF. Then  

.BFEFAFPF ×==  
 

Comments: For those who are not 

aware of the incenter characterization 

used above, they may see Math 

Excalibur, vol. 11, no. 2 for details. 
 
Other commended solvers: CHOW 
Tseung Man (True Light Girls’ 
College), CHUNG Ping Ngai (La 
Salle College, Form 6), Nicholas 
LEUNG (St. Paul’s School, London) 
and LKL Problem Solving Group 
(Madam Lau Kam Lung Secondary 
School of MFBM). 
 

Problem 333.  Find the largest positive 

integer n such that there exist n 

4-element sets A1, A2, …, An such that 

every pair of them has exactly one 

common element and the union of 

these n sets has exactly n elements. 
 

Solution. LKL Problem Solving 
Group (Madam Lau Kam Lung 
Secondary School of MFBM).  
 
Let the n elements be 1 to n.  For i =1 to n, 

let si denote the number of sets in which i 

appeared. Then s1+s2+⋯+sn = 4n. On 

average, each i appeared in 4 sets. 

 

Assume there is an element, say 1, 

appeared in more than 4 sets, say 1 is in 

A1, A2, …, A5. Then other than 1, the 

remaining 3×5=15 elements must all be 

distinct. Now 1 cannot be in all sets, 

otherwise there would be 3n+1>n 

elements in the union. So there is a set A6 

not containing 1. Its intersections with 

each of A1, A2, …, A5 must be different, 

yet A6 only has 4 elements, contradiction.  

On the other hand, if there is an element 

appeared in less than 4 sets, then there 

would be another element appeared in 

more than 4 sets, contradiction. Hence, 

every i appeared in exactly 4 sets.    

 

Suppose 1 appeared in A1, A2, A3, A4. 

Then we may assume that A1={1,2,3,4}, 

A2={1,5,6,7},  A3={1,8,9,10} and A4= 

{1,11,12,13}.  Hence, n ≥ 13. Assume n 

≥ 14. Then 14 would be in a set A5. The 

other 3 elements of A5 would come from 

A1, A2, A3, say.  Then A4 and A5 would 

have no common element, contradiction.  

 

Hence, n can only be 13. Indeed, for  the 

n = 13 case, we can take A1, A2, A3, A4, as 

above and A5={2,5,8,11}, A6={2,6,9,12}, 

A7={2,7,10,13}, A8={3,5,10,12}, A9={3, 

6,8,13}, A10={3,7,9,11},  A11={4,5,9,13}, 

A12={4, 6, 10,11} and A13={4,7,8,12}. 

 

Other commended solvers: CHUNG 



Mathematical Excalibur, Vol. 14, No. 4, Dec. 09-Mar. 10 Page 4

 

Ping Ngai (La Salle College, Form 6), 

HUNG Ka Kin Kenneth (Diocesan 

Boys’ School) and Carlo PAGANO 

(Università di Roma “Tor Vergata”, 

Roma, Italy). 
 

Problem 324. (Due to FEI Zhenpeng, 

Northeast Yucai School, China)  Let x,y 

∊(0,1) and x be the number whose n-th 

digit after the decimal point is the nn-th 

digit after the decimal point of y for all 

n =1,2,3,….  Show that if y is rational, 

then x is rational. 
 
Solution. CHUNG Ping Ngai (La 
Salle College, Form 6),  
 
Since the decimal representation of y is 

eventually periodic, let L be the length 

of the period and let the decimal 

representation of y start to become 

periodic at the m-th digit.  Let k be the 

least common multiple of 1,2,…,L.  Let 

n be any integer at least L and nn ≥ m. 
 
By the pigeonhole principle, there exist 

i < j among 0,1,…,L such that ni ≡ nj 

(mod L).  Then for all positive integer d, 

we have ni ≡ ni+d(j-i) (mod L).  Since k is 

a multiple of j−i and n ≥ L > i, so we 

have nn ≡ nn+k (mod L). Since k is also a 

multiple of L, we have (n+k)n+k ≡nn+k ≡ 

nn (mod L). Then the n-th and (n+k)-th 

digit of x are the same.  So x is rational. 
 
Other commended solvers:  HUNG Ka 
Kin Kenneth (Diocesan Boys’ School) 
and Carlo PAGANO (Università di 
Roma “Tor Vergata”, Roma, Italy). 
 

Problem 335.  (Due to Ozgur KIRCAK, 

Yahya Kemal College, Skopje, 

Macedonia)  Find all a∊ℝ for which 

the functional equation  f: ℝ→ ℝ 
 

( ) )())(()( yfxxfayfxf −−=−  
 

for all x, y ∊ℝ has a unique solution. 
 
Solution.  LE Trong Cuong (Lam Son 

High School, Vietnam) 
 
Let g(x) = f(x)−x. Then, in terms of g, 

the equation becomes  
 

g(x−y−g(y))=ag(x)−x. 
 
Assume f(y)=y+g(y) is not constant. 

Let r, s be distinct elements in the 

range of f(y)=y+g(y). For every real x,  
 

g(x−r) = ag(x)−x = g(x−s). 
 
This implies g(x) is periodic with 

period T=|r−s|>0. Then 
 

ag(x) −x = g(x−y−g(y)) 

                           = g(x+T−y−g(y)) 

                           = ag(x+T) − (x+T) 

                           = ag(x)−x−T. 

This implies T=0, contradiction. Thus, 

f is constant, i.e. there exists a real number 

c so that for all real y, f(y)=c. Then the 

original equation yields c=a(c−x)−c for 

all real x, which forces a=0 and c=0.  
 

Other commended solvers: LKL 

Problem Solving Group (Madam Lau 

Kam Lung Secondary School of MFBM). 
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Problem 3.  Let a,b,c be complex 

numbers such that for every complex 

number z with |z| ≤ 1, we have |az2+bz+c| 

≤ 1. Find the maximum of |bc|. 

 

Problem 4.  Let m,n be integers greater 

than 1. Let a1 < a2 < ⋯ < am be integers. 

Prove that there exists a subset T of the set 

of all integers such that the number of 

elements of T, denoted by |T|, satisfies  

12
1|| 1

+
−

+≤
n

aa
T m  

and for every i∊{1,2,⋯,m}, there exist 

t∊T and s∊[−n,n] such that ai=t+s. 

 

Problem 5.  For n≥3, we place a number 

of cards at points A1, A2, ⋯, An and O. We 

can perform the following operations:  
 
(1) if the number of cards at some point Ai 

is not less than 3, then we can remove 3 

cards from Ai and transfer 1 card to each 

of the points Ai−1, Ai+1 and O (here A0=An, 

An+1=A1); or 
 
(2) if the number of cards at O is not less 

than n, then we can remove n cards from 

O and transfer 1 card to each A1, A2, ⋯, An. 
 
Prove that if the sum of all the cards 

placed at these n+1 points is not less than 

n2+3n+1, then we can always perform 

finitely many operations so that the 

number of cards at each of the points is not 

less than n+1. 
 

Problem 6.  Let a1, a2, a3, b1, b2, b3 be 

distinct positive integers satisfying 
 

nnnnnn bnnbbnannaan 321321 )1()1(|)1()1( −+++−+++  

for all positive integer n. Prove that there 

exists a positive integer k such that bi=kai 

for i=1,2,3. 

 

 
 

Max-Min Inequalities  
(continued from page 2) 

 

The inequality in the next example was 

very hard. It was proposed by Reid 

Barton and appeared among the 2003 

IMO shortlisted problems. 
 

Example 6.  Let n be a positive integer 

and let (x1, x2, …, xn), (y1, y2, …, yn) be 

two sequences of positive real numbers. 

Let (z1, z2, … , z2n) be a sequence of 

positive real numbers such that for all    

1 ≤ i, j ≤ n, zi+j
2 ≥ xiyj.  Let M=max{z1, 

z2, …, z2n}.  Prove that 
 

.
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Solution. (Due to Reid Barton and 

Thomas Mildorf)  Let  

X = max{x1, x2, …,xn} 

and  

Y = min{x1,x2,…, xn}. 
 

By replacing xi by xi’=xi/X, yi by yi’=yi/Y 

and zi by zi’= zi/(XY)1/2, we may assume 

X=Y=1. It suffices to prove  

M+z2+⋯+z2n ≥ x1+⋯+xn+y1+⋯+yn. (*) 

Then 

,
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which implies the desired inequality by 

applying the AM-GM inequality to the 

right side. 
 
To prove (*), we will claim that for any 

r≥0, the number of terms greater than r 

on the left side is at least the number of 

such terms on the right side.  Then the 

k-th largest term on the left side is 

greater than the k-th largest term on the 

right side for each k, proving (*).  

 

For r≥1, there are no terms greater than 

1 on the right side.  For r < 1, let A={i: 

xi>r}, B={j: yj>r}, A+B={i+j: i∊A, 

j∊B} and C={k: k>1, zk>r}. Let |A|, |B|, 

|A+B|, |C| denote the number of 

elements in A, B, A+B, C respectively.  

 

Since X=Y=1, so |A|, |B| are at least 1. 

Now xi>r, yj>r imply zi+j>r.  So A+B is 

a subset of C. If A is consisted of 

i1<⋯<ia and B is consisted of j1<⋯<jb, 

then A+B contains  
 
i1+j1< i1+j2<⋯ < i1+jb < i2+jb <⋯ <ia+jb. 
 
Hence, |C| ≥ |A+B| ≥ |A|+|B|−1 ≥ 1.  So 

zk>r for some k.  Then M>r.  So the left 

side of (*) has |C|+1≥ |A|+|B| terms 

greater than r, which finishes the proof 

of the claim. 
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Olympiad Corner 
 
 Here are the Asia Pacific Math 

Olympiad problems on March 2010. 
 

Problem 1.  Let ABC be a triangle with 

∠BAC≠90°. Let O be the circumcenter 

of triangle ABC and let Γ be the 

circumcircle of triangle BOC.  Suppose 

that Γ intersects the line segment AB at 

P different from B, and the line 

segment AC at Q different from C.  Let 

ON be a diameter of the circle Γ.  Prove 

that the quadrilateral APNQ is a 

parallelogram.   
 

Problem 2.  For a positive integer k, 

call an integer a pure k-th power if it 

can be represented as mk for some 

integer m.  Show that for every positive 

integer n there exist n distinct positive 

integers such that their sum is a pure 

2009-th power, and their product is a 

pure 2010-th power. 
 
Problem 3.  Let n be a positive integer. 

n people take part in a certain party.  

For any pair of the participants, either 

the two are acquainted with each other 

or they are not.  What is the maximum 

possible number of the pairs for which 

the two are not acquainted but have a 

common acquaintance among the 

participants? 
  (continued on page 4) 
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The following problem is classical: 

among any 6 people, there exist 3 who 

know each other or 3 who don’t know 

each other (we assume if A knows B, 

then B knows A).  When 6 is replaced by 

5, this is no longer true, as can be seen 

by constructing a counterexample. We 

write (3,3) 6R =  and this is called a 

Ramsey number. In general, ( , )R m n  

denotes the smallest positive integer k 

such that, among any k people, there 

exist m who know each other or n who 

don’t know each other. 

How do we know that ( , )R m n  

exists for all m, n?  A key result is the 

following. 

Theorem 1.  For any m, n > 1, we have 

( , ) ( 1, ) ( , 1)R m n R m n R m n≤ − + − . 

Proof.  Take ( 1, ) ( , 1)R m n R m n− + −  

people.  We need to show that there exist 

m people who know each other or n 

people who don’t know each other. If a 

person X knows ( 1, )R m n−  others, 

then among the people X knows, there 

exist either 1m −  who know each other 

(so that together with m, there are m 

people who know each other) or n 

people who don’t know each other, so 

we are done.  Similarly, if X doesn’t 

know ( , 1)R m n −  others, we are also 

done.  But one of these two cases must 

occur because the total number of 

‘others’ is ( 1, ) ( , 1) 1R m n R m n− + − − . 

Using Theorem 1, one can easily 

show (by induction on )m n+  that 
2

1( , ) m n

mR m n C + −
−≤ .  This establishes an 

upper bound on ( , )R m n .  To establish a 

lower bound, we need a counter-

example. While construction of counter- 

examples is in general very difficult, the 

probabilistic method (see Vol. 14, No. 3) 

may be able to help us in getting a non-

constructive proof. Yet to get the exact 

value of a Ramsey number, the lower 

and upper bounds must match, which is 

extremely difficult.  For m, n > 3, fewer 

than 10 values of ( , )R m n  are known: 

(3,4) 9, (3,5) 14, (3,6) 18

(3,7) 23, (3,8) 28, (3,9) 36

R R R

R R R

= = =
= = =

(4, 4) 18, (4,5) 25R R= =  

Even (5,5)R  is unknown at present. 

The best lower and upper bounds 

obtained so far are respectively 43 and 

49. Paul Erdös once made the following 

remark. 

Suppose an evil alien would tell 

mankind “Either you tell me [the 

value of R(5,5)] or I will exterminate 

the human race.”… It would be best 

in this case to try to compute it, both 

by mathematics and with a computer.  

If he would ask [for the value of 

R(6,6)], the best thing would be to 

destroy him before he destroys us, 

because we couldn’t [determine 

R(6,6)]. 

Problems related to the Ramsey 

numbers occur often in mathematical 

competitions.  

Example 2.  (CWMO 2005) There are n 

new students.  Among any three of them 

there exist two who know each other, 

and among any four of them there exist 

two who do not know each other.  Find 

the greatest possible value of n. 

Solution.  The answer is 8. First, n can 

be 8 if the 8 students are numbered 1 to 

8 and student i knows student j if and 

only if | | 1, 4i j− ≡/ (mod 8). Next, 

suppose 9n =  is possible. Then no 

student may know 6 others, for among 

the 6 either 3 don’t know each other or 3 

know each other (so together with the 

original student there exist 4 who know 

each other).  Similarly, it cannot happen 

that a student doesn’t know 4 others. 

Hence each student knows exactly 5 

others.  But this is impossible, because if 

we sum the number of others whom 

each student know, we get 9 5 45× = , 

which is odd, yet each pair of students 

who know each other is counted twice. 
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Remark. The answer to the above 

problem is (3,4) 1R − , as can be seen 

by comparing with the definition of 

R(3,4). 

The Ramsey number can be 

generalised in many different 

directions. One is to increase the 

number of statuses from 2 (know or 

don’t know) to more than 2, as the 

following example shows. 

Example 3.  (IMO 1964) Seventeen 

people correspond by mail with one 

another — each one with all the rest. In 

their letters only three different topics 

are discussed. Each pair of 

correspondents deals with only one of 

these topics. Prove that there are at 

least three people who write to each 

other about the same topic. 

Solution.  Suppose the three topics are 

A, B and C. Pick any person; he writes 

to 16 others. By the pigeonhole 

principle, he writes to 6 others on the 

same topic, say A.  If any two of the 6 

people write to each other on A, then 

we are done.  If not, then these 6 people 

write to each other on B or C.  Since 

(3,3) 6R = , either 3 of them write to 

each other on B, or 3 of them write to 

each other on C.  In any case there exist 

3 people who write to each other about 

the same topic. 

Remark.  The above problem proves 

(3,3,3) 17R ≤ , where ( , , )R m n p  is 

defined analogously as ( , )R m n  except 

that there are now three possible 

statuses instead of two. It can be shown 

that (3,3,3) 17R =  by constructing a 

counterexample when there are only 16 

people. 

Another direction of generalization 

is to generalise ‘m people who know 

each other’ or ‘n people who don’t 

know each other’ to other structures. 

(Technically, the graph Ramsey 

number ( , )R G H  is the smallest 

positive integer k such that when every 

two of k points are joined together by a 

red or blue edge, there must exist a red 

copy of G or a blue copy of H.  Hence 

( , ) ( , )m nR m n R K K= , where mK  

denotes the complete graph on m 

vertices, i.e. m points among which 

every two are joined by an edge). 

Example 4.  N people attend a meeting, 

and some of them shake hands with 

each other.  Suppose that each person 

shakes hands with at most 100 other 

people, and among any 50 people there 

exist at least two who have shaken hands 

with each other.  Find the greatest possible 

value of N. 

Solution.  The answer is 4949.  We first 

show that N = 4949 is possible: suppose 

there are 49 groups of 101 people each, 

and two people shake hands if and only if 

they are in the same group.  It is easy to 

check that the requirements of the 

question are satisfied.  Now suppose N = 

4950 and each person shakes hands with 

at most 100 others.  We will show that 

there exist 50 people who have not shaken 

hands with each other, thus contradicting 

the given condition.  To do this, pick a first 

person 1P  and cross out all those who 

have shaken hands with him.  Then pick 

2P  from the rest and again cross out those 

who have shaken hands with him, and so 

on.  In this way, at most 100 people are 

crossed out each time. After 49P  is chosen, 

at least 4950 49 49 100 1− − × =  person 

remains, so we will be able to choose 50P . 

Because of the ‘crossing out’ algorithm, 

we see that no two of 1P , 2P , …, 50P  

have shaken hands with each other. 

Remark.  By identifying each person with 

a point and joining two points by a red line 

if two people have shaken hands and a 

blue line otherwise, we see that the above 

problem proves 1,100 50( , ) 4950R K K = . 

Here 1,100K  is the graph on 101 points by 

joining 1 point to the other 100 points. 

The Van der Waerden number ( , )W r k  

is the smallest positive integer N such that 

if each of 1, 2, …, N is assigned one of r 

colours, then there exist a monochromatic 

k-term arithmetic progression. The 

following example shows that we have 

(2,3) 325W ≤ . 

Example 5.  If each of the integers 1, 2, …, 

325 is assigned red or blue colour, there 

exist three integers p, q, r which are 

assigned the same colour and which form 

an arithmetic progression. 

Solution.  Divide the 325 integers into 65 

groups G1 = {1, 2, 3, 4, 5}, G2 = {6, 7, 8, 9, 

10}, …, G65 = {321, 322, 323, 324, 325}. 

There are 25 = 32 possible colour patterns 

for each group.  Hence there exist three 

groups Ga and Gb, 1 33a b≤ < ≤ , whose 

colour patterns are the same.  We note that 

2 65b a− ≤  and that a, b, 2b a−  form an 

arithmetic progression.  Now two of the 

first three numbers of Ga are of the same 

colour, say, the first and third are red (it 

can be seen that the proof goes exactly the 

same way if it is the first and second, or 

second and third).  If the fifth is also 

red, then we are done.  Otherwise, the 

first and third numbers of both Ga and 

Gb (recall that they have identical 

colour patterns) are red while the fifth 

is blue.  If the fifth number of G2b-a is 

red, then it together with the first 

number of Ga and the third number of 

Gb form a red arithmetic progression; if 

it is blue, then it together with the fifth 

numbers of Ga and Gb form a blue 

arithmetic progression. 

It can be shown via a 

two-dimensional inductive argument 

that ( , )W r k  exists for all r, k.  We see 

that the existence of Ramsey numbers 

and van der Waerden numbers are very 

similar: both say that the desired 

structure exists in a sufficiently large 

population. 

An analogy to this (though not 

mathematically rigorous) is that when 

there are sufficiently many stars in the 

sky, one can form from them whatever 

picture one wishes. (This is one of the 

lines in the movie A Beautiful Mind!) 

Yet another generalization of the 

van der Waerden Theorem (which says 

that ( , )W r k  exists for all r, k) is the 

Hales-Jewett Theorem. The exact 

statement of the theorem is rather 

technical, but we can look at an 

informal version here.  We are familiar 

with the two-person tic-tac-toe game 

played on a 3 3×  square in two 

dimensions.  We also have the two- 

person tic-tac-toe game played on a 

4 4 4× ×  cube in three dimensions (try 

it out at http://www.mathdb.org/fun/  

games/tie_toe/e_tie_toe.htm!). Both 

games can end in a draw.  However, it 

is easy to see that a two-person tic-tac- 

toe game played on a 2 2×  square in 

two dimensions cannot end in a draw. 

The Hales-Jewett Theorem says that 

for any n and k, the k-person tic-tac-toe 

game played on an n n n× × ×L  (D 

factors of n, where D is the dimension) 

hypercube cannot end in a draw when 

D is large enough! (For instance, we 

have just seen that when n = 2 and k = 2, 

then D = 2 is large enough, while when 

n = 3 and k = 2, then D = 2 is not large 

enough.)  In case k = 2 (i.e. a two- 

person game) and when D is large 

enough so that a draw is impossible, it 

can be shown (via a so-called strategy 

stealing argument) that the first player 

has a winning strategy! 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is May 21, 2010. 
 
Problem 341.  Show that there exists 

an infinite set S of points in the 

3-dimensional space such that every 

plane contains at least one, but not 

infinitely many points of S. 
 

Problem 342.  Let f(x)=anx
n+⋯+a1x+p 

be a polynomial with coefficients in the 

integers and degree n>1, where p is a 

prime number and  
 

|an|+|an−1|+⋯+|a1| < p. 
 
Then prove that f(x) is not the product 

of two polynomials with coefficients in 

the integers and degrees less than n. 
 

Problem 343.  Determine all ordered 

pairs (a,b) of positive integers such that 

a≠b, b2+a=pm (where p is a prime 

number, m is a positive integer) and 

a2+b is divisible by b2+a.  
 
Problem 344. ABCD is a cyclic 

quadrilateral.  Let M, N be midpoints of 

diagonals AC, BD respectively.  Lines 

BA, CD intersect at E and lines AD, BC 

intersect at F.  Prove that 

.
2

EF

MN

BD

AC

AC

BD
=−  

 
Problem 345.  Let a1, a2, a3, ⋯ be a 

sequence of integers such that there are 

infinitely many positive terms and also 

infinitely many negative terms.  For 

every positive integer n, the remainders 

of a1, a2, ⋯, an upon divisions by n are 

all distinct.  Prove that every integer 

appears exactly one time in the 

sequence.  
 

***************** 

Solutions 

**************** 
 
Problem 336.  (Due to Ozgur Kircak, 

Yahya Kemal College, Skopje, 

Macedonia)  Find all distinct pairs (x,y) 

of integers satisfying the equation  
 

.20092009 33 xyyx +=+  

  
Solution.  CHOW Tseung Man (True 
Light Girls’ College), CHUNG Ping Ngai 
(La Salle College, Form 6), HUNG Ka 
Kin Kenneth (Diocesan Boys’ School), D. 
Kipp JOHNSON (Valley Catholic 
School, Beaverton, Oregon, USA), LI 
Pak Hin (PLK Vicwood K. T. Chong 
Sixth Form College), Emanuele 
NATALE (Università di Roma “Tor 
Vergata”, Roma, Italy), Pedro Henrique 
O. PANTOJA (UFRN, Natal, Brazil), 
PUN Ying Anna (HKU), TSOI Kwok 
Wing (PLK Centenary Li Shiu Chung 
Memorial College), Simon YAU Chi- 
Keung and Fai YUNG.  
 
All pairs (x,x) satisfy the equation.  If (x,y) 

satisfies the equation and x≠y, then  

).3(mod22009
33

22 ≡=
−
−

=++
yx

yx
yxyx  

However, x2+xy+y2≡x2−2xy+y2=(x−y)2≡ 0 

or 1 (mod 3). So there are no solutions 

with x≠y. 
 
Problem 337.  In triangle ABC, ∠ABC =

∠ ACB=40°. P and Q are two points 

inside the triangle such that ∠PAB = ∠
QAC =20° and ∠PCB =∠QCA =10°. 

Determine whether B, P, Q are collinear or 

not. 
 
Solution 1.  CHUNG Ping Ngai (La Salle 

College, Form 6) and HUNG Ka Kin 

Kenneth (Diocesan Boys’ School).  

  

Let ∠PBA=a, ∠PBC=b, ∠QBA=a’ and 

∠QBC=b’.  By the trigonometric form of 

Ceva’s theorem, we have 
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As sin10°sin80° = sin10°cos10° =½sin20° 

= sin30°sin20°, we obtain sin a= sin b and 

sin a’ = sin b’.  Since 0<a,b,a’,b’<90° and 

a+b=40°=a’+b’, we get a=b=a’=b’=20°, 

i.e. ∠PBA=∠PBC=∠QBA=∠QBC. 

Therefore, B, P, Q are collinear. 

 

Solution 2.  LEE Kai Seng. 

 

We will show B,P,Q collinear  by proving 

lines BQ and BP bisect ∠ABC.  

 

Draw an equilateral triangle BDC with D 

on the same side of BC as A. Since ∠ABC 

=∠ACB=40°, AB=AC.  Then both D and 

A are equal distance from B and C.  So DA 

bisects ∠BDC. We have  

A

B C

D

Q

 
 
∠QCD = 60°−∠BCQ = 30° = ∠ADC. 
 
 Also, ∠ DCA =∠QCD −∠QCA = 

20° = ∠QAC, which implies QA||CD. 

Then AQCD is an isosceles trapezoid, 

so AD = QC.  This with BD=BC and ∠
BDA = 30° = ∠QCB imply ΔBDA ≅ 

ΔQCB.  Then BA=BQ.  Since ∠BAQ =

∠BAC −∠QAC = 100°−20° = 80°, we 

get ∠ABQ = 20° = ½∠ABC.  So BQ 

bisects ∠ABC. 

A

B C
QP

E

 
Extend BA to a point E so that BE=BC. 

Then ∠BCE = ½(180°−∠ABC) = 70°. 

Next, we will show ΔEPC is 

equilateral.  
 
We have ∠PCE=∠BCE−∠PCB=60°, 

∠ACE=∠BCE−∠BCA=30°=½∠PCE. 

So CA bisects ∠PCE. Next, ∠CAE = 

180°−∠BAC = 80° = ∠BAC−∠BAP = 

∠CAP.  Then ΔCAE ≅ ΔCAP.  So CE 

= CP and ΔEPC is equilateral.  Then B, 

P are equal distance from E and C. 

Hence BP bisects ∠ABC. 
 
 
Other commended solvers: CHAN 
Chun Wai (St. Paul’s College), LI 
Pak Hin (PLK Vicwood K. T. Chong 
Sixth Form College), PUN Ying Anna 
(HKU). 
 
Problem 338.  Sequences {an} and {bn} 

satisfy a0=1, b0=0 and for n=0,1,2,…, 

.478

,367

1

1

−+=
−+=

+

+

nnn

nnn

bab

baa
 

Prove that an is a perfect square for all 

n=0,1,2,… 
 

Solution 1.  CHUNG Ping Ngai (La 
Salle College, Form 6), HUNG Ka 
Kin Kenneth (Diocesan Boys’ School), 
D. Kipp JOHNSON (Valley Catholic 
School, Beaverton, Oregon, USA), LI 
Pak Hin (PLK Vicwood K. T. Chong 
Sixth Form College), NGUYEN Van 
Thien (Luong The Vinh High School, 
Dong Nai, Vietnam), O Kin Chit Alex 
(G.T. (Ellen Yeung) College), Ercole 
SUPPA (Teramo, Italy) and YEUNG 
Chun Wing (St. Paul’s College).  
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Solving for bn in the first equation and 

putting it into the second equation, we 

have 
 
an+2=14an+1−an−6   for  n=0,1,2, …  (*) 

 
with a0=1 and a1=4.  Let dn=an−½.  Then 

(*) becomes dn+2 =14dn+1−dn.  Since the 

roots of x2 − 14x + 1 = 0 are ,347 ±  

we get dn is of the form α( 347 − )n +  

β( 347 + )n.  Using d0=½ and d1=3½, 

we get α=¼ and β=¼. So 
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)347()347(2

2

1 nn

nn da
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Now, consider the sequence {cn} of 

positive integers, defined by c0=1, c1=2 

and 
 
   cn+2=4cn+1−cn   for   n=0,1,2,….   (**) 

 
Since the roots of x2−4x+1= 0 are 

,32 ±  as above we get 

.
2

)32()32( nn

nc
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=  

Squaring cn, we see an=cn
2. 

 

Solution 2. William CHAN and 

Invisible MAK (Carmel Alison Lam 

Foundation Secondary School). 
 
The equations imply  

 
an+2=14an+1−an−6   for  n=0,1,2, …  (*) 
 
We will prove anan+2=(an+1+3)2 by math 

induction.  The case n=0 is 1×49=(4+3)2. 

Suppose an−1an+1=(an+3)2.  Then 
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This completes the induction. 

 

Next, we will show all an’s are perfect 

squares.  Now a0=12 and a1=22.  Suppose 

an−1=r2 and an=s2, we get an+1=(an+3)2/r2
 

and an+2=(an+1+3)2/s2.  Since the square 

root of a positive integer is an integer or 

an irrational number, an+1 and an+2 are 

perfect squares.  By mathematical 

induction, the result follows. 

 

Other commended solvers: PUN Ying 

Anna (HKU), TSOI Kwok Wing 

(PLK Centenary Li Shiu Chung 

Memorial College). 
 
Problem 339.  In triangle ABC,∠ACB 

=90°.  For every n points inside the 

triangle, prove that there exists a labeling 

of these points as P1, P2, …, Pn such that  
 

.22

1

2

32
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Solution. Federico BUONERBA 
(Università di Roma “Tor Vergata”, Roma, 
Italy), HUNG Ka Kin Kenneth 
(Diocesan Boys’ School) and PUN Ying 
Anna (HKU). 
 
We will prove the following more general 

result:  
 
Let ABC be a triangle with ∠ACB =90°. 

For every n points inside or on the sides of 

the triangle, there exists a labeling of 

these points as P1, P2, …, Pn such that  
 

.222
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We prove this by induction on n.  For the 

case n=1, since ∠AP1B ≥ 90°, the cosine 

law gives AP1
2+P1B 2 ≤ AB 2. 

 

Next we assume all cases less than n are 

true.  For the case n, we can divide the 

original right triangle into two right 

triangles by taking the altitude from C to 

H on the hypotenuse AB.  We can assume 

that the two smaller right triangles AHC 

and BHC contain m > 0 and n−m > 0 

points respectively (otherwise, one of 

these two smaller triangles contains all the 

points and we keep dividing in the same 

way the smaller right triangle which 

contains all the points).  Since m < n and 

n−m < n, by the induction hypothesis, 

there exist a labeling of points in triangle 

AHC as P1, P2, …, Pm such that  
 

222
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and a labeling of points in triangle BHC as 

Pm+1, Pm+2, …, Pm such that  
 

.222

21

2

1 CBBPPPCP nmmm ≤+++ +++ L  

 

Since ∠PmCPm+1 ≤ 90°, the cosine law 

gives PmPm+1
2≤ PmC2+CPm+1

2.  Then 
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Problem 340.  Let k be a given positive 

integer.  Find the least positive integer N 

such that there exists a set of 2k+1 distinct 

positive integers, the sum of all its 

elements is greater than N and the sum of 

any k elements is at most N/2. 
 

Solution.  CHAN Chun Wai (St. Paul’s 

College), CHOW Tseung Man (True 

Light Girls’ College), CHUNG Ping Ngai 

(La Salle College, Form 6), HUNG Ka 

Kin Kenneth (Diocesan Boys’ School), 

LI Pak Hin (PLK Vicwood K. T. 

Chong Sixth Form College), PUN 

Ying Anna (HKU).  
 
Let a1, a2, …, a2k+1 be such a set of 

2k+1 of positive integers arranged in 

increasing order.  We have 
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Also, 
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Now all inequalities above become 

equality if we take ai=k2+i for i=1, 

2, …, 2k+1.  So the least positive value 

of N is 2k3+3k2+3k. 
 
 

 
 

Olympiad Corner 
(continued from page 1) 

 

Problem 4.  Let ABC be an acute 

triangle satisfying the condition 

AB>BC and AC>BC.  Denote by O and 

H the circumcenter and orthocenter, 

respectively, of the triangle ABC. 

Suppose that the circumcircle of the 

triangle AHC intersects the line AB at 

M different from A, and that the 

circumcircle of the triangle AHB 

intersects the line AC at N different 

from A.  Prove that the circumcenter of 

the triangle MNH lies on the line OH. 

 

Problem 5.  Find all functions f from 

the set R of real numbers into R which 

satisfy for all x, y, z ∊ R the identity 
 
     f(f(x)+f(y)+f(z)) 

 = f(f(x)−f(y)) + f(2xy+f(z)) + 2f(xz−yz). 
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Olympiad Corner 
 
 Below are the First Round problems 

of the 26th Iranian Math Olympiad. 
 

Problem 1.  In how many ways can 

one choose n−3 diagonals of a regular 

n-gon, so that no two have an 

intersection strictly inside the n-gon, 

and no three form a triangle? 
 

Problem 2.  Let ABC be a triangle.  Let 

Ia be the center of its A-excircle. 

Assume that the A-excircle touches AB 

and AC in B’ and C’, respectively.  Let 

IaB and IaC intersect B’C’ in P and Q, 

respectively.  Let M be the intersection 

of CP and BQ.  Prove that the distance 

between M and the line BC is equal to 

the inradius of ∆ABC. 
 
Problem 3.  Let a, b, c and d be real 

numbers, and at least one of c or d is 

not zero.  Let f:ℝ→ℝ be the function 

defined by  

.)(
dcx

bax
xf

+
+

=  

 
Assume that f(x) ≠ x for every x∊ℝ. 

Prove that there exists at least one p 

such that f1387(p) = p, then for every x, 

for which f1387(x) is defined, we have 

f1387 (x) = x.  

(continued on page 4) 
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The well-known Fermat’s little theorem 

asserts that if p is a prime number and x 

is an integer not divisible by p, then  
 

xp−1≡1(mod p). 

 

For positive integer n>1 and integer x, if 

there exists a least positive integer d 

such that xd ≡1 (mod n), then we say d is 

the order of x (mod n).  We denote this 

by ordn(x) = d.  It is natural to ask for a 

prime p, if there exists x such that 

ordp(x) = p−1. Such x is called a 

primitive root (mod p).  Indeed, we have 

the following 
 

Theorem.  For every prime number p, 

there exists a primitive root (mod p). 

(We will comment on the proof at the 

end of the article.) 

 

As a consequence, if x is a primitive root 

(mod p), then 1, x, x2, …, xp−2 (mod p) 

are distinct and they form a permutation 

of 1, 2, …, p−1 (mod p).  This is useful 

in solving some problems in math 

competitions.  The following are some 

examples. (Below, we will use the 

common notation a∣b to denote a is a 

divisor of b.) 

 

Example 1. (2009 Hungary-Israel Math 

Competition)  Let p ≥ 2 be a prime 

number.  Determine all positive integers 

k such that Sk = 1k + 2k + ⋯ + (p−1)k is 

divisible by p.  
 
Solution.  Let x be a primitive root (mod 

p). Then  
 

Sk  ≡ 1+xk+⋯+x(p−2)k (mod p). 
 
If p−1∣k, then Sk ≡1+⋯+1= p−1 (mod p). 

If p−1∤k, then since xk ≢1 (mod p) and 

x(p−1)k ≡ 1(mod p), we have 
 

).(mod0
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Therefore, all the k’s that satisfy the 

requirement are precisely those integers 

that are not divisible by p−1. 

Example 2.  Prove that if p is a prime 

number, then (p−1)! ≡ −1 (mod p).  This 

is Wilson’s theorem. 

 

Solution.  The case p = 2 is easy. For p > 

2, let x be a primitive root (mod p). Then
 

(p−1)! ≡ x1x2⋯xp−1 = x(p−1)p/2 (mod p). 
 
By the property of x, w=x(p−1)/2 satisfies 

w≢1(mod p) and w2 ≡1(mod p).  So w ≡ 

−1(mod p).  Then  
 

(p−1)! ≡ x(p−1)p/2 = wp = −1 (mod p). 

 

Example 3. (1993 Chinese IMO Team 

Selection Test)  For every prime number 

p ≥ 3, define 
 

,)(
2/)1(

1

120∑
−

=

=
p

k

kpF   ,
)(

2

1
)(

⎭
⎬
⎫

⎩
⎨
⎧

−=
p

pF
pf

 
where {x}=x−[x] is the fractional part of 

x.  Find the value of f(p).  

 

Solution.  Let x be a primitive root (mod 

p). If p−1∤ 120, then x120 ≢ 1(mod p) 

and x120(p−1)≡1(mod p). So 
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Then f(p) = 1/2.  

 

      If p−1∣ 120, then p∊{3, 5, 7, 11, 13, 

31, 41, 61} and x120 ≡1(mod p). So  
 

).(mod
2

1

2

1
)(

1

1

120 p
p

xpF
p

i

i −
=≡ ∑

−

=

 

 

Then 

.
2

1

2

1

2

1
)(

pp

p
pf =

−
−=  

 
Example 4.  If a and b are nonnegative 

integers such that 2a ≡ 2b (mod 101), 

then prove that a ≡ b (mod 100). 
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Solution.  We first check 2 is a 

primitive root of (mod 101).  If d is the 

least positive integer such that 2d ≡ 1 

(mod 101), then dividing 100 by d, we 

get 100 = qd + r for some integers q, r, 

where 0 ≤ r < d.  By Fermat’s little 

theorem,  
 

1≡ 2100 =(2d)q2r ≡ 2r (mod 101), 
 
which implies the remainder  r = 0. So 

d∣100.  

 

Assume d < 100.  Then d∣50 or d∣20, 

which implies 220 or 250≡1 (mod 101).  

But 210 = 1024 ≡ 14(mod 101) implies 

220 ≡ 142 ≡ −6 (mod 101) and 250 ≡ 

14(−6)2 ≡ −1 (mod 101). So d = 100. 

 

Finally, 2a ≡ 2b (mod 101) implies 2|a−b| 

≡ 1 (mod 101). Then as above, dividing 

|a-b| by 100, we will see the remainder 

is 0.  Therefore, a ≡ b (mod 100).  

 

Comments:  The division argument in 

the solution above shows if ordn(x) = d, 

then xk ≡1 (mod n) if and only if d ∣ k. 

This is useful. 

 

Example 5. (1994 Putnam Exam)  For 

any integer a, set  
 

na = 101a −100×2a. 
 
Show that for 0 ≤ a,b,c,d ≤ 99,  
 

na+nb ≡ nc+nd (mod 10100) 
 
implies {a,b}={c,d}. 

 

Solution. Since 100 and 101 are 

relatively prime, na+nb ≡ nc+nd (mod 

10100) is equivalent to  
 

na+nb ≡ nc+nd (mod 100) 

and  
 

na+nb ≡ nc+nd (mod 101). 

 

As na ≡ a (mod 100) and na ≡ 2a (mod 

101). These can be simplified to  
 

        a+b ≡ c+d (mod 100)    (*) 

and  

2a+2b ≡2c+2d (mod 101). 
 

Using 2100≡ 1(mod 101) and (*), we get 
 

2a2b = 2a+b ≡ 2c+d = 2c2d (mod 101). 
 
Since 2b ≡ 2c+2d −2a (mod 101), we get 

2a(2c+2d −2a) ≡ 2c2d (mod 101).  This 

can be rearranged as  
 

(2a−2c)(2a−2d) ≡ 0 (mod 101). 
 
Then 2a ≡ 2c (mod 101) or 2a ≡ 2d (mod 

101).  By the last example, we get a ≡ c 

or d (mod 100).  Finally, using a+b ≡ 

c+d (mod 100), we get {a,b}={c,d}. 

 

Example 6.  Find all two digit numbers n 

(i.e. n = 10a + b, where a, b ∊ {0,1,…,9} 

and a ≠ 0) such that for all integers k, we 

have n | ka − kb. 

 

Solution.  Clearly, n = 11, 22, …, 99 work. 

Suppose n is such an integer with a ≠ b. 

Let p be a prime divisor of n.  Let x be a 

primitive root (mod p).  Then p ∣ xa − xb, 

which implies x|a−b| ≡ 1(mod p).  By the 

comment at the end of example 4, we have 

p−1 ∣ |a-b| ≤ 9.  Hence, p = 2, 3, 5 or 7. 
 
If p = 7 ∣ n, then 6 ∣ |a-b| implies n = 28. 

Now k2 ≡ k8 (mod 4) and (mod 7) hold by 

property of (mod 4) and Fermat’s little 

theorem respectively. So n = 28 works.  
 
Similarly the p = 5 case will lead to n = 15 

or 40. Checking shows n = 15 works.  The 

p = 3 case will lead to n = 24 or 48. 

Checking shows n = 48 works.  The p = 2 

case will lead to n = 16, 32 or 64, but 

checking shows none of them works. 

Therefore, the only answers are 11, 22, …, 

99, 28, 15, 48.  
 

Example 7.  Let p be an odd prime number. 

Determine all functions f : ℤ→ℤ such that 

for all m,n∊ℤ,  
 
   (i)  if m ≡ n (mod p), then f(m) = f(n) and 

  (ii)  f(mn) = f(m)f(n). 
 
Solution.  For such functions, taking m = n 

= 0, we have f(0) = f(0)2, so f(0) = 0 or 1.  

If f(0) = 1, then taking m = 0, we have 1 = 

f(0) = f(0) f(n) = f(n) for all n∊ℤ, which is 

clearly a solution. 
 
If f(0) = 0, then n ≡ 0 (mod p) implies f(n) 

= 0. For n≢0 (mod p), let x be a primitive 

root (mod p). Then n ≡ xk(mod p) for some  

k∊{1,2,…,p−1}.  So f(n) = f(xk) = f(x)k.  

By Fermat’s little theorem, xp ≡ x (mod p). 

This implies f(x)p = f(x).  So f(x) = 0, 1 or 

−1.  If f(x) = 0, then f(n) = 0 for all n∊ℤ.  If 

f(x) = 1, then f(n) = 1 for all n≢0 (mod p). 

If f(x) = −1, then for n congruent to a 

nonzero square number (mod p), f(n) = 1, 

otherwise f(n)= −1. 

           

After seeing how primitive roots can solve 

problem, it is time to examine the proof of 

the theorem more closely.  We will divide 

the proofs into a few observations. 
 
For a polynomial f(x) of degree n with 

coefficients in (mod p), the congruence  
 

f(x) ≡ 0 (mod p) 
 
has at most n solutions (mod p).  This can 

be proved by doing induction on n and 

imitating the proof for real coefficient 

polynomials having at most n roots. 

 

If d∣p−1, then xd−1 ≡ 0(mod p) has 

exactly d solutions (mod p).  To see this, 

let n = (p−1)/d, then  
 

xp−1−1= (xd−1)(x(n−1)d+x(n−2)d+⋯+1). 
 
Since xp−1−1≡ 0 (mod p) has p−1 

solutions by Fermat’s little theorem, so 

if xd−1 ≡ 0 (mod p) has less than d 

solutions, then  
 
(xd−1)(x(n−1)d+x(n−2)d+⋯+1) ≡ 0 (mod p) 
 
would have less than d + (n−1)d = p−1 

solutions, which is a contradiction. 

 

Suppose the prime factorization of p −1 

is ke

k

e
pp L1

1
, where pi’s are distinct 

primes and ei ≥ 1 .  For i = 1, 2, …, k, let 

.ie

ii pm =   Using the observation in the 

last paragraph, we see there exist 

mi−mi/pi > 1 solutions xi of equation 

01≡−im
x (mod p), which are not 

solutions of  01
/ ≡−ii pm

x (mod p). It 

follows that the least positive integer d 

such that    xi
d − 1 ≡ 0 (mod p) is 

.ie

ii pm =   That means xi has order 

ie

ii pm =  in (mod p).  

 

Let r be the order of xixj in (mod p).  By 

the comment at the end of example 4, 

we have .| ji
e

j

e

i ppr   Now  
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which by the comment again, we get 

.| rdp je
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jp and ie
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relatively prime, we get .| rp je
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Interchanging the roles of pi and pj, we 

also get .| rp je

j
 So .| rpp ji

e
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.ji
e
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e

i ppr =   So x = x1x2⋯xk will have 

order ,11

1 −= ppp ke

k

e L  which implies x 

is a primitive root (mod p). 

 

For n > 1, Euler’s theorem asserts that 

if x and n are relatively prime integers, 

then xφ(n) ≡1(mod n), where φ(n) is the 

number of positive integers among 

1,2,…,n that are relatively prime to n. 

Similarly, we can define x to be a 

primitive root (mod n) if and only if the 

least positive integer d satisfying xd ≡ 

1(mod n) is φ(n).  For the inquisitive 

mind who wants to know for which n, 

there exists primitive roots (mod n), the 

answers are n = 2, 4, pk and 2pk, where 

p is an odd prime.  This is much harder 

to prove. The important thing is for 

such a primitive root x (mod n), the 

numbers xi (mod n) for i = 1 to φ(n) is a 

permutation of  the φ(n) numbers 

among 1,2,…,n that are relatively 

prime to n. 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is July 10, 2010. 
 
Problem 346.  Let k be a positive 

integer.  Divide 3k pebbles into five 

piles (with possibly unequal number of 

pebbles). Operate on the five piles by 

selecting three of them and removing 

one pebble from each of the three piles. 

If it is possible to remove all pebbles 

after k operations, then we say it is a 

harmonious ending.  
 

Determine a necessary and sufficient 

condition for a harmonious ending to 

exist in terms of the number k and the 

distribution of pebbles in the five piles. 
 
(Source: 2008 Zhejiang Province High 

School Math Competition) 
 
Problem 347.  P(x) is a polynomial of 

degree n such that for all w∊{1, 2, 

22, …, 2n}, we have P(w) = 1/w.  
 
Determine P(0) with proof.   
 

Problem 348.  In ∆ABC, we have 

∠BAC = 90° and AB < AC.  Let D be 

the foot of the perpendicular from A to 

side BC.  Let I1 and I2 be the incenters 

of ∆ABD and ∆ACD respectively.  

The circumcircle of ∆AI1I2 (with 

center O) intersects sides AB and AC at 

E and F respectively.  Let M be the 

intersection of lines EF and BC. 

 

Prove that I1 or I2 is the incenter of the 

∆ODM, while the other one is an 

excenter of ∆ODM.  
 
(Source: 2008 Jiangxi Province Math 

Competition) 

 

Problem 349.  Let a1, a2, …, an be 

rational numbers such that for every 

positive integer m, 
 

m

n

mm aaa +++ L21
 

 
is an integer.  Prove that a1, a2, …, an 

are integers. 

 

Problem 350.  Prove that there exists a 

positive constant c such that for all 

positive integer n and all real numbers a1, 

a2, …, an, if  
 

P(x) = (x − a1)(x − a2) ⋯ (x − an),  
then 

.)(max)(max
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***************** 

Solutions 

**************** 
 
Problem 341.  Show that there exists an 

infinite set S of points in the 

3-dimensional space such that every plane 

contains at least one, but not infinitely 

many points of S.  
  
Solution.  Emanuele NATALE and 
Carlo PAGANO (Università di Roma 
“Tor Vergata”, Roma, Italy).  
 
Consider the curve σ : ℝ→ℝ3 defined by 

σ(x) = (x, x3, x5).  Let S be the graph of σ. If 
ax+by+cz=d is the equation of a plane in 

ℝ3, then the intersection of the plane and 

the curve is determined by the equation 
 

ax + bx3+ cx5 = d, 
 

which has at least one and at most five 

solutions. 
 
Other commended solvers: HUNG Ka 

Kin Kenneth (Diocesan Boys’ School), D. 

Kipp JOHNSON (Valley Catholic 

School, Beaverton, Oregon, USA) and LI 

Pak Hin (PLK Vicwood K. T. Chong 

Sixth Form College). 
 
Problem 342.  Let f(x)=anx

n+⋯+a1x+p be 

a polynomial with coefficients in the 

integers and degree n>1, where p is a 

prime number and  
 

|an|+|an−1|+⋯+|a1| < p. 
 
Then prove that f(x) is not the product of 

two polynomials with coefficients in the 

integers and degrees less than n. 
 
Solution. The 6B Mathematics Group 

(Carmel Alison Lam Foundation Secondary 

School),  CHUNG Ping Ngai (La Salle 

College, Form 6), LEE Kai Seng 

(HKUST), LI Pak Hin (PLK Vicwood K. 

T. Chong Sixth Form College), Emanuele 

NATALE (Università di Roma “Tor 

Vergata”, Roma, Italy), Pedro Henrique 

O. PANTOJA (University of Lisbon, 

Portugal).  
  
Let w be a root of f(x) in ℂ. Assume |w|≤1. 

Using anw
n+⋯+a1w+p=0 and the triangle 

inequality, we have 

,||||||
111
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which contradicts the given inequality. 

So all roots of f(x) have absolute values 

greater than 1. 
 
Assume f(x) is the product of two 

integral coefficient polynomials g(x) 

and h(x) with degrees less than n.  Let b 

and c be the nonzero coefficients of the 

highest degree terms of g(x) and h(x) 

respectively.  Then |b| and  |c| ≥ 1.  By 

Vieta’s theorem, |g(0)/b| and |h(0)/c| are 

the products of the absolute values of 

their roots respectively.  Since their 

roots are also roots of f(x), we have 

|g(0)/b| > 1 and |h(0)/c| > 1.  Now p = 

|f(0)| = |g(0)h(0)|, but g(0), h(0) are 

integers and  |g(0)| > |b| ≥ 1 and |h(0)| > 

|c| ≥ 1, which contradicts p is prime. 
 
 
Problem 343.  Determine all ordered 

pairs (a,b) of positive integers such that 

a≠b, b2+a=pm (where p is a prime 

number, m is a positive integer) and 

a2+b is divisible by b2+a.  
  
Solution. CHUNG Ping Ngai (La 
Salle College, Form 6), HUNG Ka 
Kin Kenneth (Diocesan Boys’ School) 
and LI Pak Hin (PLK Vicwood K. T. 
Chong Sixth Form College).  
 
For such (a,b),  

2

4
2

2

2

ba

bb
ba

ba

ba

+
+

+−=
+
+  

implies pm = a + b2 | b4 + b = b(b3+1). 

From a ≠ b, we get b < 1+b < a+b2. As 

gcd(b, b3+1) = 1, so pm divides b3+1 = 

(b+1)(b2−b+1).  
 
Next, by the Euclidean algorithm, we 

have gcd(b+1,b2−b+1) = gcd(b+1,3) | 3.  
 
Assume we have gcd(b+1,b2−b+1)=1. 

Then b2+a=pm divides only one of b+1 

or b2−b+1.  However, both b+1, b2−b+1< 

b2+a=pm.  Hence, b+1 and b2−b+1 must 

be divisible by p.  Then the assumption is 

false and  
 

p = gcd(b+1,b2−b+1) = 3.       (*) 
 

If m = 1, then b2+a = 3 has no solution. If 

m = 2, then b2+a = 9 yields (a,b) = (5,2). 
 
For m ≥ 3, by (*), one of b+1 or b2−b+1 

is divisible by 3, while the other one is 

divisible by 3m−1.  Since  
 

,31311 12/2 −<+=++<+ mmabb  
 
so  3m−1 | b2−b+1.  Since m ≥ 3, we have 

b2 − b + 1 ≡ 0 (mod 9).  Checking b ≡ 

−4, −3, −2, −1, 0, 1, 2, 3, 4 (mod 9) 

shows there cannot be any solution. 
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 Problem 344.  ABCD is a cyclic 

quadrilateral.  Let M, N be midpoints of 

diagonals AC, BD respectively.  Lines 

BA, CD intersect at E and lines AD, BC 

intersect at F.  Prove that 

.
2

EF

MN

BD

AC

AC

BD
=−  

 
Solution 1. LEE Kai Seng (HKUST). 
 
Without loss of generality, let the 

circumcircle of ABCD be the unit circle 

in the complex plane. We have  
 

M = (A+C)/2   and   N = (B+D)/2. 
 

The equations of lines AB and CD are 
 

BAZABZ +=+  

and 

DCZCDZ +=+  
 

respectively. Solving for Z, we get 
 

.
CDAB

DCBA
ZE

−
−−+

==  

Similarly,  

.
BCAD

DCBA
F

−
+−−

=  

 
In terms of A, B, C, D, we have 
 
 2MN = |A+C−B−D|, 
 

   FEEF −=  

       

.
))((

))()((
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DBCAACDB

BCAD
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CDAB
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−−
−−+−−

=

−
+−−

−
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−−+
=

 

The left and right hand sides of the 

equation become 

,
))((

|||| 22
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=−  
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EF

MN
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It suffices to show the numerators of 

the right sides are equal. We have 
 

         22 |||| CADB −−−  

      

BDDBACCA

CACADBDB

−−+=

−−−−−= ))(())((
 

and 

            ))(( BCADCDAB −−  

         

.

))((

BDCAACDB

BCADCDAB

+−−=

−−=
 

Comments: For complex method of 

solving geometry problems, please see 

Math Excalibur, vol. 9, no. 1. 
 
Solution 2.  CHUNG Ping Ngai (La Salle 

College, Form 6). 
 
Without loss of generality, let AC > BD. 

Since ∠EAC =∠EDB and ∠AEC =∠DEB, 

we get ∆AEC~∆DEB.  Then 

DB

MC

DN

AM

DB

AC

DE

AE
===  

and ∠ECA =∠EBD.  So ∆AEM ~∆DEN 

and ∆CEM ~∆BEN.  Similarly, we have 

∆AFC ~ ∆BFD, ∆AFM ~ ∆BFN and 

∆CFM  ~ ∆DFN.  Then  

      .
FM

FN

FA

FB

AC

BD

AE

DE

EM

EN
====   (*) 

Define Q so that QENF is a parallelogram. 

Let P = MQ∩EF.  Then  
 
∠EQF =∠FNE=180°−∠ENB−∠FND 

    =180°−∠EMC−∠FMC=180°−∠EMF. 
 
Hence, M, E, Q, F are concyclic.  Then 

∠MEQ=180°−∠MFQ. 

 

By (1), EN×FM = EM×FN.  Then 
 
[EMQ] = ½ EM×FN sin ∠MEQ 

             = ½ EN×FM sin ∠MFQ =[FMQ], 
 
where [XYZ] denotes the area of ∆XYZ. 

Then EP=FP, which implies M, N, P, Q 

are collinear.  Due to M, E, Q, F concyclic, 

so ∆PEM ~∆PQF and ∆PEQ ~∆PMF. 

Then 

.,
PF

NP

PF

QP

FM

QE

FM

FN

PF

PM

QF

EM

EN

EM
=====  

Using these relations, we have 

       
FM

FN

EN

EM

AC

BD

BD

AC
−=−  

             ,
2/EF

MN

PF

NP

PF

MP
=−=  

which is the desired equation. 

 
Problem 345.  Let a1, a2, a3, ⋯ be a 

sequence of integers such that there are 

infinitely many positive terms and also 

infinitely many negative terms.  For every 

positive integer n, the remainders of a1, a2, 

⋯, an upon divisions by n are all distinct. 

Prove that every integer appears exactly 

one time in the sequence.  
 
Solution. CHUNG Ping Ngai (La Salle 
College, Form 6), HUNG Ka Kin 
Kenneth (Diocesan Boys’ School), LI 
Pak Hin (PLK Vicwood K. T. Chong 
Sixth Form College), Emanuele 
NATALE and Carlo PAGANO 

(Università di Roma “Tor Vergata”, 
Roma, Italy).   

 

Assume there are i > j such that ai = aj. 

Then for n > i, ai ≡ aj (mod n), which is 

a contradiction.  So any number 

appears at most once. 

 

Next, for every positive integer n, let 

Sn={a1, a2, …, an}, max Sn = av and min 

Sn = aw.  If  k = av− aw ≥ n, then k  ≥ n ≥ 

v, w and av ≡ aw (mod k), contradicting 

the given fact.  So 
 

max Sn −min Sn = av− aw ≤ n − 1. 
 
Now Sn ⊆[min Sn , max Sn] and both 

contain n integers.  So the n numbers in 

Sn are the n consecutive integers from 

min Sn to max Sn.  
 
Now for every integer m, since there 

are infinitely many positive terms and 

also infinitely many negative terms, 

there exists ap  and aq such that ap < m < 

aq.  Let r > max{p,q}, then m is in Sr. 

Therefore, every integer appears 

exactly one time in the sequence. 

Comment: An example of such a 

sequence is 0, 1, −1, 2, −2, 3, −3, …. 

 

 
 

Olympiad Corner 
 (continued from page 1) 

 

Problem 4.  Let a∊ℕ be such that for 

every n∊ℕ, 4(an+1) is a perfect cube. 

Show that a = 1.  

 

Problem 5.  We want to choose some 

phone numbers for a new city. The 

phone numbers should consist of 

exactly ten digits, and 0 is not allowed 

as a digit in them.  To make sure that 

different phone numbers are not 

confused with each other, we want 

every two phone numbers to either be 

different in at least two places or have 

digits separated by at least 2 units, in at 

least one of the ten places. 
 
What is the maximum number of 

phone numbers that can be chosen, 

satisfying the constraints? In how 

many ways can one choose this amount 

of phone numbers? 
 
Problem 6.  Let ABC be a triangle and 

H be the foot of the altitude drawn from 

A. Let T, T’ be the feet of the 

perpendicular lines drawn from H onto 

AB, AC, respectively. Let O be the 

circumcenter of ∆ABC, and assume 

that AC = 2OT.  Prove that AB = 2OT’. 
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Lagrange Interpolation Formula 
 

Kin Y. Li 

 

 

Olympiad Corner 
 
Below are the problems used in the 

selection of the Indian team for 

IMO-2010. 
 

Problem 1.  Is there a positive integer 

n, which is a multiple of 103, such that 

22n+1≡2 (mod n)? 
 

Problem 2.  Let a, b, c be integers such 

that b is even.  Suppose the equation 

x3+ax2+bx+c=0 has roots α, β, γ such 

that α2 = β+γ.  Prove that α is an integer 

and β≠γ. 
 
Problem 3.  Let ABC be a triangle in 

which BC < AC.  Let M be the midpoint 

of AB; AP be the altitude from A on to 

BC; and BQ be the altitude from B on 

to AC.  Suppose QP produced meet AB 

(extended) in T.  If H is the orthocenter 

of ABC, prove that TH is perpendicular 

to CM. 
 
Problem 4.  Let ABCD be a cyclic 

quadrilateral and let E be the point of 

intersection of its diagonals AC and 

BD. Suppose AD and BC meet in F.  

Let the midpoints of AB and CD be G 

and H respectively. If Γ is the 

circumcircle of triangle EGH, prove 

that FE is tangent to Γ. 
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Let n be a positive integer.  If we are 

given two collections of n+1 real (or 

complex) numbers  w0, w1, …, wn and 

c0, c1, …, cn with the wk’s distinct, then 

there exists a unique polynomial P(x) of 

degree at most n satisfying P(wk) = ck  

for k = 0,1,…,n.  The uniqueness is clear 

since if Q(x) is also such a polynomial, 

then P(x)−Q(x) would be a polynomial 

of degree at most n and have roots at the

n+1 numbers w0, w1, …, wn, which leads 

to P(x)−Q(x) be the zero  polynomial. 

 

Now, to exhibit such a polynomial, we 

define f0(x)=(x−w1)(x−w2)⋯(x−wn) and 

similarly for i from 1 to n, define  
 
fi(x)=(x−w0)⋯(x−wi−1)(x−wi+1)⋯(x−wn). 

 

Observe that fi(wk) = 0 if and only if i≠k. 

Using this, we see 

∑
=

=
n

i ii

i
i

wf

xf
cxP

0 )(

)(
)(  

satisfies P(wk) = ck  for k = 0,1,…,n. This 

is the famous Lagrange interpolation 

formula.  

 

Below we will present some examples 

of using this formula to solve math 

problems. 

 

Example 1. (Romanian Proposal to 

1981 IMO)  Let P be a polynomial of 

degree n satisfying for k = 0,1,…,n, 
 

.
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

k

n
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Determine P(n+1). 

Solution.  For k = 0,1,…,n, let wk=k and 
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Define f0, f1, … , fn as above.  We get  

fk(k) = (−1)n−kk!(n−k)! 
 

and 

 

.
)1(
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kn

n
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By the Lagrange interpolation formula, 
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which is 0 if n is odd and 1 if n is even. 

 

Example 2. (Vietnamese Proposal to 

1977 IMO)  Suppose x0, x1, …, xn are 

integers and x0 > x1> ⋯ > xn.  Prove that 

one of the numbers |P(x0)|, |P(x1)|, … , 

|P(xn)| is at least n!/2n, where P(x) = xn + 

a1x
n–1 + ⋯ + an is a polynomial with real 

coefficients.  
 
Solution.  Define f0, f1, … , fn using x0, 

x1, …, xn.  By the Lagrange interpolation 

formula, we have 
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since both sides are polynomials of 

degrees at most n and are equal at x0, 

x1, …, xn.  Comparing coefficients of xn, 

we get 
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Since x0, x1, …, xn are strictly decreasing 

integers, we have 
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Let the maximum of |P(x0)|, |P(x1)|, … , 

|P(xn)| be |P(xk)|. By the triangle 

inequality, we have 
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Then |P(xk)| ≥ n!/2n. 

 

Example 3.  Let P be a point on the 

plane of ∆ABC.  Prove that 
 

.3≥++
AB

PC

CA

PB

BC

PA  
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Solution.  We may take the plane of 

∆ABC to be the complex plane and let P, 

A, B, C be corresponded to the complex 

numbers w, w1, w2, w3 respectively. 

Then PA=|w–w1|, BC=|w2–w3|, etc. 

 

Now the only polynomial P(x) of 

degree at most 2 that equals 1 at w1, w2, 

w3 is the constant polynomial P(x) ≡ 1. 

So, expressing P(x) by the Lagrange 

interpolation formula, we have 
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Next, setting x = w and applying the 

triangle inequality, we get 

.1≥++
BC

PA

AB

PC

AB

PC

CA

PB

CA

PB

BC

PA   (*) 

The inequality (r+s+t)2 ≥ 3(rs+st+tw), 

after subtracting the two sides, reduces 

to [(r–s)2+(s–t)2+(t–r)2]/2 ≥ 0, which is 

true. Setting r= PA/BC, s=PB/CA and 

t=PC/AB, we get 
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PA  

Taking square roots of both sides and 

applying (*), we get the desired 

inequality. 

 

Example 4. (2002 USAMO)  Prove that 

any monic polynomial (a polynomial 

with leading coefficient 1) of degree n 

with real coefficients is the average of 

two monic polynomials of degree n 

with n real roots. 

 

Solution.  Suppose F(x) is a monic real 

polynomial.  Choose real y1, y2, … ,yn 

such that for odd i, yi < min{0,2F(i)} 

and for even i,  yi > max{0,2F(i)}.  
 
By the Lagrange interpolation formula, 

there is a polynomial of degree less 

than n such that P(i) = yi for i=1,2,…,n. 

Let  
 

G(x) = P(x)+(x−1)(x−2)⋯(x−n) 
 

and  

H(x) = 2F(x)−G(x). 

 

Then G(x) and H(x) are monic real 

polynomials of degree n and their 

average is F(x).  

 

As y1, y3, y5, … < 0 and y2, y4, y6, ⋯ > 0, 

G(i)=yi and G(i+1)=yi+1 have opposite 

signs (hence G(x) has a root in [i,i+1]) 

for i=1,2,…,n−1.  So G(x) has at least 

n−1 real roots.  The other root must 

also be real since non-real roots come in 

conjugate pair.  Therefore, all roots of G(x) 

are real.  

 

Similarly, for odd i, G(i) = yi < 2F(i) 

implies H(i)=2F(i)−G(i) > 0 and for even i, 

G(i) = yi > 2F(i) implies H(i) = 2F(i)−G(i) 

< 0.  These imply H(x) has n real roots by 

reasoning similar to G(x).  

 

Example 5.  Let a1, a2, a3, a4, b1, b2, b3, b4 

be real numbers such that bi–aj≠0 for 

i,j=1,2,3,4.  Suppose there is a unique set 

of numbers X1, X2, X3, X4 such that 
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Determine X1+X2+X3+X4 in terms of the 

ai’s and bi’s. 
 
Solution.  Let 
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Then the coefficient of x3 in P(x) is 

  .
4

1

4

1

∑ ∑
= =

−
i i

ii ab  

Define f1, f2,
 f3, f4 using a1, a2, a3, a4 as 

above to get the Lagrange interpolation 

formula 
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Since the coefficient of x3 in fi(x) is 1, the 

coefficient of x3 in P(x) is also 
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Next, observe that P(bj)/fi(bj) = bj – ai, 

which are the denominators of the four 

given equations!  For j = 1,2,3,4, setting x 

= bj in the interpolation formula and 

dividing both sides by P(bj), we get  
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Comparing with the given equations, by 

uniqueness, we get Xi=P(ai)/fi(ai) for i = 

1,2,3,4. So 
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Comment:  This example is inspired by 

problem 15 of the 1984 American 

Invitational Mathematics Examination. 

 

Example 6. (Italian Proposal to 1997 

IMO)  Let p be a prime number and let 

P(x) be a polynomial of degree d with 

integer coefficients such that: 
 
 (i)    P(0) = 0,  P(1) = 1; 

(ii) for every positive integer n, the 

remainder of the division of P(n) by p 

is either 0 or 1. 
 
Prove that d ≥ p − 1. 

 

Solution.  By (i) and (ii), we see 
 
P(0)+P(1)+⋯+P(p − 1)≡k (mod p) (#) 

 
for some k∈{1,2,…, p − 1}.  

 

Assume d ≤ p − 2.  Then P(x) will be 

uniquely determined by the values P(0), 

P(1), …, P(p − 2).  Define f0, f1, …, fp−2 

using 0, 1, …, p − 2 as above to get the 

Lagrange interpolation formula 
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As in example (1), we have 
 

fk(k) = (−1)p−2−kk!(p−2−k)!, 
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Next, we claim that 
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This is true for k = 0. Now for 0 < i < p, 
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because p divides p!, but not i!(p−i)!. 

If the claim is true for k, then 
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and the induction step follows.  Finally 

the claim yields 
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So P(0)+P(1)+⋯+P(p − 1)≡ 0 (mod p), 

a contradiction to (#) above. 
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is October 20, 2010. 
 
Problem 351.  Let S be a unit sphere 

with center O.  Can there be three arcs 

on S such that each is a 300° arc on 

some circle with O as center and no 

two of the arcs intersect? 
 

Problem 352. (Proposed by Pedro 

Henrique O. PANTOJA, University of 

Lisbon, Portugal)  Let a, b, c be real 

numbers that are at least 1.  Prove that 
 

.
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Problem 353.  Determine all pairs (x, y) 

of integers such that x5−y2=4.  

 

Problem 354.  For 20 boxers, find the 

least number n such that there exists a 

schedule of n matches between pairs of 

them so that for every three boxers, two 

of them will face each other in one of 

the matches.   

 

Problem 355.  In a plane, there are two 

similar convex quadrilaterals ABCD 

and AB1C1D1 such that C, D are inside 

AB1C1D1 and B is outside AB1C1D1  

Prove that if lines BB1, CC1 and DD1 

concur, then ABCD is cyclic. Is the 

converse also true?   
 

***************** 

Solutions 

**************** 
 
Problem 346.  Let k be a positive 

integer.  Divide 3k pebbles into five 

piles (with possibly unequal number of 

pebbles).  Operate on the five piles by 

selecting three of them and removing 

one pebble from each of the three piles.  

If it is possible to remove all pebbles 

after k operations, then we say it is a 

harmonious ending. 
 
Determine a necessary and sufficient 

condition for a harmonious ending to 

exist in terms of the number k and the 

distribution of pebbles in the five piles. 

 
(Source: 2008 Zhejiang Province High 

School Math Competition)  
  
Solution.  CHOW Tseung Man (True 
Light Girl’s College), CHUNG Ping 
Ngai (MIT Year 1), HUNG Ka Kin 
Kenneth (CalTech Year 1). 
 
The necessary and sufficient condition is 

every pile has at most k pebbles in the 

beginning.  

 

The necessity is clear.  If there is a pile 

with more than k pebbles in the beginning, 

then in each of the k operations, we can 

only remove at most 1 pebble from that 

pile, hence we cannot empty the pile after 

k operations. 

 

For the sufficiency, we will prove by 

induction.  In the case k=1, three pebbles 

are distributed with each pebble to a 

different pile.  So we can finish in one 

operation.  Suppose the cases less than k 

are true.  For case k, since 3k pebbles are 

distributed. So at most 3 piles have k 

pebbles.  In the first operation, we remove 

one pebble from each of the three piles 

with the maximum numbers of pebbles. 

This will take us to a case less than k.  We 

are done by the inductive assumption. 

 

Problem 347.  P(x) is a polynomial of 

degree n such that for all w∈{1, 2, 22, …, 

2n}, we have P(w) = 1/w.  
 
Determine P(0) with proof.   
 
Solution 1.  Carlo PAGANO (Università 

di Roma “Tor Vergata”, Roma, Italy). 

William CHAN Wai-lam (Carmel Alison 

Lam Foundation Secondary School) and  

Thien Nguyen (Nguyen Van Thien 

Luong High School, Dong Nai Province, 

Vietnam). 
  
Let Q(x) = xP(x)−1 = a(x−1)(x−2)⋯(x−2n). 

For x≠1, 2, 22, …, 2n, 
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Since Q(0)= −1 and Q’(x)=P(x)+xP’(x), 

∑
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Solution 2.  CHUNG Ping Ngai (MIT 

Year 1), HUNG Ka Kin Kenneth 

(CalTech Year 1), Abby LEE (SKH Lam 

Woo Memorial Secondary School, Form 5) 

and WONG Kam Wing (HKUST, 

Physics, Year 2). 
 
Let Q(x) = xP(x)−1 = a(x−1)(x−2)⋯(x−2n). 

Now Q(0) = −1 = a(−1)n+12s, where s = 

1+2+⋯+n.  So a = (−1)n 2−s.  Then P(0) is 

the coefficient of x in Q(x), which is  
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Other commended solvers: Samuel 
Lilό ABDALLA (ITA-UNESP, São 
Paulo, Brazil), 
 
Problem 348.  In ∆ABC, we have 

∠BAC = 90° and AB < AC.  Let D be 

the foot of the perpendicular from A to 

side BC.  Let I1 and I2 be the incenters 

of ∆ABD and ∆ACD respectively.  

The circumcircle of ∆AI1I2 (with 

center O) intersects sides AB and AC at 

E and F respectively.  Let M be the 

intersection of lines EF and BC. 
 
Prove that I1 or I2 is the incenter of the 

∆ODM, while the other one is an 

excenter of ∆ODM.  
 
(Source: 2008 Jiangxi Province Math 

Competition) 
  
Solution.  CHOW Tseung Man (True 
Light Girl’s College). 

A

B CD

I1
I2

O
F

E

M
 

We claim EF intersects AD at O.  Since 

∠EAF=90°, EF is a diameter through O. 

Next we will show O is on AD.  
 
Since AI1, AI2 bisect ∠BAD, ∠CAD 

respectively, we get ∠I1AI2=45°. Then 

∠I1OI2=90°. Since OI1=OI2, ∠OI1I2=45°. 

Also, DI1, DI2 bisect ∠BDA, ∠CDA 

respectively implies ∠I1DI2=90°.  Then 

D, I1, O, I2 are concyclic. So  

.45 2212 ADIIOIODI ∠==∠=∠ o  

Then O is on AD and the claim is true. 
 
Since ∠EOI1 = 2∠EAI1 = 2∠DAI1 = 

∠DOI1 and I1 is on the angle bisector of 

∠ODM, we see I1 is the incenter of 

∆ODM.  Similarly, replacing E by F 

and I1 by I2 in the last sentence, we see 

I2 is an excenter of ∆ODM. 
 
Other commended solvers:  CHUNG 
Ping Ngai (MIT Year 1), HUNG Ka 
Kin Kenneth (CalTech Year 1) and 
Abby LEE (SKH Lam Woo Memorial 
Secondary School, Form 5). 

 

Problem 349.  Let a1, a2, …, an be 

rational numbers such that for every 

positive integer m,  
m

n

mm aaa +++ L21
 

is an integer.  Prove that a1, a2, …, an 

are integers.  
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Solution.  CHUNG Ping Ngai (MIT 
Year 1) and HUNG Ka Kin Kenneth 
(CalTech Year 1). 
 
We may first remove all the integers 

among a1, a2, …, an since their m-th 

powers are integers, so the rest of a1, 

a2, …, an will still have the same 

property. Hence, without loss of 

generality, we may assume all a1, a2, …, 

an are rational numbers and not 

integers.  First write every ai in 

simplest term.  Let Q be their least 

common denominator and for all 1≤i≤n, 

let ai=ki/Q.  Take a prime factor p of Q.  

Then p is not a prime factor of one of 

the ki’s.  So one of the remainders ri 

when ki is divided by p is nonzero!  

Since ki≡ri(mod p), so for every 

positive integer m,  
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which is a contradiction. 

 

Comments:  In the above solution, it 

does not need all positive integers m, 

just an infinite sequence of positive 

integers m with the given property will 

be sufficient. 

 

Problem 350.  Prove that there exists a 

positive constant c such that for all 

positive integer n and all real numbers 

a1, a2, …, an, if  
 

P(x) = (x − a1)(x − a2) ⋯ (x − an),  
then 

.)(max)(max
]1,0[]2,0[

xPcxP
x

n

x ∈∈
≤  

(Ed.-Both solutions below show the 

conclusion holds for any polynomial!) 
  
Solution 1.  LEE Kai Seng. 
 
Let S be the maximum of |P(x)| for all 

x∈[0,1].  For i=0,1,2,…,n, let bi=i/n 

and  

).())(()()( 110 niii bxbxbxbxxf −−−−= +− LL  
 
By the Lagrange interpolation formula, 

for all real x, 
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For every w∈[0,2], |w−bk| ≤ |2−bk| for 

all k = 0,1,2,…,n. So 
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Also, |P(bi)| ≤ S and  

.
)!(!

)(
nii

n

ini
bf

−
=  

By the triangle inequality, 

.
22

)(

)(
)()(

00

∑∑
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤≤

n

iii

i
n

i

i
n

in

i

n
S

bf

wf
bPwP

Finally, 
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Solution 2.  G.R.A.20 Problem Solving 
Group (Roma, Italy). 
 

For a bounded closed interval I and 

polynomial f(x), let ||f||I denote the 

maximum of |f(x)| for all x in I.  The 

Chebyschev polynomial of order n is 

defined by T0(x) = 1, T1(x) = x and 
 

Tn(x) = 2xTn−1(x)−Tn−2(x)  for n ≥ 2. 
 
(Ed.-By induction, we can obtain  
 

Tn(x) = 2nxn+cn−1x
n−1 + ⋯ + c0 

 

and Tn(cos θ)=cos nθ.  So Tn(cos(πk/n))= 

(−1)k, which implies all n roots of Tn(x) 

are in (−1,1) as it changes sign n times.) 
 
It is known that for any polynomial Q(x) 

with degree at most n>0 and all t∉[−1,1], 
 

           |Q(t)| ≤ ||Q||[−1,1] |Tn(t)|.          (!) 
 
To see this, we may assume ||Q||[−1,1] = 1 by 

dividing Q(x) by such maximum.  Assume 

x0∉[−1,1] and |Q(x0)| > |Tn(x0)|.  Let 
 
  a = T(x0)/Q(x0)  and   R(x) = aQ(x)−Tn(x).  
 
For k = 0, 1, 2, ⋯, n, since Tn(cos(πk/n)) = 

(−1)k and |a|<1, we see R(cos(πk/n)) is 

positive or negative depending on whether 

k is odd or even. (In particular, R(x)≢0.)  

By continuity, R(x) has n+1 distinct roots 

on [−1,1]∪{x0}, which contradicts the 

degree of R(x) is at most n. 

 

Next, for the problem, we claim that for 

every t∈[1,2], we have |P(t)| ≤ 6n ||P||[0,1].  
 
(Ed.-Observe that the change of variable   

t = (s+1)/2 is a bijection between 

s∈[−1,1] and t∈[0,1]. It is also a 

bijection between s∈[1,3] and t∈[1,2].) 

By letting Q(s) = P((s+1)/2), the claim 

is equivalent to proving that for every 

s∈[1,3], we have |Q(s)|≤ 6n||Q||[−1,1].  

By (!) above, it suffices to show that 

|Tn(s)| ≤ 6n for every s∈[1,3]. 

 

Clearly, |T0(s)|=1=60. For n=1 and 

s∈[1,3], |T1(s)|=s≤3<6.  Next, since the 

largest root of Tn is less than 1, we see 

all Tn(s) > 0 for all s∈[1,3].  Suppose 

cases n−2 and n−1 are true. Then for all 

s∈[1,3], we have 2sTn−1(s), Tn−2(s) > 0 

and so 
 

     |Tn(s)| = |2sTn−1(s)−Tn−2(s)| 

                ≤ max(2sTn−1(s), Tn−2(s)) 

                ≤ max(6·6n−1, 6n−2) = 6n.  
 

This finishes everything. 
 

 

Olympiad Corner 
(continued from page 1) 

 

Problem 5.  Let A=(ajk) be a 10×10 

array of positive real numbers such that 

the sum of the numbers in each row as 

well as in each column is 1.  Show that 

there exist j<k and l<m such that 

.
50

1
≥+ kljmkmjl aaaa  

Problem 6.  Let ABC be a triangle.  Let 

AD, BE, CF be cevians such that 

∠BAD=∠CBE=∠ACF.  Suppose these 

cevians concur at a point Ω. (Such a 

point exists for each triangle and it is 

called a Brocard point.)  Prove that 
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AB
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B
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A  

(Ed.-A cevian is a line segment which 

joins a vertex of a triangle to a point on 

the opposite side or its extension.) 
 
Problem 7.  Find all functions f:ℝ→ℝ 

such that  

f(x+y) + xy = f(x)f(y) 
 
for all reals x,y.  
 

Problem 8.  Prove that there are 

infinitely many positive integers m for 

which there exist consecutive odd 

positive integers pm, qm (=pm+2) such 

that the pairs (pm, qm) are all distinct 

and 
2222 , mmmmmmmm qqmppqqpp ++++  

 
are both perfect squares. 
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IMO Shortlisted Problems 
 

Kin Y. Li 

 

Olympiad Corner 
 
Below are the problems of the 2010 

Chinese Girls’ Math Olympiad, which 

was held on August 10-11, 2010. 
 

Problem 1.  Let n be an integer greater 

than two, and let A1, A2, …, A2n be 

pairwise disjoint nonempty subsets of 

{1,2,…,n}.  Determine the maximum 

value of ∑
= +

+

⋅
∩n

i ii

ii

AA

AA2

1 1

1 .
||||

||  (Here we set 

A2n+1=A1.  For a set X, let |X| denote the 

number of elements in X.) 
 

Problem 2.  In ⊿ABC, AB=AC.  Point 

D is the midpoint of side BC.  Point E 

lies outside ⊿ABC such that CE⊥AB 

and BE=BD.  Let M be the midpoint of 

segment BE.  Point F lies on the minor 

arc AD of the circumcircle of ⊿ABD 

such that MF⊥BE. Prove that ED⊥FD. 
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       Every year, before the IMO begins, 

a problem selection committee collects 

problem proposals from many nations. 

Then it prepares a short list of problems 

for the leaders to consider when the 

leaders meet at the IMO site.  The 

following were some of the interesting 

shortlisted problems in past years that 

were not chosen.  Perhaps some of the 

ideas may reappear in later proposals in 

coming years. 
 
Example 1. (1985 IMO Proposal by 

Israel) For which integer n ≥ 3 does 

there exist a regular n-gon in the plane 

such that all its vertices have integer 

coordinates in a rectangular coordinate 

system? 
 
Solution.  Let Ai have coordinates (xi,yi), 

where xi, yi are integers for i=1,2,⋯,n.  

In the case n = 3, if A1A2A3 is equilateral, 

then on one hand, its area is 
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which is irrational.  On the other hand, 

its area is also  
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which is rational.  Hence, the case n = 3 

leads to contradiction.  The case n = 4 is 

true by taking (0,0),(0,1),(1,1) and (1,0).  

The case n = 6 is false since A1A3A5 

would be equilateral. 
 
For the other cases, suppose A1A2⋯An is 

such a regular n-gon with minimal side 

length.  For i=1,2,⋯,n, define point Bi so 

that AiAi+1Ai+2Bi is a parallelogram 

(where An+1=A1 and An+2=A2). Since 

Ai+1Ai+2 is parallel to AiAi+3 (where 

An+3=A3) and Ai+1Ai+2 < AiAi+3, we see Bi 

is between Ai and Ai+3 on the segment 

AiAi+3. In particular, Bi is inside 

A1A2⋯An.  
 

Next the coordinates of Bi are 

(xi+2−xi+1+xi, yi+2−yi+1+yi), both of 

which are integers. 

 

Using AiAi+3 is parallel to Ai+1Ai+2, by 

subtracting coordinates, we can see Bi 

≠Bi+1 and BiBi+1 is parallel to Ai+1Ai+2. 
By symmetry, B1B2⋯Bn is a regular 

n-gon inside A1A2⋯An.  Hence, the side 

length of B1B2⋯Bn is less than the side 

length of A1A2⋯An.  This contradicts the 

side length of A1A2⋯An is supposed to 

be minimal.  Therefore, n=4 is the only 

possible case. 

 

Example 2. (1987 IMO Proposal by 

Yugoslavia)  Prove that for every natural 

number k (k ≥ 2) there exists an 

irrational number r such that for every 

natural number m,  
 

[rm] ≡ −1 (mod k). 
 
(Here [x] denotes the greatest integer 

less than or equal to x.) 
 
(Comment: The congruence equation is 

equivalent to [rm]+1 is divisible by k. 

Since [rm]≤ rm < [rm] +1, we want to add 

a small amount δ ∈(0,1] to rm to make it 

an integer divisble by k.  If we can get δ 
= sm for some s∈(0,1), then some 

algebra may lead to a solution.) 
 
Solution.  If I have a quadratic equation 

 
 f(x) = x2−akx+bk = 0 

 
with a, b integers and irrational roots r 

and s such that s∈(0,1), then r+s=ak 

≡0(mod k) and rs=bk≡0(mod k).  Using
 
  rm+1+sm+1=(r+s)(rm+sm)−rs(rm−1+sm−1), 
 
 by induction on m, we see rm+sm is also 

an integer as cases m=0,1 are clear.  So 
 

[rm] +1= rm+sm ≡ (r+s)m ≡ 0 (mod k). 

 

Finally, to get such a quadratic, we 

compute the discriminant ∆= a2k2−4bk. 

By taking a = 2 and b = 1, we have 
 

(2k−2)2 < ∆= 4k2−4k < (2k−1)2. 
 
This leads to roots r, s irrational and  
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      In the next example, we will need 

to compute the exponent e of a prime 

number p such that pe is the largest 

power of p dividing n!.  The formula is 
 

.
32
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Basically, since n!=1×2×⋯×n, we first 

factor out p from numbers between 1 to 

n that are divisible by p (this gives [n/p] 

factors of p), then we factor out another 

p from numbers between 1 to n that are 

divisible by p2 (this give [n/p2] more 

factors of p) and so on.  
 
Example 3. (1983 and 1991 IMO 

Proposal by USSR)  Let an be the last 

nonzero digit (from left to right) in the 

decimal representation of n!.  Prove 

that the sequence a1, a2, a3, … is not 

periodic after a finite number of terms 

(equivalently 0.a1a2a3… is irrational). 
 
Solution.  Assume beginning with the 

term aM, the sequence becomes 

periodic with period t.  Then for m ≥ M, 

we have am+t = am.  To get a 

contradiction, we will do it in steps.  
 
Step 1.  For every positive integer k, 

(10k)! = (10k−1)!×10k implies  

.
11010 −

= kk aa  

Step 2.  We can get integers k > m ≥ M 

such that 10k−10m is a multiple of t as 

follow.  We factor t into the form 2r5sw, 

where w is an integer relatively prime 

to 10.  By Euler’s theorem, 10φ(w)−1 is a 

number divisible by w.  Choose  m = 

max{M,r,s} and k = m + φ(w).  Then 

10k−10m =2m5m(10φ(w)−1) is a multiple 

of t, say 10k−10m =ct for some integer c. 
 
Step 3.  Let n = 10k − 1 + ct.  By 

periodicity, we have  

.110110 +−
=== nn aaaa kk  

Let an=d, that is the last nonzero digit 

of n! is d.  Since (n+1)!=(n+1)×n! and 

the last nonzero digit of n+1= 

2×10k−10m is 9, we see an+1=an implies 

the units digit of 9d is d.  Checking d=1 

to 9, we see only d = 5 is possible.  So n! 

ends in 50…0.  
 
Step 4.  By step 3, we see the prime 

factorization of n! is of the  form 2r5sw 

with w relatively prime to 10 and s ≥ 

r+1> r.  However, 
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This is a contradiction and we are done. 

Example 4. (2001 IMO Proposal by Great 

Britain)  Let ABC be a triangle with 

centroid G.  Determine, with proof, the 

position of the point P in the plane of ABC 

such that  
 

AP·AG+BP·BG+CP·CG 
 
is minimum, and express this minimum 

value in terms of the side lengths of ABC. 
 
Solution. (Due to the late Professor 

Murray Klamkin)  Use a vector system 

with the origin taken to be the centroid of 

ABC.  Denoting the vector from the origin 

to the point X by X, we have 
 
          AP·AG+BP·BG+CP·CG 

      = |A−P||A|+|B−P||B|+|C−P||C| 

      ≥ |(A−P)·A|+|(B−P)·B|+|(C−P)·C| 

      = |A|2|+|B|2+|C|2   (since A+B+C=0) 

      = (BC2+CA2+AB2)/3. 

 
Equality holds if and only if  
 
                  |A−P||A|=|(A−P)·A|, 

 
|B−P||B|=|(B−P)·B| 

 
and            |C−P||C|=|(C−P)·C|,  
 

which is equivalent to P is on the lines GA, 

GB and GC, i.e. P=G.  

 

  The next example is a proof of a theorem 

of Fermat.  It is (the contrapositive of) an 

infinite descent argument that Fermat 

might have used. 
 
Example 5. (1978 IMO Proposal by 

France)  Prove that for any positive 

integers x, y, z with xy−z2=1 one can find 

nonnegative integers a, b, c, d such that 

x=a2+b2, y=c2+d2 and z=ac+bd. Set z = 

(2n)! to deduce that for any prime number 

p=4n+1, p can be represented as the sum 

of squares of two integers. 
 
Solution.  We will prove the first statement 

by induction on z.  If z=1, then (x,y) = (1,2) 

or (2,1) and we take (a,b,c,d) = (0,1,1,1) or 

(1,1,0,1) respectively.  
 
Next for integer w > 1, suppose cases z = 1 

to w−1 are true.  Let positive integers u,v, 

w satisfy uv−w2=1 with w>1.  Note u=v 

leads to w=0, which is absurd.  Also u=w 

leads to w=1, again absurd.  Due to 

symmetry in u, v, we may assume u < v. 

Let x=u, y=u+v−2w and z=w−u.  Since  
 

uv = w2+1 > w2 = uv−1 > u2−1, 
 

so y ≥ 2(uv)1/2−2w > 0 and z = w−u > 0. 

Next we can check xy−z2 = uv−w2 = 1.  By 

inductive hypothesis, we have  
 

x = a2+b2,  y = c2+d 2,  z = ac+bd. 
 

So u=x=a2+b2, w= x+z =a2+b2+ ac+bd 

= a(a+c) + b(b+d) and v = y−u+2w = 

(a+c)2+(b+d)2.  This completes the 

proof of the first statement. 

 

For the second statement, we have 
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where the last congruence is by 

Wilson’s theorem.  This implies z2+1 is 

a multiple of p, i.e. z2+1=py for some 

positive integer y.  By the first 

statement, we see p =a2+b2 for some 

positive integers a and b. 

 

Example 6. (1997 IMO Proposal by 

Russia) An infinite arithmetic 

progression whose terms are positive 

integers contains the square of an 

integer and the cube of an integer. 

Show that it contains the sixth power of 

an integer. 
 
Solution.  Let a be the first term and d 

be the common difference.  We will 

prove by induction on d.  If d=1, then 

the terms are consecutive integers, 

hence the result is true.  Next, suppose 

d>1.  Let r = gcd(a,d) and h=d/r, then 

gcd(a/r,h)=1.  We have two cases. 

 

Case 1: gcd(r,h) = 1.  Then gcd(a,h)=1. 

Since there exist x2 and y3 in the 

progression, so x2 and y3 ≡ a (mod d). 

Since h divides d, x2 and y3 ≡ a (mod h).  

From gcd(a,h)=1, we get gcd(y,h)=1. 

Then there exists an integer t such that 

ty ≡ x (mod h).  So 
 

t6a2 ≡ t6y6 ≡ x6 ≡ a3 (mod h). 
 

Since gcd(a,h)=1, we may cancel a2 to 

get t6 ≡ a (mod h).  
 
Since gcd(r,h)=1, there exists an 

integer k such that kh ≡ −t (mod r). 

Then we have (t+kh)6 ≡ 0 ≡ a (mod r) 

and also (t+kh)6 ≡ a (mod h).  Since 

gcd(r,h)=1 and rh=d, we get (t+kh)6 ≡ a 

(mod d).  Hence, (t+kh)6 is in the 

progression. 
 

Case 2: gcd(r,h) > 1.  Let p be a prime 

dividing gcd(r,h).  Then p divides r, 

which divides a and d. Let pm be the 

greatest power of p dividing a and pn be 

the greatest power of p dividing d. 

Since d = rh, p divides h and gcd(a,d) = 

r, we see n > m ≥ 1. 

 
 (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is January 14, 2011. 
 

Problem 356.  A and B alternately 

color points on an initially colorless 

plane as follow. A plays first.  When A 

takes his turn, he will choose a point 

not yet colored and paint it red.  When 

B takes his turn, he will choose 2010 

points not yet colored and paint them 

blue.  When the plane contains three 

red points that are the vertices of an 

equilateral triangle, then A wins. 

Following the rules of the game, can B 

stop A from winning?   
 

Problem 357.  Prove that for every 

positive integer n, there do not exist 

four integers a, b, c, d such that ad=bc 

and n2 < a < b < c < d < (n+1)2. 
 

Problem 358.  ABCD is a cyclic 

quadrilateral with AC intersects BD at 

P. Let E, F, G, H be the feet of 

perpendiculars from P to sides AB, BC, 

CD, DA respectively. Prove that lines 

EH, BD, FG are concurrent or are 

parallel. 

 

Problem 359. (Due to Michel 

BATAILLE)  Determine (with proof) all 

real numbers x,y,z such that x+y+z ≥ 3 

and 
 

).(2 222444333 zyxzyxzyx ++≤+++++  

 

Problem 360. (Due to Terence ZHU, 

Affiliated High School of Southern 

China Normal University)  Let n be a 

positive integer.  We call a set S of at 

least n distinct positive integers a 

n-divisible set if among every n 

elements of S, there always exist two of 

them, one is divisible by the other.  
 

Determine the least integer m (in terms 

of n) such that every n-divisible set S 

with m elements contains n integers, 

one of them is divisible by all the 

remaining n−1 integers. 

 
 

***************** 

Solutions 

**************** 
 
Problem 351.  Let S be a unit sphere with 

center O.  Can there be three arcs on S 

such that each is a 300° arc on some circle 

with O as center and no two of the arcs 

intersect? 
  
Solution.  Andy LOO (St. Paul’s Co-ed 
College). 
 
The answer is no.  Assume there exist 

three such arcs l1, l2 and l3.  For k=1,2,3, 

let Ck be the unit circle with center O that 

lk is on. Since lk is a 300° arc on Ck, every 

point P on Ck is on lk or its reflection point 

with respect to O is on lk.  Let Pij and Pji be 

the intersection points of Ci and Cj. (Since 

Pij and Pji are reflection points with 

respect to O,  if Pij does not lie on both li 

and lj, then Pji will be on li and lj, 

contradiction.)  So we may let Pij be the 

point on li and not on lj and Pji be the point 

on lj and not on li. 
 
Now P21 and P31 are on C1 and outside of 

l1, so ∠P21OP31< 60°.  Hence the length of 

arcs P21P31 and P12P13 are equal and are 

less than π/3 (and similarly for ∠P32OP12, 

∠P13OP23 and their arcs).  Denote the 

distance (i.e. the length of shortest path) 

between P and Q on S by d(P,Q). We have 

,3/3/3/

),(),(),(

),(

213131323212

2112

ππππ

π

=++<
++≤

=
PPdPPdPPd

PPd

 

which is absurd. 

Other commended solvers: LI Pak Hin 

(PLK Vicwood K. T. Chong Sixth Form 

College). 

 

Problem 352. (Proposed by Pedro 

Henrique O. PANTOJA, University of 

Lisbon, Portugal)  Let a, b, c be real 

numbers that are at least 1.  Prove that 
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Solution.  D. Kipp JOHNSON (Valley 
Catholic School, Teacher, Beaverton, 
Oregon, USA). 
 

From ,12 ≥≥ bcbca  we get 
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Moreover, we will prove the stronger fact:  

if a, b, c > 0 and abc≥1, then the inequality 

still holds.  From k = abc ≥ 1, we get   
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where the inequality can be checked by 

cross-multiplication.  For x > 0, define 
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This shows f(1)=1/2 is the minimum 

value of f, since f’(x) < 0 for 0 < x <1 

and f’(x)>0 for x > 1.  Then by (*), 
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Other commended solvers: Samuel 
Lilό ABDALLA (ITA-UNESP, São 
Paulo, Brazil), CHAN Chiu Yuen 
Oscar (Wah Yan College Hong Kong), 
Ozgur KIRCAK (Jahja Kemal 
College, Skopje, Macedonia), LAM 
Lai Him (HKUST Math UG Year 2), 
Andy LOO (St. Paul’s Co-ed College), 
LI Pak Hin (PLK Vicwood K. T. 
Chong Sixth Form College), Salem 
MALIKIĆ (Student, University of 
Sarajevo, Bosnia and Herzegovina), 
NG Chau Lok (HKUST Math UG Year 
1), Thien NGUYEN  (Luong The Vinh 
High School, Dong Nai, Vietnam), O 
Kin Chit Alex (GT(Ellen Yeung) 
College), Carlo PAGANO (Università 
di Roma “Tor Vergata”, Roma, Italy), 
Paolo PERFETTI (Math Dept, 
Università degli studi di Tor Vergata 
Roma, via della ricerca scientifica, 
Roma, Italy), Karatapanis SAVVAS 
(3rd Senior High School of Rhoades, 
Greece), TRAN Trong Hoang Tuan 
John (Bac Lieu Specialized Secondary 
School, Vietnam), WONG Chi Man 
(CUHK Info Engg Grad), WONG Sze 
Nga (Diocesan Girls’ School), WONG 
Tat Yuen Simon and POON Lok Wing 
(Carmel Divine Grace Foundation 
Secondary School) and Simon YAU. 
 

Problem 353.  Determine all pairs (x, y) 

of integers such that x5−y2=4.  
  
Solution. Ozgur KIRCAK (Jahja 
Kemal College, Skopje, Macedonia), 
LI Pak Hin (PLK Vicwood K. T. 
Chong Sixth Form College), Carlo 
PAGANO (Università di Roma “Tor 
Vergata”, Roma, Italy), Anderson 
TORRES (São Paulo, Brazil) and 
Ghaleo TSOI Kwok-Wing (Univer- 
sity of Warwick, Year 1). 
 
Let x, y take on values −5 to 5.  We see 

x5≡ 0, 1 or 10 (mod 11), but y2 +4 ≡2, 4, 

5, 7, 8 or 9 (mod 11).  Therefore, there 

can be no solution. 
 
Other commended solvers: Andy LOO 
(St. Paul’s Co-ed College). 

 

Problem 354.  For 20 boxers, find the 

least number n such that there exists a 
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schedule of n matches between pairs of 

them so that for every three boxers, two 

of them will face each other in one of 

the matches. 
 
Solution. LI Pak Hin (PLK Vicwood 
K. T. Chong Sixth Form College) and 
Andy LOO (St. Paul’s Co-ed College). 
 
Among the boxers, let A be a boxer that 

will be in the least number of matches, 

say m matches.  For the 19−m boxers 

that do not have a match with A, each 

pair of them with A form a triple.  Since 

A doesn’t play them, every one of these 

(19−m)(18−m)/2 pairs must play each 

other in a match by the required 

condition.  

 

For the m boxers that have a match 

with A, each of them (by the minimal 

condition on A) has at least m matches. 

Since each of these matches may be 

counted at most twice, we get at least 

(m+1)m/2 more matches. So 
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Finally, n = 90 is possible by dividing 

the 20 boxers into two groups of 10 

boxers and in each group, every pair is 

scheduled a match.  This gives a total 

of 90 matches. 
 
Other commended solvers: WONG 

Sze Nga (Diocesan Girls’ School). 

 

Problem 355.  In a plane, there are two 

similar convex quadrilaterals ABCD 

and AB1C1D1 such that C, D are inside 

AB1C1D1 and B is outside AB1C1D1  

Prove that if lines BB1, CC1 and DD1 

concur, then ABCD is cyclic.  Is the 

converse also true?    
 
Solution. CHAN Chiu Yuen Oscar 
(Wah Yan College Hong Kong) and 
LEE Shing Chi (SKH Lam Woo 
Memorial Secondary School). 
 
Since ABCD and AB1C1D1 are similar, 

we have 

               .
111 AD

AD

AC

AC

AB

AB
==           (1) 

Also, ⊿ABC and ⊿AB1C1 are similar. 

Then ∠BAC =∠B1AC1.  Subtracting 

∠B1AC from both sides, we get ∠BAB1 

=∠CAC1.  Similarly, ∠CAC1 =∠DAD1. 

Along with (1), these give us ⊿BAB1, 

⊿CAC1 and ⊿DAD1 are similar. So  
 
    ∠AB1B =∠AC1C =∠AD1D.        (2) 

A

B
C

D

B1

C1

D1

E

 

Now if lines BB1, CC1 and DD1 concur at 

E, then (2) can be restated as ∠AB1E 

=∠AC1E =∠AD1E. These imply A, B1, C1, 

D1, E are concyclic.  So AB1C1D1 is cyclic. 

Then by similarity, ABCD is cyclic. 

A

B
C

D

B1

C1

D1

O O1

F

 

For the converse, suppose ABCD is cyclic, 

then AB1C1D1 is cyclic by similarity.  Let 

the two circumcircles intersect at A and F. 

Let O be the circumcenter of ABCD and 

O1 be the circumcenter of AB1C1D1.  It 

follows ⊿AOD and ⊿AO1D1 are similar. 

Hence ∠AOD = ∠AO1D1.  From this we 

get  

.
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1
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This implies line DD1 passes through F.  

Similarly, lines BB1 and CC1 pass through 

F.  Therefore, lines BB1, CC1 and DD1 

concur. 
 

Other commended solvers: LI Pak Hin 

(PLK Vicwood K. T. Chong Sixth Form 

College). 
 

 

Olympiad Corner 
  (continued from page 1) 

 

Problem 3.  Prove that for every given 

positive integer n, there exists a prime p 

and an integer m such that  
 
   (a)  p≡5 (mod 6);  

   (b)  p ∤n;  

   (c)  n≡m3 (mod p). 
 
Problem 4.  Let x1, x2, …, xn (with n ≥ 2) 

be real numbers such that 
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Determine when equality holds. 
 

Problem 5.  Let f(x) and g(x) be strictly 

increasing linear functions from ℝ to ℝ 

such that f(x) is an integer if and only if 

g(x) is an integer.  Prove that for any 

real number x, f(x) − g(x) is an integer. 

 

Problem 6.  In acute ⊿ABC, AB > AC. 

Let M be the midpoint of side BC.  The 

exterior angle bisector of ∠BAC meets 

ray BC at P.  Points K and F lie on line 

PA such that MF⊥BC and MK⊥PA. 

Prove that BC2 = 4PF·AK. 

 

A

B CM P

F
K

 
 

Problem 7.  Let n be an integer greater 

than or equal to 3.  For a permutation p 

= (x1, x2, …, xn) of (1,2,…,n), we say xj 

lies between xi and xk if i < j < k. (For 

example, in the permutation (1,3,2,4), 

3 lies between 1 and 4, and 4 does not 

lie between 1 and 2.) Set S={p1, 

p2,…,pm} consists of (distinct) 

permutations pi of (1,2,…,n).  Suppose 

that among every three distinct 

numbers in {1,2,…,n}, one of these 

numbers does not lie between the other 

two numbers in every permutation 

pi∈S.  Determine the maximum value 

of m. 
 
Problem 8.  Determine the least odd 

number a > 5 satisfying the following 

conditions:  There are positive integers 

m1, m2, n1, n2 such that ,2

1

2

1 nma +=   

2

2

2

2

2 nma +=  and .2211 nmnm −=−  

 
 

 

IMO Shortlisted Problems 
                       (continued from page 2) 

 
Then pm divides a and d, hence all 

terms a, a+d, a+2d, ⋯ of the 

progression.  In particular, pm divides 

x2 and y3.  Hence, m is a multiple of 6.  
 
Consider the arithmetic progression 

obtained by dividing all terms of a, 

a+d, a+2d,⋯ by p6.  All terms are 

positive integers, the common 

difference is d/p6 < d and also contains 

(x/p3)2 and (y/p2)3. By induction 

hypothesis, this progression contains a 

sixth power j6.  Then (pj)6 is a sixth 

power in a, a+d, a+2d,⋯ and we are 

done. 
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Olympiad Corner 
 
Below are the problems of the 2011 

Chinese Math Olympiad, which was 

held on January 2011. 
 

Problem 1. Let a1,a2,…,an (n≥3) be 

real numbers. Prove that 
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[x] denotes the greatest integer not 

exceeding x. 
 

Problem 2. In the figure, D is the 

midpoint of the arc BC on the 

circumcircle Γ of triangle ABC. Point X 

is on arc BD. E is the midpoint of arc 

AX. S is a point on arc AC. Lines SD 

and BC intersect at point R. Lines SE 

and AX intersect at point T. Prove that 

if RT || DE, then the incenter of triangle 

ABC is on line RT.  

BA

C D

E

X
S

R

T
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  In 1971 Professor Murray Klamkin 

established the following  

 

Theorem. For any real numbers x,y,z, 

integer n and angles α,β,γ of any 

triangle, we have 
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Equality holds if and only if  
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The proof follows immediately from 

expanding 
 

   ( )2)coscos()1( βγ nznyx n +−+  

             .0)sinsin( 2 ≥−+ βγ nzny  

 

There are many nice inequalities that we 

can obtain from this inequality. The 

following are some examples (see 

references [1] and [2] for more). 

 

Example 1. For angles α,β,γ of any 

triangle, if n is an odd integer, then 
 

2/3coscoscos ≤++ γβα nnn . 
 
If n is an even integer, then 
 

.2/3coscoscos −≥++ γβα nnn  
 
(This is just the case x=y=z=1.) 

 

Example 2. For angles α,β,γ of any 

triangle,  
 

.4cos32cos2cos3 ≤++ γβα  
 

(This is just the case n = 1, x = sin 90°,  

y = sin 60°, z = sin 30°.)  

 

There are many symmetric inequalities 

in α,β,γ, which can be proved by 

standard identities or methods. 

However, if we encounter asymmetric 

inequality like the one in example 2, it 

may be puzzling in coming up with a 

proof. 

 

Example 3. Let a,b,c be sides of a 

triangle with area Δ. If r,s,t are any real 

numbers, then prove that 
 

.
4

2

ab

rs

ca

tr

bc

stctbsar
++≥⎟

⎠
⎞

⎜
⎝
⎛

Δ
++  

 
Solution.  Let α,β,γ be the angles of the 

triangle. We first observe that  
 

βαγ 2222222222 sinsinsin4 accbba ===Δ  

 
and cos 2θ = 1−2sin2 θ. So we can try to 

set n = 2, x=ar, y=bs, z=ct. Indeed, after 

applying Klamkin’s inequality, we get 

the result. 

 

Example 4. Let a,b,c be sides of a 

triangle with area Δ. Prove that 
 

.
4 2

2

2

2

2

2
2

222

a

c

c

b

b

acba
++≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ
++  

 

Comment: It may seem that we can use 

example 3 by setting r=a, s=b, t=c, but 

unfortunately 

2

2

2

2

2

2

3
a

c

c

b

b

a

ab

rs

ca

tr

bc

st
++≥=++  

 
holds only when a=b=c by the AM-GM 

inequality. 
 
Solution. To solve this one, we bring in 

the circumradius R of the triangle. We 

recall that 2Δ=bcsin α and by extended 

sine law, 2R=a/(sin α). So 4ΔR=abc. 

Now we set r=bcx, s=cay and t=abz. 

Then the inequality in example 3 

becomes 
 

.)( 22222 xyczxbyzaRzyx ++≥++  (*) 
 
Next, we set yz=1/b2, zx=1/c2, xy=1/a2, 

from which we can solve for x,y,z to get 

.
4

,
4,4

2

R

a
z

R

c
y

R

b

ac

b
x

Δ
=

Δ
=

Δ
==  

 
Then (*) becomes 
 

.
4 2

2

2

2

2

2
2

222

a

c

c

b

b

acba
++≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ
++  
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Example 5. (1998 Korean Math 

Olympiad) Postive real numbers a,b,c 

satisfy a+b+c=abc. Prove that 
 

2

3

1

1

1

1

1

1
222
≤

+
+

+
+

+ cba

 

 
and determine when equality holds. 

 

Solution. Let a = tan u, b = tan v and c = 

tan w, where u,v,w > 0. As a+b+c=abc,  
 
tan u+tan v+tan w = tan u tan v tan w, 

 
which can be written as  
 

).tan(
tantan1

tantan
tan wv

wv

wv
u +=

−
+

=−  

 
This implies u+v+w=nπ for some odd 

positive integer n. Let α = u/n, β = v/n 

and γ = w/n. Taking x = y = z = 1 in 

Klamkin’s inequality (as in example 1), 

we have 
 

2/3coscoscos ≤++ γβα nnn , 
 

which is the desired inequality. 

Equality holds if and only if a = b = c 

= .3  

 

For the next two examples, we will 

introduce the following 

 

Fact: Three positive real numbers x,y,z 

satisfy the equation  
 

            x2+y2+z2+xyz = 4         (**) 
 
if and only if there exists an acute 

triangle with angles α,β,γ such that 
 

x = 2cos α,  y = 2cos β,  z = 2cos γ. 
 

Proof. If x,y,z > 0 and  x2+y2+z2+xyz = 4, 

then x2,  y2, z2  < 4.  So 0 < x, y, z < 2. 

Hence, there are positive α,β,γ < π/2 

such that  
 
x = 2cos α,  y = 2cos β  and  z = 2cos γ.  
 
Substituting these into (**) and 

simplifying, we get cos γ = −cos (α+β), 
which implies α+β+ γ = π. We can get 

the converse by using trigonometric 

identities. 

 

Example 6. (1995 IMO Shortlisted 

Problem) Let a,b,c be positive real 

numbers. Determine all positive real 

numbers x,y,z satisfying the system of 

equations  

x+y+z = a+b+c, 

4xyz−(a2x+b2y+c2z) = abc. 
 
Solution. We can rewrite the second 

equation as 

.4

222

=+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

xyz

abc

xy

c

zx

b

yz

a  

 
By the fact, there exists an acute triangle 

with angles α,β,γ such that 

.cos2,cos2,cos2 γβα ===
xy

c

zx

b

yz

a  

Then the first equation becomes 
 

).coscoscos(2 γβα xyzxyzzyx ++=++  
 

This is the equality case of Klamkin’s 

inequality. So 

.
sinsinsin γβα

zyx
==  

As γ+β = π−α, so sin(γ+β)/sin α=1. Then 
 

   γβ coscos
22 x

y

x

z

x

c

x

b
+=+  

                 .1
sin

cossincossin
=

+
=

α
γββγ  

 
So x = (b+c)/2. Similarly, y = (c+a)/2 and 

z = (a+b)/2. 

 

Example 7. (2007 IMO Chinese Team 

Training Test) Positive real numbers u,v,w 

satisfy the equation .4=+++ uvwwvu  
 

Prove that 

.wvu
w

uv

v

uw

u

vw
++≥++  

 
Solution. By the fact, there exists an acute 

triangle with angles α,β,γ such that 
 

.cos2,cos2,cos2 γβα === wvu  

The desired inequality becomes 

γ
βα

β
αγ

α
γβ

cos

coscos2

cos

coscos2

cos

coscos2
++  

).coscos(cos4 222 γβα ++≥  
 
Comparing with Klamkin’s inequality, all 

we have to do is to take n = 1 and 
 

β
αγ

α
γβ

cos

coscos2
,

cos

coscos2
== yx

.
cos

coscos2

γ
βα

=z  

 

Example 8. (1988 IMO Shortlisted 

Problem) Let n be an integer greater than 

1. For i=1,2,…,n, αi > 0, βi > 0 and  

∑∑
==

==
n

i

i

n

i

i

11

.πβα  

Prove that  ∑∑
==

≤
n

i

i

n

i i

i

11

.cot
sin

cos α
α
β  

 

Solution. For n = 2, we have equality 

1

1

1

1

2

2

1

1

sin

cos

sin

cos

sin

cos

sin

cos

α
β

α
β

α
β

α
β

−=+  

.cotcot0 21 αα +==  

 
For n = 3, α1, α2, α3 are angles of a 

triangle, say with opposite sides a,b,c. 

Let Δ be the area of the triangle. Now  

2Δ = bcsin α1 = casin α2 = absin α3. 

Combining with the cosine law, we get  

Δ
−+

==
4sin

cos
cot

222

1

1
1

acb

α
αα  

and similarly for cot α2 and cot α3. By 

Klamkin’s inequality, 

)coscoscos(2
sin

cos4
321

1

βββ
α
β

abcabc
n

i i

i ++=
Δ∑

=

 

∑
=

Δ=++≤
3

1

222 .cot4
i

icba α  

Cancelling 4Δ, we will finish the case 

n = 3. For the case n > 3, suppose the 

case n−1 is true. We have 

 

⎥
⎦

⎤
⎢
⎣

⎡
+
+

−+=∑
= )sin(

)cos(

sin

cos

sin

cos

sin

cos

21

21

2

2

1

1

1 αα
ββ

α
β

α
β

α
βn

i i
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⎥
⎦

⎤
⎢
⎣

⎡
+
+

++ ∑
= )sin(

)cos(

sin

cos

21

21

3 αα
ββ

α
βn

i i

i  

      
⎥
⎦

⎤
⎢
⎣

⎡
+−
+−

++=
))(sin(

))(cos(
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cos
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cos

21
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2

2

1

1

ααπ
ββπ

α
β

α
β  

                  
⎥
⎦

⎤
⎢
⎣

⎡
+
+

++ ∑
= )sin(

)cos(

sin

cos

21

21

3 αα
ββ

α
βn

i i

i  

      [ ]))(cot(cotcot 2121 ααπαα +−++≤  

                  
⎥
⎦

⎤
⎢
⎣

⎡
+++ ∑

=

n

i

i

3

21 )cot(cot ααα  

      ∑
=

=
n

i

i

1

.cotα  

This finishes the induction. 
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is February 28, 2011. 
 

Problem 361.  Among all real numbers 

a and b satisfying the property that the 

equation x4+ax3+bx2+ax+1=0 has a real 

root, determine the minimum possible 

value of a2+b2 with proof.  
 

Problem 362. Determine all positive 

rational numbers x,y,z such that  

zyx
xyzzyx

111
,, ++++  

are integers.  
 

Problem 363. Extend side CB of 

triangle ABC beyond B to a point D 

such that DB=AB. Let M be the 

midpoint of side AC. Let the bisector of 

∠ABC intersect line DM at P. Prove 

that ∠BAP =∠ACB. 

 

Problem 364. Eleven robbers own a 

treasure box. What is the least number 

of locks they can put on the box so that 

there is a way to distribute the keys of 

the locks to the eleven robbers with no 

five of them can open all the locks, but 

every six of them can open all the locks? 

The robbers agree to make enough 

duplicate keys of the locks for this plan 

to work.   

 

Problem 365. For nonnegative real 

numbers a,b,c satisfying ab+bc+ca = 1, 

prove that 

.2
1111

≥
++

−
+

+
+

+
+ cbaaccbba

 

 
 

***************** 

Solutions 

**************** 
 
Problem 356. A and B alternately color 

points on an initially colorless plane as 

follow. A plays first. When A takes his 

turn, he will choose a point not yet 

colored and paint it red. When B takes 

his turn, he will choose 2010 points not 

yet colored and paint them blue. When the 

plane contains three red points that are the 

vertices of an equilateral triangle, then A 

wins. Following the rules of the game, can 

B stop A from winning?   
  
Solution.  LI Pak Hin (PLK Vicwood K. 

T. Chong Sixth Form College), Anna 

PUN Ying (HKU Math) and The 7B 

Mathematics Group (Carmel Alison Lam 

Foundation Secondary School). 
 
The answer is negative. In the first 2n 

moves, A can color n red points on a line, 

while B can color 2010n blue points. For 

each pair of the n red points A colored, 

there are two points (on the perpendicular 

bisector of the pair) that can be chosen as 

vertices for making equilateral triangles 

with the pair. When n > 2011, we have 

.2010)1(
2

2 nnn
n

>−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  

Then B cannot stop A from winning.  
 
Other commended solvers: King’s 

College Problem Solving Team (Angus 

CHUNG, Raymond LO, Benjamin 

LUI), Andy LOO (St. Paul’s Co-ed 

College),Emanuele NATALE (Università 

di Roma “Tor Vergata”, Roma, Italy) and 

Lorenzo PASCALI (Università di Roma 

“La Sapienza”, Roma, Italy), WONG Sze 

Nga (Diocesan Girls’ School). 

 

Problem 357. Prove that for every 

positive integer n, there do not exist four 

integers a, b, c, d such that ad=bc and n2 < 

a < b < c < d < (n+1)2. 
 
Solution.  U. BATZORIG (National 

University of Mongolia) and LI Pak Hin 

(PLK Vicwood K. T. Chong Sixth Form 

College). 
 
We first prove a useful  
 

Fact (Four Number Theorem): Let a,b,c,d 

be positive integers with ad=bc, then there 

exists positive integers p,q,r,s such that 

a=pq, b=qr, c=ps, d=rs. 
 

To see this, let p=gcd(a,c), then p|a and p|c. 

So q=a/p and s=c/p are positive integers. 

Now p=gcd(a,c) implies gcd(q,s)=1.  From 

ad=bc, we get qd=sb. Then s|d. So r=d/s is 

a positive integer and a=pq, b=qr, c=ps, 

d=rs. 
 
For the problem, assume a,b,c,d exist as 

required. Applying the fact, since d > b > 

a, we get s>q and r>p. Then s≥q+1, r≥p+1 

and we get  
2)1()1)(1( +≥++≥= pqqprsd  

                  ,)1()1( 22 +>+= na  

a contradiction. 
 
Other commended solvers: King’s 

College Problem Solving Team 

(Angus CHUNG, Raymond LO, 

Benjamin LUI), Anna PUN Ying 

(HKU Math), The 7B Mathematics 

Group (Carmel Alison Lam Foundation 

Secondary School) and WONG Sze 

Nga (Diocesan Girls’ School). 
 

Problem 358. ABCD is a cyclic 

quadrilateral with AC intersects BD at 

P. Let E, F, G, H be the feet of 

perpendiculars from P to sides AB, BC, 

CD, DA respectively. Prove that lines 

EH, BD, FG are concurrent or are 

parallel. 
  
Solution. U. BATZORIG (National 

University of Mongolia), King’s 

College Problem Solving Team 

(Angus CHUNG, Raymond LO, 

Benjamin LUI), Abby LEE Shing 

Chi (SKH Lam Woo Memorial 

Secondary School), LI Pak Hin (PLK 

Vicwood K. T. Chong Sixth Form 

College), Anna PUN Ying (HKU 

Math), Anderson TORRES (São Paulo, 

Brazil) and WONG Sze Nga (Diocesan 

Girls’ School). 
 

CD

A

B

P

E

G

F

H

 
 
Since ABCD is cyclic, ∠BAC =∠CDB 

and ∠ABD =∠DCA, which imply ΔAPB 

and ΔDPC are similar.  As E and G are 

feet of perpendiculars from P to these 

triangles (and similarity implies the 
corresponding segments of triangles are 

proportional), we get AE/EB=DG/GC. 

Similarly, we get AH/HD=BF/FC.  

 

If EH || BD, then AE/EB = AH/HD, 

which is equivalent to DG/GC=BF/FC, 

and hence FG || BD.  

 

Otherwise, lines EH and BD intersect at 

some point I. By Menelaus theorem and 

its converse, we have  
 

,1−=⋅⋅
HA

DH

ID

BI

EB

AE
 

which is equivalent to 
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,1−=⋅⋅
FB

CF

GC

DG

ID

BI
 

and lines BD and FG also intersect at I. 
 
Other commended solvers: Lorenzo 
PASCALI (Università di Roma “La 
Sapienza”, Roma, Italy). 

 

Problem 359. (Due to Michel 

BATAILLE) Determine (with proof) all 

real numbers x,y,z such that x+y+z ≥ 3 

and 

).(2 222444333 zyxzyxzyx ++≤+++++  

 
Solution. LI Pak Hin (PLK Vicwood 

K. T. Chong Sixth Form College), 

Paolo PERFETTI (Math Dept, 

Università degli studi di Tor Vergata 

Roma, via della ricerca scientifica, 

Roma, Italy) and Terence ZHU 

(Affilated High School of South China 

Normal University). 

 

Let x,y,z be real numbers satisfying the 

conditions. For all real w, w2+3w+3 ≥ 

(w+3/2)2 implies (w2+3w+3)(w−1)2 ≥ 0. 

Expanding, we get (*) w4+w3−2w2 ≥ 

3w−3. Applying (*) to w=x,y,z and 

adding, then using the conditions on 

x,y,z, we get 
 

)(20 222444333 zyxzyxzyx ++−+++++≥  

.09)(3 ≥−++≥ zyx  

Thus, for such x,y,z, we must have 

equalities in the (*) inequality for x,y,z. 

So x = y = z = 1 is the only solution. 

 

Comments: For the idea behind this 

solution, we refer the readers to the 

article on the tangent line method (see 

Math Excalibur, vol. 10, no. 5, page 1). 

For those who do not know this method, 

we provide the 
 
Proposer’s solution.  Suppose (x,y,z) is 

a solution.  Let s=x+y+z and S=x2y+y2z 

+z2x+xy2+yz2+zx2. By expansion, we 

have s(x2+y2+z2)−S= x3+y3+z3.  Hence, 
 
s(x2+y2+z2)−S+x4+y4+z4  ≤ 2(x2+y2+z2), 
 
which is equivalent to  
 
    (s−2)(x2+y2+z2)+x4+y4+z4  ≤  S.     (*) 
 
Since S is the dot product of the vectors 

v =(x2,y2,z2,x,y,z) and w =(y,z,x,y2,z2,x2), 

by the Cauchy Schwarz inequality, 
 
          S  ≤  x2+y2+z2+x4+y4+z4 .             (**) 
 
Combining (*) and (**), we conclude 

(s−3)(x2+y2+z2) ≤ 0. Since s ≥ 3, we get 

s=3 and (*) and (**) are equalities. 

Hence, vectors v and w are scalar 

multiple of each other. Since x,y,z are 

not all zeros, simple algebra yields 

x=y=z=1. This is the only solution. 

 

Comments: Some solvers overlooked the 

possibility that x or y or z may be negative 

in applying the Cauchy Schwarz 

inequality! 

 

Other commended solvers: U. 

BATZORIG (National University of 

Mongolia) and Shaarvdorj (11th High 

School of UB, Mongolia), King’s College 

Problem Solving Team (Angus CHUNG, 

Raymond LO, Benjamin LUI), Thien 

NGUYEN  (Luong The Vinh High School, 

Dong Nai, Vietnam), Anna PUN Ying 

(HKU Math), The 7B Mathematics Group 

(Carmel Alison Lam Foundation Secondary 

School) and WONG Sze Nga (Diocesan 

Girls’ School). 

 

Problem 360. (Due to Terence ZHU, 

Affiliated High School of Southern China 

Normal University) Let n be a positive 

integer. We call a set S of at least n distinct 

positive integers a n-divisible set if among 

every n elements of S, there always exist 

two of them, one is divisible by the other.  
 

Determine the least integer m (in terms of 

n) such that every n-divisible set S with m 

elements contains n integers, one of them 

is divisible by all the remaining n−1 

integers.  
 

Solution. Anna PUN Ying (HKU Math) 

and the proposer independently. 
 
The smallest m is (n−1)2+1. First choose 

distinct prime numbers p1, p2, …, pn−1. For 

i from 1 to n−1, let  
 

{ }12 ,,, −= n

iiii pppA K  
 

and let A be any nonempty subset of  their 

union. Then A is n-divisible because 

among every n of the elements, by the 

pigeonhole principle, two of them will be 

in the same Ai, then one is divisible by the 

other. However, among n elements, two of 

them will also be in different Ai’s and 

neither one is divisible by the other.  So m 

≤ (n−1)2 will not work. 

 

If m ≥ (n−1)2+1 and S is a n-divisible set 

with m elements, then let k1 be the largest 

element in S and let B1 be the subset of S 

consisted of all the divisors of k1 in S. Let 

k2 be the largest element in S and not in B1. 

Let B2 be the subset of S consisted of all 

the divisors of k2 in S and not in B1. Repeat 

this to get a partition of S.  

 

Assume there are at least n of these Bi set. 

For i from 1 to n, let ji be the largest 

element in Bi. However, by the 

definition of the Bi sets, {j1,j2,…,jn} 

contradicts the n-divisiblity of S. So 

there are at most n−1 Bi’s.  

 

Since  m ≥ (n−1)2+1, one of the Bi must 

have at least n elements. Then for S, we 

can choose n elements from this Bi with 

ki included so that ki is divisible by all 

the remaining n−1 integers. Therefore, 

the least m is (n−1)2+1. 
 
Other commended solvers: WONG 

Sze Nga (Diocesan Girls’ School). 
 
 

 

Olympiad Corner 
 (continued from page 1) 

 

Problem 3. Let A be a finite set of real 

numbers. A1,A2,…,An are nonempty 

subsets of A satisfying the following 

conditions: 
 
(1)  the sum of all elements in A is 0; 

(2) for every xi∈Ai (i=1,2,…,n), we     

      have x1+x2+⋯+xn > 0. 
 
Prove that there exist 1≤i1<i2<⋯<ik ≤ n 

such that 

.
21

A
n

k
AAA

kiii <∪∪∪ L  

Here |X| denotes the number of 

elements in the finite set X. 
 
Problem 4. Let n be a positive integer, 

set S = {1,2,…,n}. For nonempty finite 

sets A and B of real numbers, find the 

minimum of |AΔS|+|BΔS|+|CΔS|, 

where C =A+B ={a+b | a∈A, b∈B}, X

ΔY = {x | x belongs to exactly one of X 

or Y }, |X| denotes the number of 

elements in the finite set X. 
 
Problem 5. Let n ≥ 4 be a given integer. 

For nonnegative real numbers  

a1,a2,…,an, b1,b2,…,bn satisfying 

a1+a2+⋯+an = b1+b2 +⋯+bn > 0, find 

the maximum of 

.

)(

)(

1

1

∑

∑

=

=

+

+

n

i

iii

n

i

iii

bab

baa
 

Problem 6. Prove that for every given 

positive integers m,n, there exist 

infinitely many pairs of coprime 

positive integers a,b such that  
 

a+b | ama+bnb. 
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Olympiad Corner 
 
Below are the problems of the 2011 

Canadian Math Olympiad, which was 

held on March 23, 2011. 
 

Problem 1. Consider 70-digit numbers 

n, with the property that each of the 

digits 1, 2, 3, …, 7 appears in the 

decimal expansion of n ten times (and 

8, 9 and 0 do not appear).  Show that no 

number of this form can divide another 

number of this form. 
 

Problem 2. Let ABCD be a cyclic 

quadrilateral whose opposite sides are 

not parallel, X the intersection of AB 

and CD, and Y the intersection of AD 

and BC.  Let the angle bisector of 

∠AXD intersect AD, BC at E, F 

respectively and let the angle bisector 

of ∠AYB intersect AB, CD at G, H 

respectively.  Prove that EGFH is a 

parallelogram. 

 

Problem 3.  Amy has divided a square 

up into finitely many white and red 

rectangles, each with sides parallel to 

the sides of the square.  Within each 

white rectangle, she writes down its 

width divided by its height.  Within 

each red rectangle, she writes down its 

height divided by its width. Finally, she 

calculates x, the sum of these numbers.  
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     A series of the form 
 

,
2

111
L+

+
+

+
+

dmdmm
 

 
where m, d are numbers such that the 

denominators are never zero, is called a 

harmonic series. For example, the series

1 1
( ) (1, ) 1 ...

2
H n H n

n
= = + + +  

 is a harmonic series, or more generally 

1 1 1
( , ) ...

1
H m n

m m n
= + + +

+
 

is also a harmonic series.  Below we 

always assume 1 ≤ m < n.  There are 

many interesting properties concerning 

this kind of series. 

 

Example 1: H(1,n) is unbounded, i.e. 

for any positive number A, we can find n 

big enough, so that H(1,n) ≥ A.  
 
Solution For any positive integer r, note
 

,
2

1

2

1

2

1

1

1
≥++

+
+

+ rrr
L  

 
which can be proved by induction. 

Hence we can take enough pieces of 

these fractions to make H(1,n) as large 

as possible. 
 
Example 2: H(m,n) is never an integer. 
 
Solution (i)  For the special case m = 1, 

let s be such that 2s ≤ n < 2s+1.  We then 

multiply H(1,n) by 2s–1Q, where Q is the 

product of all odd integers in [1, n].  All 

terms in H(1,n) will become an integer 

except the term 2s will become an 

integer divided by 2 (a half integer). 

This implies H(1,n) is not an integer. 
 
(ii) Alternatively, for the case m =1, let p 

be the greatest prime number not 

exceeding n.  By Bertrand’s postulate 

there is a prime q with p < q < 2p.  

Therefore we have n < 2p. If H(1,n) is 

an integer, then  
 

1

!
! ( )

n

i

n
n H n

i=

=∑  

 
is an integer divisible by p. However the 

term n!/p  (an addend) is not divisible by 

p but all other addends are. 

(iii) We deal with the case m > 1. 

Suppose 2α | k but 2α+1 does not divide k 

(write this as 2α || k), then we call α the 

“parity order” of k.  Now observe 2α, 

3·2α, 5·2α, ⋯ all have the same parity 

order.  Between these numbers, there are 

2·2α, 4·2α, 6·2α, ⋯, all have greater 

parity orders.  Hence, between any two 

numbers of the same parity order, there 

is one with greater parity order.  This 

implies among m, m+1, …, n, there is a 

unique integer with the greatest parity 

order, say q of parity order μ.  Now 

multiply 

1 1 1
...

1m m n
+ + +

+
 

 
by 2μL, where L is the product of all odd 

integers in [m, n]. Then 2μL·H(m,n) is an 

odd number.  Hence 
 

2 1
( , ) ,

2

r q
H m n

L pμ

+
= =  

where p is even and q is odd and so is 

not an integer. 
 
Example 3 (APMO 1997):  Given that 
 

1 1 1
1 ... ,

1 1 1 1 1 1
1 1 1 ...

3 3 6 3 6 1993006

S = + + + +
+ + + + + + +

 

where the denominators contains partial 

sum of the sequence of reciprocals of 

triangular numbers. Prove that S > 1001.

 

Solution  Let Tn be the nth triangular 

number.  Then Tn=n(n+1)/2 and hence  
 

1 2

1 1 1 2 2 2
... ...

1 2 2 3 ( 1)

1 1 1 1 1 1 2
2(1 ... ) 2(1 ) .

2 2 3 1 1 1

nT T T n n

n

n n n n

+ + + = + + +
⋅ ⋅ +

= − + − + + − = − =
+ + +

 

Since 1993006=1996·1997/2, we get 
 

  ⎟
⎠
⎞

⎜
⎝
⎛ +++=

1996

1997

2

3

1

2

2

1
LS  

.
1024

1

3

1

2

1
11996

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +++++> L  

 
Hence, S > (1996+6)/2=1001 using 

example 1 that H(r+1,2r) ≥ 1/2 for r = 2, 

4, 8, 16, 32, 64, 128, 256, 512. 
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        Congruence relations of harmonic 

series are of some interest.  First, let us 

look at an example. 

 

Example 4 (IMO 1979): Let p, q be 

natural numbers such that 

1 1 1 1 1
1 ... .

2 3 4 1318 1319

p

q
= − + − + − +  

Prove that p is divisible by 1979. 
 
Solution We will prove the famous 

Catalan identity (due to N. Botez (1872) 

and later used by Catalan): 

.
2

1

2

1

1

1

2

1

4

1

3

1

2

1
1

nnnn
++

+
+

+
=−+−+− LL  

It is proved as follows: 

    
n2

1

4

1

3

1

2

1
1 −+−+− L  
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⎜
⎝
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1
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1

2

1
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1

2

1

1

1

nnn
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+
+

+
= L  

Thus  

1 1 1 1
...

660 661 1318 1319

1 1 1 1 1 1 1
( ... )

2 660 1319 661 1318 1319 660

1 1979 1979 1979
( ... )

2 660 1319 661 1318 1319 660

1979 ,

p

q

A

B

= + + + +

= + + + + + +

= + + +
⋅ ⋅ ⋅

= ⋅

 

where B is the product of some positive 

integers less than 1319.  However, 

1979 is prime, hence 1979| p. 

 

For another proof using congruence 

relations, observe that if (k,1979) =1, 

then by Fermat’s little theorem, k1978 ≡ 

1 (mod 1979).  Hence, we can consider 

1/k ≡ k1977 (mod 1979).  Then 

 

∑∑
=
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=

− −≡−
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1319
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∑
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k
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Note that 1/k (mod p) (as well as many 

fraction mod p) makes sense if k ≢ 0 (mod 

p).  Also, as a generalization, we have 

 

Example 5:  If H(m,n) = q/p and m+n is an 

odd prime number, then m+n | q.  
 
Solution Note that H(m,n) has an even 

number of terms and it equals 
 

        ∑
−−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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where gcd(s,r) = 1.  Since m+n is prime, 

gcd(r,m+n) = 1.  Then q/p = (m+n)s/r  and 

m+n | q. 

 

       The Catalan identity is also used in 

the following example. 
 
Example 6 (Rom Math Magazine, July 

1998): Let 

1 1 1
...

1 2 3 4 2011 2012
A = + + +

⋅ ⋅ ⋅
 

and  

1 1 1
... .

1007 2012 1008 2011 2012 1007
B = + + +

⋅ ⋅ ⋅
 

Evaluate A/B.  
 
Solution  
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1
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1
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1
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.
2
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2
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=

B
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Example 7: Given any proper fraction 

m/n, where m, n are positive integers 

satisfying 0 < m < n, then prove it is the 

sum of fractions of the form  
 

1 2

1 1 1
... ,

kx x x
+ + +  

where x1, x2, …, xk are distinct positive 

integers. 
 
Solution We use the “greedy method”. 

Let x1 be the positive integer such that 
 

1 1

1 1
,

1

m

x n x
≤ <

−
 

i.e. x1 is the least integer greater than or 

equal to n/m.  If 1/x1 = m/n, then the 

problem is done. Otherwise  
 

1 1

1 1 1

1
,

m mx n m

n x nx nx

−
− = =  

where m1=mx1−n < m (due to m/n < 

1/(x1 −1) ) and obviously nx1> n.  Let x2 

be another positive integer such that  

1

2 1 2

1 1
.

1

m

x nx x
≤ <

−
 

The procedure can be repeated until m 

> m1 > m2 > ⋯ > mk > 0 and 

1 2

1 1 1
... ,

k

m

n x x x
= + + +  

where 1 ≤ k ≤ m. (Note: writing 

1 1 1
,

1 ( 1)n n n n
= +

+ +
 

 we observe actually there are infinitely 

many ways of writing any proper 

fractions as sum of fractions of this 

kind.  These fractions are called unit 

fractions or Egyptian fractions.) 
 

Example 8:  Remove those terms in  

LL ++++
n

1

2

1
1  

such that its denominator in decimal 

expansion contains the digit “9”, then 

prove that the sequence is bounded. 
 

Solution  The integers without the digit 

9 in the interval [10m−1, 10m−1] are 

m-digit numbers.  The first digit from 

the left cannot be the digits “0” and “9”, 

(8 choices), the other digits cannot 

contain “9”, hence nine choices 0, 1, 2, 

3, 4, 5, 6, 7 and 8.  Altogether there are 

8·9m−1 such integers.  The sum of their 

reciprocals is less than  
 

11

1

8 9 9
8 .

10 10

mm

m

−−

−

⋅ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
 

   (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is May 29, 2011. 
 
Problem 366.  Let n be a positive 

integer in base 10.  For i =1,2,…,9, let 

a(i) be the number of digits of n that 

equal i.  Prove that  
 

110932 )9()8()2()1( +≤ naaaa L  
 
and determine all equality cases. 
  

Problem 367.  For n = 1,2,3,…, let xn 

and yn be positive real numbers such 

that  
 

2

12 ++ += nnn xxx  

and 

.1

2

2 ++ += nnn yyy  
 

If x1, x2, y1, y2 are all greater than 1, 

then prove that there exists a positive 

integer N such that for all n > N, we 

have xn > yn.  
 

Problem 368. Let C be a circle, A1, 

A2, …, An be distinct points inside C 

and B1, B2, …, Bn be distinct points on 

C such that no two of the segments 

A1B1, A2B2,…, AnBn intersect. A 

grasshopper can jump from Ar to As if 

the line segment ArAs does not intersect 

any line segment AtBt (t≠r,s).  Prove 

that after a certain number of jumps, 

the grasshopper can jump from any Au 

to any Av. 

 

Problem 369. ABC is a triangle with 

BC > CA > AB. D is a point on side BC 

and E is a point on ray BA beyond A so 

that BD=BE=CA.  Let P be a point on 

side AC such that E, B, D, P are 

concyclic.  Let Q be the intersection 

point of ray BP and the circumcircle of 

ΔABC different from B.  Prove that 

AQ+CQ=BP.  

 

Problem 370.  On the coordinate plane, 

at every lattice point (x,y) (these are 

points where x, y are integers), there is 

a light.  At time t = 0, exactly one light 

is turned on.  For n = 1, 2, 3, …, at time 

t = n, every light at a lattice point is turned 

on if it is at a distance 2005 from a light 

that was turned on at time t = n − 1.  Prove 

that every light at a lattice point will 

eventually be turned on at some time. 
 
 

***************** 

Solutions 

**************** 
 

Problem 361.  Among all real numbers a 

and b satisfying the property that the 

equation x4+ax3+bx2+ax+1=0 has a real 

root, determine the minimum possible 

value of a2+b2 with proof.   
  
Solution.  U. BATZORIG (National 

University of Mongolia) and Evangelos 

MOUROUKOS (Agrinio, Greece). 
 
Consider all a,b such that the equation has 

x as a real root.  The equation implies x ≠ 0. 

Using the Cauchy-Schwarz inequality (or 

looking at the equation as the line (x3 + x)a 

+ x2b + (x4 + 1) = 0 in the (a,b)-plane and 

computing its distance from the origin), as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++ 2

4
6222

2
)2( x

x
xaba  

     24223 )1()( +=++≥ xaxbxax , 

we get 
246

24
22

22

)1(

xxx

x
ba

++
+

≥+   with equality  

if and only if x = ±1 (at which both sides 

are 4/5).  For x = 1, (a,b) = (−4/5, −2/5). 

For x = −1, (a,b) = (−2/5,4/5).  Finally, 

5

4

22

)1(
246

24

≥
++

+
xxx

x  

by calculus or rewriting it as 
 
            5(x4 + 1)2 − 4(2x6 + x4 + 2x2) 

         = (x2 − 1)2(5x4 + 2x2 + 5) ≥ 0. 
 
So the minimum of a2 + b2 is 4/5.  
 
Other commended solvers: CHAN Long 

Tin (Diocesan Boys’ School), Hong 

Kong Joint School Math Society, LI 

Pak Hin (PLK Vicwood K. T. Chong 

Sixth Form College), LKL Excalibur 

(Madam Lau Kam Lung Secondary 

School of MFBM), Raymond LO 

(King’s College), Paolo PERFETTI 

(Math Dept, Università degli studi di Tor 

Vergata Roma, via della ricerca scientifica, 

Roma, Italy), Anna PUN Ying (HKU 

Math), The 7B Math Group (Carmel 

Alison Lam Foundation Secondary School) 

and Alice WONG Sze Nga (Diocesan 

Girls’ School). 
 

Problem 362. Determine all positive 

rational numbers x,y,z such that  

zyx
xyzzyx

111
,, ++++  

are integers. 
 
Solution.  CHAN Long Tin (Diocesan 

Boys’ School), Hong Kong Joint 

School Math Society, Raymond LO 

(King’s College), Anna PUN Ying 

(HKU Math) and The 7B Math Group 

(Carmel Alison Lam Foundation 

Secondary School). 
 

Let A = x + y + z, B = xyz and C = 1/x + 

1/y +1/z, then A, B, C are integers.  Since 

xy + yz + zx = BC, so x,y,z are the roots 

of the equation t3−At2 + BCt −B = 0.  

Since the coefficients are integers and the 

coefficient of t3 is 1, by Gauss lemma or 

the rational root theorem, the roots x, y, z 

are integers. 

 

Since they are positive, without loss of 

generality, we may assume z ≥ y ≥ x ≥ 1. 

Now 1 ≤ 1/x +1/y +1/z ≤ 3/x lead to x=1, 

2 or 3.  For x = 1, 1/y + 1/z = 1 or 2, 

which yields (y,z) = (1,1) or (2,2).  For x 

= 2, 1/y + 1/z = 1/2, which yields (y,z) = 

(3,6) or (4,4).  For x = 3, 1/y + 1/z = 2/3, 

which yields (y,z) = (3,3). So the 

solutions are (x,y,z) = (1,1,1), (1,2,2), 

(2,3,6), (2,4,4), (3,3,3) and permutations 

of coordinates.  
 
 
Other commended solvers: LI Pak 

Hin (PLK Vicwood K. T. Chong Sixth 

Form College) and Alice WONG Sze 

Nga (Diocesan Girls’ School). 
 
Problem 363. Extend side CB of 

triangle ABC beyond B to a point D 

such that DB=AB. Let M be the 

midpoint of side AC.  Let the bisector 

of ∠ABC intersect line DM at P.  Prove 

that ∠BAP =∠ACB. 
  
Solution. Raymond LO (King’s 

College). 

A

B CD

M

P

F
E

 

Construct line BF || line CA with F on 

line AD.  Let DM intersect BF at E.  

 

Since BD=AB, we get ∠BDF =∠BAF 

= ½∠ABC =∠ABP =∠CBP.  Then line 

FD || line PB.  Hence, ΔDFE is similar 

to ΔPBE.  

 

Since BF||CA and M is the midpoint of 
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AC, so E is the midpoint of FB, i.e. 

FE=BE.  Then ΔDFE is congruent to 
ΔPBE.  Hence, FD=PB. 
 
This along with DB = BA and ∠BDF 
=∠ABP imply ΔBDF is congruent to 
Δ ABP. Therefore, ∠BAP =∠DBF 
=∠ACB. 

 

Other commended solvers: U. 

BATZORIG (National University of 

Mongolia), CHAN Long Tin 

(Diocesan Boys’ School), Hong Kong 

Joint School Math Society, Abby 

LEE Shing Chi (SKH Lam Woo 

Memorial Secondary School), LI Pak 

Hin (PLK Vicwood K. T. Chong Sixth 

Form College), LKL Excalibur 

(Madam Lau Kam Lung Secondary 

School of MFBM), Anna PUN Ying 

(HKU Math), The 7B Math Group 

(Carmel Alison Lam Foundation 

Secondary School), Ercole SUPPA 

(Liceo Scientifico Statale E.Einstein, 

Teramo, Italy) and Alice WONG Sze 

Nga (Diocesan Girls’ School). 

 

Problem 364.  Eleven robbers own a 

treasure box.  What is the least number 

of locks they can put on the box so that 

there is a way to distribute the keys of 

the locks to the eleven robbers with no 

five of them can open all the locks, but 

every six of them can open all the locks? 

The robbers agree to make enough 

duplicate keys of the locks for this plan 

to work.   
 
Solution. CHAN Long Tin (Diocesan 

Boys’ School), Hong Kong Joint 

School Math Society, LI Pak Hin 

(PLK Vicwood K. T. Chong Sixth 

Form College), LKL Excalibur 

(Madam Lau Kam Lung Secondary 

School of MFBM), Raymond LO 

(King’s College), Emanuele 

NATALE (Università di Roma “Tor 

Vergata”, Roma, Italy), Anna PUN 

Ying (HKU Math), The 7B Math 

Group (Carmel Alison Lam Foundation 

Secondary School) and Alice WONG 

Sze Nga (Diocesan Girls’ School). 

 

Let n be the least number of locks 

required. If for every group of 5 

robbers, we put a new lock on the box 

and give a key to each of 6 other 

robbers only, then the plan works. Thus 

.462
5

11
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤n  

 
      Conversely, in the case when there 

are n locks, for every group G of 5 

robbers, there exists a lock L(G), which 

they do not have the key, but the other 6 

robbers all have keys to L(G).  Assume 

there exist G ≠G’ such that L(G)=L(G’). 

Then there is a robber in G and not in G’. 

Since G is one of the 6 robbers not in G’, 

he has a key to L(G’), which is L(G), 

contradiction.  So G ≠ G’ implies L(G) ≠ 

L(G’).  Then the number of locks is at 

least as many groups of 5 robbers.  So  

.462
5

11
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≥n  Therefore, n = 462. 

 
Problem 365. For nonnegative real 

numbers a,b,c satisfying ab+bc+ca = 1, 

prove that 

.2
1111

≥
++

−
+

+
+

+
+ cbaaccbba

 

 
Solution. CHAN Long Tin (Diocesan 

Boys’ School) and Alice WONG Sze Nga 

(Diocesan Girls’ School). 
 
Since a, b, c ≥ 0 and ab+bc+ca = 1, none 

of the denominators can be zero. 

Multiplying both sides by a+b+c, we need 

to show  

).(22 cba
ac

b

cb

a

ba

c
++≥+

+
+

+
+

+
 

This follows from using the Cauchy- 

Schwarz inequality and expanding 

(c+a+b−2)2 ≥ 0 as shown below  
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b
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a

ba

c
bacacbcba )()()(

2)( bac ++≥  

.4)(4 −++≥ cba  

 
Other commended solvers: Andrea 

FANCHINI (Cantu, Italy), D. Kipp 

JOHNSON (Valley Catholic School, 

Teacher, Beaverton, Oregon, USA), LI 

Pak Hin (PLK Vicwood K. T. Chong 

Sixth Form College), Paolo PERFETTI 

(Math Dept, Università degli studi di Tor 

Vergata Roma, via della ricerca scientifica, 

Roma, Italy), Anna PUN Ying (HKU 

Math) and The 7B Math Group (Carmel 

Alison Lam Foundation Secondary School). 
 

 

 

Olympiad Corner 
 (continued from page 1) 

 

Problem 3. (Cont.)  If the total area of the 

white rectangles equals the total area of 

the red rectangles, what is the smallest 

possible value of x? 

 

Problem 4.  Show that there exists a 

positive integer N such that for all 

integers a > N, there exists a 

contiguous substring of the decimal 

expansion of a which is divisible by 

2011. (For instance, if a = 153204, then 

15, 532, and 0 are all contiguous 

substrings of a.  Note that 0 is divisible 

by 2011.) 
 
Problem 5.  Let d be a positive integer. 

Show that for every integer S there 

exists an integer n > 0 and a sequence 

ε1, ε2, …, εn, where for any k, εk = 1 or 

εk = −1, such that  
 
     S = ε1(1+d)2 + ε2(1+2d)2 + ε3(1+3d)2 

                             + ⋯ + εn(1+nd)2. 

 

 
 

Harmonic Series (I) 
(continued from page 2) 

 

The sum of reciprocals of all such 

numbers is therefore less than 

0

9 8
8 80.

910
1

10

m

m

∞

=

⎛ ⎞ = =⎜ ⎟
⎝ ⎠ −

∑  

Example 9:  Let m > 1 be a positive 

integer.  Show that 1/m is the sum of 

consecutive terms in the sequence 

1

1
.

( 1)j j j

∞

= +∑  

Solution   Since   

1 1 1
,

( 1) 1j j j j
= −

+ +
 

the problem is reduced to finding 

integers a and b such that  
 

1 1 1
(*).

m a b
= −  

One obvious solution is a = m−1 and b 

= m(m−1).  To find other solutions of 

(*), we note that 1/a > 1/m, so m > a. 
 
Let a = m−c, then b = (m2/c)−m.  For 

each c satisfying c | m2 and 1 ≤ c ≤ m, 

there exists one and only one pair of a 

and b satisfying (*), and because a < b, 

the representation is unique.  Let d(n) 

count the number of factors of n.  Now 

consider all factors of m2 except m, 

there are d(m2)−1 of them.  If c is one 

of them, then exactly one of c or m2/c 

will be less than m.  Hence the number 

of solutions of (*) is [d(m2)−1]/2. 
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Harmonic Series (II) 
 

Leung Tat-Wing 
 

 

Olympiad Corner 
 
Below are the problems of the 2011 

Asia Pacific Math Olympiad, which 

was held in March 2011. 
 

Problem 1.  Let a, b, c be positive 

integers.  Prove that it is impossible to 

have all of the three numbers a2+b+c, 

b2+c+a, c2+a+b to be perfect squares. 
 

Problem 2.  Five points A1, A2, A3, A4, 

A5 lie on a plane in such a way that no 

three among them lie on a same straight 

line.  Determine the maximum possible 

value that the minimum value for the 

angles ∠AiAjAk can take where i, j, k 

are distinct integers between 1 and 5. 

 

Problem 3.  Let ABC be an acute 

triangle with ∠BAC=30°.  The internal 

and external angle bisectors of ∠ABC 

meet the line AC at B1 and B2, 

respectively, and the internal and 

external angle bisectors of ∠ACB meet 

the line AB at C1 and C2, respectively. 

Suppose that the circles with diameters 

B1B2 and C1C2 meet inside the triangle 

ABC at point P.  Prove that ∠BPC = 

90°. 
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     As usual, for integers a, b, n (with n > 

0), we write a≡b (mod n) to mean a−b 

is divisible by n.  If b≠0 and n are 

relatively prime (i.e. they have no 

common prime divisor), then 0, b, 

2b, …, (n−1)b are distinct (mod n) 

because for 0 ≤ s < r<n, rb ≡ sb (mod n) 

implies (r−s)b = kn. Since b, n have no 

common prime divisor, this means b 

divides k.  Then 0 < (k/b)n = r−s < n, 

contradicting b ≤ k.  Hence, there is a 

unique r among 1, …, n−1 such that 

rb≡ 1 (mod n).  We will denote this r as 

b−1 or 1/b (mod n).  Further, we can 

extend (mod n) to fractions by defining 

a/b ≡ ab−1 (mod n).  We can easily 

check that the usual properties of 

fractions holds in mod n arithmetic. 
 
Next, we will introduce Wolstenholme’s 

theorem, which is an important relation 

concerning harmonic series. 

 

Theorem (Wolstenholme): For a prime 

p ≥ 5,   
 

21 1
( 1) 1 ... 0 (mod ).

2 1
H p p

p
− = + + + ≡

−
 

 
(More precisely, for a prime p ≥ 5, if 
 

1 1
( 1) 1 ... ,

2 1

a
H p

p b
− = + + + =

−
 

then  p2 | a.) 
 
Example We have  

1 1 1 7381
(10) 1 ...

2 3 10 2520
H = + + + + =  

 and 112 | 7381. 

 

First proof  We have 

    
1

1

2

1
1)1(

−
+++=−

p
pH L  

∑ ∑
−

=

−

= −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+=
2/)1(

1

2/)1(

1

.
)(

111p

n

p

n npn
p

npn
 

 
So we need to prove 
 

 
( 1) / 2

1

1
0 (mod ).

( )

p

n

p
n p n

−

=

≡
−∑  

 

Now
( 1) / 2 ( 1) / 2

2
1 1

1 1
(mod ).

( )

p p

n n

p
n p n n

− −

= =

≡ −
−∑ ∑  

Since every 1/n2 is congruent to exactly 

one of the numbers 12, 22, … , [(p−1)/2]2 

(mod p) and 1/n2 are all distinct for n 

=1,2,…,(p −1)/2, we have when p ≥ 5, 
 

).(mod0
24

)1(1 22/)1(

1

2/)1(

1

2

2
p

pp
k

n

p

n

p

k

≡
−

=≡∑ ∑
−

=

−

=

 

 
Wolstenholme’s theorem follows. 

 

Second proof (using polynomials mod 

p) We use a theorem of Lagrange, which 

says if f (x) = c0 + c1x + ⋯ + cnx
n is a 

polynomial of degree n, with integer 

coefficients, and if f (x) ≡ 0 (mod p) has 

more than n solutions, where p is prime, 

then every coefficient of f (x) is divisible 

by p.  The proof is not hard.  It can be 

done basically by induction and the 

division algorithm mod p. The 

statement is false if p is not prime.  For 

instance, x2 − 1 ≡ 0 (mod 8) has 4 

solutions.  Here is the other proof. 

 

From Fermat’s Little theorem, xp−1 ≡ 1 

(mod p) has 1, 2, …, p −1 as solutions. 

Thus xp−1−1 ≡ (x−1)(x−2) ⋯ (x−p+1) 

(mod p). Let 
 

          (x−1)(x−2) ⋯ (x−p+1) 

       = xp−1 − s1x
p−2 + ⋯ − sp−2x + sp−1.  (*)

 
By Wilson’s theorem, sp−1 = (p−1)! ≡ −1 

(mod p). Thus 
 

 0 ≡ s1x
p−2 + ⋯ − sp−2x (mod p). 

 
The formula is true for every integer x. 

By Lagrange’s theorem, p divides each 

of s1, s2, …, sp−2. Putting x = p in (*), we 

get (p−1)!=pp−1−s1p
p−2 + ⋯ − sp−2p+ sp−1. 

Canceling out (p−1)! and dividing both 

sides by p, we get  
 

0 = pp−2 − s1 p
p−3 + ⋯+sp−3 p − sp−2. 

 
As p ≥ 5, each of the terms is congruent 

to 0 (mod p2).  Hence, we have sp−2 ≡ 0 

(mod p2).  Finally,  
 

2

1 1
( 1)!(1 ... ) ( 1)! .

2 1
p

a
s p p

p b
− = − + + + = −

−
  

 
This proves Wolstenholme’s theorem. 
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Using Wolstenholme’s theorem and 

setting x = kp in (*), we get 
 

          (kp−1)(kp−2)⋯(kp−p+1) 
 
       = (kp)p−1−s1(kp)p−2+⋯ 

                +sp−3(kp)2−sp−2kp+sp−1 
 

     ≡ sp−3(kp)2 − sp−2kp + sp−1  
 

     ≡ (p −1)!   (mod p 3). 
 

Upon dividing by (p−1)!, we have  

3
1

1(mod ), 1, 2,... .
1

kp
p k

p

−⎛ ⎞
≡ =⎜ ⎟−⎝ ⎠

 

 
This result may in fact be taken as the 

statement of Wolstenholme’s theorem. 
 

Here are a few further remarks. 

Wolstenholme’s theorem on the 

congruence of harmonic series is 

related to the Bernoulli numbers .nB  

For instance, we have  
 

2 3 4

3

1 1
1 ( ) (mod )

1 3
p

kp
k k p B p

p
−

−⎛ ⎞
≡ − −⎜ ⎟−⎝ ⎠

, 

 
which is usually called Glaisher’s 

congruence.  These numbers are 

related to Fermat’s Last Theorem.  It is 

known that for any prime p ≥ 5, 
 

 3
1

1 (mod ).
1

kp
p

p

−⎛ ⎞
≡⎜ ⎟−⎝ ⎠

  

 

Are there primes satisfying  

4
2 1

1(mod )?
1

p
p

p

−⎛ ⎞
≡⎜ ⎟−⎝ ⎠

 

These primes are called Wolstenholme  

primes. (So far, we only know 16843 

and 2124679 are such primes).  In 

another direction, one can ask if there 

exist composite numbers n such that  
 

3
1

1 (mod )?
1

kn
n

n

−⎛ ⎞
≡⎜ ⎟−⎝ ⎠

 

All these are very classical questions. 

 

Example 10 (APMO 2006):  Let p ≥ 5 

be a prime and let r be the number of 

ways of placing p checkers on a p×p 

checkerboard so that not all checkers 

are in the same row (but they may all 

be in the same column).  Show that r is 

divisible by p5. 
 

Solution Observe that  

.1
)!1(

))1(()1( 222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−−−

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

p

ppp
pp

p

p
r

L  

Hence it suffices to show that  

    (p2−1)(p2−2)⋯(p2−(p−1)) − (p−1)! 

                 ≡ 0 (mod p4)                       (1) 

Now let  
 

f(x) = (x−1)(x−2)⋯(x−(p−1)) 

       = xp−1 + s1x
p−2 + ⋯ + sp−2x + sp−1.   (2) 

 

Thus the first congruence relation is the 

same as f(p2) − (p−1)! ≡ 0 (mod p4). 

Therefore it suffices to show that sp−2 p
2 ≡ 

0 (mod p4) or sp−2 ≡ 0 (mod p2), which is 

exactly Wolstenholme’s theorem. 

 

Example 11 (Putnam 1996):  Let p be a 

prime number greater than 3 and k =[2p/3]. 

Show that 

2... 0 (mod )
1 2

p p p
p

k

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

For example,  

).7(mod098
4

7

3

7

2

7

1

7
2≡=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛  

Solution  Recall 

( 1)...( 1)
.

1 2 ...

p p p p i

i i

⎛ ⎞ − − +
=⎜ ⎟ ⋅ ⋅⎝ ⎠

 

This is a multiple of p if 1 ≤ i ≤ p−1. 

Modulo p, the right side after divided by p 

is congruent to 
 

.
1

)1(
21

))1(()1( 1

ii

i i−−=
⋅⋅

−−−
L

L  

Hence, to prove the congruence, it suffices 

to show 

).(mod0
1

)1(
3

1

2

1
1 1 p

k

k ≡−+−+− −L  

Now observe that  

1 1 1
(mod ).

2 2
p

i i p i
− ≡ +

−
 

This allows us to replace the sum by  

1 1
1 ... 0 (mod ),

2 1
p

p
+ + + ≡

−
 

which is Wolstenholme’s theorem. 

 

     We can also give a more detailed proof 

as follow. Let  

n
nH

1

3

1

2

1
1)( ++++= L  

and 

11 1
( ) 1 ... ( 1) .

2

nP n
n

−= − + + −  

Then the problem is reduced to showing 

that for any p > 3, p divides the numerator 

of P([2p/3]).  First we note that p 

divides the numerator of H(p−1) 

because  
 

  )1(2 −pH  

)1
1

1
()

2

1

2

1
()

1

1
1( +

−
++

−
++

−
+=

ppp
L

).(mod0
1)2(21

p
p

p

p

p

p

p
≡

−
++

−
+

−
= L  

 
Next we have two cases. 
 
Case 1 (p = 3n+1)  Then [2p/3] = 2n. 

So we must show p divides the 

numerator of P(2n).  Now 
 

(3 ) (2 )

1 1 1 1 1
2(1 ... ) ( ... )

2 2 2 1 2 2 3

1 1 1 1 1
(1 ... ) ( ... )

2 2 1 2 2 3

1 1 1 1
(1 ) (2 ) ... ( )

1 2

... .
1 2( 2) ( )

H n P n

n n n n

n n n n

p p n p n

p p p

p p n p n

−

= + + + + + + +
+ +

= + + + + + + +
+ +

= + + + + + +
− − −

= + + +
− − −

So p divides the numerators of both 

H(3n) and H(3n) − P(2n), hence also 

the numerator of P(2n). 

 
Case 2 (p = 3n+2)  Then [2p/3] = 2n+1.  

So we must show p divides the 

numerator of P(2n+1).  Now 
 

   (3 1) (2 1)H n P n+ − +  

1 1 1 1 1
2(1 ... ) ( ... )

2 2 2 2 2 2 3 1n n n n
= + + + + + + +

+ + +
 

1 1 1 1 1
(1 ... ) ( ... )

2 2 2 2 2 3 1n n n n
= + + + + + + +

+ + +
 

1 1 1 1
(1 ) (2 ) ... ( )

1 2p p n p n
= + + + + + +

− − −
 

... .
1 2( 2) ( )

p p p

p p n p n
= + + +

− − −
 

 
So, p divides the numerator of 

H(3n+1)−P(2n+1), and hence P(2n+1).  

 
 
Example 12:  Let p ≥ 5 be a prime, 

show that if 

1 1
1 ... ,

2

a

p b
+ + + =  

 then p4| ap −b. 
 
 
 

   (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is June 25, 2011. 
 
Problem 371.  Let a1, a2, a3, … be a 

sequence of nonnegative rational 

numbers such that  am+an= amn for all 

positive integers m, n.  Prove that there 

exist two terms that are equal. 
  

Problem 372. (Proposed by Terence 

ZHU)  For all a,b,c > 0 and abc = 1, 

prove that 

)1()1(

1

)1()1(

1

+++
+

+++ bcbcbbababaa
 

.
4

3

)1()1(

1
≥

+++
+

cacacc
 

 
Problem 373.  Let x and y be the sums 

of positive integers x1,x2,…,x99 and  

y1,y2,…,y99 respectively. Prove that 

there exists a 50 element subset S of 

{1,2,…,99} such that the sum of all xn 

with n in S is at least x/2 and the sum of 

all yn with n in S is at least y/2.  

 

Problem 374.  O is the circumcenter of 

acute ∆ABC and T is the circumcenter 

of ∆AOC.  Let M be the midpoint of 

side AC. On sides AB and BC, there are 

points D and E respectively such that 

∠BDM=∠BEM=∠ABC.  Prove that 

BT⊥DE.  

 

Problem 375.  Find (with proof) all 

odd integers n > 1 such that if a, b are 

divisors of n and are relatively prime, 

then a+b−1 is also a divisor of n. 
 
 

***************** 

Solutions 

**************** 
 

Problem 366.  Let n be a positive 

integer in base 10.  For i=1,2,…,9, let 

a(i) be the number of digits of n that 

equal i.  Prove that  
 

110932 )9()8()2()1( +≤ naaaa L  
 
and determine all equality cases. 

Solution.  LAU Chun Ting (St. Paul’s 

Co-educational College, Form 2). 
 
Let f(n)=2a(1)3a(2)⋯9a(8)10a(9).  If n is a 

number with one digit, then f (n) = n+1. 

Suppose all numbers A with k digits 

satisfy the given inequality f (A) ≤ A+1. 

For any (k+1) digit number, it is of the 

form 10A+B, where A is a k digit number 

and 0 ≤ B ≤ 9. We have 

 

    f(10A+B) = (B+1) f(A) ≤ (B+1)(A+1) 

                    = (B+1)A+B+1 ≤ 10A+B+1. 

 

Equality holds if and only if f (A) = A+1 

and B = 9.  By induction, the inequality 

holds for all positive integers n and 

equality holds if and only if all but the 

leftmost digits of n are 9’s. 
 
Other commended solvers: CHAN Long 

Tin (Diocesan Boys’ School), LEE Tak 

Wing (Carmel Alison Lam Foundation 

Secondary School), Gordon MAN Siu 

Hang (CCC Ming Yin College) and 

YUNG Fai. 
 

Problem 367.  For n = 1,2,3,…, let xn and 

yn be positive real numbers such that  
2

12 ++ += nnn xxx  

and 

.1

2

2 ++ += nnn yyy  
 

If x1, x2, y1, y2 are all greater than 1, then 

prove that there exists a positive integer N 

such that for all n > N, we have xn > yn. 
 
Solution.  LAU Chun Ting (St. Paul’s 

Co-educational College, Form 2) and 

Gordon MAN Siu Hang (CCC Ming Yin 

College). 
 
Since x1, x2, y1, y2 are all greater than 1, by 

induction, we can get xn+1> xn
2 > 1 and 

yn+1> 1+yn > n for n ≥ 2.  Then xn+2 = 

xn+xn+1
2 > xn+1

2 > xn
4 and yn+2 = yn

2+yn+1 = 

yn
2+yn−1

2+yn < 3yn
2 < yn

3 for all n ≥ 4.  

 

Hence, log xn+2 > 4 log xn and log yn+2 < 3 

log yn. So for n ≥ 4, 

                .
log

log

3

4

log

log

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>

+

+

n

n

n

n

y

x

y

x           (*) 

 
As 4/3 > 1, by taking logarithm, we can 

solve for a positive integer k satisfying the 

inequality 

.1
log

log
,

log

log
min

3

4

5

5

4

4 >
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

y

x

y

x
k

 

   
Let N = 2k+3. If n > N, then either n = 

2m+4 or n = 2m+5 for some integer m ≥ k.  

 

Applying (*) m times, we have  
 

.1
log

log
,

log

log
min

3

4

log

log

5

5

4

4 >
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛>

y

x

y

x

y

x
m

n

n  

 
This implies xn > yn. 
 
Other commended solvers: LEE Tak 

Wing (Carmel Alison Lam Foundation 

Secondary School) and NGUYEN 

Van Thien (Luong The Vinh High 

School, Dong Nai, Vietnam). 

 

Problem 368.  Let C be a circle, A1, 

A2, …, An be distinct points inside C 

and B1, B2, …, Bn be distinct points on 

C such that no two of the segments 

A1B1, A2B2,…, AnBn intersect. A 

grasshopper can jump from Ar to As if 

the line segment ArAs does not intersect 

any line segment AtBt (t≠r,s).  Prove 

that after a certain number of jumps, 

the grasshopper can jump from any Au 

to any Av. 
 

 
Solution. William PENG. 
 
The cases n = 1 or 2 are clear.  Suppose n 

≥ 3.  By reordering the pairs Ai, Bi, we 

may suppose the convex hull of A1, 

A2, …, An is the polygonal region M with 

vertices A1, A2, …, Ak (k≤n). For 

1≤m≤k, if every AmBm intersects M only 

at Am, then the n-th case follows by 

removing two pairs of Am, Bm separately 

and applying case n −1. 

M

AI Ax

A1

AkAJ

Ay

Am

Bm
Dm

Bx

Dx

By

BI

BJ

Dy

 

Otherwise, there exists a segment AmBm 

intersecting M at more than 1 point. Let it 

intersect the perimeter of M again at Dm. 

Since AiBi’s do not intersect, so AjDj’s 

(being subsets of AiBi’s) do not intersect. 

In particular, Dm is not a vertex of M.  

 

Now AmDm divides the perimeter of M 

into two parts.  Moving from Am to Dm 

clockwise on the perimeter of M, there 

are points Ax, Dx such that there is no 

Dw between them. As Dx is not a vertex, 

there is a vertex AI between Ax and Dx. 

Then AIBI only intersect M at AI. Also, 

moving from Am to Dm anti-clockwise 

on the perimeter of M, there is AJ such 

that AJBJ only intersects M at AJ.  Then 

AIBI and AJBJ do not intersect any 

diagonal of M with endpoints different 

from AI and AJ. 
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Removing AI, BI and applying case n−1, 

the grasshopper can jump between any 

two of the points A1,…,AI−1, AI+1,…,An.  

Also, removing AJ, BJ and applying 

case n−1, the grasshopper can jump 

between any two of the points 

A1,…,AJ−1, AJ+1,…,An.  Using these two 

cases, we see the grasshopper can jump 

from any Au to any Av via At (t≠I,J).   
 
Other commended solvers: T. h. G. 

 

Problem 369.  ABC is a triangle with 

BC > CA > AB. D is a point on side BC 

and E is a point on ray BA beyond A so 

that BD=BE=CA.  Let P be a point on 

side AC such that E, B, D, P are 

concyclic.  Let Q be the intersection 

point of ray BP and the circumcircle of 

ΔABC different from B.  Prove that 

AQ+CQ=BP.  
 
Solution. CHAN Long Tin (Diocesan 

Boys’ School), Giorgos KALANTZIS 

(Demenica’s Public High School, 

Patras, Greece) and LAU Chun Ting 

(St. Paul’s Co-educational College, 

Form 2). 

CB

A

E

D

P Q

 
 
Since A,B,C,Q are concyclic and 

E,P,D,B are concyclic, we have  
 

∠AQC = 180°−∠ABC =∠EPD 

and  

∠PED=∠PBD =∠QAC. 
 
Hence, ΔAQC and ΔEPD are similar. 

So we have AQ/AC=PE/DE and 

CQ/AC = PD/DE. Cross-multiplying 

and adding these two equations, we get 
 
    (AQ+CQ)×DE = (PE+PD)×AC.  (*) 

 
For cyclic quadrilateral EPDB, by the 

Ptolemy theorem, we have 
 

BP×DE = PE×BD+PD×BE 

                      = (PE+PD)×AC         (**) 
 
Comparing (*) and (**), we have 

AQ+CQ=BP.  
 
Other commended solvers: LEE Tak 

Wing (Carmel Alison Lam Foundation 

Secondary School). 
 
 
 

Problem 370.  On the coordinate plane, at 

every lattice point (x,y) (these are points 

where x, y are integers), there is a light.  At 

time t = 0, exactly one light is turned on. 

For n = 1, 2, 3, …, at time t = n, every light 

at a lattice point is turned on if it is at a 

distance 2005 from a light that was on at 

time t = n − 1.  Prove that every light at a 

lattice point will eventually be turned on 

at some time. 
 
Solution. LAU Chun Ting (St. Paul’s 

Co-educational College, Form 2), LEE 

Tak Wing (Carmel Alison Lam 

Foundation Secondary School),  Gordon 

MAN Siu Hang (CCC Ming Yin College) 

and Emanuele NATALE (Università di 

Roma “Tor Vergata”, Roma, Italy). 
 
We may assume the light that was turned 

on at t = 0 was at the origin. 
 
Let z = 2005 = 5×401 = (22+12)(202+12) = 

|(2+i)(20+i)|2 = |41+22i|2 = 412+222. Let x 

= 412−222=1037 and y =2×41×22 = 1716. 

Then x2+y2 = z2. 
 
By the Euclidean algorithm, we get 

gcd(1037, 1716) = 1.  By eliminating the 

remainders in the calculations, we get 

84×1716−139×1037=1.  
 
Let V1, V2, V3, V4, V5 be the vectors from 

the origin to (2005,0), (1037, 1716), (1037, 

−1716), (1716, 1037), (1716, −1037) 

respectively. We have V2 + V3 = (2×1037,0) 

and V4 + V5 = (2×1716,0). Then we can get 

(1,0) =1003[84(V4+V5)−139(V2+V3)]−V1. 

 

So, from the origin, following these vector 

movements, we can get to the point (1,0). 

Similarly, we can get to the point (0,1).  

As (a,b) = a(1,0) + b(0,1), we can get to 

any lattice point. 
 

 
 

Olympiad Corner 
  (continued from page 1) 

 

Problem 4.  Let n be a fixed positive odd 

integer. Take m+2 distinct points P0, 

P1, …, Pm+1 (where m is a non-negative 

integer) on the coordinate plane in such a 

way that the following 3 conditions are 

satisfied: 
 
(1)  P0=(0,1), Pm+1=(n+1,n), and for each 

integer i, 1 ≤ i ≤ m, both x- and y- 

coordinates of Pi are integers lying in 

between 1 and n (1 and n inclusive). 
 
(2)  For each integer i, 0 ≤ i ≤ m, PiPi+1 is 

parallel to the x-axis if i is even, and is 

parallel to the y-axis if i is odd.  
  

(3)  For each pair i,j with 0 ≤ i < j ≤ m, 

line segments PiPi+1 and PjPj+1 share at 

most 1 point. 

 

Determine the maximum possible 

value that m can take. 
 
Problem 5.  Find all functions f:ℝ→ℝ, 

where ℝ is the set of all real numbers, 

satisfying the following 2 conditions: 
 
(1)  There exists a real number M such 

that for every real number x, f(x) < M is 

satisfied. 
 
(2)  For every pair of real numbers x 

and y,  f (x f (y)) + y f (x) = x f (y) + f (xy) 

is satisfied.  

 

 
 

Harmonic Series (II) 
  (continued from page 2) 

 

Solution  By Wolstenholme’s theorem, 
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where x, y are integers with y not 

divisible by p.  So we have 
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which implies ap−b = p3bx/y.  Finally, 
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and the numerator of the right side is of 

the form mp+(p−1)!.  Hence, it is not 

divisible by p. So p | b and p4 | p3bx/y = 

ap−b.  

 

Example 13:  Let p be an odd prime, 

then prove that 
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Solution The proof is not hard. Indeed, 
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Olympiad Corner 
 
Below are the problems of the 28th 

Balkan Math Olympiad, which was 

held in May 6, 2011. Time allowed 

was 4½ hours. 
 

Problem 1.  Let ABCD be a cyclic 

quadrilateral which is not a trapezoid 

and whose diagonals meet at E. The 

midpoints of AB and CD are F and G 

respectively, and ℓ is the line through G 

parallel to AB. The feet of the 

perpendiculars from E onto the lines ℓ 
and CD are H and K, respectively. 

Prove that the lines EF and HK are 

perpendicular. 
 

Problem 2.  Given real numbers x, y, z 

such that x+y+z = 0, show that  
 

.0
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222
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z
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When does equality hold? 

 

Problem 3.  Let S be a finite set of 

positive integers which has the 

following property: if x is a member of 

S, then so are all positive divisors of x. 

A non-empty subset T of S is good if 

whenever x, y ∈T and x < y, the ration 

y/x is a power of a prime number.  
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      A graph G is consisted of a 

nonempty set V(G) (its elements are 

called vertices) and a set E(G) (its 

elements are called edges), where an 

edge is to be thought of as a continuous 

curve joining a vertex u in V(G) to a 

vertex v in V(G). A graph G is finite if 

and only if V(G) is a finite set. It is 

simple if and only if each edge in E(G) 

joins some pair of distinct vertices in 

V(G) and no other edge joins the same 

pair. In this article, all graphs are 

understood to be finite and simple. 
 

      A graph is connected if and only if 

for every pair of distinct vertices a, b, 

there is a sequence of edges e1, e2, …, en 

such that for i from 1 to n, edge ei joins 

vi and vi+1 with v1 = a and vn+1 = b. A 

graph is planar if and only if it can be 

drawn on a plane with no pair of edges 

intersect at any point other than a vertex 

of the graph. A planar graph divides the 

plane into regions (bounded by edges) 

called faces.  
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   In the graph above, there are 7 vertices 

(labeled v1 to v7), 9 edges (labeled e1 to 

e9) and 4 faces (the 3 triangular regions 

and the outside region bounded by e1, e5, 

e7, e8, e9, e6, e3, e2, e1). The following 

theorem due to Euler relates the number 

of vertices, the number of edges and the 

number of regions for a connected 

planar graph and is the key tool in 

solving some interesting problems.   
 
Euler’s Theorem on Planar Graphs  
 
Let V, E, F denote the number of 

vertices, the number of edges, the 

number of faces respectively for a 

connected planar (finite simple) graph. 

Then V − E + F = 2, which we will 

called Euler’s formula. 

   We will sketch the usual mathematical 

induction proof on E. If E = 0, then since 

V(G) is nonempty and G is connected, 

we have V = 1 and F = 1. So V−E+F=2. 

Also, if E =1, then V = 2, F =1 and again 

the formula is true. 
 

    Suppose the cases E < k are true. For 

the case E=k, either there is a cycle (that 

is a sequence of edges e1, e2, …, en such 

that for i from 1 to n, edge ei joins vi and 

vi+1 with v1 = vn+1) or no cycle.  
 

    In the former case, removing en will 

result in a connected graph with E 

decreases by 1, V stays the same and F 

decreases by 1 (since the two regions 

sharing en in their boundaries will 

become one). The formula still holds.  
 

    In the latter case, we call these graphs 

trees. It can be proved that they satisfy 

E=V−1 and F=1 (which implies Euler’s 

formula). Basically, removing any edge 

will split such a graph into two 

connected graphs with each having no 

cycle. This observation would allow us 

to do the induction on E.  

 

   Before presenting some examples, we 

remark that Euler’s formula also applies 

to convex polyhedrons.  These are the 

boundary surfaces of three dimensional 

convex solids obtained by intersecting 

finitely many (half-spaces on certain 

sides of) planes. For example, take the 

surface of a cube, V=8, E=12, F=6 so 

that V − E + F = 2. For any convex 

polyhedron, we can obtain a connected 

planar graph by choosing a face as base, 

stretching the base sufficiently big and 

taking a top view projection onto the 

plane containing the base. The 

following is a cube and a planar graph 

for its boundary surface.  
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Example 1.  There are n > 3 points on a 

circle.  Each pair of them is connected 

by a chord such that no three of these 

chords intersect at the same point 

inside the circle.  Find the number of 

regions formed inside the circle.  
 
Solution.  Removing the n arcs on the 

circle, we get a simple connected 

planar graph, where the vertices are the 

n points on the circle and the 

intersection points inside the circle.  

For every 4 of the n points, we can 

draw two chords intersecting at a point 

inside the circle.  So the number of 

vertices is V = n + nC4.  
 
Since there are n−1 edges incident with 

each of the n points on the circle, 4 

edges incident with every intersection 

point inside the circle and each edge is 

counted twice, so the number of edges 

is E = (n(n−1)+4 nC4)/2.  
 
By Euler’s formula, the number of 

faces for this graph is F = 2 − V + E. 

Excluding the outside face and adding 

the n regions having the n arcs as 

boundary, the number of regions inside 

the circle is F − 1 + n = n + 1−V + E = 

1+ nC4+ n(n−1)/2. 

 

For the next few examples, we define 

the degree of a vertex v in a graph to be 

the number of edges meeting at v. 

Below d(v) will denote the degree of v. 

The sum of degrees of all vertices 

equals twice the number of edges since 

each edge is counted twice at its two 

endponts. 
 

Example 2. A square region is 

partitioned into n convex polygonal 

regions.  Find the maximal number of 

edges in the figure. 
 
Solution.  Let V, E, F be the number of 

vertices, edges, faces respectively in 

the graph.  Euler’s formula yields  
 
 n+1 = F = 2−V+E   or   V= E + 1− n.   
 
Let A, B, C, D be the vertices of the 

square, then t = d(A) + d(B) + d(C) + 

d(D) ≥ 8 as each term is at least 2.  

 

Let W be the set of vertices inside the 

square. For any v in W, we have d(v) ≥ 

3 since angles of convex polygons are 

less than 180°.  Let s be the sum of d(v) 

for all v in W.  Since there are V−4 

vertices in W, we have s ≥ 3(V−4).  
 
Now summing degree of all vertices, 

we get s + t = 2E.  Then 
 
2E−8 ≥ 2E− t = s ≥ 3(V−4) =3(E−3−n), 

which simplifies to E ≤ 3n+1. 

 

Finally, the case E = 3n+1 is possible by 

partitioning the square region into n 

rectangles using n − 1 line segments 

parallel to a side of the square.  So the 

maximum possible value of E is 3n+1.   

 

Example 3. (2000 Belarussian Math 

Olympiad)  In a convex polyhedron with 

m triangular faces (and possibly faces of 

other shapes), exactly four edges meet at 

each vertex.  Find the minimum possible 

value of m. 
 
Solution.  Let V, E, F be the number of 

vertices, edges, faces respectively on such 

a polyhedron.  Since each vertex is met by 

4 distinct edges, summing all degrees, we 

have 2E = 4V.  
 
Next, summing the number of edges in the 

F faces and observing that each edge is 

counted twice on the 2 faces sharing it, we 

get 2E ≥ 3m+4(F−m).   
 
By Euler’s formula, we have 
 
2 = V − E + F = (E/2) − E +F =F − E/2, 
 
which implies  
 

4F − 8 = 2E  ≥  3m + 4(F−m). 
 
This simplifies to m ≥ 8. A regular 

octahedron is an example of the case m = 

8. So the minimum possible m is 8. 

 

Example 4. (1985 IMO proposal by 

Federal Republic of Germany)  Let M be 

the set of edge-lengths of an octahedron 

whose faces are congruent quadrilaterals.  

Prove that M has at most three elements. 
 
Solution.  The octahedron has (4×8)/2=16 

edges.  By Euler’s formula, it has V = 2 + 

E − F = 2 + 16 − 8 = 10 vertices.  
 
Next, let ni be the number of vertices v 

with d(v) = i.  Then, counting vertices and 

edges respectively in terms of ni’s, we 

have  
 

V = n3 + n4 + n5 + ⋯ = 10 

and  

2E = 3n3 + 4n4 + 5n5 + ⋯ = 2×16. 
 
Eliminating n3, we get  
 

n4 + 2n5 + 3n6 + ⋯ = 2. 
 
Hence, n4 ≤ 2, n5 ≤ 1 and ni = 0 for i ≥ 6. 

Then n3 = 10 − n4− n5 > 0.  
 
Let A be a vertex with degree 3.  Assume 

M has 4 distinct elements a, b, c, d.  Then 

the 3 faces about A are like the figure 

below, where we may take AB = a, BC = b, 

CD = c and DA = d.  

a

b

c

dA

B C

D

F

G

E

 

Since ABCD and ABGF are congruent, 

so AF = b or d.  Also, since ABCD and 

AFED are congruent, so AF = a or c. 

Hence, two of a, b, c, d must be equal, 

contradiction.  Therefore, M has at 

most 3 elements. 

 

Example 5.  Let n be a positive integer. 

A convex polyhedron has 10n faces. 

Prove that n of the faces have the same 

number of edges.  
 
Solution. Let V be the number of 

vertices of this polyhedron. For the 10n 

faces, let these faces be polygons with 

a1, a2, …, a10n sides respectively, where 

the ai’s are arranged in ascending order . 

Then the number of edges of the 

polyhedron is E = (a1 + a2 + ⋯ + a10n)/2. 

By Euler’s formula, we have 

    .210
2

21 =+
+++

− n
aaa

V nL    (*) 

Also, since the degree of every vertex 

is at least 3, we get   

              a1+a2+⋯+a10n  ≥ 3V.        (**) 
  
Using (*) and (**), we can eliminate V 

and solve for a1+a2+⋯+a10n to get 
 

     a1+a2+⋯+a10n  ≤  60n −12.    (***) 
 

Assume no n faces have equal number 

of edges.  Then we have a1, a2, …, an−1 

≥ 3,  an, an+1, …, a2n−2 ≥ 4 and so on. 

This leads to  

            a1 + a2 + ⋯ + a10n 

       ≥  (3 + 4 + ⋯ + 12)(n−1) + 13×10 

       =  75n + 55. 
 
Comparing with (***), we get 75n + 55 

≤  60n −12, which is false for n. 
 

Example 6. (1975 Kiev Math 

Olympiad and 1987 East German 

Math Olympiad) An arrowhead is 

drawn on every edge of a convex 

polyhedron H such that at every vertex, 

there are at least one arrowhead 

pointing toward the vertex and another 

arrowhead pointing away from the 

vertex.  Prove that there exist at least 

two faces of H, the arrowheads on each 

of its boundary form a (clockwise or 

counterclockwise) cycle. 
 

  (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is November 10, 2011. 
 

Problem 376.  A polynomial is monic 

if the coefficient of its greatest degree 

term is 1.  Prove that there exists a 

monic polynomial f(x) with integer 

coefficients such that for every prime p, 

f(x) ≡ 0 (mod p) has solutions in 

integers, but f(x) = 0 has no solution in 

integers.  
  

Problem 377.  Let n be a positive 

integers.  For i=1,2,…,n, let zi and wi be 

complex numbers such that for all 2
n
 

choices of ε1, ε2, …, εn equal to ±1, we 

have  

.
11

∑∑
==

≤
n

i

ii

n

i

ii wz εε  

Prove that ∑ ∑
= =

≤
n

i

n

i

ii wz
1 1

22 .||||  

 

Problem 378.  Prove that for every 

positive integers m and n, there exists a 

positive integer k such that 2
k −m has at 

least n distinct positive prime divisors. 

 

Problem 379.  Let ℓ be a line on the 

plane of ∆ABC such that ℓ does not 

intersect the triangle and none of the 

lines AB, BC, CA is perpendicular to ℓ. 
 
Let A’, B’ C’ be the feet of the 

perpendiculars from A, B, C to ℓ 
respectively.  Let A’’, B”, C” be the 

feet of the perpendiculars from A’, B’, 

C’ to lines BC, CA, AB respectively.  
 
Prove that lines A’A”, B’B”, C’C” are 

concurrent.  

 

Problem 380.  Let S = {1,2,…,2000}. 

If A and B are subsets of S, then let |A| 

and |B| denote the number of elements 

in A and in B respectively.  Suppose the 

product of |A| and |B| is at least 3999. 

Then prove that sets A−A and B−B 

contain at least one common element, 

where X−X denotes {s−t : s, t ∈ X and 

s ≠ t}. 
 

 

***************** 

Solutions 

**************** 
 

Problem 371.  Let a1, a2, a3, … be a 

sequence of nonnegative rational numbers 

such that  am+an= amn for all positive 

integers m, n.  Prove that there exists two 

terms that are equal. 
  
Solution.  U. BATZORIG (National 

University of Mongolia), CHUNG Kwan 

(King’s College) and F7B Pure Math 

Group (Carmel Alison Lam Foundation 

Secondary School). 
 

Let p and q be distinct primes.  If ap and aq 

are zeros, then we are done.  Otherwise, 

consider  
 

,pq NaNa
qnandpm ==  

 
where N is a positive integer that makes 

both Naq and Nap integers.  Obviously, we 

have m ≠ n and 
 

.)()( nqppqm aaNaaNaa ===  

 
Other commended solvers: Samuel Liló 

ABDALLA (ITA-UNESP, São Paulo, 

Brazil). 
 

Problem 372. (Proposed by Terence ZHU) 

For all a,b,c > 0 and abc=1, prove that 
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Solution.  V. ADIYASUREN (National 

University of Mongolia) and B. SANCHIR 

(Mathematics Institute of the National 

University of Mongolia), F7B Pure Math 

Group (Carmel Alison Lam Foundation 

Secondary School) and Kipp JOHNSON 

(Valley Catholic School, Teacher, 

Beaverton, Oregon, USA). 

 

Substituting a = z/y, b = x/z, c = y/x (say by 

choosing x=ab=1/c, y=1, z=a) into the 

inequality and simplifying, we get  
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Let g(x,y,z) = y
2
(z

2 
+ zy + x

2 
+ xy).  By the 

Cauchy-Schwarz inequality, we have 
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Expanding and factorizing, we get 
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This implies (*), which implies the 

desired inequality. 
 
Other commended solvers: CHUNG 

Kwan (King’s College), NGUYEN 

Van Thien (Luong The Vinh High 

School, Dong Nai, Vietnam) and Paolo 

PERFETTI (Math Dept, Università 

degli studi di Tor Vergata Roma, via 

della ricerca scientifica, Roma, Italy). 

 

Problem 373.  Let x and y be the sums 

of positive integers x1,x2,…,x99 and  

y1,y2,…,y99 respectively. Prove that 

there exists a 50 element subset S of 

{1,2,…,99} such that the sum of all xn 

with n in S is at least x/2 and the sum of 

all yn with n in S is at least y/2.  
  
Solution. William Peng and Jeff Peng. 
 
Arrange the numbers x1,x2,…,x99 in 

descending order, say xn(1) ≥ xn(2) ≥ ⋯≥ 

xn(99) so that  
 
{n(1), n(2),…, n(99)} = {1,2,…,99}. 

 

Let A = {n(2), n(4),…, n(98)} and B = 

{n(3), n(5), …, n(99)}. We have  
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So the sum of all xn with n in S is at 

least x/2 and the sum of all yn with n in 

S is at least y/2.  
 

If ,∑∑
∈∈

<
Bj

j

Ai

i yy then let S =B∪{n(1)}. 

Again S has 50 elements.  Now 
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So the sum of all xn with n in S is at 

least x/2 and the sum of all yn with n in 

S is at least y/2.  
 
Other commended solvers: U. 

BATZORIG (National University of 

Mongolia) and F7B Pure Math 

Group (Carmel Alison Lam 

Foundation Secondary School), 

 

Problem 374.  O is the circumcenter of 

acute ∆ABC and T is the circumcenter 

of ∆AOC.  Let M be the midpoint of 

side AC. On sides AB and BC, there are 

points D and E respectively such that 

∠BDM=∠BEM=∠ABC.  Prove that 

BT⊥DE.  
 
Solution. William Peng and Jeff 

Peng. 

X

B

Y

T

A C
M

OD E

 
 
By the exterior angle theorem, ∠ABC 

= ∠BDM  > ∠BAM and also∠ABC = 

∠BEM  > ∠BCM. So ∠ABC is the 

largest angle in ∆ABC.  Then we have 

60° < ∠ABC < 90°.  This implies O is 

on the same side of line AC as B.  Then 

T will be on the opposite side of line 

AC as O.  Also, O, M, T are on the 

perpendicular bisector of line AC.  
 
Let X be the intersection of lines AB 

and ME.  Let Y be the intersection of 

lines CB and MD. Now 
 
    ∠DXE = 180°− ∠XBE −∠BEX  

                = 180°− 2∠ABC 
 
and similarly∠EYD  =180°− 2∠ABC. 

So ∠DXE =∠EYD, which implies D, 

X, Y, E are concyclic. 

Next, since T is the circumcenter of 

∆AOC, so 
 
         ∠ATM  =∠ATO = 2∠ACO  

                       = 2(90°−∠BXE)  

                       = 180°− 2∠ABC  

                       = ∠BXE =∠AXM.  
 
This implies A, M, T, X are concyclic.  So 

∠AXT = 180°− ∠AMT = 90°.  Similarly, 
∠CYT = 90°.  Then ∠BXT = ∠BYT, 

which implies B, X, T, Y are concyclic.  So 
 
        ∠TBY =∠TXY = 90°−∠BXY.  (*) 
 
Since D, X, Y, E are concyclic, 
 
              ∠BED +∠TBE  

            =∠BXY +∠TBY    

            =  90°                by (*), 
 
which implies BT⊥DE. 
 
Other commended solvers: F7B Pure 

Math Group (Carmel Alison Lam 

Foundation Secondary School), 
 

Problem 375.  Find (with proof) all odd 

integers n > 1 such that if a, b are divisors 

of n and are relatively prime, then a+b−1 

is also a divisor of n. 
 
Solution. U. BATZORIG (National 

University of Mongolia), William Peng 

and Jeff Peng. 
 
For such odd n, let p be its least prime 

divisor.  Then n = p
m
a, where m is the 

exponent of p in the prime factorization of 

n.  We will show a = 1.  
 
Assume a > 1.  Then every prime divisors 

of a is at least p+2.  Also c = a+p−1 (> p) 

is a divisor of n. Since 
 
 gcd(c,a) = gcd(c−a,a) = gcd(p−1,a) = 1,  
 
this implies c=p

r
 with r ≥ 2.  Then d = 

a+p
2−1 (> p

2
) is also a divisor of n. 

Similarly,  
  
 gcd(d,a) = gcd(d−a,a)= gcd(p

2−1,a)= 1. 
 
So d=p

s
 with s ≥ 3.  Finally, p

r−p = c−p = 

a−1= d−p
2
, which is divisible by p

2
, while 

p
r−p is not.  Therefore, a = 1.  

 

It is easy to check all n=p
m
 with p an odd 

prime and m a positive integer indeed 

satisfy the condition. 

 

 

Olympiad Corner 
 (continued from page 1) 

 

Problem 3. (Cont.)  A non-empty subset 

T of S is bad if whenever x, y ∈T and x < y, 

the ration y/x is not a power of a prime 

number.  We agree that a singleton 

subset of S is both good and bad.  Let k 

be the largest possible size of a good 

subset of S.  Prove that k is also the 

smallest number of pairwise-disjoint 

bad subsets whose union is S. 
 
Problem 4.  Let ABCDEF be a convex 

hexagon of area 1, whose opposite 

sides are parallel.  The lines AB, CD 

and EF meet in pairs to determine the 

vertices of a triangle.  Similarly, the 

lines BC, DE and FA meet in pairs to 

determine the vertices of another 

triangle.  Show that the area of one of 

these two triangles is at least 3/2. 

 

 
 

Euler’s Planar Graph Formula 
 

 (continued from page 2) 

 

 Solution.  Call {a,b} a hook if a, b are 

two consecutive edges on the boundary 

of some face of H.  Call a hook {a,b} 

traversible if the arrowheads on a and 

b are both counterclockwise or both 

clockwise. 
 
Note every hook is part of the 

boundary of a unique face.  Let E be 

the number of edges on H and h be the 

number of hooks on H.  As each edge 

on H is a part of 4 hooks, we get h = 2E.  
 
Next at every vertex v, d(v) ≥ 3.  By the 

given condition on the vertices, there 

must be at least 2 traversible hooks 

through every vertex.  Let V be the 

number of vertices on H, then there are 

at least 2V traversible hooks on H. 
 
Let h+ and h− be the number of 

traversible and non-traversible hooks 

respectively on H.  Then h+ ≥ 2V.  
 
In every face where the boundary 

arrowheads do not form a cycle, there 

are at least two changes in directions 

on the boundary, which result in at least 

two non-traversible hooks.  Let F be 

the number of faces on H.  Let f+ be the 

number of faces the boundary 

arrowheads form cycles.  Let f−=F−f+. 

Then h− ≥ 2f−. 
 
By Euler’s formula, V− E + F = 2. Then 
 
            2f+ = 2F − 2f− 

                  = (4 + 2E − 2V) − 2f− 

                  ≥ 4 + h − h+ − 2f− 

                  = 4 + h− − 2f−  ≥  4,  
 
which implies f+  ≥  2.  This gives the 

desired conclusion. 
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Olympiad Corner 
 
Below are the problems of the 2011 

International Math Olympiad.  
 

Problem 1.  Given any set A={a1, a2, 

a3, a4} of four distinct positive integers, 

we denote the sum a1+a2+a3+a4 by sA.  

Let nA denote the number of pairs (i,j) 

with 1≤i<j≤4 for which ai+aj divides 

sA.  Find the sets A of four distinct 

positive integers which achieve the 

largest possible value of nA. 
 

Problem 2.  Let S be a finite set of at 

least two points in the plane. Assume 

that no three points of S are collinear.  

A windmill is a process that starts with 

a line ℓ going through a single point P 

∊S.  The line rotates clockwise about 

the pivot P until the first time that the 

line meets some other point belonging 

to S.  This point, Q, takes over as the 

new pivot, and the line now rotates 

clockwise about Q, until it next meets a 

point of S.  This process continues 

indefinitely. 

 

Show that we can choose a point P in S 

and a line ℓ going through P such that 

the resulting windmill uses each point 

of S as a pivot infinitely many times. 
 

    (continued on page 4) 
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The 52nd IMO was held in Amsterdam, 

Netherlands, on 12-24, July, 2011. 

Contestants took two 4½ hour exams 

during the mornings of July 18 and 19. 

Each exam was consisted of 3 problems 

of varying degree of difficulty.  The 

problems were first shortlisted by the 

host country, selected from problems 

submitted earlier by various countries.  

Leaders from 101 countries then picked 

the 2011 IMO problems (see Olympiad 

Corner). Traditionally an easy pair was 

selected (Problems 1 and 4), then a hard 

pair (Problems 3 and 6), with Problem 6 

usually selected as the “anchor 

problem”, and finally the intermediate 

pair (Problems 2 and 5).  I would like to 

discuss first the problems selected, aim 

to provide something extra besides 

those which were provided by the 

solutions.  However I would discuss the 

problems by slightly different grouping.

 
Problems 1 and 4 
 
First the easy pair, problems 1 and 4. 

The problem selection committee 

thought that both problems were quite 

easy.  It was nice to select one as a 

problem of the contest.  But if both 

problems were selected, then the paper 

would be too easy (or even disastrous). 

Indeed eventually both problems were 

selected.  But it was not enough for 

anyone to get a bronze medal even if he 

could solve both problems (earning 14 

points) as the cut-off for bronze was 16. 

 

In my opinion problem 1 is the easier of 

the pair.  Indeed we may without loss of 

generality assume a1 < a2 < a3 < a4.  So if 

the sum of one pair of the ai’s divides sA, 

then it will also divide the sum of the 

other pair.  But clearly a bigger pair 

cannot divide a smaller pair, so it is 

impossible that a3 + a4 dividing a1 + a2, 

nor is it possible that a2 + a4 dividing a1 

+ a3.  Therefore the maximum possible 

value of nA can only be 4.  To achieve 

this, it suffices to consider divisibility 

conditions among the other pairs. 

Now as we need a1 + a4 dividing a2 + a3 

and also a2 + a3 dividing a1 + a4, we 

must have a1 + a4 = a2 + a3.  Putting a4= 

a2+a3−a1 into the equations a3 + a4 = 

m(a1 + a2) and a2 + a4 = n(a1 + a3) with m 

> n > 1, we eventually get (m,n) = (3,2) 

or (4,2).  Finally we get (a1, a2, a3, a4) = 

(k, 5k, 7k, 11k) or (k, 11k, 19k, 29k), 

where k is a positive integer.  As the 

derivation of the answers is rather 

straight-forward, it does not pose any 

serious difficulty. 

 

For problem 4, it is really quite easy if 

one notes the proper recurrence relation. 

Indeed the weights 20, 21, 22, …, 2n−1 

form a “super-increasing sequence”, 

any weight is heavier than the sum of all 

lighter weights. Denote by f(n) the 

number of ways of placing the weights. 

We consider first how to place the 

lightest weight (weight 1). Indeed if it is 

placed in the first move, then it has to be 

in the left pan.  However if it is placed in 

the second to the last move, then it 

really doesn’t matter where it goes, 

using the “super-increasing property”. 

Hence altogether there are 2n−1 

possibilities of placing the weight of 

weight 1.  Now placing the weights 21, 

22, …, 2n−1  clearly is the same as 

placing the weights 20, 21, …, 2n−2. 

There are f(n−1) ways of doing this. 

Thus we establish the recurrence 

relation f(n) = (2n−1)f(n−1).  Using f(1) 

= 1, by induction, we get  
 

f(n) = (2n −1)(2n −3)(2n −5)⋯1. 
 
The problem becomes a mere exercise 

of recurrence relation if one notices how 

to place the lightest weight (minimum 

principle).  

 

It is slightly harder if we consider how 

to place the heaviest weight.  Indeed if 

the heaviest weight is to be placed in the 

ith  move, then it has to be  placed  in  the 

left pan.  There  are   
1

1

n

i

−⎛ ⎞
⎜ ⎟−⎝ ⎠

   ways  of  
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choosing the previous i−1 weights and 

there are f(i−1) ways of placing them. 

After the heaviest weight is placed, it 

doesn’t matter how to place the other 

weights, and there are (n−i)!×2n−i ways 

of placing the remaining weights. Thus 

1

1
( ) ( 1)( )!2 .

1

n
n i

i

n
f n f i n i

i

−

=

−⎛ ⎞
= − −⎜ ⎟−⎝ ⎠
∑  

Replacing n by n −1 and by comparing 

the two expressions we again get f(n) = 

(2n−1)f(n−1). We have no serious 

difficulty with this problem. 

 

Problems 3 and 5 
 
In my opinion both problems 3 and 5 

were of similar flavor. Both were 

“functional equation” type of problems. 

Problem 3 was slightly more involved 

and problem 5 more number theoretic. 

One can of course put in many values 

and obtain some equalities or 

inequalities.  But the important thing is 

to substitute some suitable values so 

that one can derive important relevant 

properties that can solve the problem. 

 

In problem 5, indeed the condition 

f(m−n) | (f(m) − f(n)) (*) poses very 

serious restrictions on the image of f(x). 

Putting n=0, one gets f(m) | (f(m) − f(0)), 

thus f(m) | f(0).  Since f(0) can only 

have finitely many factors, the image 

of f(x) must be finite.  Putting m=0, one 

gets f(−n) | f(n), and by interchanging n 

and −n, one gets f(n) = f(−n).  Now f(n) 

| (f(2n) − f(n)), hence f(n) |  f(2n), and 

by induction f(n) | f(mn).  Put n = 1 into 

the relation.  One gets f(1) | f(m).  The 

image of f(x) is therefore a finite 

sequence f(1) = a1< a2< ⋯ < ak = f(0). 

One needs to show ai | ai+1. To 

complete the proof, one needs to 

analyze the sequence more carefully, 

say one may proceed by induction on k. 

But personally I like the following 

argument.  Let f(x) = ai and f(y) = ai+1. 

We have f(x−y) | (f(y) − f(x)) < f(y) and 

f(y) − f(x) is positive, hence f (x − y) is 

in the image of f(x) and therefore f(x−y) 

≤ ai= f(x).  Now if f(x−y) < f(x), then f(x) 

− f(x −y) > 0.  Thus f(y) = f(x−(x−y)) | 

(f(x) − f(x −y)). 

In this case the right-hand side is 

positive. We have f(y) ≤ f(x) − f(x −y)) < 

f(x) < f(y), a contradiction.  So we have 

f(x−y) = f(x).  Thus f(x) | f(y) as needed. 

 

It seems that Problem 3 is more 

involved.  However, by making useful 

and clever substitutions, it is possible 

to solve the problem in a relatively 

easy way. The following solution 

comes from one of our team members.  

Put y = z−x into the original equation 

f(x+y) ≤ yf(x) + f(f(x)), one gets f(z) ≤ z 

f(x) − xf (x) + f( f(x)). By letting z = f(k) in 

the derived inequality one gets f(f(k)) ≤ 

f(k) f(x) − xf (x) + f( f(x)). 

Interchanging k and x one then gets f(f(x)) 

≤ f(k) f(x) − kf (k) + f( f(k)). Hence  
 
         f(x+y) ≤ y f(x) +  f( f(x))  

                    ≤  f(x)f(k) −kf(k) + f(f(k)). 
 
Letting y =f(k) − x in the inequality, we get 
 
     f(f(k)) ≤ f(k) f(x) − xf (x) + 

                        f(k) f(x) − kf (k) + f( f(k)) 
 
or 0 ≤ 2 f(k) f(x) − xf(x) −k f(k). Finally 

letting k = 2 f(x) and simplifying, we 

arrive at the important and essential 

(hidden) inequality 0 ≤ −xf(x). This means 

for x > 0, f(x) ≤ 0, and for x < 0, f(x) ≥ 0. 

But if there is an x0 < 0 such that f(x0) > 0, 

then putting x = x0 and y = 0 into the 

original equation, we gets 0<f(x0) ≤ f(f(x0)). 

However if f(x0) > 0, then f(f(x0)) ≤ 0, 

hence a contradiction. This means for all  

x < 0, f(x) = 0. Finally one has to prove f(0) 

= 0. We suppose first f(0) > 0. Put x = 0 

and y < 0 sufficiently small into the 

original equation, one gets f(y) < 0, a 

contradiction. Suppose f(0) < 0. Take x, y 

< 0. We get 
 

 0 = f(x+y) ≤ y f(x) +  f( f(x)) 

= y f(x) + f(0) = f(0) < 0, 
 

again contradiction! This implies f(0) = 0. 

 

Problem 2  
 
To me, problem 2 was one of a kind.  The 

problem was considered as “intermediate” 
and should not be too hard.  However at 

the end only 21 out of 564 contestants 

scored full marks. It was essentially a 

problem of computational geometry.  We 

know that if there is a line that goes 

through two or more of the points and 

such that all other points are on the line or 

only on one side of the points, then by 

repeatedly turning angles as indicated in 

the problem, the convex hull of the point 

set will be constructed (so-called Jarvis’ 

march). Therefore some points may be 

missed.  So in order to solve the problem, 

we cannot start from the “boundary”. 

Thus it is natural that we start from the 

“center”, or a line going through a point 

that separates the other points into equal 

halves (or differ by one). Indeed this idea 

is correct. The hard part is how to 

substantiate the argument. Many 

contestants found it hard. Induction 

argument does not work because adding 

or deleting one point may change the 

entire route. The proposer gives the 

following “continuity argument”.  We 

consider only the case that there are an 

odd number of points on the plane. Let 

l be a line that goes through one of the 

points and that separates the other 

points into two equal halves.  Note that 

such line clearly exists. Color one 

half-plane determined by the line 

orange (for Netherlands) and the other 

half-plane blue.  The color of the plane 

changes accordingly while the line is 

turning.  Note also that when the line 

moves to another pivot, the number of 

points on the two sides remain the 

same, except when two points are on 

the line during the change of pivots. So 

consider what happen when the line 

turns 180°, (turning while changing 

pivots).  The line will go through the 

same original starting point. Only the 

colors of the two sides of the line 

interchange!  This means all the points 

have been visited at least once!  A 

slightly modified argument works for 

the case there are an even number of 

points on the plane.  
 
Problem 6 
 
This was the most difficult problem of 

the contest (the anchor problem), only 

6 out of more than 564 contestants 

solved the problem.  Curiously these 

solvers were not necessarily from the 

strongest teams.  The problem is hard 

and beautiful, and I feel that it may be a 

known problem because it is so nice. 

However, I am not able to find any 

further detail.  It is not convenient to 

reproduce the full solution here.  But I 

still want to discuss the main idea used 

in the first official solution briefly.  

 

From ΔABC and the tangent line L at T, 

we produce the reflecting lines La, Lb, 

and Lc.  The reflecting lines meet at A”, 

B” and C” respectively.  Now from A, 

we draw a circle of radius AT, meeting 

the circumcircle γ of ABC at A’. 

Likewise we have BT=BB’ and 

CT=CC’ (see the figure).  
 
 
 

  (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is February 28, 2012. 
 

Problem 381.  Let k be a positive 

integer. There are 2k balls divided into 

a number of piles. For every two piles 

A and B with p and q balls respectively, 

if p ≥ q, then we may transfer q balls 

from pile A to pile B. Prove that it is 

always possible to make finitely many 

such transfers so as to have all the balls 

end up in one pile.   
  

Problem 382. Let v0 = 0, v1 = 1 and  
 

vn+1 = 8vn−vn−1   for n = 1,2,3,…. 
 
Prove that vn is divisible by 3 if and 

only if vn is divisible by 7. 
 

Problem 383. Let O and I be the 

circumcenter and incenter of ΔABC 

respectively. If AB≠AC, points D, E are 

midpoints of AB, AC respectively and 

BC=(AB+AC)/2, then prove that the 

line OI and the bisector of ∠CAB are 

perpendicular.   

 

Problem 384. For all positive real 

numbers a,b,c satisfying a + b + c = 3, 

prove that 
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Problem 385. To prepare for the IMO, 

in everyday of the next 11 weeks, Jack 

will solve at least one problem. If every 

week he can solve at most 12 problems, 

then prove that for some positive 

integer n, there are n consecutive days 

in which he can solve a total of 21 

problems.  
 

***************** 

Solutions 

**************** 
 

Problem 376.  A polynomial is monic 

if the coefficient of its greatest degree 

term is 1. Prove that there exists a 

monic polynomial f(x) with integer 

coefficients such that for every prime p, 

f(x) ≡ 0 (mod p) has solutions in integers, 

but f(x) = 0 has no solution in integers.  
  
Solution.  Alumni 2011 (Carmel Alison 

Lam Foundation Secondary School), 

Maxim BOGDAN (“Mihai Eminescu” 

National College, Botosani, Romania), 

Koopa KOO and Andy LOO (St. Paul’s 

Co-educational College). 
 
Let f(x)=(x2−2)(x2−3)(x2−6). Then f(x) = 0 

has no solution in integers. For p = 2 or 3, 

f(6) ≡ 0 (mod p). For a prime p > 3, if there 

exists x such that x2 ≡ 2 or 3 (mod p), then 

f(x) ≡ 0 (mod p) has solutions in integers. 

Otherwise, from Euler’s criterion, it 

follows that there will be x such that x2 ≡ 6 

(mod p) and again f(x) ≡ 0 (mod p) has 

solutions in integers. 

 

Comments:  For readers not familiar with 

Euler’s criterion, we will give a bit more 

details. For c relatively prime to a prime p, 

by Fermat’s little theorem, we have 
 
(c(p−1)/2−1)(c(p−1)/2+1) = cp−1−1≡ 0 (mod p), 
 
which implies c(p−1)/2 ≡ 1 or −1  (mod p).  
 
If there exists x such that x2 ≡ c (mod p), 

then c(p−1)/2 ≡ xp−1 ≡ 1 (mod p). Conversely, 

if  c(p−1)/2 ≡ 1 (mod p), then there is x such 

that x2 ≡ c (mod p). [This is because there 

is a primitive root g (mod p) (see vol. 15, 

no. 1, p. 1 of Math Excalibur), so we get c 

≡ gi (mod p) for some positive integer i, 

then gi(p−1)/2 ≡ 1 (mod p). Since g is a 

primitive root (mod p), so i(p−1)/2 is a 

multiple of p−1, then i must be even, 

hence c ≡ (gi/2)2 (mod p).] In above, if 2 

and 3 are not squares (mod p), then 

6(p−1)/2=2(p−1)/23(p−1)/2 ≡ (−1)2 =1 (mod p), 

hence 6 is a square (mod p). 

 

Problem 377. Let n be a positive integer. 

For i=1,2,…,n, let zi and wi be complex 

numbers such that for all 2n choices of ε1, 
ε2, …, εn equal to ±1, we have  

.
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Solution.  William PENG and Jeff PENG 

(Dallas,Texas, USA). 
 
The case n = 1 is clear. Next, recall the 

parallelogram law |a+b|2+|a−b|2=2|a|2+2|b|2, 

which follows from adding the + and − 

cases of the identity 
 

.))(( bbabbaaababa +±±=±±  
 
For n = 2, we have  
 

|z1+z2|≤|w1+w2|  and  |z1−z2|≤|w1−w2|. 
 
Squaring both sides of these inequalities, 

adding them and applying the 

parallelogram law, we get the desired 

inequality. Next assume the case n=k 

holds. Then for the n=k+1 case, we use 

the 2k choices with ε1 = ε2 to get from the 

n=k case that 
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Similarly, using the other 2k choices 

with ε1 = −ε2, we get 
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Adding the last two inequalities and 

applying the parallelogram law, we get 

the n=k+1 case. 
 
Other commended solvers: Alumni 

2011 (Carmel Alison Lam Foundation 

Secondary School),Maxim BOGDAN 

(“Mihai Eminescu” National College, 

Botosani, Romania), O Kin Chit, Alex 

(G.T.(Ellen Yeung) College) and 

Mohammad Reza SATOURI 

(Bushehr, Iran).  

 

Problem 378. Prove that for all 

positive integers m and n, there exists a 

positive integer k such that 2k −m has at 

least n distinct positive prime divisors. 
  
Solution. William PENG and Jeff 

PENG(Dallas,Texas, USA). 
 
For the case m is odd, we will prove the 

result by inducting on n. If n=1, then just 

choose k large so that the odd number 2k 

−m is greater than 1. Next assume there 

exists a positive integer k such that j = 

2k −m has at least n distinct positive 

prime divisors. Let s= k+φ(j2), where  

φ(j2) is the number of positive integers 
at most j2 that are relatively prime to j2. 

Since j is odd, by Euler’s theorem,  
 

).(mod122 2jjmm ks =−×≡−  
 

Then 2s − m is of the form j+tj2 for 

some positive integer t. Hence it is 

divisible by j and (2s − m)/j is relatively 

prime to j. Therefore, 2s − m has at least 

n+1 distinct prime divisors. 

 

For the case m is even, write m=2ir, 

where i is a nonnegative integer and r is 

odd. Then as proved above there is k 

such that 2k − r has at least n distinct 

prime divisors and so is 2i+k − m. 
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Other commended solvers: Maxim 

BOGDAN (“Mihai Eminescu” 

National College, Botosani, Romania) 

 

Problem 379.  Let ℓ be a line on the 

plane of ∆ABC such that ℓ does not 

intersect the triangle and none of the 

lines AB, BC, CA is perpendicular to ℓ. 
 
Let A’, B’, C’ be the feet of the 

perpendiculars from A, B, C to ℓ 
respectively.  Let A’’, B”, C” be the 

feet of the perpendiculars from A’, B’, 

C’ to lines BC, CA, AB respectively.  
 
Prove that lines A’A”, B’B”, C’C” are 

concurrent.  
 
Solution. William PENG and Jeff 

PENG (Dallas, Texas, USA) and 

ZOLBAYAR Shagdar (9th Grade, 

Orchlon Cambridge International 

School, Mongolia). 

l

A

C

B

A'
C' B'

B"

C"

A"
D
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Let lines B’B” and C’C” intersect at D. 

To show line A’A” also contains D, 

since ∠CA”A’ = 90°, it suffices to 

show ∠CA”D = 90°. 
 
Let lines BC and B’B” intersect at O. 

We claim that ΔDOA” is similar to Δ
COB”. (Since ∠OB”C = 90°, the 

claim will imply ∠OA”D = 90°, which 

is the same as ∠CA”D = 90°.) 
 
For the claim, first note ∠AC”D = 90° 

= ∠AB”D, which implies A,C”,B”,D 
are concyclic. So ∠C”AB”=∠B”DC”. 

Next, ∠BC”D = 90° =∠DA”B implies 

B,C”,A”,D are concyclic. So ∠C”BA” 

=∠A”DC”. Then 

 

∠ODA”=180°−(∠A”DC”+∠B”DC”) 

              =180°− (∠C”BA”+∠C”AB”) 

              =∠ACB   

              =∠OCB”. 
 
This along with ∠DOA”=∠COB” 

yield the claim and we are done. 
 
Other commended solvers: Alumni 

2011 (Carmel Alison Lam Foundation 

Secondary School) and Maxim 

BOGDAN (“Mihai Eminescu” 

National College, Botosani, Romania). 
 

Problem 380.  Let S = {1,2,…,2000}. If A 

and B are subsets of S, then let |A| and |B| 

denote the number of elements in A and in 

B respectively.  Suppose the product of |A| 

and |B| is at least 3999.  Then prove that 

sets A−A and B−B contain at least one 

common element, where X−X denotes 

{s−t : s, t ∈ X and s ≠ t}. 

(Source: 2000 Hungarian-Israeli Math 

Competition) 
 
Solution. Maxim BOGDAN (“Mihai 

Eminescu” National College, Botosani, 

Romania) and William PENG and Jeff 

PENG (Dallas,Texas, USA). 
 
Note that the set T={(a,b): a∊A and b∊B} 

has |A|×|B| ≥ 3999 elements. Also, the set 

W={a+b: a∊A and b∊B} is a subset of 

{2,3,…4000}.  If W = {2,3,…,4000}, then 

2 and 4000 in W imply sets A and B both 

contain 1 and 2000.  This leads to A−A 

and B−B both contain 1999.  

 

If W≠{2,3,…4000}, then W has less than 

3999 elements. By the pigeonhole 

principle, there would exist (a,b) ≠ (a’,b’) 

in T such that a+b=a’+b’. This leads to 

a−a’=b’−b in both  A−A and B−B. 

 

 

Olympiad Corner 
      (continued from page 1) 

 

Problem 3. Let f : ℝ → ℝ be a 

real-valued function defined on the set of 

real numbers that satisfies  
 

f(x+y) ≤ y f(x) +  f( f(x)) 
 
for all real numbers x and y. Prove that f(x) 

= 0 for all x ≤ 0. 
 
Problem 4. Let n > 0 be an integer. We are 

given a balance and n weights of weigh 20, 

21, …, 2n−1. We are to place each of the n 

weights on the balance, one after another, 

in such a way that the right pan is never 

heavier than the left pan. At each step we 

choose one of the weights that has not yet 

been placed on the balance, and place it on 

either the left pan or the right pan, until all 

the weights have been placed.  

 

Determine the number of ways in which 

this can be done. 

 

Problem 5.  Let f be a function from the 

set of integers to the set of positive 

integers. Suppose that, for any two 

integers m and n, the difference f(m)−f(n) 

is divisible by f(m−n). Prove that, for all 

integers m and n with f(m)≤f(n), the 

number f(n) is divisible by f(m). 

Problem 6.  Let ABC be an acute 

triangle with circumcircle γ. Let L be a 

tangent line to γ, and let La, Lb and Lc be 

the line obtained by reflecting L in the 

lines BC, CA and AB, respectively. 

Show that the circumcircle of the 

triangle determined by the lines La, Lb 

and Lc is tangent to the circle γ. 
 

 
 

Remarks on IMO 2011 
 

    (continued from page 2) 

 

The essential point is to observe that 

A”B”C” is in fact homothetic to 

A’B’C’, with the homothetic center at 

H, a point on ,γ  i.e. A”B”C” is an 

expansion of A’B’C’ at H by a constant 

centre.  This implies the circumcircle 

of A”B”C” is tangent to γ at H. 

 

A lot of discussions were conducted 

concerning changing the format of the 

Jury system during the IMO. At 

present the leaders assemble to choose 

six problems from the short-listed 

problems. There are issues concerning 

security and also financial matter (to 

house the leaders in an obscure place 

far away from the contestants can be 

costly). Many contestants need good 

results to obtain scholarships and enter 

good universities and the leaders have 

incentive for their own good to obtain 

good results for their teams. For me I 

am inclined to let the Jury system 

remains as such. The main reason is 

simply the law of large numbers, a 

better paper may be produced if more 

people are involved. Indeed both the 

Problem Selection Group and the 

leaders may make mistakes. But we get 

a better chance to produce a better 

paper after detailed discussion. In my 

opinion we generally produce a more 

balanced paper. The discussion is still 

going on. Perhaps some changes are 

unavoidable, for better or for worse. 

 

Here are some remarks concerning the 

performance of the teams. We keep our 

standard or perhaps slightly better than 

the last few years. I am glad that some 

of our team members are able to solve 

the harder problems. Although the 

Chinese team is still ranked first 

(unofficially), they are not far better 

than the other strong teams (USA, 

Russia, etc). In particular, the third 

rank performance of the Singaporean 

team this time is really amazing.  
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Zsigmondy’s Theorem 
 

Andy Loo (St. Paul’s Co-educational College) 

 

Olympiad Corner 
 
Below are the problems of the 

2011-2012 British Math Olympiad 

Round 1 held on 2 December 2011.  
 

Problem 1. Find all (positive or 

negative) integers n for which 

n2+20n+11 is a perfect square.  
 

Problem 2. Consider the numbers 1, 2, 

⋯, n. Find, in terms of n, the largest 

integer t such that these numbers can be 

arranged in a row so that all 

consecutive terms differ by at least t. 
 
Problem 3. Consider a circle S. The 

point P lies outside S and a line is 

drawn through P, cutting S at distinct 

points X and Y. Circles S1 and S2 are 

drawn through P which are tangent to S 

at X and Y respectively. Prove that the 

difference of the radii of S1 and S2 is 

independent of the positions of P, X 

and Y. 
 
Problem 4. Initially there are m balls in 

one bag, and n in the other, where m, n 

> 0. Two different operations are 

allowed: 
 
a) Remove an equal number of balls 

from each bag; 

b) Double the number of balls in one 

bag. 
 

    (continued on page 4) 
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      In recent years, a couple of “hard” 

number theoretic problems in the IMO 

turn out to be solvable by simple 

applications of deep theorems. For 

instances, IMO 2003 Problem 6 and 

IMO 2008 Problem 3 are straight 

forward corollaries of the Chebotarev 

density theorem and a theorem of 

Deshouillers and Iwaniec respectively. 

In this article we look at yet another 

mighty theorem, which was discovered 

by the Austro-Hungarian mathematician 

Karl Zsigmondy in 1882 and which can 

be used to tackle many Olympiad 

problems at ease. 

  

Zsigmondy’s theorem 
 
First part: If a, b and n are positive 

integers with a>b, gcd(a, b)=1 and n≥2, 

then an–bn has at least one prime factor 

that does not divide ak–bk for all positive 

integers k<n, with the exceptions of:  
 
     i) 26–16    and  
 
    ii) n=2 and a+b is a power of 2. 

 

Second part: If a, b and n are positive 

integers with a>b and n≥2, then an+bn 

has at least one prime factor that does 

not divide ak+bk for all positive integers 

k<n, with the exception of 23+13. 

 

The proof of this theorem is omitted due 

to limited space. Interested readers may 

refer to [2]. 

 

To see its power, let us look at how short 

solutions can be obtained using 

Zsigmondy’s theorem to problems of 

various types. 
 

Example 1 (Japanese MO 2011). Find 

all quintuples of positive integers 

(a,n,p,q,r) such that 
 

an–1 = (ap–1)(aq–1)(ar–1). 
 
Solution. If a≥3 and n≥3, then by 

Zsigmondy’s theorem, an–1 has a prime 

factor that does not divide ap–1, aq–1 

and ar–1 (plainly n>p,q,r), so there is no 

solution. The remaining cases (a < 3 or 

n < 3) are easy exercises for the readers.
 
Example 2 (IMO Shortlist 2000). Find 

all triplets of positive integers (a,m,n) 

such that am+1|(a+1)n. 
 
Solution. Note that (a,m,n)=(2,3,n) with 

n ≥ 2 are solutions. For a > 1, m ≥ 2 and 

(a,m) ≠ (2,3), by Zsigmondy’s theorem, 

am+1 has a prime factor that does not 

divide a+1, and hence does not divide 

(a+1)n, so there is no solution. The cases 

(a =1 or m =1) lead to easy solutions. 
 
Example 3 (Math Olympiad Summer 
Program 2001) Find all quadruples of 

positive integers (x,r,p,n) such that p is a 

prime, n,r>1 and xr–1 = pn. 
 

Solution. If xr–1 has a prime factor that 

does not divide x–1, then since xr–1 is 

divisible by x–1, we deduce that xr–1 

has at least two distinct prime factors, a 

contradiction unless (by Zsigmondy’s 

theorem) we have the exceptional cases 

x=2, r=6 and r=2, x+1 is a power of 2. 

The former does not work. For the latter, 

obviously p=2 since it must be even. Let 

x+1=2y. Then 
 

2n = x2–1 = (x+1)(x–1) = 2y(2y–2). 
 
It follows that y=2 (hence x=3) and n=3.
 
Example 4 (Czech-Slovak Match 
1996). Find all positive integral 

solutions to px–yp=1, where p is a prime.
 
Solution. The equation can be rewritten 

as px = yp+1.  Now y = 1 leads to (p,x) = 

(2,1) and (y,p) = (2,3) leads to x = 2. For 

y > 1 and p≠3, by Zsigmondy’s theorem, 

yp+1 has a prime factor that does not 

divide y+1. Since yp+1 is divisible by 

y+1, it follows that yp+1 has at least two 

prime factors, a contradiction. 
 

Remark. Alternatively, the results of 

Examples 3 and 4 follow from Catalan’s 

conjecture (proven in 2002), which 

guarantees that the only positive 

integral solution to the equation xa–yb=1 

with x,y,a,b>1 is x=3, a=2, y=2, b=3.  
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Example 5 (Polish MO 2010 Round 
1). Let p and q be prime numbers with 

q>p>2. Prove that 2pq–1 has at least 

three distinct prime factors. 

 

Solution. Note that 2p–1 and 2q–1 

divide 2pq–1. By Zsigmondy’s theorem, 

2pq–1 has a prime factor p1 that does 

not divide 2p–1 and 2q–1. Moreover, 

2q–1 has a prime factor p2 that does not 

divide 2p–1. Finally, 2p–1 has a prime 

factor p3. 

 

The next example illustrates a more 

involved technique of applying 

Zsigmondy’s theorem to solve a class 

of Diophantine equations. 

 

Example 6 (Balkan MO 2009). Solve 

the equation 5x – 3y = z2 in positive 

integers. 

 

Solution. By considering (mod 3), we 

see that x must be even. Let x=2w. 

Then 3y = 52w–z2 = (5w–z)(5w+z). Note 

that  
 
      (5w–z,5w+z) = (5w–z,2z) 

     = (5w–z,z)  

        = (5w,z) = 1, 
 
so 5w – z = 1 and 5w + z = 3a for some 

positive integer a ≥ 2. Adding, 2(5w) = 

3a + 1. For a = 2, we have w = 1, 

corresponding to the solution x = 2, y = 

2 and z = 4. For a ≥ 3, by Zsigmondy’s 

theorem, 3a+1 has a prime factor p that 

does not divide 32 + 1 = 10, which 

implies p≠2 or 5, so there is no 

solution in this case. 

 

Example 7. Find all positive integral 

solutions to pa–1=2n(p–1), where p is a 

prime. 

 

Solution. The case p=2 is trivial. 

Assume p is odd. If a is not a prime, let 

a=uv. Then pu–1 has a prime factor that 

does not divide p–1.  Since pu–1 

divides pa–1=2n(p–1), this prime factor 

of pu–1 must be 2. But by Zsigmondy’s 

theorem, pa–1 has a prime factor that 

does not divide pu–1 and p–1, a 

contradiction to the equation. So a is a 

prime. The case a=2 yields p=2n–1, i.e. 

the Mersenne primes. If a is an odd 

number, then by Zsigmondy’s theorem 

again, pa–1=2n(p–1) has a prime factor 

that does not divide p–1; this prime 

factor must be 2. However, 2 divides 

p–1, a contradiction. 
 
                                 (continued on page 4) 

 

A Geometry Theorem 
 

Kin Y. Li 
 
     The following is a not so well known, 

but useful theorem. 

Solution. Let ∠BAC=∠DAC=θ and 

G’ be on segment BC such that 

∠G’AC =∠EAC=α. We will show G’, 

F, D are collinear, which implies G’=G. 

Applying the subtended angle theorem 

to △ABE, △ABC and △ACD 

respectively, we get 
 

    (1

α β

A

B CD  

) 
AEABAF

θααθ sinsin)sin(
+=

+ ,  

    (2
Subtended Angle Theorem. D is a point 

inside ∠BAC (<180˚). Let α =∠BAD and 

β =∠CAD. D is on side BC if and only if 

    

) 
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    (3) 
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βαβα
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Doing (1)−(2)+(3), we get  Proof. Note D is on segment BC if and 

only if the area of ΔABC is the sum of the 

areas of ΔABD and ΔACD. This is 
 '

sinsin)sin(

AGADAF

θααθ
+=

+ . 

.
2

sin

2

sin

2

)sin( βαβα ADACADABACAB ⋅
+

⋅
=

+⋅  By the subtended angle theorem,  G’, F, 

D are collinear. Therefore, G = G’. 

 

Example 3.
Multiplying by 2/(AB·AC·AD) yields (*). 
 
       Below, we will write PQ∩RS=X to 

mean lines PQ and RS intersect at point X. 
 
Example 1.

 (Butterfly Theorem) Let 

A,C,E,B,D,F be points in cyclic order 

on a circle and CD∩EF=P is the 

midpoint of AB. Let M = AB∩DE and 

N = AB∩CF. Prove that MP = NP.  Let AD∩BC=K, AB∩CD=L, 

BD∩KL=F and AC∩KL=G. Prove that 

1/KL = ½(1/KF +1/KG). 

β
β
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Solution. Applying the subtended angle 

theorem to △KAL, △KDL, △KDF and 

△KAG, we get  
Solution. By the intersecting chord 

theorem, PC·PD=PE·PF, call this x. 

Applying the subtended angle theorem 

to △PDE and △PCF, we get  
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Call these (1), (2), (3), (4) respectively. 

Doing (1)+(2)−(3)−(4), we get 
Subtracting these equations, we get  
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(*) 

 
Let Q and R be the midpoints of EF and 

CD respectively. Since OP⊥AB, we 

have PF−PE = 2PQ = 2OP cos(90°−α) 

= 2OP sin α. Then similarly we have 

PD−PC = 2OP sin β. Hence, the right 

side of (*) is zero. So the left side of (*) 

is also zero. Since 0 < α+β < 180°, we 

get sin (α+β) ≠ 0. Then PM = PN. 

 

which implies the desired equation. 
 
Example 2. (1999 Chinese National Math 

Competition) In the convex quadrilateral 

ABCD, diagonal AC bisects∠BAD. Let E 

be on side CD such that BE∩AC=F and 

DF∩BC=G. Prove that ∠GAC =∠EAC. 

αα
Α

Β

C

D
Ε

F

GG'
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is March 28, 2012. 

 

Problem 386.  Observe that 7+1=23 

and 77+1= 23×113×911. Prove that for 

n = 2, 3, 4,…, in the prime factorization 

of , the sum of the 

n+3.  

  
Problem 387. Determine (with proof) 

all functions f : [0,+∞) →[0,+∞) such 

that for every x ≥ 0, we have 4f(x) ≥ 3x 

and f (4f(x) − 3x) = x. 
 
Problem 388. In ΔABC, ∠BAC=30° 

and ∠ABC=70°. There is a point M 

lying inside ΔABC such that ∠MAB=

∠MCA=20°. Determine ∠MBA (with 

proof). 
 

Problem 389. There are 80 cities. An 

airline designed flights so that for each 

of these cities, there are flights going in 

both directions between that city and at 

least 7 other cities. Also, passengers 

from any city may fly to any other city 

by a sequence of these flights. 

Determine the least k such that no 

matter how the flights are designed 

subject to the conditions above, 

passengers from one city can fly to 

another city by a sequence of at most k 

flights.    
 

Problem 390. Determine (with proof) 

all ordered triples (x, y, z) of positive 

integers satisfying the equation 
 
              x2y2 = z2(z2 − x2 − y2). 
 

***************** 

Solutions 

**************** 
 
Problem 381. Let k be a positive 

integer. There are 2k balls divided into 

a number of piles. For every two piles 

A and B with p and q balls respectively, 

if p ≥ q, then we may transfer q balls 

from pile A to pile B. Prove that it is 

always possible to make finitely many 

such transfers so as to have all the balls 

end up in one pile.   

Solution.  AN-anduud Problem Solving 
Group (Ulaanbaatar, Mongolia), CHAN 
Chun Wai and LEE Chi Man (Statistics 
and Actuarial Science Society SS 
HKUSU), Andrew KIRK (Mearns 
Castle High School, Glasgow, Scotland), 
Kevin LAU Chun Ting (St. Paul’s 
Co-educational College, S.3), LO Shing 
Fung (F3E, Carmel Alison Lam 
Foundation Secondary School) and Andy 
LOO (St. Paul’s Co-educational College). 
 
We induct on k. For k=1, we can merge 

the 2 balls in at most 1 transfer.  
 
Suppose the case k=n is true. For k=n+1, 

since 2k is even, considering (odd-even) 

parity of the number of balls in each pile, 

we see the number of piles with odd 

numbers of balls is even. Pair up these 

piles. In each pair, after 1 transfer, both 

piles will result in even number of balls.  
 
So we need to consider only the situation 

when all piles have even number of balls. 

Then in each pile, pair up the balls. This 

gives altogether 2n pairs. Applying the 

case k=n with the paired balls, we solve 

the case k=n+1.   
 
Problem 382. Let v0 = 0, v1 = 1 and  
 

vn+1 = 8vn−vn−1   for n = 1,2,3,…. 
 
Prove that vn is divisible by 3 if and only if 

vn is divisible by 7. 
 
Solution. Alumni 2011 (Carmel Alison 
Lam Foundation Secondary School) and 
AN-anduud Problem Solving Group 
(Ulaanbaatar, Mongolia) and Mihai 
STOENESCU (Bischwiller, France).  
 
For n = 1,2,3,…,  vn+2  = 8(8vn−vn−1) −vn = 

63vn− 8vn−1. Then vn+2 ≡ vn−1 (mod 3) and 

vn+2 ≡ −vn−1 (mod 7). Since v0= 0, v1=1, v2 = 

8, so v3k+1, v3k+2 ≢ 0 (mod 3) and (mod 7) 

and v3k ≡ 0 (mod 3) and (mod 7). 
 
Other commended solvers: CHAN Chun 
Wai and LEE Chi Man (Statistics and 
Actuarial Science Society SS HKUSU), 
CHAN Long Tin (Diocesan Boys’ 
School), CHAN Yin Hong (St. Paul’s 
Co-educational College), Andrew KIRK 
(Mearns Castle High School, Glasgow, 
Scotland), Kevin LAU Chun Ting (St. 
Paul’s Co-educational College, S.3), LKL 
Excalibur (Madam Lau Kam Lung 
Secondary School of MFBM), Andy 
LOO (St. Paul’s Co-educational College), 
NGUYEN van Thien (Luong The Vinh 
High School, Dong Nai, Vietnam), O Kin 
Chit Alex (G.T.(Ellen Yeung) College), 
Ángel PLAZA (Universidad de Las 
Palmas de Gran Canaria, Spain), Yan Yin 
WANG (City University of Hong Kong, 
Computing Math, Year 2), ZOLBAYAR 
Shagdar (Orchlon School, Ulaanbaatar, 
Mongolia),Titu ZVONARU (Comăneşti, 
Romania) and Neculai STANCIU 
(“George Emil Palade’’ Secondary School, 
Buzău, Romania). 

Problem 383. Let O and I be the 

circumcenter and incenter of ΔABC 

respectively. If AB≠AC, points D, E are 

midpoints of AB, AC respectively and 

BC=(AB+AC)/2, then prove that the 

line OI and the bisector of ∠CAB are 

perpendicular.   
 

Solution 1. Kevin LAU Chun Ting (St. 

Paul’s Co-educational College, S.3). 

B

C A

I

D

E

F

O

 
177 +=

n

nA

exponents is at least 2  
From BC = (AB+AC)/2 = BD+CE, we 

see there exists a point F be on side BC 

such that BF=BD and CF=CE. Since BI 

bisects ∠FBD, by SAS, ΔIBD≅ΔIBF. 

Then ∠BDI=∠BFI. Similarly, ∠CEI =

∠CFI. Then  
 
        ∠ADI +∠AEI 

= (180°−∠BDI ) + (180°−∠CEI ) 

     = 360° −∠BFI −∠CFI = 180°. 
 
So A,D,I,E are concyclic. 
 
Since OD ⊥ AD and OE ⊥ AE, so 

A,D,O,E are also conyclic. Then A,D,I,O 

are concyclic. So ∠OIA =∠ODA=90°. 
 
Solution 2. AN-anduud Problem 
Solving Group (Ulaanbaatar, 
Mongolia), Ercole SUPPA (Teramo, 
Italy), Titu ZVONARU (Comăneşti, 
Romania) and Neculai STANCIU 
(“George Emil Palade’’ Secondary 
School, Buzău, Romania). 
 

Let a=BC, b=CA, c=AB and let R, r, s be 

the circumradius, the inradius and the 

semiperimeter of ΔABC respectively. 

By the famous formulas OI2 = R2−2Rr, 

s−a = AI cos(A/2), Rr = abc/(4s) and 

cos2(A/2) = s(s−a)/(bc), we get 

,
)(

)2/(cos

)(
2

2
2

s

asbc

A

as
AI

−
=

−
=  

.
2

2 222

s

abc
RRrROI −=−=  

If a = (b+c)/2, then we get 2s = 3a and 

bc(s−a)/s = abc/(2s). So AI2+OI2 = R2 = 

OA2. By the converse of Pythagoras’ 

Theorem, we get OI⊥AI. 
 
Comment: In the last paragraph, all 

steps may be reversed so that OI⊥AI if 

and only if a = (b+c)/2. 
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Other commended solvers: Alumni 
2011 (Carmel Alison Lam Foundation 
Secondary School), CHAN Chun Wai 
and LEE Chi Man (Statistics and 
Actuarial Science Society SS HKUSU), 
Andrew KIRK (Mearns Castle High 
School, Glasgow, Scotland), Andy 
LOO (St. Paul’s Co-educational 
College), MANOLOUDIS Apostolos 
(4° Lyk. Korydallos, Piraeus, Greece), 
NGUYEN van Thien (Luong The 
Vinh High School, Dong Nai, Vietnam), 
Mihai STOENESCU (Bischwiller, 
France) and ZOLBAYAR Shagdar 
(Orchlon School, Ulaanbaatar, 
Mongolia). 

 

Problem 384. For all positive real 

numbers a,b,c satisfying a + b + c = 3, 

prove that 

.4
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Solution. William PENG. 

 
Let  
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and .
111

cba
D ++=  Then A+3B is the 

left side of the  desired inequality. Now 

since a + b + c = 3, we have C = 4D −3. 

By the Cauchy-Schwarz inequality, we 

have (a+b+c)D ≥ 32, AC ≥ D2 and BC 

≥ D2. The first of these gives us D ≥ 3 

so that (D−3)(D−1)≥0, which implies 

D2 ≥ 4D−3. The second and third imply  
 

.4
34

44
3

22

≥
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=≥+
D

D

C

D
BA  

 
Other commended solvers: Alumni 
2011 (Carmel Alison Lam Foundation 
Secondary School), AN-anduud 
Problem Solving Group (Ulaanbaatar, 
Mongolia), Andrew KIRK (Mearns 
Castle High School, Glasgow, 
Scotland), LKL Excalibur (Madam 
Lau Kam Lung Secondary School of 
MFBM), Andy LOO (St. Paul’s 
Co-educational College), NGUYEN 
van Thien (Luong The Vinh High 
School, Dong Nai, Vietnam) and Paolo 
PERFETTI (Math Dept, Università 
degli studi di Tor Vergata Roma, via 
della ricerca scientifica, Roma, Italy). 

 

Problem 385. To prepare for the IMO, 

in everyday of the next 11 weeks, Jack 

will solve at least one problem. If every 

week he can solve at most 12 problems, 

then prove that for some positive integer n, 

there are n consecutive days in which he 

can solve a total of 21 problems.  
 
Solution. AN-anduud Problem Solving 
Group (Ulaanbaatar, Mongolia), CHAN 
Chun Wai and LEE Chi Man (Statistics 
and Actuarial Science Society SS 
HKUSU), Andrew KIRK (Mearns 
Castle High School, Glasgow, Scotland), 
Andy LOO (St. Paul’s Co-educational 
College) and Yan Yin WANG (City 
University of Hong Kong, Computing 
Math, Year 2). 
 
Let Si be the total number of problems 

Jack solved from the first day to the end of 

the i-th day. Since he solves at least one 

problem everyday, we have 0 < S1 < S2 < S3 

< ⋯ < S77. Since he can solve at most 12 

problems every week, we have 

S77≤12×11=132.  
 
Consider the two strictly increasing 

sequences S1, S2, ⋯ , S77 and S1+21, S2+21, 

⋯, S77+21. Now these 154 integers are at 

least 1 and at most 132+21=153. By the 

pigeonhole principle, since the two 

sequences are strictly increasing, there 

must be m < k such that Sk=Sm+21. 

Therefore, Jack solved a total of 21 

problems from the (m+1)-st day to the end 

of the k-th day. 
 

 

Olympiad Corner 
 

    (continued from page 1) 

 

Problem 4 (cont). Is it possible to empty 

both bags after a finite sequence of 

operations? 
 
Operation b) is now replaced with 
 
b') Triple the number of balls in one bag. 
 
Is it now possible to empty both bags after 

a finite sequence of operations? 
 
Problem 5. Prove that the product of four 

consecutive positive integers cannot be 

equal to the product of two consecutive 

positive integers. 
 
Problem 6. Let ABC be an acute-angled 

triangle. The feet of all the altitudes from 

A, B and C are D, E and F respectively. 

Prove that DE+DF ≤ BC and determine 

the triangles for which equality holds. 
 

 
 

Zsigmondy’s Theorem 
 

    (continued from page 2) 

 

Example 8. Find all positive integral 

solutions to 
 

(a+1)(a2+a+1)⋯(an+an–1+⋯+1) 
 
    = am+am-1+⋯+1. 
 
Solution. Note that n = m = 1 is a trivial 

solution. Other than that, we must have 

m>n. Write the equation as 
 

2 3 1 11 1 1
...

1 1 1 1

n ma a a a

a a a a

+ +− − − −
⋅ ⋅ ⋅ =

− − − −
, 

1

 
then rearranging we get 

)

By Zsigmondy’s theorem, we must 

have a = 2 and m + 1 = 6, i.e. m = 5 

(otherwise, am–1 has a prime factor that 

does not divide a2–1, a3–1, …, an+1–1, 

a contradiction), which however does 

not yield a solution for n. 
 
The above examples show that 

Zsigmondy’s theorem can instantly 

reduce many number theoretic 

problems to a handful of small cases. 

We should bear in mind the exceptions 

stated in Zsigmondy’s theorem in order 

not to miss out any solutions. 
 
Below are some exercises for the 

readers.  
 
Exercise 1 (1994 Romanian Team 

( )( ) (

( )( )

2 3 1

11

1 1 ... 1

1 1 .

n

nm

a a a

a a

+

−+

− − −

= − −
 

Selection Test). Prove that the 

sequence an=3n–2n contains no three 

terms in geometric progression. 
 
Exercise 2. Fermat’s last theorem 

asserts that for a positive integer n ≥ 3, 

the equation xn+yn=zn has no integral 

solution with xyz≠0. Prove this 

statement when z is a prime. 
 
Exercise 3 (1996 British Math 
Olympiad Round 2). Determine all 

sets of non-negative integers x, y and z 

which satisfy the equation 2x+3y=z2. 
 
Reference 
 
[1] PISOLVE, The Zsigmondy 

Theorem, 
  
http://www.artofproblemsolving.com/

Forum/viewtopic.php?f=721&t=42233

0
 
[2] Lola Thompson, Zsigmondy’s 

Theorem, 
  
http://www.math.dartmouth.edu/~tho

mpson/Zsigmondy's%20Theorem.pdf
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Casey’s Theorem 
 

Kin Y. Li 

 

 

Olympiad Corner 
 
 
Below are the problems of the 2011 

IMO Team Selection Contest from 

Estonia.  
 

Problem 1.  Two circles lie completely 

outside each other.  Let A be the point 

of intersection of internal common 

tangents of the circles and let K be the 

projection of this point onto one of 

their external common tangents. The 

tangents, different from the common 

tangent, to the circles through point K 

meet the circles at M1 and M2.  Prove 

that the line AK bisects angle M1KM2. 
 

Problem 2.  Let n be a positive integer. 

Prove that for each factor m of the 

number 1+2+⋯+n such that m ≥ n, the 

set {1,2,⋯,n} can be partitioned into 

disjoint subsets, the sum of the 

elements of each being equal to m. 
 
Problem 3.  Does there exist an 

operation * on the set of all integers 

such that the following conditions hold 

simultaneously: 
 

(1) for all integers x, y and z,  
 
                      (x*y)*z = x*(y*z); 
 

(2) for all integers x and y, 

             x*x*y = y*x*x = y ? 
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      We recall Ptolemy’s theorem, which 

asserts that for four noncollinear points 

A, B, C, D on a plane, we have 
 

AB·CD +AD·BC = AC·BD 
 

if and only if ABCD is a cyclic 

quadrilateral (cf vol. 2, no. 4 of Math 

Excalibur).  In this article, we study a 

generalization of this theorem known as 
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Casey’s Theorem.  If circles C1, C2, C3, 

C4 with centers O1, O2, O3, O4 are 

internally tangent to a circle C with 

center O at points P1, P2, P3, P4 in cyclic 

order respectively, then 
 
          t12 · t34 + t14 · t23 = t13 · t24,         (*)

 
where tik denote the length of an external 

common tangent of circle Ci and Ck. 

 

To prove this, consider the following 

figure. 
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Let line AB be an external common 

tangent to C1, C2 intersecting C1 at Q1, 

C2 at Q2.  Let line P1Q1 intersect C at S. 

Let r1, r be the respective radii of C1, C. 

Then the isosceles triangles P1O1Q1 and 

P1OS are similar.  So O1Q1 || OS.  Since 

O1Q1⊥AB, so OS⊥AB, hence S is the 

midpoint of arc AB.  Similarly, line P2Q2 

passes through S. Now ∠SQ1Q2 = 

∠P1Q1A = ½∠P1O1Q1 = ½∠P1OS = 

∠SP2P1.  Then ΔSQ1Q2 and ΔSP2P1 

are similar. So 
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The expressions for the other tik’s are 

similar.  Since P1P2P3P4 is cyclic, by 

Ptolemy’s theorem, 
 

P1P2 ·P3P4 + P1P4 ·P2P3= P1P3 ·P2P4. 
 

Multiplying all terms by 
 

2

4321 ))()()((

r

rrrrrrrr −−−−  

 
and using (**), we get (*). 
 
Casey’s theorem can be extended to 

cover cases some Ck’s are externally 

tangent to C.  For this, define tik more 

generally to be the length of the external 

(resp. internal) common tangent of 

circles Ci and Ck when the circles are on 

the same (resp. opposite) side of C. 

 

In case Ck is externally tangent to C, 

consider the following figure. The proof 

is the same as before except the factor 

r−rk should be replaced by r+rk. 
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The converse of Casey’s theorem and its 

extension are also true.  However, the 

proofs are harder, longer and used 

inversion in some cases.  For the curious 

readers, a proof of the converse can be 

found in Roger A. Johnson’s book 

Advanced Euclidean Geometry, 

published by Dover. 
 
Next we will present some geometry 

problems that can be solved by Casey’s 

theorem and its converse.
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Example 1. (2009 China Hong Kong 

Math Olympiad) Let Δ ABC be a 

right-angled triangle with ∠C=90°. 

CD is the altitude from C to AB, with D 

on AB. w is the circumcircle of ΔBCD. 

v is a circle situated in ΔACD, it is 

tangent to the segments AD and AC at 

M and N respectively, and is also 

tangent to circle w.  
 
(i) Show that BD · CN + BC · DM   =     

     CD · BM. 
 
(ii) Show that BM = BC. 
 

w

v

O

B

C

A D

O'

N

P

M  
 

Solution. (i) Think of B, C, D as circles 

with radius 0 externally tangent to w. 

Then tBD = BD, tCv = CN, tBC = BC, tDv 

= DM, tCD = CD and tBv = BM.  By 

Casey’s theorem, (*) yields  
 

BD · CN + BC · DM  = CD · BM. 

 

(ii) Let circles v and w meet at P.  Then 

∠BPC=90°.  Let O and O’ be centers 

of circles w and v.  Then O, P, O’ are 

collinear.  So 
 
 ∠PNC+∠PCN = ½(∠PO’N+∠POC) 

   = ½(360°−∠O’NC−∠OCN) = 90°. 
 
So ∠NPC = 90°.  Hence, B, P, N are 

collinear. By the power-of-a-point 

theorem, BM 2 =BP·BN.  Also ∠C=90° 

and CP⊥BN imply BC2 = BP·BN. 

Therefore, BM=BC. 

 

Example 2. (Feuerbach’s Theorem) 

Let D,E,F be the midpoints of sides AB, 

BC, CA of ∆ABC respectively.  
 
(i) Prove that the inscribed circle S of 

∆ABC is tangent to the (nine-point) 

circle N through D, E, F. 
 
(ii) Prove that the described circle T on 

side BC is also tangent to N. 
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Solution. (1) We consider D, E, F as 

circles of radius 0.  Let A’, B’, C’ be the 

points of tangency of S to sides BC, CA, 

AB respectively.  

First we recall that the two tangent 

segments from a point to a circle have the 

same length.  Let AB’ = x = C’A, BC’ = y 

= A’B, CA’ = z = B’C and s = (a+b+c)/2, 

where a=BC, b=CA, c=AB.  From y+x = 

BA = c, z+y = CB = a and x+z = AC = b, 

we get x = (c+b−a)/2 = s−a, y=s−b, 

z=s−c.  By the midpoint theorem, tDE = 

DE = ½BA = c/2 and  
 
      tFS = FC’ = |FB−BC’| = |(c/2)−y| 

           = |c−2(s−b)|/2 = |b−a|/2. 
 
Similarly, tEF = a/2, tDS = |c−b|/2, tFD = b/2 

and tES =|a−c|/2. Without loss of generality, 

we may assume a≤b≤c.  Then 
 
  tDE · tFS + tEF · tDS = c(b−a)/4+a(c−b)/4  

                              = b(c−a)/4  

                              = tFD · tES.  
 
By the converse of Casey’s theorem, we 

get S is tangent to the circle N through 

D,E,F. 

 

(2) Let I’ be the center of T, let P,Q,R be 

the points of tangency of T to lines BC, AB, 

CA respectively.  As in (1), tDE = c/2.  
 
To find tFT, we need to know BQ.  First 

note AQ=AR, BP=BQ and CR=CP. So 

2AQ=AQ+AR=AB+BP+CP+AC=2s. So 

AQ=s/2. Next BQ=AQ−AB=s−c.  Hence, 

tFT=FQ=FB+BQ = (c/2)+(s−c) = (b+a)/2. 

Similarly, tET = (a+c)/2. Now tDT = DP = 

DB−BP = DB−BQ = (a/2) − (s−c) = (c 

−b)/2.  Then  
 
  tFD · tET + tEF · tDT = b(a+c)/4+a(c −b)/4  

                              = c(b+a)/4  

                              = tDE · tFT.  
 
By the converse of Casey’s theorem, we 

get T is tangent to the circle N through 

D,E,F. 
 
Example 3. (2011 IMO)  Let ABC be an 

acute triangle with circumcircle Γ.  Let L 

be a tangent line to Γ, and let La, Lb and Lc 

be the line obtained by reflecting L in the 

lines BC, CA and AB, respectively.  Show 

that the circumcircle of the triangle 

determined by the lines La, Lb and Lc is 

tangent to the circle Γ. 
 
Solution. (Due to CHOW Chi Hong, 2011 

Hong Kong IMO team member)   
 
Below for brevity, we will write ∠A, ∠B, 

∠C to denote ∠CAB, ∠ABC, ∠BCA 

respectively. 
 
Lemma.  In the figure below, L is a tangent 

line to Γ, T is the point of tangency.  Let hA, 

hB, hC be the length of the altitudes from A, 

B, C to L respectively.  Then 
 

.sinsinsin ChBhAh CBA ∠=∠+∠  

θ

L

hC

hB
hA θ

C

A

B

T  

Proof.  By Ptolemy’s theorem and sine 

law, 

AT·BC +BT·CA = CT·BC    (or 

AT sin ∠A + BT sin ∠B = CT sin ∠C).   

Let θ be the angle between lines AT and 

L as shown.  Then AT = hA / sin θ = 

hA(2k/AT), where k is the circumradius 

of ∆ABC.  Solving for AT (then using 

similar argument for BT and CT), we 

get 
 

 .2,2,2 CBA khCTkhBTkhAT ===  

 
Substituting these into (*), the result 

follows.  This finishes the proof of the 

lemma. 
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For the problem, let La∩L=A’, Lb∩L = 

B’, Lc∩L=C’, La∩Lb=C", Lb∩Lc=A", 

Lc∩La=B".  Next 

 

∠A"C"B"=∠A"B’A’−∠C"A’B’ 

            =2∠CB'A'−(180°−2∠CA'B') 

               =180°−2∠C.                

 

Similarly, ∠A”B”C” = 180° −2∠B 

and ∠B”A”C” = 180° −2∠A.    (***) 

 

Consider ∆A’C’B”.  Now A’B bisects 

∠B’A’B” and C’B  bisects ∠A’C’B”. 

So B is the excenter of ∆A’C’B” 

opposite C’.  Hence B”B bisects ∠
A”B”C”.  Similarly, A”A bisects ∠
B”A”C” and C”C bisects ∠B”C”A”. 

Therefore, they intersect at the incenter 

I of ∆A”B”C”.  
 
 

 

  (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is May 11, 2012. 

 

Problem 391.  Let S(x) denote the sum 

of the digits of the positive integer x in 

base 10.  Determine whether there exist 

distinct positive integers a, b, c such 

that S(a+b)<5, S(b+c)<5, S(c+a)<5, 

but S(a+b+c)>50 or not. 
  

Problem 392.  Integers a0, a1, ⋯, an are 

all greater than or equal to −1 and are 

not all zeros.  If 
 

a0+2a1+22a2+⋯+2nan
 = 0, 

 
then prove that a0+a1+a2+⋯+an

 >0. 
 

Problem 393.  Let p be a prime 

number and p ≡ 1 (mod 4).  Prove that 

there exist integers x and y such that 
 

x2 − py2 = −1. 
 

Problem 394.  Let O and H be the 

circumcenter and orthocenter of acute 

ΔABC.  The bisector of ∠BAC meets 

the circumcircle Γ of ΔABC at D.  Let 

E be the mirror image of D with respect 

to line BC.  Let F be on Γ such that DF 

is a diameter.  Let lines AE and FH 

meet at G.  Let M be the midpoint of 

side BC.  Prove that GM⊥AF. 
 

Problem 395.  One frog is placed on 

every vertex of a 2n-sided regular 

polygon, where n is an integer at least 2. 

At a particular moment, each frog will 

jump to one of the two neighboring 

vertices (with more than one frog at a 

vertex allowed).  

 

Find all n such that there exists a 

jumping of these frogs so that after the 

moment, all lines connecting two frogs 

at different vertices do not pass through 

the center of the polygon. 
 

***************** 

Solutions 

**************** 
 
Problem 386.  Observe that 7+1=23 

and 77+1= 23×113×911.  Prove that for 

n = 2, 3, 4,…, in the prime factorization of 

177 +=
n

nA , the sum of the exponents is at 

least 2n+3.  
 

Solution.  Mathematics Group (Carmel 

Alison Lam Foundation Secondary School) 

and William PENG. 
 
The case n = 0 is given.  Suppose the 

result is true for n.  Let x =An−1.  Then 

An+1 = x7+1 = (x+1)P = AnP, where P =  x6 

− x5 + x4 −x3 + x2 − x + 1.  Comparing P 

with (x+1)6, we find  
 
      P  =  (x+1)6 −7x(x4+2x3+3x2+2x+1)  

          =  (x+1)6 −7x(x2+x+1)2. 
 
Now 7x=72m,where m=(7n+1)/2. Then P = 

[(x+1)3+7m(x2+x+1)][(x+1)3−7m(x2+x+1)]. 

Next, x > 7m ≥ 7,  x2+x+1 > (x+1)2 and  
 
(x+1)3−7m(x2+x+1) > (x+1)2(x+1−7m) > 1. 
 
So P is the product of at least 2 more 

primes.  Therefore, the result is true for 

n+1. 
 

Problem 387.  Determine (with proof) all 

functions f : [0,+∞) →[0,+∞) such that 

for every x ≥ 0, we have 4f(x) ≥ 3x and        

f (4f(x) − 3x) = x. 
 
Solution. Mathematics Group (Carmel 

Alison Lam Foundation Secondary School) 

and William PENG. 
 
We can check f(x) = x is a solution.  Assume 

there is another solution such that f(c) ≠ c for 

some c ≥ 0.  Let x0 = f(c), x1 = c and  
 

xn+2 = 4xn−3xn+1   for  n = 0,1,2,…. 
 
From the given conditions, we can check 

by math induction that xn = f(xn+1) ≥ 0 for 

n = 0,1,2,….  Since z2+3z−4 =(z−1)(z+4), 

we see xn=α+(−4)nβ for some real α and β. 
Taking n = 0 and 1, we get f(c) = α+β and 

c = α−4β.  Then β = (f(c)−c)/5 ≠ 0.  
 
If β > 0, then x2k+1= α+(−4)2k+1 β→−∞ as 

k →∞, a contradiction.  Similarly, if β < 0, 

then x2k= α+(−4)2kβ→−∞ as k →∞, yet 

another contradiction. 
 
Other commended solvers: CHAN Yin 
Hong (St. Paul’s Co-educational College) 
and YEUNG Sai Wing (Hong Kong 
Baptist University, Math, Year 1). 
 

Problem 388.  In ΔABC, ∠BAC=30° 

and ∠ABC=70°.  There is a point M lying 

inside ΔABC such that ∠MAB=∠MCA 

=20°.  Determine ∠MBA (with proof). 
 

Solution 1. CHOW Chi Hong (Bishop 

Hall Jubilee Schol) and AN-anduud 

Problem Solving Group (Ulaanbaatar, 

Mongolia). 
 
Extend CM to meet the circumcircle Γ of Δ
ABC at P. 

20

10

20

60

30

Ο

CB

A

D

P

Μ

 
Then we have ∠BPC =∠BAC = 30° 
and ∠PBC=180°−∠BPC−∠BCM = 

90°.  So line CM passes through center O 

of Γ.  
 

Let lines AO and BC meet at D.  Then 

∠AOB = 2∠ACB=160°.  Now OA = 

OB implies ∠OAB=10°. Then ∠MAO 

= 10° =∠MAC and ∠ADC = 180° − 

100°= 80° =∠ACD.  These imply AM 

is the perpendicular bisector of CD. 

Then MD = MC.  This along with OB 

= OC and ∠BOC = 60 imply ΔOCB 

and ΔMCD are equilateral, hence 

BOMD is cyclic.  Then ∠ DBM = 

DOM∠ = 2 ∠ OAC = 40°.  So 

MBA∠ = ∠ABC−∠DBM = 30°. 

 

Solution 2.  CHAN Yin Hong (St. 

Paul’s Co-educational College), 

Mathematics Group (Carmel Alison 

Lam Foundation Secondary School), O 

Kin Chit Alex (G.T.(Ellen Yeung) 

College) and Mihai STOENESCU 

(Bischwiller, France).  
 
Let x =∠MBA. Applying the sine law to   

ΔABC, ΔABM, ΔAMC respectively, 

we get  

.
20sin

30sin
,

70sin

80sin
,

sin

)20sin(
o

o

o

oo

==
+

=
AM

AC

AC

AB

x

x

AM

AB

Multiplying the last 2 equations, we get 

.
20sin

30sin

70sin

80sin

sin

)20sin(
o

o

o

oo

⋅==
+

AM

AB

x

x   (†) 

Multiplying  

,
30sin

70sin
20cos2

20sin

40sin

,
30sin

50sin
40cos2

40sin

80sin

o

o
o

o

o

o

o
o

o

o

==

==
 

 
we see (†) can be simplified to 

sin(20°+x)/sin x = sin50°/sin30°.  Since 

the left side is equal to sin20° cot x + 

cos20°, which is strictly decreasing 

(hence injective) for x between 0° to 

70°, we must have x=30°. 
 
Comments: One can get a similar 
equation as (†) directly by using the 
trigonometric form of Ceva’s theorem. 
 
Other commended solvers: CHEUNG 
Ka Wai (Munsang College (Hong 
Kong Island)), NG Ho Man (La Salle 
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College, Form 5), Bobby POON (St. 
Paul’s College), St. Paul’s College 
Mathematics Team, Aliaksei 
SEMCHANKAU (Secondary School 
No.41, Minsk, Belarus) and 
ZOLBAYAR Shagdar (9th grader, 
Orchlon International School, 
Ulaanbaatar, Mongolia), 
 

Problem 389.  There are 80 cities.  An 

airline designed flights so that for each 

of these cities, there are flights going in 

both directions between that city and at 

least 7 other cities.  Also, passengers 

from any city may fly to any other city 

by a sequence of these flights. 

Determine the least k such that no 

matter how the flights are designed 

subject to the conditions above, 

passengers from one city can fly to 

another city by a sequence of at most k 

flights.  
  
(Source: 2004 Turkish MO.)  
 
Solution. William PENG. 

 
Below we denote the number of 

elements in a set S by |S|. 
 
To show k≥27, take cities A1, A2, ⋯, A28. 

For i=1,2,⋯,27, design flights between 

Ai and Ai+1.  For the remaining 52 cities, 

partition them into pairwise disjoint 

subsets Y0,Y1,⋯, Y9 so |Y0|=6=|Y9| and 

the other |Yk|=5. Let Z0={A1,A2}∪Y0, 

Z9={A27,A28}∪Y9 and for 1≤m≤8, let 

Zm={A3m,A3m+1,A3m+2}∪Ym.Then design 

flights between each pair of cities in Zm 

for 1≤m≤8.  In this design, from A1 to 

A28 requires 27 flights. 
 
Assume k > 27.  Then there would exist 

two cities A1 and A29 the shortest 

connection between them would 

involve a sequence of 28 flights from 

cities Ai to Ai+1 for i=1,2,…,28.  Due to 

the shortest condition, each of A1 and 

A29 has flights to 6 other cities not in 

B={A2,A3,…,A28}. Each Ai in B has 

flights to 5 other cities not in C = 

{A1,A2,…,A29}. 
 
Next for each Ai in {A1,A4,A7,A10,A13, 

A16,A19,A22,A25,A29}, let Xi be the set of 

cities not in C that have a flight to Ai. 

We have |X1|≥6, |X29|≥6 and the other 

|Xi|≥5.  Now every pair of Xi’s is 

disjoint, otherwise we can shorten the 

sequence of flights between A1 and A29.  

However, the union of C and all the Xi’s 

would yield at least 29+6×2+ 5×8 =81 

cities, contradiction. So k = 27. 
 
Problem 390.  Determine (with proof) 

all ordered triples (x, y, z) of positive 

integers satisfying the equation 
 

x2y2 = z2(z2 − x2 − y2). 

Solution. CHEUNG Ka Wai (Munsang 
College (Hong Kong Island)), Ioan 
Viorel CODREANU (Satulung 
Secondary School, Maramure, Romania) 
and Aliaksei SEMCHANKAU 
(Secondary School No.41, Minsk, 
Belarus). 
 
Lemma. The system a2−b2=c2 and 

a2+b2=w2 has no solution in positive 

integers. 
 
Proof.  Assume there is a solution.  Then 

consider a solution with minimal a2+b2. 

Due to minimality, gcd(a,b)=1.  Also 2a2 = 

w2+c2.  Considering (mod 2), we see w+c 

and w−c are even.  Then a2=r2+s2, where 

r=(w+c)/2 and s=(w−c)/2.  
 
Let d=gcd(a,r,s).  Then d divides a and 

r+s=w.  Since a2+b2=w2, d divides b.  As 

gcd(a,b)=1, we get d=1.  By the theorem 

on Pythagorean triples, there are relatively 

prime positive integers m,n with m>n such 

that {r,s}={m2−n2,2mn} and a=m2+n2. 

Now b2 = (w2−c2)/2 = 2rs = 4mn(m2−n2) 

implies b is an even integer, say b=2k. 

Then k2=mn(m+n)(m−n).  As gcd(m,n)=1, 

we see m, n, m+n, m−n are pairwise 

relatively prime integers. Hence, there 

exist positive integers d,e,f,g such that 

m=d 2, n=e2, m+n=f 2 and m−n=g2.  Then 

d2−e2=g2 and d2+e2=f 2, but  

d2+e2=m+n < 4mn(m2−n2)=b2 < a2+b2, 

contradicting a2+b2 is minimal. The 

lemma is proved. 
 
Now for the problem, the equation may be 

rearranged as z4−(x2+y2)z2−x2y2=0. If 

there is a solution (x,y,z) in positive 

integers, then considering discriminant, 

we see x4 + 6x2y2 + y4 = w2 for some integer 

w. This can be written as (x2−y2)2+2(2xy)2 

= w2. Also, we have (x2−y2)2 + (2xy)2 = 

(x2+y2)2.  Letting c = |x2−y2|, b = 2xy and  

a = x2+y2. Then we have c2+b2=a2 and 

c2+2b2 =w2 (or a2+b2=w2). This contradicts 

the lemma above.  So there is no solution. 
 
Other commended solvers: Mathematics 

Group (Carmel Alison Lam Foundation 

Secondary School). 

 

Olympiad Corner 
 

  (continued from page 1) 

 

Problem 4.  Let a, b, c be positive real 

numbers such that 2a2+b2=9c2.  Prove that 

.3
2

≥+
b

c

a

c
 

Problem 5.  Prove that if n and k are 

positive integers such that 1 < k  <  n−1, 

Then  the  binomial  coefficient 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k

n  is 

divisible by at least two different 

primes. 
 
Problem 6.  On a square board with m 

rows and n columns, where m ≤ n, 

some squares are colored black in such 

a way that no two rows are alike.  Find 

the biggest integer k such that for every 

possible coloring to start with one can 

always color k columns entirely red in 

such a way that no two rows are still 

alike. 
 

 
 

Casey’s Theorem 
 

 (continued from page 2) 

 

We have∠IAB =∠AA”C’+∠AC’A”= 

½(∠B’A”C’+∠B’C’A”)=½∠A’B’C" 

and similarly∠IBA=½∠B’A’C”.  So 
 
 ∠AIB= 180°−∠IA”B”−∠IB”A” 

       = 180°−½∠C"A"B"−½∠C"B"A" 

        = 90°+½∠A”C”B”  

        = 90° + ½(180°−2∠C)  by (***) 

        = 180° −∠ACB. 
 
Hence, I lies on Γ.  
 
Let D be the foot of the perpendicular 

from I to A”B”, then ID=r is the 

inradius of ∆A”B”C”.  Let E, F be the 

feet of the perpendiculars from B to 

A”B”, B’A’ respectively.  Then BE = 

BF = hB.  
 
Let T(X) be the length of tangent from 

X to Γ, where X is outside of Γ.  Since 

∠A”B”I = ½ ∠A”B”C”=90° −∠B 

by (***), we get 

.
cos

)90sin()90sin(

"")"(

B

rh

B

ID

B

BE

IBBBBT

B=

∠−
⋅

∠−
=

⋅=

oo

 

Let R be the circumradius of 

∆A”B”C”. Then 

.sin4

)2180sin(2
cos

"")"(

BhrR

BR
B

rh
ACBT

B

B

=

∠−=⋅ o
 

Similarly, we can get expressions for 

T(A”)·B”C” and T(C”)·A”B”.  Using 

the lemma, we get 
 
            T(A”)·B”C” + T(B”)·C”A” 

        = T(C”)·A”B”. 
 
By the converse of Casey’s theorem, 

we have the result. 
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Olympiad Corner 
 
 
Below are the problems of the 2012 

International Math Olympiad. 
 

Problem 1. Given triangle ABC the 

point J is the centre of the excircle 

opposite the vertex A. This circle is 

tangent to the side BC at M, and to the 

lines AB and AC at K and L, respectively. 

The lines LM and BJ meet at F, and the 

lines KM and CJ meet at G. Let S be the 

point of intersection of the lines AF and 

BC, and let T be the point of intersection 

of the lines AG and BC. Prove that M is 

the midpoint of ST. 
 
(The excircle of ABC opposite the vertex 

A is the circle that is tangent to the line 

segment BC, to the ray AB beyond B, 

and to the ray AC beyond C.) 
 

Problem 2. Let n ≥ 3 be an integer, and 

let a2,a3,…,an be positive real numbers 

such that a2a3⋯an =1. Prove that  
 

(1+a2)
2(1+a3)

3⋯(1+an)
n > nn. 

 

Problem 3. The liar’s guessing game is 

a game played between two players A 

and B. The rules of the game depend on 

two positive integers k and n which are 

known to both players. 
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  As leader, I arrived Mar del Plata, 

Argentina (the IMO 2012 site) four days 

earlier than the team. Despite cold 

weather, jet lag and delay of luggage, I 

managed to get myself involved in 

choosing the problems for the contest. 

Once the “easy” pair was selected, the 

jury did not have much choice but to 

choose problems of possibly other 

topics for the “medium” and the 

“difficult” pairs. The two papers of the 

contest were then set. We had to decide 

the various official versions and the 

marking scheme of the contest. After 

that, I just had to wait for the contestants 

to finish the contest and get myself 

involved in the coordination to decide 

the points obtained by our team. Here I 

would like to discuss the problems. 

(Please see Olympiad Corner for the 

statements of the problems.) 
 

Problem 1. Really problem 1 is quite 

easy, merely a lot of angle chasings and 

many angles of 90° (tangents) and 

similar triangles, etc, and no extra lines 

or segments needed to be constructed.  

First note that ∠AKJ =∠ALJ = 90°, 

hence A,K,L,J lie on the circle ω with 

diameter AJ. The idea is to show that F 

and G also lie on the same circle. 

Looking at angles around B, we see that 

4∠MBJ +2∠ABC = 360°. Thus∠MBJ 

= 90°− ½∠ABC. Also,∠BMF=∠CML 

= ½∠ACB (as CM=CL). Then ∠LFJ =   

∠MBJ −∠BMF  = ½∠BAC. 

Thus ∠LFJ =∠LAJ. Hence, F lies on 

ω. By the same token, so is G. Now AB 

and SB are symmetric with respect to 

the external bisector of ∠ABC, so is BK 

and BM. Now SM = SB+BM = AB+BK 

=AK. Similarly, TM=AL. So SM=TM.  
 
It is relatively easy to tackle the problem 

using coordinate geometry. For 

instance, we can let the excircle be the 

unit circle with J=(0,0), M=(0,1), BC is 

aligned so that B=(b,1) and C=(c,1). 

Coordinates of other points are then 

calculated to verify the required 

property. But one must be really careful 

if he tries to use coordinate method. It 

was somehow decided that if a 

contestant cannot get a full solution 

using coordinate method, then he will 

be “seriously penalized”! 
 
Problem 2. As it turned out, this 

problem caused quite a bit of trouble 

and many students didn’t know how to 

tackle the problem at all. More 

sophisticated inequalities such as 

Muirhead do not work, since the 

expression is not “homogeneous”. The 

Japanese leader called the problem a 

disaster. There were trivial questions 

such as “why is there no a1?” A more 

subtle issue is how to isolate a2,a3,…,an.
 
Clearly(1+a2)

2 ≥ 22a2 by the AM-GM 

inequality. But how about (1+a3)
3? 

Indeed the trick is to apply AM-GM 

inequality to get for k=2 to n−1, 
1
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By multiplying the inequalities, the 

constants cancelled out and we get the 

final inequality. That the inequality is 

strict is trivial using the conditions of 

AM equals GM. The above inequality 

can also be used as the inductive step of 

proving the equivalent inequality 
 

(1+a2)
2(1+a3)

3⋯(1+an)
n > nna2a3⋯an. 
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Problem 3. Comparing with problem 6, 

I really found this problem harder to 

approach! Nevertheless there were still 

8 contestants who completely solved 

the problem. Among them three were 

from the US team. That was an 

amazing achievement!  

 

We can deal with this combinatorial 

probabilistic problem as follows.  Ask 

repeatedly if x is 2k. If A answers no 

k+1 times in a row, then the answer is 

honest and x≠2k. Otherwise B stops 

asking about 2k at the first time answer 

yes. He then asks, for each i=1,2,…,k, 

if the binary representation of x has a 0 

in the i-th digit. Whatever the answer is, 

they are all inconsistent with a certain 

number y in the set {0,1,2,⋯, 2k−1}. 

The answer yes to 2k is also 

inconsistent with y. Hence x≠y. 

Otherwise the last k+1 answers are not 

honest and that is impossible. So we 

find y and it can be eliminated. Or we 

can eliminate corresponding numbers 

with nonzero digits at higher end. 

Notice we may need to do some 

re-indexing and asking more questions 

about the indices of the numbers 

subsequently. With these questions, we 

can reduce the size of the set that x lies 

until it lies in a set of size 2k. 

  

Part 2 makes use of a function so that 

using the function, A can devise a 

strategy (to lie or not to lie, but lying 

not more than k times consecutively) so 

that no extra information will be 

provided to B and hence B cannot 

eliminate anything for sure. Due to 

limit of space, I cannot provide all 

details here.  

 

It was decided that part 1 answered 

correctly alone was worth 3 points and 

part 2 alone worth 5 points. But 

altogether a problem is worth at most 7 

points. So 3 + 5 = 7! At the end it really 

did not matter. After all, not too many 

students did the problem right. 

 

The problem is noted to be related to 

the Lovasz Local Lemma. See N. Alon 

et al, The Probabilistic Methods, Wiley, 

1992. In the book it seems that there is 

an example that deals with similar 

things. One may check how the lemma 

and the problem are related! 

 

Problem 4. Despite being regarded as 

an easy problem, this problem is not at 

all easy. It is much more involved than 

expected. Also this problem eventually 

caused more trouble because of the 

disputes about the marking scheme. First, 

by putting a=b=c=0, one gets f(0)=0. By 

putting b=−a and c=0, one gets f(a) = 

f(−a). More importantly, by putting 

c=−(a+b) and solving  f(a+b) = f(−(a+b)) 

as a quadratic equation of f(a) and f(b), 

one gets  

( ) ( ) ( ) 2 ( ) ( ).f a b f a f b f a f b+ = + ±  

Putting a=b and c=−2a into the original 

equation, one gets f(2a)=0 or f(2a)=4f(a). 

Now the problem becomes getting all 

possible solutions from these two 

relations. Using the two conditions, one 

checks that there are four types of 

solution:  
 

(i)  f1(x)≡0 ,           (ii)   f2(x) = kx2 ,  

(iii) 
3

0, even
( )

, odd

x
f x

k x

⎧
= ⎨
⎩

      and   

(iv) 
4

0, 0 (mod 4)

( ) , 1(mod 4) .

4 , 2(mod 4)

x

f x k x

k x

≡⎧
⎪= ≡ ±⎨
⎪ ≡⎩

 

The “k” in the solutions is essentially f(1). 

Indeed if f(1)=0, then f(2)=0, one then 

show by induction f(x)=0 for all x. (Or by 

showing f(x) is periodic of period 1.) Now 

if f(1)=k, using the condition f(2a)=0, one 

can show again by induction f(x) is k for x 

odd and is 0 for x even. Now if f(1)=k and 

f(2)=4k, then f(4)=0 or 16k. In the first 

case we get a function with period 4 and 

arrive at the solution f4(x). In the second 

case we get f2(x). (One needs to verify the 

details.) By checking the values of a, b 

and c mod 2 or 4, or other possible forms, 

one can check the solutions are indeed 

valid. Eventually if a contestant claimed 

that all the solutions are easy to check, but 

without checking, one point would be 

deducted. If a contestant says nothing 

about the solutions satisfy the functional 

equation and check nothing, then two 

points would be deducted! 

 

Problem 5. The following solution was 

obtained by one of our team members. 

Extend AX to meet the circumcircle of 

ABC at A’, likewise extend BX to meet 

the circle at B’. Now extend AB’ and 

BA’ to meet at H, which is exactly the 

orthocentre of ABX and it lies on the 

extension of DC.  
 
Since BK2 = BC2 = BD·BA, we have 

∆ABK~∆KBD, so ∠BKD =∠BAK =

∠BHD, which implies B, D, K, H 

concyclic. So ∠BKH =∠BDH=90°. 

This implies HK2 = BH2 −BK2 = BH2− 

BD·BA = BH2 − BA’·BH = HA’·HB. 

Similarly HL2= HB’·HA. But HA’·HB 

= HB’·HA. Hence HK=HL. Using 

similar arguments as above, we have 

∠ALH = 90° ( =∠BKH.)  Along with 

HK=HL, we see ∆MKH≅∆MLH. 

Therefore, MK=ML.  
 

 Problem 6. Clearing denominators of  

1 2

1 2
... 1,

3 3 3 naa a

n
+ + + =  

one gets x1+2x2+⋯+nxn=3a, where 

x1,x2,…,xn are non-negative integer 

powers of 3.  Taking mod 2, one gets 

n(n+1)/2 ≡ 1(mod 2). This is the case 

only when n ≡ 1, 2 (mod 4). The hard 

part is to prove the converse also holds. 

The cases n=1 or 2 are easy. By trials, 

for n=5, (a1,…,a5)=(2,2,2,3,3) works. 

The official solution gave a systematic 

analysis of how to obtain solutions by 

using identities 1/2a=1/2a+1+1/2a+1 and 

w/3a=u/3a+1+v/3a+1, where u+v=3w. 

For n=4k+1≥5, one can arrive at the 

solution a1=2=a3, a2=k+1, a4k = k+2 = 

a4k+1 and am = [m/4]+3 for 4≤m<4k. 

Similarly, for n=4k+2≥6, one can 

arrive at the solution a1 = 2, a2 = k+1, a3 

= a4 = 3, a4k+1 = k+2 = a4k+2 and am = 

[(m−1)/4]+3 for 4<m≤4k.    One can 

check these are indeed solutions by 

math induction on k. In the inductive 

steps of both cases, just notice a2, an−1, 

an are increased by 1 so to balance the 

new an+1, an+2, an+3, an+4 terms. 
 
This reminds me of the 1978 USAMO 

problem: an integer n is called good if 

we can write n=a1+a2+⋯+ak, where 

a1,a2,…,ak are positive integers (not 

necessarily distinct) satisfying  

.1
111

21

=+++
kaaa

L  

Given 33 to 73 are good, prove that all 

integer greater than 33 are good. The 

idea there is to show if n is good, then 

2n+8 and 2n+9 are good by dividing 

both sides of the above equation by 2 

and adding the terms 1/4+1/4 and 

1/3+1/6 respectively. 
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is September 20, 2012. 

 

Problem 396.  Determine (with proof) 

all functions f : ℝ→ℝ such that for all 

real numbers x and y, we have 
 

f (x2 + xy + f (y)) = (f(x))2 + xf(y) + y. 
  

Problem 397. Suppose in some set of 

133 distinct positive integers, there are 

at least 799 pairs of relatively prime 

integers. Prove that there exist a,b,c,d 

in the set such that  gcd(a,b) = gcd(b,c) 

= gcd(c,d) = gcd(d,a) = 1. 
 

Problem 398. Let k be positive integer 

and m an odd integer. Show that there 

exists a positive integer n for which the 

number nn−m is divisible by 2k. 
 

Problem 399. Let ABC be a triangle 

for which ∠BAC=60°. Let P be the 

point of intersection of the bisector of 

∠ABC and the side AC. Let Q be the 

point of intersection of the bisector of 

∠ACB and the side AB. Let r1 and r2 be 

the radii of the incircles of triangles 

ABC and APQ respectively. Determine 

the radius of the circumcircle of 

triangle APQ in terms of r1 and r2 with 

proof.  
 

Problem 400. Determine (with proof)  

all the polynomials P(x) with real 

coefficients such that for every rational 

number r, the equation P(x) = r has a 

rational solution.  
 

***************** 

Solutions 

**************** 
 
Problem 391. Let S(x) denote the sum 

of the digits of the positive integer x in 

base 10. Determine whether there exist 

distinct positive integers a, b, c such 

that S(a+b)<5, S(b+c)<5, S(c+a)<5, 

but S(a+b+c)>50 or not. 
 

Solution. AN-anduud Problem 

Solving Group (Ulaanbaatar, 

Mongolia), CHEUNG Ka Wai 

(Munsang College (Hong Kong Island)), 

LI Jianhui (CNEC Christian College, 

F.5), LO Shing Fung (Carmel Alison Lam 

Foundation Secondary School), Andy 

LOO (St. Paul’s Co-educational College),  

YUEN Wai Kiu (St. Francis’ Canossian 

College) and  ZOLBAYAR Shagdar (9th 

grader, Orchlon International School, 

Ulaanbaatar, Mongolia). 
 
Yes, we can try a=5,555,554,445 and 

b=5,554,445,555 and c=4,445,555,555. 

Then 
 

S(a+b)=S(11,110,000,000)=4, 

S(b+c)=S(10,000,001,110)=4,  

S(c+a)=S(10,001,110,000)=4. 
 

Finally,  

S(a+b+c)=S(15,555,555,555)=51. 
 
Other commended solvers: Alice WONG 
(Diocesan Girls’ School), Titu 
ZVONARU (Comăneşti, Romania) and 
Neculai STANCIU (“George Emil 
Palade’’ Secondary School, Buzău, 
Romania). 
 

Problem 392. Integers a0, a1, ⋯, an are all 

greater than or equal to −1 and are not all 

zeros. If 
 

a0+2a1+22a2+⋯+2nan
 = 0, 

 
then prove that a0+a1+a2+⋯+an

 >0. 
 
Solution. AN-anduud Problem Solving 
Group (Ulaanbaatar, Mongolia), Kevin 
LAU (St. Paul’s Co-educational College, 
S.3), Simon LEE (Carmel Alison Lam 
Foundation Secondary School), Harry NG 
Ho Man (La Salle College, Form 5), 
SHUM Tsz Hin (City University of Hong 
Kong), Alice WONG (Diocesan Girls’ 
School), ZOLBAYAR Shagdar (9th 
grader, Orchlon International School, 
Ulaanbaatar, Mongolia),Titu ZVONARU 
(Comăneşti, Romania) and Neculai 
STANCIU (“George Emil Palade’’ 
Secondary School, Buzău, Romania). 
 
For all the conditions to hold, n ≠ 0. We will 

prove by mathematical induction. For n=1, 

if a0+2a1=0, then the conditions on a0 and a1 

imply a0 is an even positive integer. So 

a0+a1 = a0/2 > 0. Suppose the case n=k is 

true. For the case n=k+1, the given 

equation implies a0 is even, hence a0 ≥ 0. 

So a0=2b, with b a nonnegative integer.  
Then dividing the equation by 2 on both 

sides, we get that (b+a1)+2a2+⋯+2kak+1 = 

0. From the cases n=k and n=1 (in cases 

a2=⋯=ak+1=0), we get a0+a1+a2+⋯+an ≥ 

(b+a1)+a2+⋯+an > 0, ending the induction. 
 

Problem 393. Let p be a prime number 

and p ≡ 1 (mod 4). Prove that there exist 

integers x and y such that 
 

x2 − py2 = − 1. 
 

Solution. AN-anduud Problem 
Solving Group (Ulaanbaatar, 
Mongolia), Kevin LAU (St. Paul’s 
Co-educational College, S.3), Simon 
LEE (Carmel Alison Lam Foundation 
Secondary School), Andy LOO (St. 
Paul’s Co-educational College), 
Corneliu MĂNESCU-AVRAM (Dept 
of Math, Transportation High School, 
Ploiesti, Romania), Alice WONG 
(Diocesan Girls’ School) and 
ZOLBAYAR Shagdar (9th grader, 
Orchlon International School, 
Ulaanbaatar, Mongolia). 
 
Let (m,n) be the fundamental solution 

(i.e. the least positive integer solution) of 

the Pell’s equation x2 − py2 = 1 (see 

Math Excal., vol. 6, no. 3, p.1).  Then 
 

m2 − n2 ≡ m2 − pn2 = 1(mod 4). 
 

Then m is odd and n is even. Since 

2

22

1

2

1
⎟
⎠
⎞

⎜
⎝
⎛=

+
⋅

− n
p

mm  

and (m−1)/2, (m+1)/2 are consecutive 

integers (hence relatively prime), either  

uvnv
m

pu
m

2,
2

1
,

2

1 22 ==
+

=
−  

or   uvnpv
m

u
m

2,
2

1
,

2

1 22 ==
+

=
−  

for some positive integers u and v. In 

the former case, v2−pu2=1 with 0 < v ≤ 

v2 = (m+1)/2 < m and 0 < u = n/(2v) < n. 

This contradicts the minimality of 

(m,n). So the latter case must hold, i.e. 

u2−pv2 = −1. 
 

Problem 394. Let O and H be the 

circumcenter and orthocenter of acute 

ΔABC. The bisector of ∠BAC meets 

the circumcircle Γ of ΔABC at D. Let 

E be the mirror image of D with respect 

to line BC. Let F be on Γ such that DF 

is a diameter. Let lines AE and FH meet 

at G. Let M be the midpoint of side BC. 

Prove that GM⊥AF. 
  
 
Solution 1. AN-anduud Problem 
Solving Group (Ulaanbaatar, 
Mongolia), Kevin LAU (St. Paul’s 
Co-educational College, S.3), 
MANOLOUDIS Apostolos (4° Lyk. 
Korydallos, Piraeus, Greece), Mihai 
STOENESCU (Bischwiller, France), 
ZOLBAYAR Shagdar (9th grader, 
Orchlon International School, 
Ulaanbaatar, Mongolia), Titu 
ZVONARU (Comăneşti, Romania) 
and Neculai STANCIU (“George Emil 
Palade’’ Secondary School, Buzău, 
Romania). 
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As AD bisects ∠BAC, D is the 

midpoint of arc BC. Hence, FD is the 

perpendicular bisector of BC. Thus, (1) 

FE || AH. Let line AH meet Γ again at X. 

Since 

∠BCX=∠BAX=90°−∠ABC=∠BCH, 
 
H is the mirror image of X with respect 

to BC. Therefore, ∠HED=∠XDE= 

∠AFE. Thus, (2) AF || HE. By (1) and 

(2), AFEH is a parallelogram. Hence, 

G is the midpoint of AE. As M is also 

the midpoint of DE, we get GM || AD. 

Since DF is the diameter of Γ, AD⊥AF, 

hence GM⊥AF. 
 
Solution 2. Andy LOO (St. Paul’s 

Co-educational College). 
 
Place the figure on the complex plane 

and let the circumcircle of ΔABC be 

the unit circle centered at the origin.  

Denote the complex number 

representing each point by the 

respective lower-case letter. Without 

loss of generality we may assume a = 1 

and that the points A, B and C lie on the 

circle in anticlockwise order. Let b =u2 

and c=v2, where |u|=|v|=1. Then d=uv 

and hence f =−uv. Next, E is the mirror 

image of D with respect to BC means 

e b d b

c b c b

− −⎛ ⎞= ⎜ ⎟− −⎝ ⎠
, 

giving e = u2 − uv + v2. By the Euler 

line theorem, h=a+b+c=1+u2+v2.Now 

G on lines AE and FH means 

g a g a

e a e a

− −
=

− −
 and g f g f

h f h f

− −
=

− −
 . 

Solving these simultaneously for G, we 

get g = (u2−uv+v2+1)/2. Also, m = 

(b+c)/2 = (u2+v2)/2.  
 

To show GM⊥AF, it suffices to prove 

that (m−g)/(f−a) is an imaginary 

number. Indeed, 1 1

2 1

m g uv

f a uv

− −
= ⋅

− +
 and  

1 1
1

1 1 1

1 12 2 1
1

m g uv m gu v

f a uv f a

u v

− ⋅⎛ ⎞− − −
= ⋅ = ⋅ = −⎜ ⎟− + −⎝ ⎠ + ⋅

 

as desired. 
 

Other commended solvers: Simon LEE 
(Carmel Alison Lam Foundation Secondary 
School), and Alice WONG (Diocesan 
Girls’ School). 
 
Problem 395. One frog is placed on every 

vertex of a 2n-sided regular polygon, 

where n is an integer at least 2. At a 

particular moment, each frog will jump to 

one of the two neighboring vertices (with 

more than one frog at a vertex allowed).  

 

Find all n such that there exists a jumping 

of these frogs so that after the moment, all 

lines connecting two frogs at different 

vertices do not pass through the center of 

the polygon. 
 
Solution. Kevin LAU (St. Paul’s 
Co-educational College, S.3), Simon LEE 
(Carmel Alison Lam Foundation Secondary 
School), LI Jianhui (CNEC Christian 
College, F.5) and Andy LOO (St. Paul’s 
Co-educational College). 
 
If n ≡ 2 (mod 4), say n=4k+2, then label 

the 2n=8k+4 vertices from 1 to 8k+4 in 

clockwise direction. For j ≡ 1 or 2 (mod 4), 

let the frog at vertex j jump in the 

clockwise direction. For j ≡ 3 or 4 (mod 4), 

let the frog at vertex j jump in the 

counter-clockwise direction. After the 

jump, the frogs are at vertices 2, 6, …, 

8k+2 and 3,7, …, 8k+3. No two of these 

vertex numbers have a difference of the 

form 2 (mod 4). So no line through two 

different vertices with frogs will go 

through the center. 

 

If n ≢2 (mod 4), then assume there is such 

a jump. We may exclude the cases all 

frogs jump clockwise or all frogs jump 

counter-clockwise, which clearly do not 

work. Hence, in this jump, there is a frog, 

say at vertex i, jumps in the 

counter-clockwise direction, then the frog 

at vertex i+m(n−2) (mod 2n) must jump 

in the same direction as the frog at vertex i 

for m=1,2,….  

 

If n is odd, then gcd(n−2,2n) = 1. So there 

are integers a and b such that a(n−2) + 

b(2n) = 1.  For every integer q in [1,2n], 

letting m = (q−i)a, we have i+m(n−2) ≡ q 

(mod 2n). This means all frogs jump in the 

counter-clockwise direction, which does 

not work. 

 

If n is divisible by 4, then gcd(n−2,2n) = 2. 

So there are integers c and d such that 

c(n−2)+d(2n)=2. Letting m=nc/2, we 

have i+m(n−2)≡i+n (mod 2n). Then frogs 

at vertices i and i+n jump in the 

counter-clockwise direction and the line 

after the jump passes through the center, 

contradiction.  

Therefore, the answer is n ≡ 2 (mod 4). 
 
Other commended solvers: Alice 
WONG (Diocesan Girls’ School). 
 

 

Olympiad Corner 
 
                       (continued from page 1) 

 

Problem 3. (Cont.) At the start of the 

game A chooses integers x and N with 

1≤x≤N. Player A keeps x secret, and 

truthfully tells N to B. Player B now 

tries to obtain information about x by 

asking player A questions as follows: 

each question consists of B specifying 

an arbitrary set S of positive integers 

(possibly one specified in some 

previous question), and asking A 

whether x belongs to S. Player B may 

ask as many such questions as he 

wishes. After each question, player A 

must immediately answer it with yes or 

no, but is allowed to lie as many times 

as she wants; the only restriction is that, 

among any 1k +  consecutive answers, 

at least one answer must be truthful. 
 
     After B has asked as many questions 

as he wants, he must specify a set X of 

at most n positive integers. If x belongs 

to X, then B wins; otherwise, he loses. 

Prove that:  
 
1. If n ≥2k, then B can guarantee a win. 

2. For all sufficiently large k, there 

exists an integer n ≥1.99k such that B 

cannot guarantee a win. 

 

Problem 4. Find all functions f: Z → Z 

such that, for all integers a, b, c that 

satisfy a+b+c=0, the following 

equality holds: 
 
      f (a)2 + f (b)2 + f (c)2 

  = 2f (a) f (b) + 2f (b) f (c) + 2f (c) f (a). 
 
(Here Z denotes the set of integers.) 
 

Problem 5. Let ABC be a triangle with 

∠BCA = 90°, and let D be the foot of 

the altitude from C. Let X be a point in 

the interior of the segment CD. Let K 

be the point on the segment AX such 

that BK=BC. Similarly, let L be the 

point on the segment BX such that 

AL=AC. Let M be the point of 

intersection of AL and BK. Show that 

MK=ML.  
 
Problem 6. Find all positive integers n 

for which there exist non-negative 

integers a1,a2,…,an such that  

1 2 1 2

1 1 1 1 2
... ... 1.

2 2 2 3 3 3n na aa a a a

n
+ + + = + + + =  
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Olympiad Corner 
 
 
Below are the problems of the 2012 

IMO Team Selection Test 1 from 

Saudi Arabia. 
 

Problem 1.  In triangle ABC, points D 

and E lie on sides BC and AC 

respectively such that AD⊥BC and 

DE⊥AC.  The circumcircle of triangle 

ABD meets segment BE at point F 

(other than B).  Ray AF meets segment 

DE at point P.  Prove that DP/PE = 

CD/DB. 
 

Problem 2.  In an n×n board, the 

numbers 0 through n2−1 are written so 

that the number in row i and column j is 

equal to (i−1)+n(j−1) where 1≤i,j ≤n. 

Suppose we select n different cells of 

the board, where no two cells are in the 

same row or column.  Find the 

maximum possible product of the 

numbers in the n cells. 

 

Problem 3.  Let ℚ be the set of rational 

numbers.  Find all functions f :ℚ→ℚ 

such that for all rational numbers x,y, 
 

f (f (x)+ x f (y)) = x + f (x) y. 

 

Problem 4.  Find all pairs of prime 

numbers p, q such that p2−p−1 = q3. 
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This year’s International Mathematical 

Olympiad (IMO) has been of 

considerable significance to Hong 

Kong.  At the 1997 IMO held in Mar del 

Plata, Argentina, shortly after our 

official transfer of sovereignty, the 

Hong Kong delegation accomplished 

the special mission of elucidating 

Article 149 of its Basic Law in light of 

Annex I of the  Sino-British  Joint 

Declaration, thereby consolidating the 

legitimacy of its participation in the 

IMO.  This July, following the 15th 

anniversary of the establishment of the 

Special Administrative Region, this 

annual event returns to Argentina, in 

exactly the same city as last time’s.  In 

addition to battling in the examination 

hall, the Hong Kong team was endowed 

with the invigorating task of bringing 

the IMO to Hong Kong again in 2016. 
 
Joined by 542 young brains from 99 

countries, the Hong Kong team 

comprised the following personnel: Dr. 

Leung Tat Wing (leader), Mr. Leung 

Chit Wan (deputy leader) and the team 

members were Kevin Lau Chun Ting 

(St. Paul’s Co-educational College), 

Andy Loo (St. Paul’s Co-educational 

College), Albert Li Yau Wing (Ying 

Wah College), Jimmy Chow Chi Hong 

(Bishop Hall Jubilee School), Kung 

Man Kit (SKH Lam Woo Memorial 

Secondary School) and Alice Wong Sze 

Nga (Diocesan Girls’ School). 
  
This contest bestows certain personal 

touch upon me, for it not only marks my 

unprecedented landing on the continent 

of South America, but is also my first 

and, in all probability, my last IMO, an 

ultimate platform for me to display my 

years of Mathematical Olympiad 

endeavor in my high school career. 

Having represented Hong Kong at both 

the International Physics Olympiad 

(IPhO) and the IMO is a great 

responsibility which I feel extremely 

grateful to have had the unique chance 

to shoulder. 

July 7 and 8  Our flights from Hong 

Kong to Frankfurt and from Frankfurt to 

Buenos Aires, each over 12 hours long, 

were predominantly occupied by sleep 

and math exercises, considering the 

disappointing fact that our planes turned 

out to be two of the very few 

Boeing-74748 models of Lufthansa that 

lack in-flight entertainment systems. 

Our amazement at a German flight 

attendant, who spoke more than fluent 

Mandarin Chinese, as well as a cozy 

conversation with a Slovakian neighbor, 

highlighted the otherwise uneventful 

journey. 
 
We arrived at the Argentinean capital 

city early in the morning of July 8 (in 

winter!), and, after being transported to 

the domestic airport, employed a time- 

consuming conglomeration of  Google 

Translate effort and sign language to 

manage to purchase a couple of SIM 

cards at a tiny store, where the 

shopkeeper knew literally no English.  

A Maradona-like bus driver kindly 

offering us a free ride, we embarked on 

a tour around the city and enjoyed a 

beef-dominated meal before returning 

to the airport in the late afternoon to 

catch our flight to Mar del Plata, on 

which I, being absolutely exhausted, 

slept from the first to the last minute. 
 
July 9  The major event of this day was 

the Opening Ceremony.  It was held in 

the Radio City.  I met British team 

member Josh Lam and congratulated 

him on his mother’s recent promotion to 

Chief Secretary of Hong Kong.  If I 

were to describe the entire ceremony in 

one word it would definitely be 

“Spanish”.  Almost all the speeches 

were delivered in Spanish, albeit 

accompanied by English interpretation. 

To most, the more exciting parts of the 

ceremony included the IMO anthem, the 

parade of nations and the distant waves 

from the leaders, who were forbidden to 

communicate with us before the contest 

as they took part in problem selection. 
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July 10  On this first day of the contest, 

we had 3 problems to solve in 4.5 hours. 

Because questions could only be raised 

in the first 30 minutes, I had to 

understand all the problems quickly.  
  
Problem 1  Given triangle ABC the 
point J is the center of the excircle 
opposite the vertex A.  This excircle is 
tangent to the side BC at M, and to the 
lines AB and AC at K and L, 
respectively. The lines LM and BJ meet 
at F, and the lines KM and CJ meet at G. 
Let S be the point of intersection of the 
lines AF and BC, and let T be the point 
of intersection of the lines AG and BC.  
Prove that M is the midpoint of ST. 
  
I decided to use my favorite method – 

complex numbers.  Indeed, denote the 

complex number representing each 

point by the corresponding small letter. 

Setting j=0 and m=1, I found s=2k/(k+l) 

and t=2l/(k+l) after a straightforward 

computation, and the result followed. 
  
Problem 2  Let n ≥ 3 be an integer, and 
let a2,a3,…,an be positive real numbers 
such that a2a3⋯an =1.  Prove that  
 

(1+a2)
2(1+a3)

3⋯(1+an)
n > nn. 

 
Inequalities were once among the 

hottest topics on the IMO but totally 

disappeared in the last three years due 

to the rising popularity of brute force 

techniques, e.g. Muirhead’s inequality 

and Schur’s inequality.  But my firm 

belief in the revival of inequalities has 

never been shaken, and instead was 

only strengthened by Problem 5 of 

APMO 2012.  Consequently I had done 

appreciable preparation in this area 

before the Olympiad. 
  
In IMO history, this problem was quite 

unique.  For one, it is an n-variable 

inequality.  For the other, it has no 

equality case.  Both features are 

unparalleled according to my memory. 
 
I spent about an hour attempting to 

solve the problem using induction or 

analysis, with no avail.  In despair, I 

took logarithm and applied Jensen’s 

inequality by appealing to concavity of 

the log function.  Miraculously, it gave 

precisely the inequality in the problem! 

After checking that equality case 

cannot satisfy the condition a2a3⋯an 

=1, I was basically done.  

 

Then on a second thought, I realized 

that I could actually convert my proof 

into a logarithm-free one that involves 

the AM-GM inequality only.  So I 

rewrote my solution in this new form 

and marked the original as an alternative 

solution.  It turned out that Alice was also 

able to solve this problem with the 

AM-GM inequality.  
  
Problem 3  The liar’s guessing game is a 
game played between two players A and B. 
The rules of the game depend on two 
positive integers k and n which are known 
to both players. 
 
At the start of the game A chooses integers 
x and N with 1≤x≤N.  Player A keeps x 
secret, and truthfully tells N to B.  Player B 
now tries to obtain information about x by 
asking player A questions as follows: each 
question consists of B specifying an 
arbitrary set S of positive integers 
(possibly one specified in some previous 
question), and asking A whether x belongs 
to S. Player B may ask as many such 
questions as he wishes. After each 
question, player A must immediately 
answer it with yes or no, but is allowed to 
lie as many times as she wants; the only 
restriction is that, among any k+1 
consecutive answers, at least one answer 
must be truthful. 
 
After B has asked as many questions as he 
wants, he must specify a set X of at most n 
positive integers.  If x belongs to X, then B 
wins; otherwise, he loses.  Prove that:  
 
1.  If n ≥ 2k, then B can guarantee a win. 
2.  For all sufficiently large k, there exists 
an integer n ≥1.99k such that B cannot 
guarantee a win. 
  
This problem was not only long, but also 

terribly difficult. In the end, only 8 

contestants managed to solve it.  Despite 

my effort, the only thing I was able to do 

was proving the k = 1 case in Part 1, with 

the hope of getting slim partial credits. 
 
Finally Day 1 of the contest was over.  

Our team aced Problem 1.  As for Problem 

2, Alice and I should be able to get 7’s 

while Albert’s partial analytic solution 

would be subject to vigorous debate.  Kit 

also finished the k = 1 case in Part 1 of 

Problem 3.  Overall I was satisfied with 

my performance on Day 1. 
  
July 11  The six IMO problems are 

usually partitioned into the four categories 

(algebra, combinatorics, geometry and 

number theory) in the fashion of {1,5}, 

{2,4}, {3} and {6} (up to permutation). 

Judging from this pattern I would face an 

easy algebraic problem, an intermediate 

geometric problem and a hard number 

theoretic problem on Day 2.  I figured that 

I would plausibly get a Gold medal for 

solving two of them, a Silver medal for 

one and a Bronze medal for none.  My 

strategy was to guarantee Problem 4 and 

then aim to get Problem 5 by hook or 

by crook. 
 
To my astonishment, Problem 4 was 

much more involved than I had 

expected.  On the other hand I felt I 

could do Problem 5 with analytic tools: 

 
Problem 5  Let ABC be a triangle with 
∠BCA = 90°, and let D be the foot of 
the altitude from C.  Let X be a point in 
the interior of the segment CD.  Let K 
be the point on the segment AX such 
that BK=BC.  Let L be the point on the 
segment BX such that AL=AC.  Let M 
be the point of intersection of AL and 
BK.  Show that MK=ML.  
  
I proceeded to do coordinate geometry, 

only to find out I was doomed after 

almost one hour.  The reason was as 

follows. The expressions were 

quadratic in nature (as lengths took part 

in the formulation of the problem), 

leading to the prevalence of square 

roots. (As a side note, this also deterred 

me from using complex numbers, 

where one may have difficulty in 

selecting the correct roots of the 

quadratic equations.) 
 
 As the old Chinese saying goes, one 

should “drop his cleaver and become a 

Buddha (放下屠刀，立地成佛)”. I 

decided to abandon Problem 5 for a 

moment and to reconsider Problem 4: 
 
Problem 4   Find all functions f: Z → Z 
such that, for all integers a, b, c that 
satisfy a + b + c = 0, the following 
equality holds: 
 
      f (a)2 + f (b)2 + f (c)2 

  = 2f (a) f (b) + 2f (b) f (c) + 2f (c) f (a). 
 
(Here Z denotes the set of integers.) 
 
This was a problem with unusual 

answers.  It took me quite a while to 

write up a tidy solution and to ensure 

that no point could sneak away from 

my hands.  Thus it was 2.5 hours into 

Day 2. I still had Problems 5 and 6 left.  
 
Problem 6  Find all positive integers n 
for which there exist non-negative 
integers a1,a2,…,an such that  

1 2 1 2

1 1 1 1 2
... ... 1.

2 2 2 3 3 3n na aa a a a

n
+ + + = + + + =   

 
I quickly determined that Problem 6 

was hopeless.  Turning to Problem 5 

again, I spent all the remaining time 

expanding everything.  I was finally 

able to convince myself that my proof 

was complete. 

 

   (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  The 

solutions should be preceded by the 

solver’s name, home (or email) address 

and school affiliation.  Please send 

submissions to Dr. Kin Y. Li, 

Department of Mathematics, The Hong 

Kong University of Science & 

Technology, Clear Water Bay, Kowloon, 

Hong Kong.  The deadline for sending 

solutions is November 20, 2012. 
 

Problem 401.  Suppose all faces of a 

convex polyhedron are parallelograms. 

Can it have exactly 2012 faces?  Please 

provide an explanation to your answer. 
  

Problem 402.  Let S be a 30 element 

subset of {1,2,…,2012} such that every 

pair of elements in S are relatively 

prime.  Prove that at least half of the 

elements of S are prime numbers. 
 

Problem 403.  On the coordinate plane, 

1000 points are randomly chosen. 

Prove that there exists a way of 

coloring each of the points either red or 

blue (but not both) so that on every line 

parallel to the x-axis or y-axis, the 

number of red points minus the number 

of blue points is equal to −1, 0 or 1. 
 

Problem 404.  Let I be the incenter of 

acute ∆ABC.  Let Γ be a circle with 

center I that lies inside ∆ABC. D, E, F 

are the intersection points of circle Γ 

with the perpendicular rays from I to 

sides BC, CA, AB respectively.  Prove 

that lines AD, BE, CF are concurrent. 
 

Problem 405.  Determine all functions 

f,g: (0,+∞) → (0,+∞) such that for all 

positive number x, we have 

.
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***************** 

Solutions 

**************** 
 
Problem 396.  Determine (with proof) 

all functions f : ℝ→ℝ such that for all 

real numbers x and y, we have 
 

f (x2 + xy + f (y)) = (f(x))2 + xf(y) + y. 
 

Solution.  AN-anduud Problem 
Solving Group (Ulaanbaatar, 
Mongolia), CHEUNG Ka Wai 
(Munsang College (Hong Kong 
Island)), CHEUNG Wai Lam (Queen 
Elizabeth School), Dusan 

DROBNJAK (Mathematical Grammar 
School, Belgrade, Serbia), Kevin LAU 
(St. Paul’s Co-educational College, S.4), 
Simon LEE (Carmel Alison Lam 
Foundation Secondary School),   
Mohammad Reza SATOURI (Persian 
Gulf University, Bushehr, Iran) and 
Maksim STOKIĆ (Mathematical 
Grammar School, Belgrade, Serbia). 
 
Call the required equation (*).  For x=0, 

we get f(f(y))=y+f(0)2 for all y.  Call this 

(**).  The right side may be any real 

number, hence f is surjective.  By (**), y = 

f(f(y))− f(0)2 .  If f(y) = f(y’), then the last 

equation implies y=y’, i.e. f is injective.   
 
Putting x=−y in (*), we get f(f(y)) = 

(f(−y))2−yf(y)+y for all y.  Call this (***). 
 
Now f surjective implies there exists z 

such that f(z)=0.  Let x=y=z, then (*) 

yields f(2z2)=z.  Putting (x,y)=(0,2z2) in (*), 

we get 0=2z2+f(0)2.  Then z=0 and f(0)=0. 

So (**) reduces to f(f(y))=y for all y. 

Putting y = 0 in (*), since f(0) = 0, we get 

f(x2) = (f(x))2.  The last two sentences 

reduce (***) to y = (f(y))2−yf(y)+y.  This 

simplifies to f(y) = 0 or f(y) = y for every y. 

Since f is injective and f(0) = 0,  we get f(y) 

= y for all y.  Conversely, a quick check 

shows f(y) = y for all y satisfies (*). 
 
Other commended solvers: Tobi 
MOEKTIJONO (National University of 
Singapore). 
 

Problem 397.  Suppose in some set of 133 

distinct positive integers, there are at least 

799 pairs of relatively prime integers. 

Prove that there exist a,b,c,d in the set 

such that  gcd(a,b) = gcd(b,c) = gcd(c,d) = 

gcd(d,a) = 1. 
 
Solution. CHEUNG Ka Wai (Munsang 
College (Hong Kong Island)), Dusan 
DROBNJAK (Mathematical Grammar 
School, Belgrade, Serbia), Kevin LAU 
(St. Paul’s Co-educational College, S.4), 
Simon LEE (Carmel Alison Lam 
Foundation Secondary School), Andy 
LOO (Princeton University), Tobi 
MOEKTIJONO (National University of 
Singapore) and Maksim STOKIĆ 
(Mathematical Grammar School, 
Belgrade, Serbia). 
 
Let S={n1, n2,…,n133} be the set of these 133 

positive integers.  From i=1 to 133, let Xi be 

the set of all nk in S such that k≠i and 

gcd(ni,nk)=1.  Denote by |X| the number of 

elements in set X.  For k≠i, gcd(ni,nk)=1 

implies ni∈Xk and nk∈Xi.  Then N = |X1| + 

|X2| + ⋯ + |X133| ≥ 2×799 = 1598. 
 
Define f(x) = x(x−1)/2.  In a set X with j 

elements, there are exactly j(j−1)/2 = f(|X|) 

pairs of distinct elements.  Since f(x) is 

concave on ℝ, by Jensen’s inequality,  
 

⎟
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⎞
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⎛≥⎟
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         > 133 f (12) = f (133) = f(|S|). 
 
Since every pair of distinct element in 

Xi is also a pair of distinct element in S, 

the inequality above implies in 

counting pairs of distinct elements in 

the Xi’s, there are repetitions, i.e. there 

are Xi, Xk with i≠k sharing a common 

pair of distinct elements a,c.  Let b=ni 

and d=nk.  Then a,b,c,d satisfy gcd(a,b) 

= gcd(b,c) = gcd(c,d) = gcd(d,a) = 1. 

 

Problem 398.  Let k be positive integer 

and m an odd integer.  Show that there 

exists a positive integer n for which the 

number nn−m is divisible by 2k. 
 

Solution. AN-anduud Problem 
Solving Group (Ulaanbaatar, 
Mongolia), Dusan DROBNJAK 
(Mathematical Grammar School, 
Belgrade, Serbia), KWAN Chung 
Hang (Sir Ellis Kadoorie Secondary 
School (West Kowloon)), Kevin LAU 
(St. Paul’s Co-educational College, 
S.3), Simon LEE (Carmel Alison Lam 
Foundation Secondary School), Andy 
LOO (Princeton University), Tobi 
MOEKTIJONO (National University 
of Singapore) and Maksim STOKIĆ 
(Mathematical Grammar School, 
Belgrade, Serbia). 
 
For k=1, let n=1.  Suppose it is true for 

case k (i.e. there exists n such that 2k | 

nn−m).  Now m odd implies n odd.  For 

case k+1, if 2k+1 | nn−m, then the same n 

works for k+1.  Otherwise, nn−m=2kl 

for some odd integer l.  Let v=2k.  By 

binomial theorem, 
  

(n+v)n+v = nn+v+(n+v)nn+v−1v+v2x 

                   = nn+v+vnn+v+v2y  
 
for some integers x,y.  By Euler’s 

theorem, since n is odd and φ(2k+1)=2k,  

).2(mod1 12 +≡= kv k

nn  

Since l+nn is even, we have 
 
        (n+v)n+v = nn+v+vnn+v+v2y 

                      ≡ nn+2knn = m+2k(l+nn) 

                      ≡ m (mod 2k+1). 
 
So n+v works for k+1. 
 

Problem 399.  Let ABC be a triangle 

for which ∠BAC=60°.  Let P be the 

point of intersection of the bisector of 

∠ABC and the side AC.  Let Q be the 

point of intersection of the bisector of 

∠ACB and the side AB.  Let r1 and r2 be 

the radii of the incircles of triangles 

ABC and APQ respectively.  Find the 

radius of the circumcircle of triangle 

APQ in terms of r1 and r2 with proof.  
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 Solution. Dusan DROBNJAK 
(Mathematical Grammar School, 
Belgrade, Serbia), Kevin LAU (St. 
Paul’s Co-educational College, S.4), 
Andy LOO (Princeton University),  
MANOLOUDIS Apostolos (4° Lyk. 
Korydallos, Piraeus, Greece), Tobi 
MOEKTIJONO (National University 
of Singapore) and Maksim STOKIĆ 
(Mathematical Grammar School, 
Belgrade, Serbia). 

A

B C

I

P
Q

ES

F

 

Let I and S be the incenters of ΔABC 

and ΔAPQ respectively. (Note A,S,I 

are on the bisector of ∠BAC.) Now 

∠PIQ =∠CIB = 180°−(∠CBI +∠BCI) 

= 180°− ½(∠CBA+∠BCA) = 120° 

using ∠BAC=60°. So APIQ is cyclic.  
 
Applying sine law to ΔAPI, we get 

IP/(sin∠IAP) = 2R. So R = IP.  By a 

well-known property of incenter, we 

have IP=IS (see vol.11, no.2, p.1 of 

Math Excal.).  Let the incircles of 

ΔABC and ΔAPQ touch AC at E and F 

respectively.  Then R=IP=IS = AI−AS 

= IE/sin30°−SF/sin30° = 2r1−2r2. 
 
Other commended solvers: 
AN-anduud Problem Solving Group 
(Ulaanbaatar, Mongolia), Ioan Viorel 
CODREANU (Secondary School 
Satulung, Maramure, Romania), Simon 
LEE (Carmel Alison Lam Foundation 
Sec. School) and Mihai STOENESCU 
(Bischwiller, France). 
 

Problem 400.  Determine (with proof)  

all the polynomials P(x) with real 

coefficients such that for every rational 

number r, the equation P(x) = r has a 

rational solution.  
 
Solution. Tobi MOEKTIJONO 
(National University of Singapore), 
Maksim STOKIĆ (Mathematical 
Grammar School, Belgrade, Serbia) 
and TAM Ka Yu (MIT). 
 
We will show P(x) satisfies the desired 
condition if and only if P(x)=ax+b, 
where a,b ∈ℚ and a ≠ 0. For the if-part, 
P(x) = r ∈ℚ implies x = (r−b)/a ∈ℚ. 
 
Conversely, let P(x) satisfy the desired 
condition and let n=deg P.  For each r = 
0,1,…, n, let P(xr)=r for some xr∈ℚ. 
By the Lagrange interpolation formula, 
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Expanding the right side, we see P(x) 

has rational coefficients.  

Letting M be the product of the 

denominators, we see Q(x)=MP(x) has 

integer coefficients.  Let k be the leading 

coefficient of Q(x) and c be the constant 

term of P(x).  Let p1, p2, p3, … be the 

sequence of prime numbers. Let 

P(x)=c+pi/M has solution ti∈ℚ.  Then 

Q(x)−(cM+pi) has k as the leading 

coefficient and −pi as constant term.  Now 

Q(ti)=0, which implies ti=1/di or pi∕di for 

some (not necessarily positive) divisor of 

k.  Since P(ti)’s are distinct, so the ti’s are 

distinct.  Hence, ti=1/di for at most as 

many time as the number of divisors of k.  

So there must exist a divisor d of k such 

that there are infinitely many times ti=pi∕d. 

This imply that P(x)−(c+dx/M)=0 has 

infinitely many solutions. So the left side 

is the zero polynomial.  Then P(x)=ax+b 

with a=d/M≠0 and b=c rational. 
 
Other commended solvers: Simon LEE 
(Carmel Alison Lam Foundation Secondary 
School). 

 

IMO 2012 (Member Perspective) 
 

(continued from page 2) 
 
The arrival of Dr. Leung stirred up much 
happiness after the contest.  We reported 
on how we did.  Albert and Jimmy shone 
on Day 2, solving Problems 4 and 5.  Kit 
was also comfortable with Problem 4 
while Kevin had some technical troubles 
in one particular case.  Nobody achieved 
anything substantial on Problem 6. 
  
We celebrated that evening at a Chinese 

restaurant.  It was especially memorable 

that our deputy leader raised a couplet (對
聯), which he regarded as an open puzzle 

for millenniums (千古絕對): 
  
望江樓，望江流 

望江樓上望江流 

江樓千古，江流千古 
  
It took me nearly an hour to come up with 

a so-so solution: 
  
觀雨亭，觀雨停 

觀雨亭下觀雨停 

雨亭四方，雨停四方 
 
July 12  It was the contestants’ turn to 

have fun and the leaders’ turn to work 

hard. At night, Dr. Leung briefed us on the 

progress of the first day of coordination. 

In addition to our previous expectations, 

Albert pocketed one point for proving the 

necessary condition on Problem 6. 

Regretfully, Kit lost one point on Problem 

4 for not having verified the feasibility of 

the functions obtained.  Dr. Leung had 

refused to sign Alice’s and Kevin’s scores 

on Problem 4 in order to bargain later. 

July 13  The marking scheme 

stipulated that any solution of Problem 

5 with coordinate geometry would 

score a 0 if not a 7. Despite our leaders’ 

relentless effort, the coordinators were 

able to detect a fatal error of mine. So 

my Problem 5 was destined to be a 0.  
  
On another note, Dr. Leung succeeded 

in getting 1 point for Alice on Problem 

4, which in his words was “an 

achievement”. Kevin’s Problem 4 was 

finalized with a score of 4. 
  
July 14 We got up early in the morning 

to enjoy the sunrise scene at the seaside. 

Kevin had a pitiful blunder.  His shoes 

and trousers were wetted by a sudden 

strike of waves.  That morning the last 

coordination on Problem 2 was done. 

Albert was awarded 3 marks for his 
analytic struggle.  The uncertainties of 

our results then shifted from our actual 

scores to the medal cutting scores. 
  
We went shopping for souvenirs in the 

afternoon and as soon as we got back to 

the hotel, I learned from the Chinese 

leaders that the cutting scores for Gold, 

Silver and Bronze Medals were 28, 21 

and 14 respectively, all being multiples 

of 7. I breathed a sigh of relief as my 

Silver Medal was ultimately secure. 
  
July 15  In the afternoon we had the 

Closing Ceremony followed by a chain 

of photo-taking.  We won three Silver 

Medals (Albert, Jimmy and me), one 

Bronze Medal (Alice) and two 

Honorable Mentions (Kit and Kevin). 
  
July 16, 17 and 18  The six-hour bus 

journey from Mar del Plata to Buenos 

Aires passed rapidly in our dreams. 

Then after a long flight, we were 

finally home in one piece and me with 

several bonus pimples. 
  
In conclusion I shall stress one point – 

succinctly but with all the strength that 

I command – one can never pay 

sufficient tribute to our IMO trainers, 

who have so selflessly devoted 

countless hours of their own time to 

Mathematical Olympiad over the years. 

I can find no words to thank them the 

way they truly deserve. 
  
“Ask not what your country can do for 

you; ask what you can do for your 

country.” With this John F. Kennedy 

exclamation I urge you all to support 

the 2016 Hong Kong IMO by whatever 

means you can, so that together we can 

make it an all-time success. 
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Olympiad Corner 
 
Below are the problems of the 15th 

Hong Kong China Math Olympiad. 
 

Problem 1.  For any positive integer n, 

let a1, a2, …, am be all the positive 

divisors of n, where m≥1.  If there exist 

m integers b1, b2, …, bm such that  
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then we say that n is a good number. 

Prove that there exists a good number 

with exactly 2013 distinct prime 

factors. 
 

Problem 2.  Some of the lattice points 

(x,y), with 1 ≤ x ≤ 101 and 1 ≤ y ≤ 101 

are marked so that no 4 marked points 

form the vertices of an isosceles 

trapezoid with bases parallel to the 

x-axis or the y-axis (a rectangle is 

counted as an isosceles trapezoid).  

Determine the maximum number of 

marked points. (A lattice point is a 

point with integral coordinates.) 
 
Problem 3.  Prove that for every 

positive integer n and every group of 

real numbers a1, a2, …, an > 0,  
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   To see there are infinitely many prime 

numbers, we assume only finitely many 

of them exist, say p1,p2,…, pm.  Consider 

q = p1p2⋯pm+1.  Let p be a prime in the 

prime factorization of q.  Then p is one 

of the pi’s.  So p divides q and q−1. Then 

p divides q−(q−1)=1, contradiction.  
 
Other than 2, the rest of the prime 

numbers are in the arithmetic 

progression 2n+1, where n denotes a 

positive integer.  It is natural to ask how 

many prime numbers are in the other 

arithmetic progressions an+b, where a 

and b are given integers with a>0. 

Certainly, if gcd(a,b)>1, then no primes 

will be in the sequence an+b.  
 
In case (a,b)=(4,−1) we can see the 

answer is infinitely many by modifying 

the proof above.  Assume p1,p2,…,pm 

are all the primes of the form 4n−1. 

Then let q=4p1p2⋯pm−1.  Now q ≡ −1 

(mod 4). Assume q is a product of 

primes in the sequence 4n+1.  Then q≡1 

(mod 4), contradiction.  So q must have 

at least one prime divisor p in the 

sequence 4n−1.  Then p is one of the 

pi’s. So p divides q and q+1.  Then p 

divides (q+1)−q=1, contradiction.  
 
In case (a,b)=(p,1), where p is a prime, 

we will need facts from number theory. 
 
Fact 1 (Bezout’s Theorem).  For all 

positive integers a and b, there exist 

integers r and s such that ar+bs = 

gcd(a,b). 
 
Fact 2 (Euler’s Theorem).  For positive 

integer n, let φ(n) be the number of 

integers among 1,2,…,n that is 

relatively prime to n. If gcd(a,n)=1, then 

aφ(n)≡1 (mod n).  In case n is a prime, we 

have φ(n)=n−1 and an−1≡1 (mod n).  

This case is Fermat’s Little Theorem. 
 
Example 1 (2004 Korean Mathematical 

Olympiad).  Let p be a prime and fp(x) = 

xp−1+xp−2+⋯+x+1.  
 
(1) For each integer m divisible by p, is 

there an integer q such that q divides 

fp(m) and gcd(q,m(m−1))=1 ? 

(2) Prove that there are infinitely many 

integers n such that pn+1 is prime. 
 
Solution. (1) Yes. Let q be a prime 

divisor of fp(m).  As fp(m) ≡1 (mod m), 

we see q does not divide m. Hence 

gcd(m,q)=1.  Assume m ≡ 1 (mod q). 

Then 0 ≡ fp(m) ≡ p (mod q), which 

implies p=q.  Since p divides m, we get 

1 ≡ fp(m) ≡ p (mod p), contradiction. 

Hence q does not divide m−1.  Then 

gcd(q,m(m−1))=1. 
 
(2) Assume p1,p2,…, pk are all the 

primes of the form pn+1. Let m = 

p1p2⋯pk p and q be a prime divisor of 

fp(m).  By (1), m≢0 or 1 (mod q), which 

implies gcd(m,q)=1.  By Fermat’s little 

theorem, mq−1≡1 (mod q).  Now mp−1 = 

(m−1) fp(m) implies mp ≡ 1 (mod q).  
 
Assume gcd(q−1,p)=1. By Bezout’s 

theorem, there are integers r and s such 

that (q−1)r + ps = 1.  Then m = m(q−1)rmps 

≡ 1 (mod q), contradicting the last 

underlined expression. Then gcd(q−1,p) 

= p, i.e. q is of the form pn+1. As q 

divides fp(m) and fp(m) ≡1 (mod pi), we 

see q≠ p1,p2,…, pk. 
 

In the general case gcd(a,b)>1, we have
 
Dirichlet’s Theorem.  If a and b are 

given integers with a>0 and gcd(a,b)>1, 

then there are infinitely many primes in 

the arithmetic progression an+b. 
 
All known proof of this theorem is 

beyond the scope of secondary school 

curriculum.  Below we will look at some 

examples.  First we need more facts. 
 

Fact 3 (Chinese Remainder Theorem). 

If k1, k2, …, kn are pairwise relatively 

prime positive integers and c1, c2, …, cn 

are integers, then there exist a unique 

integer x in the interval [1, k1k2⋯ kn] such 

that x≡ci (mod ki) for i=1,2,…, n. 
 

Fact 4 (Wilson’s Theorem).  If p is a 

prime, then (p−1)! ≡ −1 (mod p). 
 
At the end of the article, we will give 

explanations for facts 1 to 4.  
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Example 2 (1996 St Petersburg Math 

Olympiad)  Prove that there are no 

positive integers a and b such that for 

each pair p, q of distinct primes greater 

than 1000, the number ap+bq is also 

prime. 
 

Solution.  Assume such a and b exist. 

Let r be a prime number with 

gcd(r,a)=gcd(r,b)=1. By Dirichlet’s 

theorem, there exist positive integers x 

and y such that p=rx+b and q=ry−a 

are prime numbers greater than 1000.  

Then ap+bq=(ax+by)r is not prime, 

contradiction. 

 

Example 3 (1997 British Mathematical 

Olympiad)  Let S = {1/r : r = 1,2,3,…}. 

For all integer k > 1, prove that there is 

a k-term arithmetic progression in S 

such that no addition term in S can be 

added to it to form a (k+1)-term 

arithmetic progression. 

 

Solution.  By Dirichlet’s theorem, 

there exists a positive integer n such 

that kn+1 is prime.  Let a1=1/(kn)! and 

d=n/(kn)!.  For i=2,…,k, ai=a1+(i−1)d 

=(1+(i−1)n)/(kn)! are in S.  However, 

the term ak+1=a1+kd=(kn+1)/(kn)! is 

not in S since kn+1 is a prime. So a1, 

a2, …, ak is such an example. 

 

Example 4  Prove that for every 

positive integer s, a, b with gcd(a,b)=1, 

there are infinitely many integers n 

such that an+b is a product of s 

pairwise distinct prime numbers. 

 

Solution.  The case s=1 is Dirichlet’s 

theorem.  Suppose the case s is true.  

Then there exists an integer N such that 

aN+b= q1q2⋯qs, where q1, q2, …, qs.  

are pairwise distinct primes.  Next, by 

Dirichlet’s theorem, there exist 

infinitely many positive integers n such 

that an+1 is a prime greater than all of 

q1, q2, …, qs.  Let tn= q1q2⋯qsn+N. 

Then atn+b = aq1q2⋯qsn+aN+b = 

q1q2⋯qs(an+1) is a product of s+1 

pairwise distinct prime numbers.  This 

completes the induction. 

 

Example 5 (2011 Mongolian Math 

Olympiad Team Selection Test)  Let m 

be a positive odd integer.  Prove that 

there exist infinitely many positive 

integer n such that (2n−1)/(mn+1) is an 

integer. 

 

Solution.  By Dirichlet’s theorem, 

there exist infinitely many primes p > 

m and p= φ(m)k+1 for some positive 

integer k.  By Euler’s theorem, 2φ(m)  ≡ 1 

(mod m).  Then  

2p = 2φ(m)k+1 ≡ 2 (mod m). 
 
This leads to n=(2p−2)/m is an integer.  By 

Fermat’s little theorem, p divides 2p − 2.  

Since p>m, we see p divides n.  Then 

mn+1=2p −1 divides 2n −1.  Therefore, 

(2n−1)/(mn+1) is an integer. 

 

Example 6 (American Math Monthly 

4772)  Let pk be the k-th prime number. 

For every integer N, prove that there exists 

a positive integer k such that both pk−1 and 

pk+1 are not in the interval [pk−N, pk+N]. 

 

Solution.  Let q be a prime number greater 

than N+2. Observe that a=q! and 

b=(q−1)!−1 are relatively prime because 

the prime divisors of q! are the primes less 

than or equal to q, however (q−1)!−1 is 

not divisible by any prime number less 

than q and (q−1)!−1 ≡ −2 (mod q) by 

Wilson’s theorem.  

 

By Dirichlet’s theorem, there is a prime pk 

≡ (q−1)! −1 (mod q!).  Then pk+1≡ 0 (mod 

(q−1)!).  Also, by Wilson’s theorem, pk+2 

≡ (q−1)!+1≡ 0 (mod q).  These showed 

pk+1 and pk+2 are not primes.  For j=2,…, 

q−1, we have 
 

pk+1±j ≡ pk+1 ≡ (q−1)! ≡ 0 (mod j). 
 
So integers in [pk−q+2, pk+q] except pk 

are not primes.  Since q>N+2, both pk−1 

and pk+1 cannot be in the [pk−N, pk+N]. 

 

Example 7 (American Math Monthly 

E1632)  Prove that if f(x) is a polynomial 

with rational coefficients such that f(p) is a 

prime number for every prime number p, 

then either f(x)=x for all x or f(x) is the 

same prime constant for all x. 

 

Solution.  Assume the conclusion is false. 

Let k be the least common multiple of the 

denominators of the coefficients of f(x) 

and let g(x)=kf(x).  Then g(x) has integer 

coefficients. Now there must be a prime p 

such that p and g(p) are relatively prime 

(otherwise, for the infinitely many primes 

p that are relatively prime to k, we have 

gcd(p,g(p))=p, so p divides g(p)=kf(p), 

hence both primes f(p) and p are equal, 

which forces f(x)=x).  

 

By Dirichlet’s theorem, there are infinitely 

many integers ni such that mi=g(p)ni+p is 

prime.  Now g(mi) ≡ g(p) ≡ 0 (mod g(p)) 

for all i.  Then kf(p) divides kf(mi). Hence 

f(p) divides f(mi).  Since f(p) and f(mi) are 

primes, we get f(mi)=f(p) for infinitely 

many i.  This leads to f(x) being the 

constant polynomial f(p), contradiction.  

 

Example 8 (American Math Monthly 

4524)  Prove that for every pair of 

positive integers n and N, there are 

consecutive positive integers k, k+1, …, 

k+N such that φ(k), φ(k+1), …, φ(k+N) 

are all divisible by n, where φ(n) is as 

defined in Euler’s theorem. 

 

Solution. We need the fact that if 

integer w=ab, where a=pm, p is prime 

and gcd(b,p)=1, then φ(w) is divisible 

by p −1.   

 

Granting the fact, by Dirichlet’s 

theorem, there are distinct primes p0, 

p1, …, pN ≡ 1 (mod n).  By the Chinese 

remainder theorem, there is an integer 

k such that k ≡ 0 (mod p0), k ≡ −1 (mod 

p1),…, k≡−N (mod pN). So for j=0,1, …, 

N, the number k+j is divisible by the 

prime pj. Then φ(k+j) is divisible by pj 

−1 by the fact, which is a multiple of n.   

 

For the fact, note gcd(a,b)=1. Then 

φ(ab)= φ(a)φ(b). (This follows from 

the Chinese remainder theorem, since 

for every k in [1,ab] with gcd(k,ab)=1, 

let r and s be the remainders when k is 

divided by a and b respectively.  Now 

gcd(k,ab)=1 if and only if gcd(r,a) = 1 

= gcd(s,b). The Chinese remainder 

theorem asserts that x ≡ k (mod ab) if 

and only if x ≡ r (mod a) and x ≡ s (mod 

b). Thus x↔(r,s) is bijective.)  For x in 

[1,pm], gcd(x,pm)>1 if and only if x is a 

multiple of p.  So φ(a)=φ(pm) = pm − 

pm−1 = pm−1(p−1).  Then φ(w)= φ(a)φ(b) 

is divisible by p −1. 

 

Example 9 Prove that there are 

infinitely many positive integers n such 

that the equation xn+yn=zn has no 

solution (x,y,z) in integers with xyz≠0 

and gcd(n,xyz)=1. (These n’s may even 

be chosen to be pairwise relatively 

prime.) 
 
(Remark Barry Powell published this 

result in the American Mathematical 

Monthly on November 1978.) 

 

Solution.  The case n=4 is well-known. 

Next, suppose n1, n2, …, nk are such n’s. 

By Dirichlet’s theorem, there is a prime 

p such that p ≡ −1 (mod 4n1n2⋯nk).  

We define a new n = p(p−1)/2. Note n 

≡ 1 (mod 4). Since (p−1)/2, (p+1)/2 

are consecutive integers and p > 

(p+1)/2,  so gcd(p(p−1)/2, (p+1)/2) = 1. 

Hence, gcd(n, 4n1n2⋯nk)=1. (In 

particular, n is relatively prime to every 

one of  n1, n2, …, nk.) 

   (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is February 3, 2013. 
 
Problem 406.  For every integer m>2, 

let P be the product of all those positive 

integers that are less than m and 

relatively prime to m, prove that P2−1 

is divisible by m. 
  
Problem 407.  Three circles S, S1, S2 

are given in a plane. S1 and S2 touch 

each other externally, and both of them 

touch S internally at A1 and at A2 

respectively.  Let P be one of the two 

points where the common internal 

tangent to S1 and S2 meets S.  Let Bi be 

the intersection points of PAi and Si 

(i=1,2). Prove that line B1B2 is a 

common tangent to S1 and S2.    
 
Problem 408.  Let ℚ denote the set of 

all rational numbers.  Let f:ℚ→{0,1} 

be a function such that for all x,y in ℚ 

with f(x)=f(y), we have f((x+y)/2)= f(x). 

If f(0)=0 and f(1)=1, then prove that 

f(x)=1 for every rational x>1.  
 

Problem 409.  The population of a city 

is one million.  Every two citizens there 

know another common citizen (here 

knowing is mutual).  Prove that it is 

possible to choose 5000 citizens from 

the city such that each of the remaining 

citizens will know at least one of the 

chosen citizens.  
 

Problem 410. (Due to Titu ZVONARU 

and Neculai STANCIU, Romania) 

Prove that for all positive real x,y,z, 

)(4))(()( zxyzxyzyzxyx
cyc

++≥+++∑  

).)()()((
)(3

222

222
xzzyyx

zyx

zxyzxy
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++
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Here ).,,(),,(),,(),,( yxzfxzyfzyxfzyxf
cyc

++=∑  

***************** 

Solutions 

**************** 
 
Problem 401.  Suppose all faces of a 

convex polyhedron are parallelograms. 

Can it have exactly 2012 faces?  Please 

provide an explanation to your answer. 
 
Solution.  CHEUNG Ka Wai (Munsang 

College (Hong Kong Island)) and F5 

Group (Carmel Alison Lam Foundation 

Secondary School). 
 
The answer is negative.  Let us call a 

series of faces F1, F2,…, Fk a loop if the 

pairs (F1, F2), (F2, F3),…, (Fk−1, Fk), (Fk, 

F1) each have a common edge and all 

these common edges are parallel.  Clearly 

any two loops have exactly two common 

faces and conversely each face belongs to 

exactly two loops.  Therefore, if there are  

n loops, the total number of faces must be 

2 nC2=n(n−1).  However, n(n−1)=2002 

has no solution in integer. 
 

Problem 402.  Let S be a 30 element 

subset of {1,2,…,2012} such that every 

pair of elements in S are relatively prime. 

Prove that at least half of the elements of S 

are prime numbers. 
 
Solution. CHEUNG Ka Wai (Munsang 
College (Hong Kong Island)), F5 Group 
(Carmel Alison Lam Foundation Secondary 
School), KWAN Chung Hang (Sir Ellis 
Kadoorie Secondary School (West 
Kowloon)), Cyril LETROUIT (Lycée 
Jean-Baptiste Say, Paris, France), 
ZOLBAYAR Shagdar (Orchlon 
International School, Ulaanbaatar, 
Mongolia) and Titu ZVONARU 
(Comăneşti, Romania) and Neculai 
STANCIU (“George Emil Palade’’ 
Secondary School, Buzău, Romania). 
 
Assume there are more than 15 elements in 

S are not prime.  Excluding 1, there are at 

least 15 of them are composite numbers. 

Each composite number in S has a prime 

divisor at most [20121/2] = 46.  There are 14 

prime numbers less than 46. By the 

pigeonhole principle, two of the 15 

composite numbers above will share a 

common prime divisor, contradiction. 

 

Problem 403.  On the coordinate plane, 

1000 points are randomly chosen.  Prove 

that there exists a way of coloring each of 

the points either red or blue (but not both) 

so that on every line parallel to the x-axis 

or y-axis, the number of red points minus 

the number of blue points is equal to −1, 0 

or 1. 
 

Solution. J. S. GLIMMS (Vancouver, 

Canada) and Cyril LETROUIT (Lycée 

Jean-Baptiste Say, Paris, France). 
 
Replace 1000 by n.  We prove by induction 

on n.  The case n=1 is clear.  Suppose the 

case n=k is true.  For the case n=k+1, we 

have two cases. 

Case A (one of the lines L parallel to the 

x-axis or the y-axis contains an odd 

number of the points).  Ignore one of the 

points P on L.  By inductive step, there is 

a desired coloring for the remaining k 

points.  Since there is an even number of 

point on L now, the number of red and 

blue points must be the same.  Then look 

at the coloring on the line L
⊥
 through P 

perpendicular to L. Color P red if L
⊥ is a 

−1 or 0 case and blue if it is a 1 case.  

 

Case B (all lines parallel to the x-axis or 

y-axis contain an even number of the 

points). Ignore one of the points P on one 

of the lines L parallel to the x-axis.  By 

inductive step, there is a desired coloring 

for the remaining k points.  Let L
⊥
 be the 

line through P parallel to the y-axis.  

 

Since other than L, the lines parallel to 

x-axis all contain an even number of the 

points, they must all be 0 case lines. 

Ignoring P, if L is a case 1 line, then in 

the whole plane there is exactly one more 

red point than blue point.  Also, other 

than L
⊥

, the lines parallel to y-axis all 

contain an even number of the points, 

they must all be 0 case lines.  Then L
⊥
 

must also be a case 1 line.  We then color 

P blue so both L and L
⊥ 

become case 0 

lines.  Similarly, ignoring P, both lines 

may be 0 cases, then color P red or blue. 

Otherwise both lines are −1 cases, then 

color P red. 

 

Other commended solvers: F5 Group 

(Carmel Alison Lam Foundation 

Secondary School). 
 

Problem 404.  Let I be the incenter of 

acute ∆ABC.  Let Γ be a circle with 

center I that lies inside ∆ABC. D, E, F 

are the intersection points of circle Γ 

with the perpendicular rays from I to 

sides BC, CA, AB respectively.  Prove 

that lines AD, BE, CF are concurrent. 

 
Solution. F5 Group (Carmel Alison 
Lam Foundation Secondary School) and 
J. S. GLIMMS (Vancouver, Canada).  

F

B

C A
I

D

E
1

F
0

D
0

E
0

E

F
1

 

(Below P=α∩β will mean lines α and β 
meet at point P, d(P,α) will denote the 

distance from point P to line α and 

[XYZ] will denote the area of ∆XYZ. )  
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Let D0 = ID∩BC, E0 = IE∩CA, F0 = 

IF∩AB.  Since AI bisects ∠CAB, IE0 

and IF0 are symmetric respect to AI. 

Now IE=IF implies E and F are 

symmetric respect to AI. Hence, 

d(E,AB)=d(F,AC). Then 
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Similarly,  
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Let D1 = AD∩BC, E1 = BE∩CA, F1 = 
CF∩AB. We have 
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Similarly, 
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From the equations above, we get 

.1
1

1

1

1

1

1 ==
AB

BC

CA
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CE
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BD
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AF  

By Ceva’s theorem, lines AD, BE, CF 

are concurrent. 
 
Other commended solvers: 
MANOLOUDIS Apostolos (4° Lyk. 
Korydallos, Piraeus, Greece). 
 
Comment: Titu ZVONARU 
(Comăneşti, Romania) and Neculai 
STANCIU (“George Emil Palade’’ 
Secondary School, Buzău, Romania) 
mentioned that the problem was 
well-known and the point of 
concurrency is called the Kariya point. 

 

Problem 405.  Determine all functions 

f,g: (0,+∞) → (0,+∞) such that for all 

positive number x, we have 

.
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Solution. F5 Group (Carmel Alison 

Lam Foundation Secondary School) and 

J. S. GLIMMS (Vancouver, Canada). 
 
Let F(x)=xf(x) and G(x)=xg(x).  For all 

x > 0, f(g(x)) > 0 and g(f(x)) > 0 imply 

F(x)>2 and G(x)>2.  Define a1=2.  Now 
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Then          G(x) > a1F(x) −2a1.          (1) 
 
Similarly,  F(x) > a1G(x) −2a1.         (2) 

 

Doing (1)×a1+(2) and simplifying, we get  
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Define b1=4.  Similarly we get G(x) < b1. 

Repeating the above steps, but reversing 

all the inequality signs, we can get  
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This suggest defining  
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for n=1,2,3,….  Replacing a1, b1, a2, b2 by 

an, bn, an+1, bn+1 and repeating the steps 

above, we can prove an< F(x), G(x) < bn 

for n=1,2,3,… by induction on n.  Next we 

will show an, bn have same limit.  Now  
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Taking reciprocal, we get 
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Defining cn=1/an, we get cn+1=(1+cn)/4. 

Subtracting 1/3 from both sides, we get 

cn+1−1/3 = (cn−1/3)/4. Using this, we get  
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From this, letting n tends to infinity, we 

can see cn has limit 1/3.  Then an has limit 

3. Similarly bn has limit 3.  Thus, for all 

x>0, F(x)=3=G(x), i.e. f(x)=3/x=g(x). 

Plugging these into the given equations, 

we see indeed they are solutions. 
 

 
 

Olympiad Corner 
 

  (continued from page 1) 

 

Problem 3. (Cont.)  Can “2” immediately 

to the right of the inequality be replaced 

by a smaller positive number? 
 
Problem 4.  In ∆ABC, AB > AC, M is the 

midpoint of BC of its circumcircle 

containing A.  Its incircle with incentre I is 

tangent to BC at D.  The line passing 

through D and parallel to AI intersects the 

incircle again at P.  Prove that the lines AP 

and IM intersect at a point on the 

circumcircle of ∆ABC. 
 

 

Primes in Arithmetic Progressions 
 

   (continued from page 2) 
 
Assume there are integers x, y, z 

satisfying xn+yn=zn with xyz≠0 and 

gcd(n,xyz)=1.  Then gcd(p,x) = gcd(p,y) 

= gcd(p,z) = 1. Let w = x(p–1)/2. By 

Euler’s theorem, w2=xp–1≡1 (mod p). 

Then p divides w−1 or w+1. Hence 

x(p–1)/2 = w ≡ ± 1 (mod p).  Then xn ≡ ± 1 

(mod p).  Similarly, yn, zn ≡ ± 1 (mod p). 

But then xn +yn ≡ 0 or ± 2 (mod p), 

contradicting xn+yn=zn.  
 
Explanations for Facts 1 to 4. 
 
For fact 1, let n=min{a,b}.  For n=1,we 

may assume a≥b=1 and take (r,s)=(0,1). 

Suppose cases n=1 to k are true.  For 

case n=k+1, say a≥b=k+1.  Dividing a 

by b, we can write a=qb+c, where 

q=[a/b] and 0≤c<b.  If c=0, then take 

(r,s) = (1,q−1) to get ar+bs = b = 

gcd(a,b). If c≥1, then since k+1=b>c≥1 

and gcd(b,c) = gcd(b,a−qb) = gcd(b,a), 

we can apply inductive step to get r’, s’ 

so that gcd(b,c)=br’+cs’. Then gcd(a,b) 

= br’+(a−qb)s’ = as’+b(r’−qs’).  
 
Remark: In case gcd(a,b)=1, fact 1 

gives ar ≡1 (mod b).  We denote this r 

by a−1 in (mod b). Hence we can cancel 

a in ax ≡ ay (mod b) to get x ≡ y (mod b) 

by multiplying both sides by a−1. 

 

For fact 2, let k= φ(n) and let r1, r2, …, 

rk be the integers in [1,n] relatively 

prime to n.  If gcd(a,n)=1, then ari ≡arj 

(mod n) implies ri=rj by the remark 

above.  Then ar1,ar2, …,ark is just a 

permutation of r1, r2, …, rk (mod n).  So 

(ar1)(ar2)⋯(ark) ≡ r1r2 ⋯rk (mod n).  As 

gcd(r1r2 ⋯rk,n)=1, by the remark above 

we may cancel r1r2 ⋯rk to get ak 

≡1(mod n), which is Euler’s theorem. 
 

For fact 3, let K= k1k2⋯kn and Mi =K/ki. 

Then gcd(Mi,ki) =1 and for j≠i, Mj ≡ 0 

(mod ki). Let x be the integer in the 

interval [1,K] such that 
 

).(mod
)()(

11
1 KMcMcx nk

nn

k ϕϕ ++≡ L  

 
Using Euler’s theorem, x≡ci (mod ki). 

If x’ in [1,K] is another solution, then 

x−x’≡ ci−ci =0 (mod ki) for i=1,2,⋯,n. 

This leads to x−x’≡0 (mod K). As x, x’ 

are both in [1,K], we get x=x’. 
 
For fact 4, p=2 or 3 cases are clear.  For 

p>3, let a be in [1, p−1].  If a≡ a−1 

(mod p), then a2≡1 (mod p).  So p 

divides (a−1)(a+1).  Hence a=1 or 

p−1.  For a in [2,p−2], we can form 

(p−3)/2 pairs a and a−1.  Then (p−1)! 

≡ 1(aa−1)(p–3)/2(−1) = −1 (mod p). 
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Olympiad Corner 
 
Below are the problems of the 28th 

Italian Math Olympiad. 
 

Problem 1.  Let ABC be a triangle with 

right angle at A.  Choose points D, E, F 

on sides BA, CA, AB respectively so 

that AFDE is a square.  Denote by x the 

side-length of this square.  Prove that 
 

.
111

ACABx
+=  

 
Problem 2.  Determine all positive 

integers that are 300 times the sum of 

their digits. 
 
Problem 3.  Let n be an integer greater 

than or equal to 2.  There are n persons 

in a line, and each of these persons is 

either a villain (and this means that 

he/she always lies) or a knight (and this 

means he/she always tells the truth). 

Apart from the first person in the line, 

every person indicates one of those 

before him and declares either “this 

person is a villain” or “this person is a 

knight”.  It is known that the number of 

villains is greater than the number of 

knights. Prove that, watching the 

declarations, it is possible to determine, 

for each of the n persons, whether 

he/she is a villain or a knight. 
                                      

    (continued on page 4) 
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     The title of our article is an 

abbreviated name for the famous 

William Lowell Putnam Mathematical 

Competition.  It started in the year 1938. 

Thousands of students in many US and 

Canadian universities participate in this 

competition annually. The top five 

scorers each year are designated as 

Putnam Fellows.  These Putnam 

Fellows include the Physics Nobel 

Laureates Richard Feynman, Kenneth 

Wilson, the Fields’ Medalists John 

Milnor, David Mumford, Dan Quillen 

and many other famous celebrities.  

 

Although it is a math competition for 

undergraduate students, some of the 

problems may be solved by secondary 

school students interested in math 

olympiads.  Below we will provide 

some examples. 
 

Example 1 (1997 Putnam Exam)  A 

rectangle HOMF has sides HO=11 and 

OM=5.  A triangle ABC has H as the 

intersection of the altitudes, O the center 

of the circumscribed circle, M the 

midpoint of BC and F the foot of the 

altitude from A.  What is the length of 

BC? 
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Solution.  Recall the centroid G of 

∆ABC is on the Euler line OH (see 

Math Excalibur, vol. 3, no. 1, p. 1) and 

AG/GM = 2. As FH, MO ⊥ OH and 

∠AGH =∠MGO, so ∆AHG~∆MOG. 

Hence AH = 2OM = 10.  Then OC2 

=OA2 = AH2 + OH2 = 221 and BC = 2MC 

= 2(OC2–OM2)1/2 = 28. 
 
Example 2 (1991 Putnam Exam) 

Suppose p is an odd prime. Prove that 
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Solution.  Let W be the left side of the 

equation.  Since ,⎟⎟
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Expanding (1+x)p(2+x)p, we see 
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For 0 < k < p, p divides p!, but not 

k!(p−k)!. So p divides 
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In (mod p2) of W, we may ignore the 

terms with 0 < k < p to get 
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Example 3 (2000 Putnam Exam)  Let B 

be a set of more than 2n+1/n distinct 

points with coordinates of the form (±1, 

±1, …, ±1) in n-dimensional space with 

n≥3.  Show that there are three distinct 

points in B which are the vertices of an 

equilateral triangle. 
 
Solution.  Let S be the set of all points 

(x1, x2, …, xn) with all xi= ±1.  For each 

P in B, let SP be the set of all points in S 

which differ from P in exactly one 

coordinate.  Each SP contains n points. 

So the union of all SP’s over all P in B 

(counting points repeated as many times 

as they appeared in the union) must 

contain more than 2n+1 points. Since this 

is more than twice 2n, by the pigeonhole 

principle, there must exist a point T 

appeared in at least three of the sets SP, 

SQ
 , SR, where P, Q, R are distinct points 

in B. Then any two of P, Q, R have 

exactly two different coordinates.  Then 

∆PQR is equilateral with sides 23/2. 
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Example 4 (1947 Putnam Exam) 

Given P(z) = z2 + az + b, a quadratic 

polynomial for the complex variable z 

with complex coefficients a and b. 

Suppose that |P(z)| = 1 for every z such 

that |z| = 1. Prove that a = b = 0.   
 

Solution.  Let ω ≠ 1 be a cube root of 

unity.  Let α = P(1), β = ωP(ω) and γ = 

ω2P(ω2).  We have |α| = |β| = |γ| = 1 and 

α+ β+ γ = 3+a(1+ω2+ω4)+ b(1+ω+ω2) 

= 3.  Hence, | α+ β+ γ | = |α| + |β| + |γ|. 

By the equality case of the triangle 

inequality, we get α= β = γ = 1.  Then 

P(1) = 1, P(ω) = ω2 and P(ω2)= ω=ω4. 

Since P is of degree 2 and P(z)−z2 = 0 

has three distinct roots 1, ω and ω2, we 

get P(z) = z2 for all complex number z. 

  

Example 5 (1981 Putnam Exam)  

Prove that there are infinitely many 

positive integers n with the property 

that if p is a prime divisor of n2+3, then 

p is also a divisor of k2+3 for some 

integer k with k2 < n.  
 
Solution.  First we look at the sequence 

m2+3 with m ≥ 0.  The terms are 3, 4, 7, 

12, 28, 39, 52, 67, 84, ….  We can 

observe that 3×4, 4×7, 7×12,… are also 

in the sequence. This suggests 

multiplying (m2+3)[(m+1)2+3]. By 

completing square of the result, we see 
 

(m2+3)[(m+1)2+3] = (m2+m+3)2+3. 
 

Let n = (m2+m+2) (m2+m+3)+3.  Using 

the identity above twice, we see n2+3 = 

(m2+3) [(m+1)2+3] [(m2+m+2)2+1].  So 

if p is a prime divisor of n2+3, then p is 

also a divisor of either m2+3 or 

(m+1)2+3 or (m2+m+2)2+1 and m2, 

(m+1)2, (m2+m+2)2 < n.  Letting m = 

1,2,3,…, we get infinitely many such n. 
 

Example 6 (1980 Putnam Exam)  Let 

A1, A2, …, A1066 be subsets of a finite 

set X such that |Ai| > ½|X| ≥ 5 for 1 ≤ i ≤ 

1066.  Prove there exists ten elements 

x1, x2, …, x10 of X such that every Ai 

contains at least one of x1, x2, …, x10. 

(Here |S| means the number of elements 

in the set S.)  
 
Solution.  Let X = {x1, x2, …, xm} with 

m = |X| and nk be the number of i such 

that xk is in Ai.  We may arrange the xk’s 

so that nk is decreasing.  For 1 ≤ i ≤ 

1066 and 1 ≤ k ≤ m, let f(i,k)=1 if xk is 

in Ai and f(i,k)=0 otherwise.  Then 
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Then n1 is greater than 533, i.e. x1 is in 

more than 533 Ai’s.  

 

Next let B1, B2,…, Br be those Ai’s not 

containing x1 and Y = {x2, x3, …, xm}. Then 

r = 1066−n1≤532 and each |Bi|>½|X|>½|Y|. 

Repeating the reasoning above, we will 

get n2> r/2.  Let C1, C2,…, Cs be those Ai’s 

not containing x1, x2 and Z = {x3, x4, …, 

xm}.  Then s=r−n2 < r/2, i.e. s ≤ 265.  After 

532 and 265, repeating the reasoning, we 

will get 132, 65, 32, 15, 7, 3, 1.  Then at 

most 1 set is left not containing x1, x2, …, 

x9.  Finally, we may need to use x10 to take 

care of the last possible set.  

 

Example 7 (1970 Putnam Exam) A 

quadrilateral which can be inscribed in a 

circle is said to be inscribable or cyclic.  A 

quadrilateral which can be circumscribed 

to a circle is said to be circumscribable.  If 

a circumscribable quadrilateral of sides a, 

b, c, d has area A= ,abcd  then prove that  

it is also inscribable. 
 

Solution.  Since the two tangent segments 

from a point (outside a circle) to the circle 

are equal and the quadrilateral is 

circumscribable, we have a+c=b+d.  Let 

k be the length of a diagonal and α, β be 

opposite angles of the quadrilateral so that 
  
a2+b2−2ab cos α = k2  = c2+d2−2cd cos β. 
  
Subtracting (a −b)2 = (c −d)2, we get  
 
      2ab(1−cos α) = 2cd(1−cos β).     (*) 

 
Now 2 abcd = 2A = ab sin α + cd sin β. 

Squaring and using (*) twice, we get 
 
 4abcd = a2b2(1−cos2 α)+2abcd sin α sin β            

                     +c2d2(1−cos2 β) 

            = abcd(1+cos α)(1−cos β) 

                     +2abcd sin α sin β 

                     +abcd(1+cos β)(1−cos α).  
 
Simplifying this, we get 4=2−2cos(α+β), 

i.e. α+β=180°. Therefore the quadrilateral 

is cyclic. 

 

Example 8 (1964 Putnam Exam)  Show 

that the unit disk in the plane cannot be 

partitioned into two disjoint congruent 

subsets. 
 

Solution.  Let D be the unit disk, O be its 

center and d(X,Y) denote the distance 

between X and Y in D.  Assume D can be 

partitioned into two disjoint congruent 

subsets A and B.  Without loss of 

generality, suppose O is in A.  For each X 

in A, let X* be the corresponding point in 

B. Then O* is in B. For all X, Y in A, d(X,Y) 

= d(X*,Y*).  

 

Since d(O,X) ≤ 1 for all X in A and the 

set B = {X* : X in A}, so d(O*,Z) ≤ 1 for 

all Z in B.  Let R and S be the endpoints 

of the diameter perpendicular to line 

OO*.  Then d(O*,R) = d(O*,S) > 1. 

Hence, R and S are in A.  Now d(R*,S*) 

= d(R,S) = 2, so R*S* is a diameter.  

Since O is the midpoint of diameter RS 

in A, O* must be the midpoint of the 

diameter R*S*.  Then O*=O, which 

contradicts A, B are disjoint.  

 

Example 9 (1950 Putnam Exam)  In 

each of N houses on a straight street are 

one or more boys.  At what point 

should all the boys meet so that the sum 

of the distances that they walk is as 

small as possible?  

 

Solution.  Think of the street is the real 

axis.  Suppose the i-th boy’s house is at 

xi so that x1≤x2≤⋯≤xn.  Suppose they 

meet at x, the first and the n-th boy 

together must walk a distance of xn−x1 

if x is in [x1, xn] and more if x is outside 

[x1, xn].  This is similar for the second 

boy and the (n−1)-st boy, etc. 

 

If n is even, say n=2k, then the least 

distance all n boys have to walk is  
 

(xn−x1)+(xn−1−x2)+⋯+(xk+1−xk) 
 

with equality if x is in [xk, xk+1].  If n is 

odd, say n = 2k − 1, then the least 

distance they have to walk is   
 

(xn−x1)+(xn−1−x2)+⋯+(xk+1−xk)+0 
 

with equality if y = xk. 

 

Example 10 (1956 Putnam Exam)  The 

nonconstant polynomials P(z) and Q(z) 

with complex coefficients have the 

same set of numbers for their zeros but 

possibly different multiplicities.  The 

same is true of the polynomials P(z)+1 

and Q(z)+1. Prove that P(z)≡Q(z).  

 

Solution.  Observe that if P(z) has c as 

a zero with multiplicities k > 0, then the 

derivative P′(z) has c as a zero with 

multiplicities k−1, which follows from 

differentiating P(z) = (z−c)kR(z) on 

both sides. 

 

Now suppose P(z) has degree m and 

Q(z) has degree n.  By symmetry, we 

may assume m ≥ n.  Let the distinct 

zeros of P(z) be a1, a2,…,as and let the 

distinct zeros of P(z)+1 be b1, b2, …, bt.. 

Clearly, a1, a2,…,as, b1, b2, …, bt are all 

distinct.  

 

   (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is March 10, 2013. 

 

Problem 411.  A and B play a game on 

a square board divided into 100×100 

squares.  Each of A and B has a checker. 

Initially A’s checker is in the lower left 

corner square and B’s checker is in the 

lower right corner square.  They take 

turn to make moves.  The rule is that 

each of them has to move his checker 

one square up, down, left or right 

within the board and A goes first.  

Prove that no matter how B plays, A 

can always move his checker to meet 

B’s checker eventually.  

  

Problem 412.  ΔABC is equilateral 

and points D, E, F are on sides BC, CA, 

AB respectively.  If 
 
∠BAD +∠CBE +∠ACF = 120°, 

 
then prove that ΔBAD, ΔCBE and Δ
ACF cover ΔABC.  
 

Problem 413.  Determine (with proof) 

all integers n≥3 such that there exists a 

positive integer Mn satisfying the 

condition for all n positive numbers a1, 

a2, …, an, we have 
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Problem 414.  Let p be an odd prime 

number and a1, a2, …, ap−1 be positive 

integers not divisible by p.  Prove that 

there exist integers b1, b2, …, bp−1, 

each equals 1 or −1 such that  
 

a1b1+a2b2+⋯+ap−1bp−1 
 

is divisible by p. 

 

Problem 415. (Due to MANOLOUDIS 

Apostolos, Piraeus, Greece)  Given a 

triangle ABC such that ∠BAC=103° 

and ∠ABC=51°.  Let M be a point 

inside ΔABC such that ∠MAC=30° 

and ∠MCA=13°.  Find ∠MBC with 

proof. 

 

***************** 

Solutions 

**************** 
 
Problem 406.  For every integer m>2, let 

P be the product of all those positive 

integers that are less than m and relatively 

prime to m, prove that P2−1 is divisible 

by m. 
 
Solution.  Jon GLIMMS (Vancouver, 

Canada), Corneliu MĂNESCU- AVRAM 

(Technological Transportation High School, 

Ploieşti, Romania), WONG Ka Fai and 

YUNG Fai. 
 
Let a in interval [1,m) be relatively prime 

to m.  By Bezout’s theorem, there exists a 

unique a−1 in [1,m) such that aa−1≡1 (mod 

m).  Then gcd(a−1,m) = 1.  Since a−1a ≡ 1 

(mod m), by uniqueness, (a−1) −1 = a.  
 
For those factor a in the product P 

satisfying a≠a−1, a will be cancelled by a−1 

(mod m).  Thus, P is congruent modulo m 

to the product of those remaining factor a 

satisfying a= a−1. Now a = a−1 implies a2 = 

aa−1≡1 (mod m).  It follows P2 ≡ 1 (mod m) 

and we are done. 
 
Other commended solvers: F5D (Carmel 

Alison Lam Foundation Secondary School). 

 

Problem 407.  Three circles S, S1, S2 are 

given in a plane. S1 and S2 touch each other 

externally, and both of them touch S 

internally at A1 and at A2 respectively.  Let 

P be one of the two points where the 

common internal tangent to S1 and S2 

meets S.  Let Bi be the intersection points 

of PAi and Si (i=1,2).  Prove that line B1B2 

is a common tangent to S1 and S2.    
 
Solution. F5D (Carmel Alison Lam 

Foundation Secondary School), William 

FUNG and Jacob HA and NGUYEN Van 

Thien (Luong The Vinh High School, 

Dongnai Province, Vietnam).  
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Let the tangent at A1 to S (and S1) and line 

B1B2 meet at T.  Let R be the tangent point 

of S1 and S2.  By the intersecting chord 

theorem, we have 
 

PB1×PA1 = PR2 = PB2×PA2. 
 
So A1, B1, B2, A2 are concyclic.  Using (1) 

line TA1 is tangent to S1, (2) line TA1 is 

tangent to S, (3) A1, B1, B2, A2 concyclic 

and (4) vertical angles are congruent in 

that order, we get 
 
      ∠B1RA1 = ∠B1A1T = ∠PA2A1 

                      = ∠PB1B2 = ∠TB1A2. 
 
Then line TB1=B1B2 is tangent to S1 at 

B1.  Similarly, line B1B2 is tangent to S2 

at B2.  Therefore, line B1B2 is a 

common tangent to S1 and S2.  

Other commended solvers:  Dusan 
DROBNJAK(Mathematical Grammar 
School, Belgrade, Serbia), Jon 
GLIMMS (Vancouver, Canada),  
MANOLOUDIS Apostolos (4° Lyk. 
Korydallos, Piraeus, Greece) and 
Vijaya Prasad NALLURI (Retired 
Principal, AP Educational Service, 
Andhra Pradesh, India). 
 

Problem 408.  Let ℚ denote the set of 

all rational numbers.  Let f:ℚ→{0,1} 

be a function such that for all x,y in ℚ 

with f(x)=f(y), we have f((x+y)/2)= f(x). 

If f(0)=0 and f(1)=1, then prove that 

f(x)=1 for every rational x > 1.  

(Source: 2000 Indian Math Olympiad) 
 

Solution.  Ioan Viorel CODREANU, 

(Secondary School Satulung, 

Maramures, Romania) and Dusan 

DROBNJAK(Mathematical Grammar 

School, Belgrade, Serbia). 
 
We claim that if a,b are rational numbers 

and f(a)≠f(b), then for all positive integer 

n, we have f(a+n(b−a))=f(b).   
 
We will prove this by induction on n. The 

case n=1 is clear.  Suppose the case n=k 

is true.  Then we have f(a+k(b−a))=f(b). 

Assume f(a+(k+1)(b−a)) ≠ f(b).  Since 

f(r)=0 or 1 for all r in ℚ and f(a)≠f(b), 

we get f(a+(k+1)(b−a)) = f(a).  Let x = a, 

y = a+(k+1)(b−a), x’ = b, y’ = a+k(b−a). 

From above, we have f(x) = f(y) and f(x’) 

= f(y’).  By the given property of f, since 
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we get f(a)=f(x)=f(x’)=f(b), contradiction. 

Hence the case n=k+1 is true and we 

complete the induction. 
 
Now by the claim, since f(0)=0≠1=f(1), 

for all positive integer n, we get f(n) = f(1) 

=1.  For a rational r > 1, let r−1=p/q, 

where p, q are positive integers.  Assume 

f(r)≠1.  Using the claim with a = 1, b = r, 

and n = q, we get f(1+q(r−1)) = f(r).  But 

f(1+q(r−1) = f(1+p) = 1, contradiction. 

So, for all rational r>1, f(r) = 1. 
 
Other commended solvers: F5D 

(Carmel Alison Lam Foundation 

Secondary School). 
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Problem 409.  The population of a city 

is one million.  Every two citizens there 

know another common citizen (here 

knowing is mutual).  Prove that it is 

possible to choose 5000 citizens from 

the city such that each of the remaining 

citizens will know at least one of the 

chosen citizens.  

(Source: 63rd St. Petersburg Math 

Olympiad) 

 
Solution.  Jon GLIMMS (Vancouver, 
Canada). 

 
Let m=106 and x1, x2, …, xm be all the 

citizens in the city.  Let F(xi) be all the 

citizens (not including xi) that xi knows 

and |F(xi)| denote the number of such 

citizens.  

 

If there exists a xi with |F(xi)|≤5000, 

then let us choose any 5000 citizens 

including all members of F(xi).  For 

any xj not among the chosen 5000 

citizens, by the given assumption, xi 

and xj know a common citizen in F(xi), 

who is in the chosen 5000 citizens. 

 

Otherwise, we may assume for every xi, 

|F(xi)| > 5000.  Now there are m5000 

ordered 5000-tuples (C1, C2, …, C5000), 

where each Ck may be any one of the m 

citizens.  For each xi, let 
 
S(xi)={(C1,C2,…,C5000): all Ck∉F(xi)} 
 
Now S(xi) has less than (m−5000)5000 

members since |F(xi)|>5000.  Let S be 

the union of S(x1), S(x2),…,S(xm).  We 

claim that m(m−5000)5000 < m5000.  The 

claim means there exists (C1, C2, …, 

C5000) not in every S(xi). That means by 

choosing C1, C2, …, C5000, every xi will 

know at least one Ck and we are done. 

 

For the claim, using (1+x)n ≥ 1+nx from 

the binomial theorem, we have the 

equivalent inequality 
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Other commended solvers: F5D 
(Carmel Alison Lam Foundation 
Secondary School). 

 

Problem 410. (Due to Titu ZVONARU 

and Neculai STANCIU, Romania) 

Prove that for all positive real x,y,z, 
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Solution of Proposers. 
 
Observe that 4(xy+yz+zx) is the cyclic 

sum of x(y+z)+y(x+z).  Now 
 

.
))((

))((

)(

))()((

)(

))()((

))((

)(

)(

)()())(()(

2

22

zyzxzxyzyx

yxzxyzxy
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zyzxzxyzyx

zxzyzxy
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zxyzyxzyzxyx

++++++
−++

=

+++
+−+

+++
+−+

=

+−++−+=

+−+++

+−++=

+−+−+++

 

 
By the AM-GM inequality, we have (x+y)2 

≤ 2(x2+y2) and xy+yz+zx ≤ x2+y2+z2. 

Using these, we get  
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)(2

)(2
2

)(

2
2

2
)(

)()())(()(

))((

222

22222

2

zyx

zyxyx

zxyzxy
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zyx

yx

zxyzyxzyzxyx

zyzxzxyzyx

++≤

++++≤

+++
+

=

+++
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+≤

+++++++=

++++++

  

So it follows that 
 

.)(
)(3

2))(()(

2

222
yx

zyx

zxyzxy

zxyzxyzyzxyx

−
++
++

≥

−−−+++
 

Rotating x,y,z to y,z,x to z,x,y, we get two 

other similar inequalities. Adding the 

three inequalities, we will get the desired 

inequality.  Equality holds if and only if 

x=y=z. 
 
Other commended solvers: Paolo 
PERFETTI (Math Dept, Università degli 
studi di Tor Vergata Roma, via della 
ricerca scientifica, Roma, Italy). 
 

Comment:  The proposers mention that 

this is a refinement of problem 2 of the 

2012 Balkan Math Olympiad. 
 

 
 

Olympiad Corner 
 

 (continued from page 1) 

 

Problem 4.  Let x1, x2, x3, … be the 

sequence defined by the following 

recurrence:  x1=4 and for n ≥ 1,  
 

xn+1 = x1x2x3⋯xn + 5. 
 

(The first few terms of the sequence are 

then x1=4, x2=4+5=9, x3=4·9+5=41, …) 

Find all pairs {a,b} of positive integers 

such that xaxb is a perfect square. 

 

Problem 5.  Let ABCD be a square. 

Find the locus of points P in the plane, 

different from A, B, C, D such that 
 

∠APB +∠CPD = 180°. 

 

Problem 6.  Determine all pairs {a,b} 

of positive integers with the following 

property: for any possible coloring of 

the set of all positive integers with two 

colors A and B, there exist either two 

positive integers colored by A with 

difference a or two positive integers 

colored by B with difference b. 
 

 

 

Putnam Exam 
 

(continued from page 2) 

 

Now let ri’s be the multiplicities of the 

ai’s as zeros of P(z), then the sum of the 

ri’s is m.  By the observation above, the 

multiplicity of ai as zeros of P′(z) is 

ri−1 and these multiplicities sum to 

m−s.  Similarly, the sum of the 

multiplicities of the bi’s as zeros of  

P′(z)= (P+1)′(z) is m−t.  So 
 

(m−s)+(m−t) ≤ deg P′(z) < m. 
 

Hence s+t > m.  However, a1, a2,…,as, 

b1, b2, …, bt. are zeros of P(z)−Q(z) 

with degree at most m.  So, P(z) ≡ Q(z). 

 

The interested readers are highly 

encouraged to browse the following 

books for more problems of the 

Putnam Exam. 

 

A. M. Gleason, R. E. Greenwood and L. 

M. Kelly, The William Lowell Putnam 

Mathematical Competition Problems 

and Solutions: 1938-1964, MAA, USA, 

1980. 
 
G. L. Alexanderson, L. F. Klosinski and 

L. C. Larson, The William Lowell 

Putnam Mathematical Competition 

Problems and Solutions: 1965-1984, 

MAA, USA, 1985. 
 
K. S. Kedlaya, B. Poonen and R. Vakil, 

The William Lowell Putnam 

Mathematical Competition 1985-2000 

Problems, Solutions and Commentary, 

MAA, USA, 2002. 
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Olympiad Corner 
 
Below are the problems of the Final 

Selection Test for the 2012 Croatian 

IMO Team. 

 

Problem 1.  Determine all functions f: 

ℝ →ℝ such that for all real numbers x 

and y holds 
 

f(x2 + f(y)) = (f(x) + y2) 2. 
 

  (Tonći Kokan) 
 

Problem 2.  Along the coast of an 

island there are 20 villages.  Each 

village has 20 fighters.  Every fighter 

fights all the fighters from all the other 

villages.  No two fighters have equal 

strength and the stronger fighter wins 

the fight.  
 
     We say that the village A is stronger 

than the village B if in at least k fights 

among the fighters from A and B a 

fighter from the village A wins.  It 

turned out that every village is stronger 

than its neighbour (in the clockwise 

direction).  
 
     Show that the maximal possible k is 

290. 
 

 (Moscow Olympiad 2003, modified) 
 

 (continued on page 4) 
 

Editors: 張 百 康 (CHEUNG Pak-Hong), Munsang College, HK 

 高 子 眉 (KO Tsz-Mei)  

 梁 達 榮 (LEUNG Tat-Wing)  

 李 健 賢 (LI Kin-Yin), Dept. of Math., HKUST 

 吳 鏡 波 (NG Keng-Po Roger), ITC, HKPU 

Artist: 楊 秀 英 (YEUNG Sau-Ying Camille), MFA, CU 
 

Acknowledgment:  Thanks to Elina Chiu, Math. Dept., 

HKUST for general assistance. 
 

On-line:  
http://www.math.ust.hk/mathematical_excalibur/ 
 

The editors welcome contributions from all teachers and 

students.  With your submission, please include your name, 

address, school, email, telephone and fax numbers (if 

available).  Electronic submissions, especially in MS Word, 

are encouraged.  The deadline for receiving material for the 

next issue is May 10, 2013. 
 

For individual subscription for the next five issues for the 

09-10 academic year, send us five stamped self-addressed 

envelopes.  Send all correspondence to: 
 

Dr. Kin-Yin LI, Math Dept., Hong Kong Univ. of Science 

and Technology, Clear Water Bay, Kowloon, Hong Kong 

Fax: (852) 2358 1643 

Email: makyli@ust.hk 

© Department of Mathematics, The Hong Kong University 

of Science and Technology 
 

     In this note we establish conditions 

solving the problems of A.  Oppenheim 

and O.  Bothema, then we solve some 

problems. Below, we let a,b,c,S,s,R,r 

denote the sides BC, CA, AB, area, 

semiperimeter, circumradius, inradius 

of a triangle ABC respectively.  In [1], 

two problems are stated as follow: 

 

Problem 1. (O. Bothema)  For ΔABC, 

give conditions on real numbers x,y,z so
  

 yza2+zxb2+xyc2 ≤ R2(x+y+z)2     (1) 
 

with equality if and only if   

           .
2sin2sin2sin C

z

B

y

A

x
==     (2) 

 
Problem 2. (A.Oppenheim) For ΔABC, 

give conditions on real numbers x,y,z so
  

zxyzxySzcybxa ++≥++ 4222   (3) 

 
with equality if and only if  

.
222222222 cba

z

cba

y

cba

x

−+
=

+−
=

++−
 (4) 

 

The author will solve problem 2, then 

use it to solve problem 1. It is easy to see 

these problems are false for some x,y,z. 

For example, if one of x,y,z is negative, 

problems 1 and 2 may be false. 
 

Theorem.  For Δ ABC, if x+y>0, 

y+z>0, z+x>0 and xy+yz+zx>0, then (3) 

and (4) hold.  
 
Proof.  Let k = .4 zxyzxy ++   Using c2 

=a2+b2−2abcos C and S=½absin C, we 

can rewrite (3) as 
 
2(x+z)a2+2(y+z)b2≥(4zcos C+ksin C)ab. 

 
By the AM-GM inequality, the left side 

is greater than or equal to 
 

,16))((4 22 abkzabzyzx +=++  
 

which is greater than or equal to the 

right side by the Cauchy-Schwarz 

inequality. So (3) is true.  Equality holds

(from AM-GM and Cauchy-Schwarz) if 

and only if 

.
222

yx

c

xz

b

zy

a

+
=

+
=

+
 

 
Let t be this ratio.  Then a2 = t(y+z), b2 = 

t(z+x), c2 = t(x+y).  So −a2+b2+c2 = 2tx, 

a2−b2+c2 = 2ty and a2+b2−c2 = 2tz.  

This gives (4) and steps can be reversed. 

Using the cosine law, we can see (4) is 

equivalent to  
 

.
coscoscos C

zc

B

yb

A

xa
==  

 

From (4), we see x,y,z can be all positive 

or one negative and two positive. 

 

To solve problem 1, in place of x,y,z, we 

use x/a2, y/b2, z/c2, which also satisfy the 

conditions of the theorem.  Then (3) is 
 

.4
222222 ac

zx

cb

yz

ba

xy
Szyx ++≥++  

 

Using the formula S=abc/(4R) (which is 

from S=½absin C and c/(sinC)=2R), the 

last inequality becomes 
 

,
1 222 zxbyzaxyc
R

zyx ++≥++  

 
which is equivalent to (1).  For equality 

case, observe that using the cosine law 

and a/(sin A)=2R, 
 

,
2sincos2

/
2222

2

A

x
t

Abca

x

cba

ax
==

++−
 
where t = 1/(2Rabc).  This gives (2). 

 

      Next we give many applications of 

these inequalities. 

 

Example 1  If we take x=y=z in (3), 

then we get ,34222 Scba ≥++ which 

dated back to Ionescu (1897), later to 

Weitzenböck (1919) and Carlitz (1961). 

 

Example 2  If we take x=a2, y=b2 and 

z=c2 in (3), then we get  
 

.4 222222444 accbbaScba ++≥++  
 
Since Heron’s formula gives 
 

2(a2b2+b2c2+c2a2)−(a4+b4+c4) = 16S2 
 

   (continued on page 2)
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and expanding (a2−b2)2 + (b2−c2)2 + 

(c2−a2)2  ≥ 0 leads to 
 

a2b2+b2c2+c2a2 ≤ a4+b4+c4, 
 

it follows immediately that  
 

a2b2+b2c2+c2a2 ≥16S2 

 
and hence a4+b4+c4 ≥ 16S2. 

 

Example 3  (a)  If x = 9, y = 5 and z = 

−3 in (3), then we get 

.34359 222 Scba ≥−+  
 

(b)  If x=27, y=27 and z=−13 in (3), 

then we get .312132727 222 Scba ≥−+  
 
(c)  If x=3, y=−1 and z=15 in (3), then 

we get .312153 222 Scba ≥+−  
 
These were exercises proposed in [6] 

and [9]. 

 

Example 4  If we consider x=bc/a, 

y=ca/b and z=ab/c in (3), then we have 
 

.43 222 Scbaabc ++≥  
 
Taking into account that 4RS=abc 

and ab+bc+ca ≤ a2+b2+c2, we have 

ab+bc+ca ≤ a2+b2+c2 ≤ 9R2. 

 

Example 5  If we consider x=bc, y=ca 

and z=ab in (3), then we have 
 

,)(4)( cbaabcScbaabc ++≥++  

 
which implies abc(a+b+c) ≥ 16S2. 

Using S = ½(a+b+c)r = sr, we get abc 

≥ 8sr2.  Using abc=4RS=4Rsr, we have 

R ≥ 2r.   
 

Example 6   Let x > 0.  If we consider 

2x−1, 1
2
−

x
and 1, then we can easily  

check that they satisfy the conditions in 

the theorem.  So (3) yields 

 

.341
2

)12( 222 Scb
x

ax ≥+⎟
⎠
⎞

⎜
⎝
⎛ −+−  

This was a proposed exercise of B. 

Suceavă in [9]. 

 

Example 7  If we consider 

222
,,

c

cs
z

b

bs
y

a

as
x

−
=

−
=

−
=  

in (3), then we get 
 

.
))(())(())((

4
222222 ac

ascs

cb

csbs

ba

bsas
Ss

−−
+

−−
+

−−
≥  

Squaring both sides and applying the 

AM-GM inequality on the right side, 

we get 

,
)()()(

48 3
444

222
22

cba

csbsas
Ss

−−−
≥  

 
which is equivalent to 
 

.)()()(48 222636444 csbsasSscba −−−≥  
 

Using abc=4RS=4Rsr on the left and 

Heron’s formula on the right, we can 

simplify this to .312 32 rsR ≥  

 

Example 8  Consider 

c

cs
z

b

bs
y

a

as
x

−
=

−
=

−
= ,, . 

Then 
 

)()()(222 cscbsbasazcybxa −+−+−=++  

         .
2

)(222 222 cbacabcab ++−++
=  

From [3], we have ab+bc+ca=s2+r2+4Rr 

and a2 + b2 + c2 = 2(s2 − r2 − 4Rr).  

Putting these into the above equation, we 

get 

.82 2222 Rrrzcybxa +=++  
 

Recall by cosine law 
 

  
ab

abbac

ab

bsas

4

2))(( 222 +−−
=

−−  

                        
2

cos1 C−
=  

                        .
2

sin 2 C
=  

 
Using this and similar equations, we have 

 

   zxyzxyS ++4  

ca

ascs

bc

csbs

ab

bsas
S

))(())(())((
4

−−
+

−−
+

−−
=

2
sin

2
sin

2
sin4 222 BAC

S ++=  

,32
4

3
4 SS =≥  

 
where the last inequality follows by 

applying Jensen’s inequality to f(x) = 

sin2(x/2) on [0,π/2].  Thus, (3) yields 
 

.342 SRrr ≥+  

 
Example 9  If instead of x, y, z, we replace 

them by 
222

,,
c

zx

b

xy

a

yz  in (3), then we get 

after calculations that 

.
)( 2

2222

xyz

zxyzxy
Rzcybxa

++
≤++  

 
Example 10  If instead of x, y, z, we 

consider yz, zx, xy, then (1) and (3) 

yield the following inequality 

 

xyczxbyzazyxxyzS 222)(4 ++≤++  

                               ≤ (x+y+z)2R2, 

 
which is the subject of the article “On 

an inequality in a triangle” from GM 8 

in 1984 by Prof. Virgil Nicula.  

 

Example 11  If instead of x,y,z, we 

consider  

,,,
qp

r

pr

q

rq

p

+++
 

 
where p,q,r > 0, then (3) yields 
 

.32222 Sc
qp

r
b

pr

q
a

rq

p
≥

+
+

+
+

+
 

 
This is problem E3150 proposed by G. 

Tsintsifas in the American Math.  

Monthly in 1988. 

 

Example 12  If instead of x,y,z, we 

consider  

,,, p
c

a
n

b

c
m

a

b  

 
where m, n, p > 0, then (3) yields 
 

.4 mp
c

b
np

b

a
mn

a

c
Spcanbcmab ++≥++  

 
By the AM-GM inequality, we have 
 

.33 222 pnmmp
c

b
np

b

a
mn

a

c
≥++  

 
Combining the last two inequalities, 

we get 

.34 3 222 pnmSpcanbcmab ≥++  

If we take m = n = p = 1, then we get 
 

,34Scabcab ≥++  

 

which is due to V. E. Olhov, see [7] and 

[8] in the bibliography on page 4. 

 

 

 

 

 

  (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is May 10, 2013. 

 

Problem 416.  If x1 = y1 =1 and for n>1,  
 

xn = −3xn−1−4yn−1+n 

and        yn =  xn−1+yn−1−2, 
 
then find xn and yn in terms of n only. 

  

Problem 417.  Prove that there does 

not exist a sequence p0, p1, p2, … of 

prime numbers such that for all 

positive integer k,  pk is either 2pk−1+1 

or 2pk−1−1. 
 

Problem 418.  Point M is the midpoint 

of side AB of acute ΔABC.  Points P 

and Q are the feet of perpendicular 

from A to side BC and from B to side 

AC respectively.  Line AC is tangent to 

the circumcircle of ΔBMP.  Prove that 

line BC is tangent to the circumcircle 

of ΔAMQ. 
 

Problem 419.  Let n ≥ 4. M is a subset 

of {1,2,…,2n−1} with n elements. 

Prove that M has a nonempty subset, 

the sum of all its elements is divisible 

by 2n. 

 

Problem 420.  Find (with proof) all 

positive integers x and y such that 

2x2y+xy2+8x is divisible by xy2+2y. 

 

***************** 

Solutions 

**************** 
 
Problem 411.  A and B play a game on 

a square board divided into 100×100 

squares.  Each of A and B has a checker. 

Initially A’s checker is in the lower left 

corner square and B’s checker is in the 

lower right corner square.  They take 

turn to make moves.  The rule is that 

each of them has to move his checker 

one square up, down, left or right 

within the board and A goes first.  

Prove that no matter how B plays, A 

can always move his checker to meet 

B’s checker eventually.  
 

Solution. Jon GLIMMS (Vancouver, 

Canada) and ZOLBAYAR Shagdar 

(Orchlon International School, 

Ulaanbaatar, Mongolia). 
 
Suppose the squares are unit length.  A can 

apply the following strategy.  After B 

made the n-th move, let R(n) denote the 

rectangle bounded by the squares in the 

same row or same column as one of the 

two squares containing the checkers.  Let 

a(n) be the length (i.e. long side) and b(n) 

be the width (i.e. short side) of R(n).  As 

R(0) is consisted of the lowest row squares, 

a(0)=100 and b(0)=1.  Following the rules, 

A can always make a move to decrease the 

length of R(n).  After B made n + 1 moves, 

a(n+1)+b(n+1) will either be a(n)+b(n) or 

a(n)+b(n)−2.  In particular, a(n)+b(n) is 

always odd, non-increasing and a(n) > 

b(n).  Since the side of the board is finite, 

eventually a(n) + b(n) must decrease to 3 

and A can move his checker to meet B’s 

checker in the next move.  
 
Other commended solvers:  CHEUNG 

Ka Wai (Munsang College (Hong Kong 

Island)) and F5D (Carmel Alison Lam 

Foundation Secondary School). 

 

Problem 412.  ΔABC is equilateral and 

points D, E, F are on sides BC, CA, AB 

respectively.  If 
 

∠BAD +∠CBE +∠ACF =120°, 
 

then prove that ΔBAD, ΔCBE and Δ
ACF cover ΔABC. 

(Source: 2006 Indian Math Olympiad 

Team Selection Test) 
 
Solution.  Jon GLIMMS (Vancouver, 
Canada) and William PENG. 
 
Assume P is in ΔABC not covered by Δ
BAD, ΔCBE and ΔACF.  Then ∠BAD < 

∠BAP, ∠CBE < ∠CBP and ∠ACF < 

∠ACP.  Adding these, we have 
 

120° < ∠BAP +∠CBP +∠ACP. 
 

Now P cannot be the circumcenter of Δ
ABC (otherwise ∠BAP +∠CBP +∠ACP 

= 90° would contradict the inequality 

above).  So PA, PB, PC are not all equal. 

Suppose PA > PB.  Let rays AP, BP, CP 

intersect the circumcircle of ΔABC at 

points K, L, M respectively.  

CA

B

K

L

P

M

 

Since ∠BAP = ∠KLP and ∠ABP = 

∠LKP, ΔABP and ΔLKP are similar.  

Then PA > PB implies PL > PK and so 

∠BAP = ∠KLP < ∠LKP.  We get 
 

 ∠BAP +∠CBP +∠ACP 

= ∠KLP +∠CKL +∠AKM 

< ∠LKP +∠CKL +∠AKM 

          < ∠BKC = 120°, 
 
which contradicts the inequality above. 
 

Other commended solvers: KWAN 

Chung Hang (Sir Ellis Kadoorie 

Secondary School (West Kowloon)) and 

Cyril LETROUIT (Lycée Jean- 

Baptiste Say, Paris, France). 
 

Problem 413.  Determine (with proof) 

all integers n≥3 such that there exists a 

positive integer Mn satisfying the 

condition for all n positive numbers a1, 

a2, …, an, we have 
 

.1
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21
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++≤

+++
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n
n

n

n

a

a

a

a

a

a

a

a
M

aaa

aaa
L

L

L  

(Source: 2005 Chinese Taipei Math 

Olympiad Team Selection Test) 
 

Solution.  F5D (Carmel Alison Lam 

Foundation Secondary School) and 

Paolo PERFETTI (Math Dept, 

Università degli studi di Tor Vergata 

Roma, via della ricerca scientifica, 

Roma, Italy). 
 
For n=3, let a1, a2, a3 > 0 and  

.
3

1

2

3

1

2

a

a

a

a

a

a
x ++=  

Suppose a3 ≥ a1, a2.  Then x> a2/a1, 

a3/a2, a1/a3. So a2>a3/x and a1> a2/x > 

a3/x
2.  Hence, 

.3
3

3
3

3

2

3

3

3
321

321 x

a
x

a

x

a

a

aaa

aaa
=≤

++  

So we can take M3=3.  For n>3, assume 

there is such Mn.  Let a1 = c, a2 = c2,…, 

an= cn.  Then 

1

12/)1(

2 1
)1(

−

−+
⎟
⎠
⎞

⎜
⎝
⎛ +−

+++
≥

nn nn

n

n
c

cn
c
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     .
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1 2/)3(

2/)1( n

n

nn

n

cn

c

cncc

c
−

−

−+ +−
=

+−
≥  

As c → ∞, c(n−3)/2/(n − 1 + c−n) → ∞.  

Then Mn cannot be finite, 

contradiction. 

 

Problem 414.  Let p be an odd prime 

number and a1, a2, …, ap−1 be positive 

integers not divisible by p.  Prove that 

there exist integers b1, b2, …, bp−1, 
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each equals 1 or −1 such that  
 

a1b1+a2b2+⋯+ap−1bp−1 
 

is divisible by p. 

 
Solution. Jon GLIMMS (Vancouver, 
Canada). 

 
For k = 1, 2, …, p − 1, we will prove 

the numbers of the form a1c1 + a2c2 + ⋯ 

+ akck (where each ci is 0 or 1) when 

divided by p will yield at least k + 1 

different remainders.  For k = 1, we are 

given that a1 ≢ 0 (mod p).  

 

Suppose a case k < p−1 is true.  For the 

case k+1, if the numbers a1c1+a2c2+⋯ 

+akck when divided by p yield at least 

k+2 different remainders, then the case 

k+1 is also true.  Otherwise, there are 

numbers m1, m2, …, mk+1 of the form 

a1c1+a2c2+⋯+akck when divided by p 

yield exactly k+1 different remainders. 

Considering (mod p), we see m1+ak+1, 

m2+ak+1,…, mk+1+ak+1 also have k+1 

different remainders.  

 

Assume these two groups of k+1 

remainders are the same.  Then we get 

m1+m2+⋯+mk+1 ≡ (m1+ak+1) + (m2+ak+1) 

+ ⋯ +(mk+1+ak+1) (mod p).  This 

implies (k+1)ak+1≡0 (mod p), which is 

not possible as k+1<p and ak+1 is not 

divisible by p.  Hence, there must be at 

least k+2 different remainders among 

the two groups.  So the case k+1 is true. 

 

Let S=a1+a2+⋯+ap−1.  Since gcd(2,p) = 

1, there is an integer r such that 2r ≡ S 

(mod p).  From the case k = p − 1 

above, we see there is a1c1 + a2c2 + ⋯ + 

ap−1cp−1 ≡ r (mod p).  Let bi = 1 − 2ci, 

then bi = ±1 and a1b1 + a2b2 + ⋯ + 

ap−1bp−1 ≡ S−2r ≡ 0 (mod p). 
 
Other commended solvers: F5D 
(Carmel Alison Lam Foundation 
Secondary School). 

 

Problem 415. (Due to MANOLOUDIS 

Apostolos, Piraeus, Greece)  Given a 

triangle ABC such that ∠BAC = 103° 

and ∠ABC = 51°.  Let M be a point 

inside ΔABC such that ∠MAC = 30° 

and ∠MCA = 13°.  Find ∠MBC with 

proof. 
 
Solution.  F5D (Carmel Alison Lam 

Foundation Secondary School), KWAN 

Chung Hang (Sir Ellis Kadoorie 

Secondary School (West Kowloon)), 

Adrian Iain LAM (St. Paul’s College), 

Vijaya Prasad NALLURI (Retired 

Principal, AP Educational Service, 

Andhra Pradesh, India), Alex 

Kin-Chit O (G.T. (Ellen Yeung) College), 

Titu ZVONARU (Comăneşti, Romania) 

and Neculai STANCIU (“George Emil 

Palade’’ Secondary School, Buzău, 

Romania). 
 

73°
13°

x

30°
13°

51°-x

B

A C
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Let x =∠MBC.  By the trigonometric form 

of Ceva’s theorem, we have 

.1
)51sin(

sin

30sin

73sin

13sin

13sin
=

− x

x
oo

o

o

o

 

Then 
x

xx

sin

sin51coscos51sin
73sin2

oo
o −
=  

                      = sin 51°cot x – cos 51°.                
 
Using sin73° = cos17°, we get  
 

cot x = (2cos 17°+cos51°)/sin 51°.  (*) 
 
Since cot is strictly decreasing on (0°,51°), 

there is at most one such x.  Now we have  
 
   2sin y cos y = sin2y  

                       = sin(3y–y)  

                       = sin3y cos y – cos 3y sin y.  
 
Dividing by sin y leads to  
 

2cos y = sin 3y cot y – cos 3y. 
 
Solving for cot y and setting y=17°, we get 
 

cot 17° = (2cos17°+cos51°)/sin 51°. 
 
Therefore, x = 17°. 

 
Other commended solvers: Christian 
Pratama BUNAIDI (University of 
Tarumanagara, Jakarta, Indonesia),  
CHEUNG Ka Wai (Munsang College 
(Hong Kong Island)), Prithwijit DE 
(HBCSE, Mumbai, India), Uma GIRISH 
(Vidya Mandir Senior Secondary School, 
Chennai, India), KWOK Man Yi (S2, 
Baptist Lui Ming Choi Secondary School), 
Cyril LETROUIT (Lycée Jean-Baptiste 
Say, Paris, France), Mihai STOENESCU 
(Bischwiller, France) and ZOLBAYAR 
Shagdar (Orchlon International School, 
Ulaanbaatar, Mongolia). 
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Problem 3.  Trapzoid ABCD with a longer 

base AB is inscribed in the circle k.  Let A0, 

B0 be respectively the midpoints of 

segments BC, CA.  Let N be the foot of the 

altitude from the point C to AB, and G 

the centroid of the trangle ABC.  Circle 

k1 goes through A0 and B0 and touches 

the circle k in the point X, different than 

C. Prove that the points D, G, N and X 

are collinear. 
 

 (IMO Shortlist 2011, modified) 

 

Problem 4.  For a given positive 

integer k let S(k) denote the sum of all 

numbers from the set {1,2.…,k} 

relatively prime to k.  Let m be a 

positive integer and n an odd positive 

integer.  Prove that there exist positive 

integers x and y such that m divides x 

and 2S(x) = yn. 
 

  (Columbia 2008) 
 

 

 

The Inequality of A. Oppenheim 
 

 (continued from page 2) 
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Olympiad Corner 
 
Below are the problems of the 2013 

International Mathematical Olympiad. 

 

Problem 1. Prove that for any pair of 

positive integers k and n, there exist k 

positive integers m1, m2, …, mk (not 

necessarily different) such that  
 

1 2

2 1 1 1 1
1 1 1 ... 1 .

k

kn m m m

   
       

    
 

 

Problem 2. A configuration of 4027 

points in the plane is called Colombian 

if it consists of 2013 red points and 

2014 blue points, and no three of the 

points of the configuration are 

collinear. By drawing some lines, the 

plane is divided into several regions. 

An arrangement of lines is good for a 

Colombian configuration if the 

following two conditions are satisfied: 
 
� no line passes through any point of 

the configuration; 

� no region contains points of both 

colors. 
 
Find the least value of k such that for 

any Colombian configuration of 4027 

points, there is a good arrangement of k 

lines. 
 
                                 (continued on page 4) 
 

IMO 2013 – Leader Report (I) 
 

Leung Tat-Wing 
 

      The 54th International Mathematical 

Olympiad (IMO) was held in Santa 

Marta, Colombia from July 18th to July 

28th, 2013. It took me 40 hours of flight 

and waiting time to travel from Hong 

Kong to Amsterdam, then to Panama 

City, and then to Barranquilla, 

Colombia (where the leaders stayed 

before they met the contestants in Santa 

Marta after two days of  4½-hour 

contests held on the mornings of 23rd 

and 24th of July). Tired and exhausted, I 

were picked up in the airport of 

Barranquilla and delivered to Hotel El 

Prada. We managed to settle down and 

be prepared for the next two days’ Jury 

meetings. Our team arrived at Santa 

Marta, three days later, safe and intact, 

luckily. The next day they still had to 

travel two hours from Santa Marta to 

Barranquilla, participating in another 

opening ceremony, then another two 

hours back to Santa Marta. It was tough 

for them. Accommodation was fine 

though. Contestants stayed in a nice 

seaside resort hotel (Iratoma), while 

leaders stayed in a hotel in Barranquilla. 

They would join the contestants after 

the two day contests.  
 
        Jury meetings were chaired by 

Maria Losada, a long time veteran of 

IMO activities. She was very 

experienced and chaired the meetings 

well. Interesting to note, she kept on 

reminding us (leaders) that we should 

try to form the best possible paper, a 

paper that can provide intellectual 

challenge to contestants, that has some 

aesthetic sense and that allows every 

contestant to achieve the most. We were 

also supposed to work out as many 

possible solutions as possible. We 

should be able to tell whether a problem 

is easy, medium and/or hard. Really 

sometimes I did not know how the goals 

may be attained or even verified. She 

also reminded us ethically we should 

keep the problems with strict security, 

not to disclose any information to any 

contestant beforehand, etc. Indeed the 

Jury meetings were very educational.  

     After the two days’ contests students 

enjoyed a break. Leaders and deputy 

leaders had to check the solutions of the 

contestants, discussed or argued with 

coordinators and sorted out how many 

points should be award to contestants. 

(This process is called coordination). 

Luckily this year many coordinators 

were again very experienced. Many of 

them are old time leaders from Europe 

and are experienced problem solvers. 

They were able to discern mistakes 

made by the contestants (trivial, small 

or big) and were able to award points 

accurately. Personally I recognized 

many of them and I think I have known 

many of them for at least more than 10 

years. That is why little trouble was 

observed during the coordination 

process.  
 
       The awards (closing) ceremony was 

held near a historical site, 45 minute 

drive from the hotel. We were delivered 

to the site around 7:00 pm. Then the 

ceremony lasted for more than two 

hours. Participants were than sent back 

to the resort for the banquet. That night 

was surely hectic. The next day we 

started our trip home. When we arrived 

at Bogota, we found that the flight from 

Bogota to Paris was overbooked. 

Eventually two of us (deputy leader and 

a member of the team) had to take 

another flight from Bogota to Frankfurt, 

then back to Hong Kong, about 10 hours 

late. Air France is famous (notorious) in 

terms of scheduling, here is another 

example. All in all, we did not get 

delayed too much and we eventually 

returned home safely. Lucky! Lucky! 
 
      Talking about organization of the 

event, personally I have no problem 

with the Jury meeting and/or 

coordination. Accommodation was very 

nice. However anything concerned a 

coach (transportation) was simply not 

good enough. Say, what is the point of 

waiting for several hours for a bus, then  
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visit an old town or take a short walk 

for less than an hour, and then heading 

back? ? I do not mean to blame the host 

country. Indeed I want only to illustrate 

the point that it is such a gigantic and 

complicated task to host an IMO! 
 
      Our team brought home 1 silver 

and 5 bronze medals. Among 97 teams, 

we ranked 31. I cannot say that our 

team did badly. Indeed all our team 

members managed to get medals, 

indicating they achieved certain 

standard. However in these few years, 

we trailed behind teams like Singapore, 

Canada, Australia and other teams, not 

to say the even stronger teams such as 

China, USA, Korea and Russia, etc. Do 

we want to do better? Can we recruit 

better team members? Can we afford 

time and energy to do that? We have to 

think about these problems. I can 

identify some weak points for our team. 

For example, our team members 

simply don’t like to do geometry 

and/or combinatorics problems. Our 

team members usually get stuck in 

harder problems, presentations and 

other things. Or perhaps our team 

members are too much occupied also 

by other contests? I know for sure IMO 

team members of teams such as USA, 

Australia and Canada would not be 

allowed to compete in other contests 

such as IOI or IPhO in the same year. 

Another suggestion is that we do not 

train our team enough, we have no 

intensive camp before IMO (compared 

with China, USA or UK), and perhaps 

we should start an intensive camp that 

will also used as a selection criterion of 

our team. This idea comes from none 

other than our old team members! We 

should pause to think about all these 

for a while, I suppose. 
 
      On the other hand, in this IMO, we 

confirmed that we will host IMO2016, 

so in 2016, IMO will be held in Hong 

Kong. Now we just have to do it, and 

do it right. 
 
        I shall discuss the problems of this 

IMO. First let us see how they were 

selected. Indeed the host country 

(Problem Selection Committee) 

shortlisted about 30 problems from 

hundred or so problems submitted by 

various countries. In the last few years, 

the Jury first chose an easy pair 

(problem 1 and 4), then a hard pair 

(problem 3 and 6), then a medium pair 

(problem 2 and 5). The 6 selected 

problems will be then juggled to form 

the papers. However this year, it was 

proposed (and accepted) 4 easy problems 

in algebra, combinatorics, geometry and 

number theory were selected. Likewise 4 

medium problems again from the different 

topics were selected. Then two easy 

problems were selected from the 4 easy 

problems, say problems of algebra and 

conbinatorics were selected. The medium 

problems of other topics (geometry and 

number theory) were automatically 

selected as the medium pair. The idea is to 

guarantee problems of all topics be 

selected either as an easy problem or a 

medium problem. After that it doesn’t 

matter what problems were selected as the 

hard pair. However, perhaps the end result 

was not as ideal as we wanted. Eventually 

in this IMO there are two synthetic 

geometry problems (Problem 3 and 4). 

Problem 2, which was supposed to be a 

combinatorics problem, is actually a 

problem of combinatorial geometry. 

Problem 6, which is a combinatorics 

problem, also has some geometry favor. 

Problem 1, which was supposed to be a 

number theory problem, is more like an 

algebra problem (no prime numbers, no 

factorization of integers, merely algebraic 

manipulation and some induction). And 

finally of course problem 5 is a problem of 

functional inequalities. So this paper is 

very much skewed to geometry and with 

no number theory. Can we say it is 

balanced? Really at the very beginning, 

the problems selected were not quite 

balanced. The problem selection 

committee suggested there were no easy 

combinatorics problems and no hard 

geometry problems! In short, Jury 

members tended to select problems that 

demand “ad hoc” considerations, no need 

to resort to more advanced techniques 

and/or theorems.  

 

(For the statement of the problems, please 

see the Olympiad Corner on page 1-Ed.) 

 

Problem 1: Problem 1 and 4 (easy pair) 

turned out to be too easy. Many strong 

teams get full score in these two problems.  

For k = 1, we have 

12 1 1
1 1 ,

n n


    

and it is already of the required form. 

Hence it is natural to solve the problem 

using some kind of induction procedure. 

Essentially all of us did the problem using 

iterations. One of our team members did 

the problem as follows. Denote the 

statement that 1+(2k–1)/n is of the form 

1 2

1 1 1
1 1 ... 1

km m m
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hence if S(n,k) is valid, so is  S(2n,k+1). 

Likewise  
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       Hence if S(n,k) is valid, so is 

S(2n–1,k+1). Clearly the cases S(n,1) 

or S(1,k) are valid. Hence by reducing 

the cases S(2n,k) to S(n,k–1), or 

S(2n–1,k) to S(n,k–1), (odd or even 

cases), one can always obtain the cases 

S(p,1) or S(1,q), and we are done.  
 

Problem 2: All our members guessed 

the correct answer. The trouble is how 

to present a proof that is complete (no 

missing cases). Jury members also 

worried students didn’t realize the 

minimum value of k should work for 

all possible configurations. Thus they 

defined the term “Colombian”. 

(Another definition is the “beautiful” 

labeling in problem 6. In my opinion it 

was quite unnecessary.) First we show 

k ≥ 2013. Indeed we mark 2013 red 

points and 2013 blue points alternately 

on a circle, (and another blue point 

elsewhere), then there are 4026 arcs 

formed. All these arcs have two 

endpoints of different colors and there 

must be a line passing through an arc to 

separate the two points, also each line 

passing through an arc will meet 

another arc only once, so we see at 

least 4026/2=2013 lines are needed.  

      Now we have to show k = 2013 is 

indeed enough. The official solution 

goes as follows. First if there are two 

points of the same color, say A and B, 

then one can draw two lines parallel to 

AB, and are sufficiently close and there 

are only two points between these lines, 

namely A and B. This statement is 

intuitively clear. Draw the convex hull 

P of the points, and there are two cases. 

 

                                (continued on page 4) 

A case of 2 red points and 3 blue points 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is November 8, 2013. 

 

Problem 426.  Real numbers a, b, x, y 

satisfy the property that for all positive 

integers n, axn+byn =1+2n+1. Determine 

(with proof) the value of xa+yb. 

  

Problem 427. Determine all (m,n,k), 

where m, n, k are integers greater than 1, 

such that 1! + 2! + ⋯ + m! = nk. 
 

Problem 428. Let A1A2A3A4 be a 

convex quadrilateral. Prove that the 

nine point circles of ∆A1A2A3, 

∆A2A3A4, ∆A3A4A1 and ∆A4A1A2 pass 

through a common point. 
 

Problem 429. Inside ∆ABC, there is   

a point P such that ∠APB =∠BPC =

∠CPA. Let PA = u, PB = v, PC = w, 

BC = a, CA = b and AB = c. Prove that 
 

  .)()(

)(

2

2
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Problem 430. Prove that among any 

2n+2 people, there exist two of them, 

say A and B, such that there exist n of 

the remaining 2n people, each either 

knows both A and B or does not know 

A nor B. Here, x knows y does not 

necessarily imply y knows x. 

 

***************** 

Solutions 

**************** 
 
Problem 421. For every acute triangle 

ABC, prove that there exists a point P 

inside the circumcircle ω of ∆ABC 

such that if rays AP, BP, CP intersect ω 

at D, E, F, then DE: EF: FD = 4:5:6. 
 
Solution. Jon GLIMMS (Vancouver, 

Canada), Jeffrey HUI Pak Nam (La 

Salle College, Form 6) and William 

PENG. 
 
For such a point P, let us apply the 

exterior angle theorem to ΔABP and 

ΔACP. Then we have 
 

      ∠BPC =∠BAC+∠ABE +∠ACF 

               =∠BAC +∠FDE. 
 
Similarly, ∠CPA =∠CBA+∠DEF.  

L
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L
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        To get such a point P, we first draw 

ΔXYZ with XY = 4, YZ = 5 and ZX = 6. Let 

α =∠ZXY and β =∠XYZ. Next we consider 

the locus L1 of point P such that ∠BPC = 

∠BAC + α, which is a circle through B 

and C. Also, let L2 be the locus of point P 

such that ∠CPA = ∠CBA + β, which is a 

circle through C and A.  
 
      Let the tangents to L1 and L2 at C 

intersect ω at Q and R. Then 
 
     ∠QCB +∠RCA 

   = 180°−(∠BAC+α)+180°−(∠CBA+β) 
   = ∠ACB +∠YZX  > ∠ACB. 
 
This implies L1 and L2 intersect at a point 

P inside ω. Define D, E, F as in the 

statement of the problem. From the last 

two paragraphs, we get ∠ZXY = α 

=∠FDE and ∠XYZ = β =∠DEF. These 

imply ΔDEF and ΔXYZ are similar. 

Therefore, DE: EF: FD = 4:5:6. 

 

Problem 422. Real numbers a1, a2, a3, … 

satisfy the relations 
 

an+1an + 3an+1 + an + 4 = 0 
 
and a2013 ≤ an for all positive integer n. 

Determine (with proof) all the possible 

values of a1. 
 
Solution. CHEUNG Wai Lam (Queen 

Elizabeth School, Form 4), Jon GLIMMS 

(Vancouver, Canada), William PENG and 

TAM Pok Man (Sing Yin Secondary 

School, Form 6). 
 
The recurrence relation can be written as 

(an+1+2)(an+2) = (an+2)−(an+1+2). If ai 

=−2 for some i, then all an = −2 by 

induction. So a1 =−2 is a possible value. 

Suppose no ai =−2. Then  
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Letting bn = 1/(an+2), we easily get bn= 

n−1+b1≠0 for all positive integer n. Then 

b1≠0,−1,−2,… and an=−2+1/(n−1+b1). 

Now for positive integer n, an is least 

when n−1+b1 < 0 and nearest 0, i.e. 
 

n−1+b1 < 0 < n+b1. 
 

Setting n = 2013 and b1 = 1/(a1+2), we 

can solve the inequality to get 
 

.
2013

4027

2012

4025
1  a  

 

Other commended solvers: Jeffrey 
HUI Pak Nam (La Salle College, 
Form 6) and LKL Excalibur (Madam 
Lau Kam Lung Secondary School of 
MFBM). 

 

Problem 423. Determine (with proof) 

the largest positive integer m such that 

a mm square can be divided into 

seven rectangles with no two having 

any common interior point and the 

lengths and widths of these rectangles 

form the sequence 1,2,3,4,5,6,7,8,9,10, 

11,12,13,14. 
 

Solution. Jon GLIMMS (Vancouver, 

Canada), William PENG and 

ZOLBAYAR Shagdar (Orchlon 

International School, Ulaanbaatar, 

Mongolia). 
 
Let a1, a2, a3 , a4, …, a2n−1, a2n be a 

permutation of 1, 2, 3, 4, …, 2n−1, 2n. 

We claim the maximum of a1a2 + a3a4 + 

⋯ + a2n−1a2n is Sn =1×2 + 3×4 + ⋯ + 

(2n−1)×2n. The cases n = 1 or 2 can 

be checked. Suppose cases 1 to n are 

true. For the case n+1, if (2n+1)(2n+2) 

is one of the term, then we can switch it 

with the last term and apply the case n 

to get 
 
a1a2+a3a4+⋯+ a2n−1a2n+(2n+1)(2n+2) 

≤  Sn + (2n+1)×(2n+2) = Sn+1. 
 
Otherwise, 2n + 1 and 2n + 2 are in 

different terms. We can switch terms so 

that a2n−1=2n+1 and a2n+1=2n+2. If we 

try switching (2n+1)a2n+(2n+2)a2n+2 to 

a2na2n+2+(2n+1)(2n+2), then since a2n 

and a2n+2 are at most 2n, we have 
 

[(2n+2)−a2n][(2n+1)−a2n+2] > 0.  
 

Expanding, we see  
 

a2na2n+2+(2n+1)(2n+2) 

          > (2n+1)a2n+(2n+2)a2n+2 

          =  a2n−1a2n + a2n+1 a2n+2. 
 
Adding a1a2+a3a4+⋯+ a2n−3a2n−2 and 

using case n−1, we see Sn+1 again is the 

maximum.  
 
For the problem, the claim implies m2 ≤ 

S7=1×2+3×4+⋯+13×14= 504. Then 

m ≤ 22. To finish, we show a 22×22 

square which can be so divided. 
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Other commended solvers: LKL 
Excalibur (Madam Lau Kam Lung 
Secondary School of MFBM). 

 

Problem 424. (Due to Prof. Marcel 

Chirita, Bucuresti, Romania) In ∆ABC, 

let a=BC, b=CA, c=AB and R be the 

circumradius of ∆ABC. Prove that  

.
3

32
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R

abc
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Solution. Jeffrey HUI Pak Nam (La 

Salle College, Form 6), TAM Pok 

Man (Sing Yin Secondary School, 

Form 6), Alex TUNG Kam Chuen 

(La Salle College), ZOLBAYAR 

Shagdar (Orchlon International 

School, Ulaanbaatar, Mongolia) and 

Titu ZVONARU (Comăneşti, 
Romania) and Neculai STANCIU 

(“George Emil Palade’’ Secondary 

School, Buzău, Romania). 
 

By the extended sine law, c/sin C = 2R. 

Let [ABC] denote the area of ΔABC. 

Then [ABC] = ½ab sin C = abc/(4R). 

So ab = 2[ABC]/sin C. Using these 

below, we have 
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where the second inequality is by 

expanding (a−b)2+(b−c)2+(c−a)2≥0 

and the third inequality is by applying 

Jensen’s inequality to f(x)=1/sin x. 
 

Other commended solvers: Ioan Viorel 

CODREANU (Secondary School 

Satulung, Maramures, Romania) and 

KWOK Man Yi (Baptist Lui Ming Choi 

Secondary School, Form 2). 

 

Problem 425. Let p be a prime number 

greater than 10. Prove that there exist 

distinct positive integers a1, a2, …, an 

such that n ≤ (p+1)/4 and 

n

n

aaa

apapap





21

21 )())((   

is a positive integral power of 2. 
 
Solution. Jeffrey HUI Pak Nam (La 

Salle College, Form 6), LKL Excalibur 

(Madam Lau Kam Lung Secondary 

School of MFBM), Alex TUNG Kam 

Chuen (La Salle College) and 

ZOLBAYAR Shagdar (Orchlon 

International School, Ulaanbaatar, 

Mongolia). 
 
More generally, we prove this is true for 

all odd integers p≥3. Let 
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If p≡1 (mod 4), then let n=(p−1)/4 and for 

i=1,2,…,n, let ai =2i−1. We have  
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If p≡3 (mod 4), then let n=(p+1)/4 and for 

i=1,2,…,n, let ai =2i−1. We have  
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Olympiad Corner 
 
                            (continued from page 1) 

 

Problem 3. Let the excircle of triangle 

ABC opposite the vertex A be tangent to 

the side BC at the point A1. Define the 

points B1 on CA and C1 on AB analogously, 

using the excircles opposite B and C, 

respectively. Suppose that the circum- 

centre of triangle A1B1C1lies on the 

circumcircle of triangle ABC. Prove that 

triangle ABC is right-angled. 
 

Problem 4. Let ABC  be an acute-angled 

triangle with orthocenter H, and let W be a 

point on the side BC, lying strictly 

between B and C. The points M and N are 

the feet of the altitudes from B and C, 

respectively. Denote by ω1 the 

circumcircle of BWN, and let X be the 

point on ω1 such that WX is a diameter of 

ω1. Analogously, denote by ω2 the 

circumcircle of CWM, and let Y be the 

point on ω2 such that WY is a diameter 

of ω2. Prove that X, Y, H are collinear. 
 
Problem 5. Let ℚ>0 be the set of 

positive rational numbers. Let f: 

ℚ>0→ℝ  be a function satisfying the 

following three conditions: 
 
(i)  for all x,y ∈ ℚ>0, we have f (x) f (y) 

≥    f (xy);  

(ii) for all x, y ∈ ℚ>0, we have f(x+y)  ≥ 

f(x) + f(y); 

(iii) there exists a rational number a > 1 

such that f (a) = a. 
 
Prove that  f (x) = x for all x ∈ ℚ>0.  
 

Problem 6. Let n ≥ 3 be an integer, and 

consider a circle with n+1 equally 

spaced points marked on it. Consider 

all labellings of these points with the 

numbers 0,1,…, n such that each label 

is used exactly once; two such 

labellings are considered to be the 

same if one can be obtained from the 

other by a rotation of the circle. A 

labelling is called beautiful if, for any 

four labels a < b < c < d with a+d = 

b+c, the chord joining the points 

labelled a and d does not intersect the 

chord joining the points labelled b and 

c.  

      Let M be the number of beautiful 

labellings, and let N be the number of 

ordered pairs (x,y) of positive integers 

such that x+y ≤ n and gcd(x,y)=1. 

Prove that M = N+1.  
 

 
 
IMO 2013–Leader Report (I) 
 
                   (continued from page 2) 
  
Case 1. If there is a red point A on the 

convex hull P, we can draw a line 

separating A draw all other points. 

Then we pair up the remaining 2012 

red points into 1006 pairs, and as 

remarked, draw 1006 pairs of parallel 

lines (2012 lines), separating each pair 

of red points from all other points. 

Thus 2012+1=2013 lines are needed. 
 
Case 2. All vertices of the convex hull 

P are blue. Take any pair of 

consecutive blue points A and B, 

separating them from all other points 

by a line (one line) parallel to AB. Then 

pair up the remaining 2012 blue points 

into 1006 pairs as before, separating 

each pair from all other points by 1006 

pairs of parallel lines (2012 lines). 

Thus again 2013 lines are used. 

 

                             (To be continued) 
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Olympiad Corner 
 
Below are the problems of the North 

Korean Team Selection Test for IMO 

2013. 

 
Problem 1. The incircle of a 

non-isosceles triangle ABC with the 

center I touches the sides BC, CA, AB at 

A1, B1, C1 respectively. The line AI 

meets the circumcircle of ABC at A2. 

The line B1C1 meets the line BC at A3 

and the line A2A3 meets the circum- 

circle of ABC at A4 (≠A2). Define B4, C4 

similarly. Prove that the lines AA4, BB4, 

CC4 are concurrent. 
 
                                 (continued on page 4) 

 

 
IMO 2016 Logo Design Competition 

 
Hong Kong will host the 57th 
International Mathematical Olympiad 
(IMO) in July 2016. The Organising 
Committee now holds the IMO 2016 
Logo Design Competition and invites 
all secondary school students in Hong 
Kong to submit logo designs for the 
event. Your design may win you $7,000 
book coupons and become the official 
logo of IMO 2016! For details, please 
visit  
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Sequences 
 

Kin Y. Li 

    Sequence problems occur often in 

math competitions. Below we will look 

at some of these problems involving 

limits in their solutions. 
 
Example 1. (1980 British Math 

Olympiad) Find all real a0 such that the 

sequence defined by an+1=2n−3an for 

n=0,1,2,… satisfies a0<a1<a2<⋯. 
 
Solution. We have 
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If a0=1/5, then it is good. If a0≠ 1/5, then 

since (2/3)n goes to 0 as n→∞, so an/3
n 

will have the same sign as (a0−1/5)(−1)n 

when n is large. Hence, an < an+1 will not 

hold, contradiction.  

 

Example 2. (1971-1972 Polish Math 

Olympiad) Prove that when n tends to 

infinity, the sum of the digits of 1972n in 

base 10 will go to infinity. 
 
Solution. Let ai be the i-th digit of 1972n 

from right to left in base 10. For 1 ≤ k ≤ 

n/4, we claim that among ak+1, ak+2,…, 

a4k, at least one of them is nonzero.  
 
Assume not. Then let 
 

C = a1+a2×10+⋯+ak×10k−1. 
 

We have 1972n−C divisible by 104k. 

Since 4k ≤ n, so C is divisible by 24k = 

16k > 10k > C, contradiction. 
 
From the claim, we get at least one digit 

in each of the following m+1 groups of 

digits will not be zero 
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where n/16<j=4m ≤ n/4. The digit sum of 

1972n is at least m+1 > (log4 n)−1. So, 

the digit sum of 1972n goes to infinity.  

Example 3. Let a1, a2, a3, … be a 

sequence of positive numbers. Prove that 

there exists infinitely many n such that 

1+an > 21/n an−1. 
 
Solution. Assume not. Then there is a M 

such that for all n>M, we have 1+an ≤ 

21/n an−1. Since (1+1/n)n ≥ 2, we have  
 
   an ≤ 21/n an−1−1≤((n+1)/n)an−1−1. (*) 
 
We claim that for k ≥ M, 
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The case k = M is true as the right side is 

aM. Suppose case k is true. By (*), 
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This concludes the induction. As k→∞, 

the above sum of 1/j goes to infinity, 

hence some ak+1< 0, contradiction. 
 
Example 4. (2007 Chinese Math 

Olympiad) Let {an}n≥1 be a bounded 

sequence satisfying  
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Prove that an < 1/n for n = 1,2,3,…. 
 
Solution. Let bn=an−1/n. Then for n≥1, 
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It suffices to show bn< 0. Since an is 
bounded, so there is a constant M such 
that bn<M. For n >100,000, we have 
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Repeating this m times, if n > 100,000, 
then bn < (6/7)mM. Letting m→∞, we get 
bn≤ 0 for n > 100,000. Using (*), we see 
if for n≥N+1, we have bn<0, then bN<0. 
This gives bn< 0 for n ≥ 1. 
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IMO 2013 - 
Leader Report(II) 
 

Leung Tat-Wing 
 

We will continue with our discussion 

on the IMO 2013 problems, which can 

be found in the Olympiad Corner of the 

last issue of Math Excalibur. 

 

Problem 3: The problem was selected 

in the very last minute of the Jury 

meetings. Indeed another geometry 

problem concerning properties of 

hexagons was initially selected as a 

member of the hard pair. It was 

however discovered the problem was 

similar to an USAMO problem. I 

myself also recalled several similar 

problems. So the problem was rejected 

and replaced by this problem 3. After 

the selection process, it was announced 

both problem 3 and 6 come from 

Russia, indeed a problem similar to 

problem 4 was also found in a Russian 

geometry problem book. Truly the 

Russians are masters of posing 

problems! 
 
Despite being a difficult problem 

(solved by 40 contestants), problem 3 

is indeed a pure geometry problem and 

can be solved by pure synthetic 

geometry method. Indeed denote the 

circumcircles of ABC and A1B1C1 by α 

and β respectively and let Q be the 

centre of the circumcircle of A1B1C1. 

Let A0 be the midpoint of arc BC 

containing A, and define B0 and C0 

respectively. Then one can check 

A0B1=A0C1 and A,A0,B1,C1 concyclic. 

(Likewise B0C1=B0C1 and B,B0,C1,A1 

concyclic; C0A1=C0B1 and C,C0,B1,A1 

concyclic.) One then consider the 

largest angle of A1B1C1, say B1, and if 

Q is on α, then Q must coincide with B0, 

and hence ∠B=90°, not easy though! 

 

Problem 4: There are more than 19 

different solutions and surely there are 

more. It is possible to solve the problem 

using complicated angle chasings and/or 

coordinate geometry. But of course the 

basic or most natural approach is to look 

at the radical axis of the two circles. The 

following proof is given by Lau Chun 

Ting, a team member of ours.  

 

Suppose ω1 and ω2 meet at another point 

P (≠W). Since ∠WPX =∠WPY = 90°, so 

X, P and Y are collinear. To show H lies on 

XY, (X, Y, H collinear), it suffices to show 

∠HPW = 90°. Suppose now AH meets 

BC at D. Now B, N, M, C are concyclic 

(since ∠BNC =∠BMC = 90°), we have 

ANAB=AMAC. So the powers of the 

point A with respect to the circles ω1 and 

ω2 are the same, that means A lies on the 

radical axis WP, or A, P, W collinear 

(radical axis theorem). Now note that H, 

M, C, D are also concyclic, hence 

AHAD=AMAC (quite a few concyclic 

conditions). As before  
 

AMAC=ANAB=APAW, 
 
we get APAW=AHAD. Therefore, W, P, 

H, D are concyclic and we get ∠HPW = 

90°, as required.  
 
Using coordinate attack, we may let 

A=(a1,a2), B=(–b,0), C=(c,0) and W=(0,0). 

By computing slopes and equations of 

lines, (complicated but still manageable), 

one eventually gets the coordinates of X, 

H and Y. Hence can verify X, H and Y 

collinear by calculating slopes of XH and 

HY.  

 

Problem 5: For problem of this kind, one 

can try many things to obtain partial 

results. But the essential (crucial) part of 

this problem is actually how to make use 

of condition 3. Indeed if this condition is 

released, then the function f(x) = bx2, with 

b ≥ 1, will satisfy the first and second 

condition. Now see what we can get by 

putting different values of x and y into the 

equations. For examples, put x= a and 

y = 1, one gets a f (1) = f (a) f (1) ≥  f (a) 

= a, hence f(1) ≥ 1. We let f(1) = c ≥ 1. 

By induction, one can then show f (n) ≥ 

nc, for all natural numbers n. So in 

particular f (n) is positive. Now we 

show f (x) is strictly increasing. Indeed 

if f (x+Δx) ≤ f (x) for some positive 

rational numbers x and Δx, then  
 

f (x)  ≥  f (x+Δx)  ≥  f (x) + f (Δx), 
 
therefore f (Δx) ≤ 0. However, we also 

have f (n) f (Δx) ≥ f (nΔx). Now since     

f (Δx) ≤ 0, so we must also have f (nΔx) 

≤ 0 for all n, however surely we can 

find n so that nΔx is a natural number 

and f (nΔx) is positive, a contradiction. 

Using the same argument, we can show 

f(x)> 0 for all positive rational numbers. 

One then proceeds to show f(1) = 1. 

Hence f (x) = x for all positive rationals. 

I am not going to produce all the details 

here. Suffices to say, we often need to 

expand a positive rational number in 

terms of a, say for a rational number b 

< a, it is of the form  


2

21
0
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k

a

k
k   (finite sum), 

some kind of a-adic expansion! 

 

Problem 6: Problem 6 is even harder 

than problem 3, only 7 contestants 

solved it. A nice point of the problem is 

that it links a geometric fact 

(intersecting chords) to a certain 

number property, and the relation is an 

exact relation (M=N+1). For n=3, the 

beautiful labellings are given below 

(we always label 0 at the top). 

 

The pairs of positive integers satisfying 

the stated property are (1,1), (1,2) and 

(2,1). For n=4, to complete the list of 

integers with the stated property, we 

just have to consider those x and y 

satisfying x+y=4. Indeed we get two 

more pairs (1,3) and (3,1). Indeed the 

six beautiful labellings are  
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                                (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is December 21, 2013. 

 

Problem 431.  There are 100 people, 

composed of 2 people from 50 distinct 

nations. They are seated in a round 

table. Two people sitting next to each 

other are neighbors.  
 
Prove that it is possible to divide the 

100 people in two groups of 50 people 

so that no 2 people from the same 

nation are in the same group and each 

person in a group has at most one 

neighbor in the group. 
  
Problem 432. Determine all prime 

numbers p such that there exist integers 

a,b,c satisfying a2 + b2 + c2 = p and 

a4+b4+c4 is divisible by p. 
 
Problem 433. Let P1, P2 be two points 

inside ∆ABC. Let BC = a, CA = b and  

AB = c. For i = 1,2, let PiA = ai, PiB = 

bi and PiC = ci. Prove that  
 

aa1a2+bb1b2+cc1c2 ≥ abc. 
 
Problem 434. Let O and H be the 

circumcenter and orthocenter of 

∆ABC respectively. Let D be the foot 

of perpendicular from C to side AB. Let 

E be a point on line BC such that ED⊥
OD. If the circumcircle of ∆BCH 

intersects side AB at F, then prove that 

points E, F, H are collinear.   
 
Problem 435. Let n > 1 be an integer 

that is not a power of 2. Prove that 

there exists a permutation a1, a2,…, an 

of 1,2,…, n such that  
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***************** 

Solutions 

**************** 
 
Problem 426. Real numbers a, b, x, y 

satisfy the property that for all positive 

integers n, axn+byn =1+2n+1. Determine 

(with proof) the value of xa+yb. 
 

Solution. Ángel PLAZA (Universidad de 

Las Palmas de Gran Canaria, Spain). 
 
Considering the generating functions of the 

left and right sides of axn+byn =1+2n+1, we 

have 
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For |z| < min{1/2,1/|x|,1/|y|}, using the 

geometric series formula, we have 
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The right side is a rational function of z. 

By the uniqueness of the partial fraction 

decomposition, either ax=1, x=1, by=4, 

y=2 or ax=4, x=2, by=1, y=1. In both cases, 

xa+yb = 11+22 = 5. 
 
Other commended solvers: CHAN Long 
Tin (Cambridge University, Year 1), 

CHEUNG Ka Wai (Munsang College 

(Hong Kong Island)), Jeffrey HUI Pak 
Nam (La Salle College, Form 6), KIM 
Minsuk Luke (The South Island School, 

Hong Kong, Year 13), KWOK Man Yi 
(Baptist Lui Ming Choi Secondary School, 

Form 2), LO Wang Kin(Wah Yan College, 

Kowloon),  Math Group (Carmel Alison 

Lam Foundation Secondary School), Alice 
WONG Sze Nga (Diocesan Girls’ School, 

Form 6) and Titu ZVONARU 
(Comăneşti, Romania) and Neculai 
STANCIU (“George Emil Palade’’ 

Secondary School, Buzău, Romania). 

 

Problem 427. Determine all (m,n,k), 

where m, n, k are integers greater than 1, 

such that 1! + 2! + ⋯ + m! = nk. 
 
Solution. Ioan Viorel CODREANU 
(Secondary School Satulung, Maramures, 

Romania), CHEUNG Ka Wai (Munsang 

College (Hong Kong Island)), Jeffrey 
HUI Pak Nam (La Salle College, Form 6), 

KIM Minsuk Luke (The South Island 

School, Hong Kong, Year 13), LO Wang 
Kin (Wah Yan College, Kowloon), 

Corneliu MĂNESCU-AVRAM (“Henri 

Mathias Berthelot” Secondary School, 

Ploieşti, Romania School, Ploieşti, 
Romania), Math Group (Carmel Alison 

Lam Foundation Secondary School) and 

William PENG. 
 
Let S(m)=1! + 2! + ⋯ + m!. Then S(2)=3, 

S(3) = 9 = 32, S(4) = 33 = 3×11, S(5) = 

153 = 32
×17, S(6) = 873 = 32

×97, S(7) = 

5913=34
×73, S(8)=46233 = 32

×11×467.  
 
For m > 8, since 9!≡0 (mod 33), so S(m) ≡ 

S(8) ≡ 0 (mod 32) and S(m) ≡ S(8) ≢ 0 

(mod 33). These imply that if S(m)=nk and 

k > 1, then k = 2. 

Since S(4)=33≡3(mod 5), S(m)≡3 (mod 

5). Now n2 ≡ 0, 1, 4 (mod 5). So 

S(m)≠n2. We have the only solution is 

(m,n,k)=(3,3,2). 
 

Problem 428. Let A1A2A3A4 be a 

convex quadrilateral. Prove that the 

nine point circles of ∆A1A2A3, 

∆A2A3A4, ∆A3A4A1 and ∆A4A1A2 pass 

through a common point. 
 

Solution. HOANG Nguyen Viet 
(Hanoi, Vietnam), Jeffrey HUI Pak 
Nam (La Salle College, Form 6), 

Corneliu MĂNESCU-AVRAM 
(“Henri Mathias Berthelot” Secondary 

School, Ploieşti, Romania School, 

Ploieşti, Romania), Apostolis 
MANOLOUDIS, Math Group 
(Carmel Alison Lam Foundation 

Secondary School) and Alice WONG 
Sze Nga (Diocesan Girls’ School, 

Form 6). 
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Let C1, C2, C3, C4 be the nine point 

circles of ∆A1A2A3,∆A2A3A4,∆A3A4A1, 

∆A4A1A2 respectively. Let U, V, W, X, 

Y, Z be the midpoints of A1A2, A2A3, 

A3A4, A4A1, A1A3, A2A4 respectively. Let 

C1 and C3 intersect at Y and P (in case 

C1, C3 are tangent, P will be the same 

as Y). We claim P is on C2. For that it 

suffices to show P,V,W,Z are concyclic. 
 
By the midpoint theorem, XY = ½A4A3 

= WA3 and XW = ½A1A3 = YA3. So we 

have (1) WXYA3 is a parallelogram. 

Similarly, (2) YUVA3 and (3) WZVA3 

are also parallelograms. Now (4) 

P,U,V,Y are on C1 and (5) P,X,W,Y are 

on C3. We have 
 
 
  ∠VPW =∠YPV+∠YPW  

               =∠YUV +∠YXW  by (4), (5) 

               =∠YA3V+∠YA3W  by (2), (1)  

               =∠VA3W    

               =∠VZW   by (3). 
 
So P is on C2. Similarly, P is on C4. 
 
Other commended solvers: William 
FUNG, Titu ZVONARU (Comăneşti, 
Romania) and Neculai STANCIU 
(“George Emil Palade’’ Secondary 

School, Buzău, Romania). 
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Problem 429. Inside ∆ABC, there is a 

point P such that ∠APB =∠BPC =         

∠CPA. Let PA = u, PB = v, PC = w, 

BC = a, CA = b and AB = c. Prove that 
 

  .)()(

)(

2

2

bacbacba

cabcabwvu


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Solution. LO Wang Kin (Wah Yan 

College, Kowloon). 

b a

B

A

C

P P' B'

 

Rotate ∆ABC about C by 60° away 

from A. Let the images of B, P be B’, P’ 

respectively. As ∠PCP’ = 60°=∠BCB’, 

so ∆PCP’ and ∆BCB’ are equilateral. 

As ∠B’PC =∠CPA=120°, A, P, P’, B’ 

are collinear. So AB’ = AP+PP’+P’B’ 

= u+w+v. By the cosine law, AB’2 = 

a2+b2−2ab cos(C+60°). 
 
After expansion and cancellation, the 

right side of the desired inequality 

becomes  
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Using these, the right side minus the 

left side of the desired inequality is 
 

0))60cos(12(cos12

)sin3cos)cos1(221(

))60cos(2)cos1(221(
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
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CCab

CCCab

CCab

and we are done. 
 
Other commended solvers: CHEUNG 
Ka Wai (Munsang College (Hong 

Kong Island)), T. W. LEE (Alumni of 

New Method College), Math Group 
(Carmel Alison Lam Foundation 

Secondary School) and Alice WONG 
Sze Nga (Diocesan Girls’ School, 

Form 6). 

 

Problem 430. Prove that among any 

2n+2 people, there exist two of them, 

say A and B, such that there exist n of 

the remaining 2n people, each either 

knows both A and B or does not know 

A nor B. Here, x knows y does not 

necessarily imply y knows x. 
 
Solution. Jeffrey HUI Pak Nam (La 

Salle College, Form 6) and Math Group 
(Carmel Alison Lam Foundation Secondary 

School). 
 
Take a person P out of the 2n+2 people. 

Suppose among the remaining 2n+1 

people, he knows k of them and does not 

know 2n+1–k of them. Among these 2n+1 

people, there are 2n+1C2 = n(2n+1) pairs. 

Call a pair good if P knows both of them 

or does not know both of them, bad if P 

knows one, but not both. By the AM-GM 

inequality, there are at most ⌈k(2n+1–k)⌉ 

≤ ⌈(n+½)2⌉ = n2+n bad pairs. Adding up 

all the bad pairs for all 2n+2 people, the 

number is at most (2n+2)(n2+n) = 

2n(n+1)2. There are 2n+2C2=(n+1)(2n+1) 

pairs altogether. Since the average 
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some pair {A, B} will be a bad pair for at 

most n of the remaining 2n people. Then 

at least n other people will call {A,B} a 

good pair and we are done.   
 

 
 

Olympiad Corner 
 
                           (Continued from page 1) 
 
Problem 2. Let a1, a2,…, ak be numbers 

such that ai∈{0,1,2,3}, i=1 to k and z = (xk, 

xk–1,…,x1)4 be a base 4 expansion of z ∈ 

{0, 1, 2, … , 4k–1}. Define A as follows: 
 
A={z | p(z)=z, z=0,1,2,…,4k–1}, where 





k

i

i

ii xazp
1

1.4)(  

Prove that |A| is a power of 2. (|X| denotes 

the number of elements in X). 
 
Problem 3.  Find all a,b,c∈ℤ, c ≥ 0 such 

that (an+2n)| bn+c for all positive integers 

n, where 2ab is non-square. 

 
Problem 4. Positive integers 1 to 9 are 

written in each square of a 33 table. Let 

us define an operation as follows: Take an 

arbitrary row or column and replace these 

numbers a, b, c with either non-negative 

numbers a–x, b–x, c+x or a+x, b–x, c–x, 

where x is a positive number and can vary 

in each operation. 
 
1) Does there exist a series of operations 

such that all 9 numbers turn out to be 

equal from the following initial 

arrangement a) ?,  b) ? 
      
  1 2 3   2 8 5   

  4 5 6   9 3 4   

  7 8 9   6 7 1   
 
                a)                          b) 

2) Determine the maximum value 

which all 9 numbers turn out to be 

equal to after some steps. 
 
Problem 5. The incircle ω of a 

quadrilateral ABCD touches AB, BC, 

CD, DA at E, F, G, H, respectively. 

Choose an arbitrary point X on the 

segment AC inside ω. The segments 

XB, XD meet ω at I, J respectively. 

Prove that FJ, IG, AC are concurrent. 
 
Problem 6. Show that x3+x+a2=y2 has 

at least one pair of positive integer 

solution (x,y) for each positive integer 

a. 

 
 
IMO 2013–Leader Report (II) 
 
                   (continued from page 2) 
  
The problem is how to connect the 

geometry and the number theory 

information. In general, how to get 

started? I can only describe it roughly 

from the official solution. Call three 

chords aligned if one of them separates 

the other two. For more than three 

chords, they are aligned if any three of 

them aligned.  
 
 

 

 

 

 

In the figure the chords A, B and C are 

aligned (the line formed by B separated 

the two chords A and C; while B, C and 

D are not aligned (none of the lines 

formed by B, C or D separates the other 

two chords). Now call a chord a 

k-chord if the sum of its two endpoints 

is k (the chord may be degenerated into 

a point of value k). The crucial 

observation is: in a beautiful labeling, 

the k-chords are aligned for any k. To 

prove this claim, one proceeds by 

induction. Indeed the only case is when 

there are three chords not aligned and 

such that one of the chords has 

endpoints 0 and n. After the claim is 

proved, one proceeds again using 

delicate induction arguments to show 

M=N+1. Indeed the beautiful labellings 

are eventually divided into classes. 

Elements of the first class are as before 

in the induction step. Elements of the 

second class correspond precisely with 

the pairs of positive integers satisfying 

x+y=n and gcd(x,y)=1, (which 

correspond exactly to the elements {x |  

1 ≤ x ≤ n, gcd(x,y) = 1} with size φ(n). 

Tough! 

C

A

B

D
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Olympiad Corner 
 
Below are the problems of the Dutch 

Team Selection Test for IMO 2013. 
 

Problem 1. Show that 
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is the square of an integer. 
 
Problem 2. Let P be the intersection of 

the diagonals of a convex quadrilateral 

ABCD. Let X, Y and Z be points on the 

interior of AB, BC and CD respectively 

such that 
 

.2
ZD

CZ

YC

BY

XB

AX  

 
Suppose moreover that XY is tangent to 

the circumcircle of ΔBXY. Show that 

∠APD=∠XYZ. 
 

Problem 3. Fix a sequence a1, a2, 

a3, … of integers satisfying the 

following condition: for all prime 

numbers p and all positive integers k, 

we have 
 

apk+1=pak–3ap+13. 
 

Determine all possible values of a2013. 
 
                                 (continued on page 4) 

 

  
Andy Loo (Princeton University) 

 
    

     In the United States there are several 

annual math competitions organized by 

undergraduate students at different 

universities for high school enthusiasts, 

including the Harvard-MIT Math 

Tournament (HMMT), the Stanford 

Math Tournament (SMT), and, last but 

not least, the Princeton University 

Mathematics Competition (PUMaC). 

Started in 2006, PUMaC has grown into 

an international event in which high 

schoolers across America are joined by 

teams from as far away as Bulgaria and 

China on Princeton campus each year.  

 

PUMaC 2013 was held on November 

16, engaging over 600 participants, and 

I was honored to serve as Problem Tsar 

(academic coordinator who heads the 

problem writing team). The 

responsibility of creating, grading and 

defending the problems and solutions of 

a competition of such scale and repute 

gave me an inspiring learning 

experience.  

 

The competition is split into Division A 

(more challenging) and Division B (for 

less experienced contestants). Each 

team consists of eight students. In the 

morning, each contestant takes two out 

of four one-hour answer-only individual 

tests (Algebra, Geometry, 

Combinatorics and Number Theory, 

eight problems each) of his/her choice, 

followed by the one-hour Team Round, 

where members of the same team may 

discuss and work together (each team 

enjoying a separate room!).   

 

The top 10 performers on each 

individual test (possibly with nonempty 

intersection) qualify for the Individual 

Finals, a one-hour proof-based test with 

three problems. I personally feel that an 

average Individual Finals problem lies 

somewhere near an IMO problem 1 or 4 

in terms of difficulty. Remarkably, in 

PUMaC  2013,  two  contestants  got   a  

 

perfect score on the Division A 

Individual Finals despite the time 

pressure!   Also worth mentioning is the 

Power Round, which is a relatively long 

series of problems revolving around a 

central theme – knot theory in 2013 – 

released one week before the 

competition day for the teams to work 

on and turn in on competition day. 

(Teams may also enroll on a Power 

Round-only basis.) It usually takes 

frantic grading to determine the 

individual and team rankings in time for 

the award ceremony in the late 

afternoon, while mini-events such as 

Math (quiz) Bowl and Rubik’s cube as 

well as a lecture by a Princeton 

professor keep the participants 

entertained. 
 
I would like to discuss a few problems 

in PUMaC 2013, not necessarily 

because they are the hardest, but mostly 

because they bring out certain lessons of 

problem solving we can learn. 

 

Individual Finals B1.  
 
Let a1 = 2013 and an+1 = 2013an  for all 

positive integers n. Let b1 = 1 and bn+1 = 

20132012bn  for all positive integers n. 

Prove that an > bn for all positive 

integers n. 
 

At first sight, one natural reaction to this 

problem would be to do induction. 

However, we would quickly realize that 

the assumption an > bn does not imply 

an+1 > bn+1, as it does not imply 

2013an  20132012bn . Many contestants 

performed pages of tedious calculations 

in vain. Are we doomed? It turns out 

that a clever little tweak to the induction 

idea would lead us to a crisp and 

compact solution: 
 

Instead of an > bn, we shall prove an ≥ 

2013bn for all positive integers n. This is 

clearly true for n = 1. If ak ≥ 2013bk  for  
 

                                  (continued on page 2) 
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some positive integer k, then 

    

            ak+1 = 2013ak  

                   ≥ 20132013bk   

                   = 2013bk 20132012bk   

                   ≥ 2013bk+1. 

 

There is something intriguing about 

this seemingly easy proof: if we cannot 

even prove just the original result, how 

come we can miraculously prove a 

stronger result? The answer to this 

paradox lies in the nature of 

mathematical induction: when we use 

induction, our task is essentially to 

prove the original statement about an 

arbitrary positive integer but equipped 

with an additional tool – the 

assumption that the statement is true 

for the preceding positive integer(s). If 

the statement is strengthened, what we 

need to prove becomes more 

demanding but the inductive 

hypothesis that we can use also gets 

more powerful. In the case of this 

problem, since the recurrence relations 

are exponential, the upgrade of the 

inductive hypothesis outweighs the 

increase in difficulty of the desired 

result.  

 

Individual Finals A1.  
 
Prove that 
 

       
1

a2  2


1

b2  2


1

c2  2
 

   
1

6ab  c2


1

6bc  a2


1

6ca  b2
 

 
for any positive real numbers a, b and c 

satisfying a2 + b2 + c2 = 1. 

 

The usual first step in proving such a 

symmetric inequality is to use the 

given condition to homogenize the 

inequality, i.e. to make the terms carry 

equal degrees. Afterwards, various 

inequality theorems can be applied. 

Here we first write the left-hand side as 
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and note that by the AM-GM inequality, 

3a2 + 3b2 ≥ 6ab and analogous 

inequalities hold. So 
 

   
1
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

1

6bc  a2


1

6ca  b2
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It suffices to prove the following 

inequality 

   
yxzxzyzyx 223
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 
1

3x  3y  z


1

3y  3z  x


1

3z  3x  y
  

 
where x, y and z are positive real numbers.  

 

At this stage, one may resort to passionate 

expansion and then apply Muirhead’s 

inequality and/or Schur’s inequality, or, 

alternatively, factorization and completing 

the square.  

 

But I wish to share a solution using the 

majorization inequality (see Math 

Excalibur, vol. 5, no. 5, p.2): Without loss 

of generality we may assume x ≥ y ≥ z. 

Then  

 

    (3x + 3y + z, 3y + 3z + x, 3z + 3x + y)  
 
majorizes  
 
(3x + 2y + 2z, 3y + 2z + 2x, 3z + 2x + 2y).  

 

Due to the convexity of the function f(t) = 

1/t, the desired inequality follows by the 

majorization inequality. 

 

Readers may also be interested in an 

alternative solution involving calculus: 

First, by Muirhead’s inequality (see 

Mathematical Excalibur, vol. 11, no. 1), 

we have 

 

            u3v3w + v3w3u + w3u3v 

 

         ≥  u3v2w2 + v3w2u2 +w3u2v2 

 

for any positive u, v, w. Letting  

 

      u  t x1/7 , v  t y1/7  and w  t z1/7   

 

where 0 < t < 1, we get 

 

    t 3x + 3y + z −1 + t 3y + 3z + x −1 + t 3z + 3x + y −1 

  
≥  t 3x + 2y + 2z  −1 + t 3y + 2z + 2x  −1 + t 3z + 2x + 2y  −1. 

 

Now, integrating both sides with respect 

to t from 0 to 1, we obtain nothing but the 

desired inequality! 

 

Lastly I encourage all readers to try out 

the following problem which only one out 

of the 123 contestants attempting 

Combinatorics A got right. This is really 

my favorite problem in PUMaC 2013 

because I love eating sushi and find the 

setting very interesting: 

 

Combinatorics A8.  
 
Eight different pieces of sushi are 

placed evenly around a round table 

which can rotate about its center. Eight 

people sit evenly around the table. 

Each person has one favorite piece of 

sushi among the eight, and their 

favorites are all distinct. Sadly, they 

find that no matter how they rotate the 

table, there are never more than three 

people who have their favorite sushi in 

front of them simultaneously.  
 
How many possible arrangements of 

the eight pieces of sushi are there? 

(Two arrangements that differ by a 

rotation are considered the same.) 

 

In 1908, a classic Chinese newspaper 

article famously raised three questions 

for the country: When can China first 

send an individual athlete to the 

Olympic Games? When can China first 

send a delegation to the Olympic 

Games? When can China first host the 

Olympic Games? 

 

In closing, I would also like to ask 

three questions: When can Hong Kong 

first take part in the Power Round of 

PUmaC? When can Hong Kong first 

send a team to Princeton to join the 

main competition of PUMaC? When 

can a university in Hong Kong first 

host a math competition run by 

undergraduates for secondary school 

students? 

 

As Dr. Kin Li (editor of Math 

Excalibur) observes, Hong Kong 

students need more opportunities to 

participate in different competitions 

and broaden their horizons. They will 

also be able to experience a beautiful 

university, make friends with some of 

the most brilliant brains from around 

the world, and learn team spirit 

especially through the Power Round 

and Team Round. With optimism, I 

hope my three questions will find 

answers before long. 

 

For further information and past 

papers, please visit PUMaC’s website 

http://www.pumac.princeton.edu/ 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is February 25, 2014. 

 

Problem 436.  Prove that for every 

positive integer n, there exists a 

positive integer p(n) such that the 

interval [1, p(n)] can be divided into n 

pairwise disjoint intervals with each 

contains at least one integer and the 

sum of the integers in each of these 

intervals is the square of some integer. 
  

Problem 437. Determine all real 

numbers x satisfying the condition that 

cos x, cos 2x, cos 4x, …, cos 2nx, … are 

all negative. 
 

Problem 438. Suppose P(x) is a 

polynomial with integer coefficients 

such that for every integer n, P(n) is 

divisible by at least one of the positive 

integers a1, a2,…, am. Prove that there 

exists one of the ai such that for all 

integer n, P(n) is divisible by that ai. 
 

Problem 439. In acute triangle ABC, T 

is a point on the altitude AD (with D on 

side BC). Lines BT and AC intersect at 

E, lines CT and AB intersect at F, lines 

EF and AD intersect at G. A line ℓ 

passing through G intersects side AB, 

side AC, line BT, line CT at M, N, P, Q 

respectively. 
 
Prove that ∠MDQ =∠NDP. 
 

Problem 440. There are n schools in a 

city. The i-th school will send Ci 

students to watch a performance at a 

field. It is known that 0 ≤ Ci ≤ 39 for i=1, 

2, …, n and C1+C2+⋯+Cn=1990. The 

seats will be put in a rectangle 

arrangement with each row having 199 

seats. Determine the least number of 

rows needed to satisfy the condition 

that all students from the same school 

must sit in the same row for all 

possibilities of the known conditions 

above. 
 

***************** 

Solutions 

**************** 
 

Problem 431. There are 100 people, 

composed of 2 people from 50 distinct 

nations, are seated in a round table. Two 

people sitting next to each other are 

neighbors.  
 
Prove that it is possible to divide the 100 

people in two groups of 50 people so that 

no 2 people from the same nation are in 

the same group and each person in a group 

has at most one neighbor in the group. 
 
Solution. Jeffrey HUI Pak Nam (La 

Salle College, Form 6), Math Group 

(Carmel Alison Lam Foundation 

Secondary School) and ZOLBAYAR 

Shagdar (Orchlon International School, 

Ulaanbaatar, Mongolia). 
 
 
Suppose these 100 people V1, V2, …, V100 

are seated in a round table in clockwise 

order. For n = 1,2,…, 50, call {V2n−1, V2n} 

a partner pair. We color V1 in black and 

color the person with the same nation as 

him, say Vr, in white. If Vr’s partner is not 

yet colored, then we color Vr’s partner, say 

Vs, in black (this completes the coloring of 

the partner pair {Vr, Vs}) and go on to 

color the person with the same nation as 

Vs in white. Repeat this process until we 

reach a Vr whose partner Vs was colored 

already, then Vr=V2 and Vs=V1 since the 

only partner pair not yet completing the 

coloring is {V1,V2} with V1 black and V2 

waiting to be colored. This gives the first 

cycle. Then we start to form another cycle 

with a remaining partner pair. Since there 

are 100 people, we will eventually stop. 

At the end, there are two groups with 50 

black’s and 50 white’s and the required 

conditions are satisfied.  
 

Problem 432. Determine all prime 

numbers p such that there exist integers 

a,b,c satisfying a2 + b2 + c2 = p and 

a4+b4+c4 is divisible by p. 
 
Solution. Ioan Viorel CODREANU 
(Secondary School Satulung, Maramures, 
Romania), Jeffrey HUI Pak Nam (La 
Salle College, Form 6), KIM Minsuk 
Luke (The South Island School, Hong 
Kong, Year 13), Corneliu MĂNESCU- 
AVRAM (“Henri Mathias Berthelot” 
Secondary School, Ploieşti, Romania), 
Math Center (Carmel Alison Lam 
Foundation Secondary School)  and O Kin 
Chit Alex (G.T. (Ellen Yeung) College). 
 
Without loss of generality, we may 

assume a ≥ b ≥ c ≥ 0.  Then  

 

0 ≡ (p − b2 − c2)2 + b4 + c4 

   ≡ (b2 
+ c2)2+ b4 + c4 = 2(b4 +b2c2 + c4) 

   = 2(b2 −bc + c2) (b2 +bc + c2)  (mod p). 

 

Next, 
 
           0 ≤ bc ≤ b2 −bc + c2  

                      ≤ b2 +bc + c2  

                      ≤ a2 + b2 + c2 = p. 
 
Since a ≥ b ≥ c ≥ 0, if bc=a2, then 

a=b=c and p being prime implies a = 1 

and  p = 3. Otherwise bc < a2 leads to  

b2 +bc + c2= 0 or 1. If b = 0, then a2  = p 

contradicts p is prime.  Then c = 0, b = 

1 and a2 + 1 = p, which leads to  
 
        0 ≡ a4+b4+c4 = a4+1 ≡ 2 (mod p).  
 
Then p=2 and a=b=1, c=0. Therefore, 

the only solutions are p = 2 or 3. 
 

Problem 433. Let P1, P2 be two points 

inside ∆ABC. Let BC = a, CA = b and  

AB = c. For i = 1,2, let PiA = ai, PiB = 

bi and PCi = ci. Prove that  
 

aa1a2+bb1b2+cc1c2 ≥ abc. 
 

Solution. Math Group (Carmel 

Alison Lam Foundation Secondary 

School). 
 
Let the complex numbers α, β, γ, μ, ν 
correspond to the points A, B, C, P1, P2 

in the complex plane respectively. By 

expansion, we have 

.1
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= 1. 

Multiplying both sides by abc, we get 

the desired result. 

 

Problem 434. Let O and H be the 

circumcenter and orthocenter of 

∆ABC respectively. Let D be the foot 

of perpendicular from C to side AB. Let 

E be a point on line BC such that ED⊥
OD. If the circumcircle of ∆BCH 

intersects line AB at F, then prove that 

points E, F, H are collinear.   
 
Solution 1. Jeffrey HUI Pak Nam (La 

Salle College, Form 6) and T. W. LEE 

(Alumni of New Method College). 

 

Let lines HE and AB intersect at F’. Let 

Γ be the circumcircle of ΔABC. Let H’ 
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be the intersection of line CD and Γ 

different from C. Let E’ be the 

intersection of lines DE and AH’.  



O

B
A

C

H'

H

D

E'

E

F'

 

Observe that since ∠H’DE’ = ∠HDE,  

AHDBAHABCCHA  90  

implies H’D=HD and the butterfly 

H’CBAH’ on Γ gives E’D=ED as 

OD⊥DE, we have ΔH’E’D≅ΔHED. 

Then  
 

      ∠F’HD =∠EHD =∠E’H’D       

                     =∠AH’C =∠DBC. 
 

It follows ∠CHF’=∠CBF’. Then F’ is 

on the line AB and the circumcircle of 

∆BCH. Therefore, F’=F and E, F, H 

are collinear. 

 

Solution 2. Jerry AUMAN, Georgios 

BATZOLIS (Mandoulides High 

School, Thessaloniki, Greece) and Jon 

GLIMMS (Vancouver, Canada). 







O

B
A

C

H'

H

D

E

F

I

J

 

Let Π be the circle passing through C, 

H, B, F and let Γ be the circumcircle of 

ΔABC. Let line DE meet Γ at I and J.  

Since OD⊥DE, D bisects chord IJ. 

Next, 
 
 DCABACDBHDCF  90  
 
implies D bisects AF. Hence AIFJ is a 

parallelogram. Then ∠IFJ =∠IAJ. 

 

Let H’ be the intersection point 

(different from C) of line CD and Γ. 

Then D bisects HH’ (see solution 1 -- 

Ed.) and IHJH’ is a parallelogram. So 

∠IHJ =∠IH’J. Then 
 
∠IFJ +∠IHJ =∠IAJ +∠IH’J = 180°. 

 
So I,F,J,H lies on a circle Σ.  

Finally, the radical axis of Γ and Π is line 

BC, while the radical axis of Γ and Σ is 

line IJ. So the radical center of Γ, Π, Σ is 

the intersection of lines BC and IJ, which 

is E. Therefore, E is also on the radical 

axis of Π and Σ, which is line HF. 
 
Comments: One can also solve via 

coordinate geometry by assigning lines 

AB and CD as the x-axis and y-axis 

respectively.  
 
Other commended solvers: Math Group 

(Carmel Alison Lam Foundation 

Secondary School), Vijaya Prasad 

NALLURI (Retired Principal, AP 

Educational Service, India) and Titu 

ZVONARU (Comăneşti, Romania) and 

Neculai STANCIU (“George Emil 

Palade’’ Secondary School, Buzău, 

Romania). 

 

Problem 435. Let n > 1 be an integer that 

is not a power of 2. Prove that there exists 

a permutation a1, a2,…, an of 1,2,…, n 

such that  
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Solution. Jeffrey HUI Pak Nam (La 

Salle College, Form 6) and Math Center 

(Carmel Alison Lam Foundation 

Secondary School). 
 
For integer n > 1, let ck = cos(2kπ/n) for k  

= 1, 2, …, n. We have cn = 1, ck = cn−k and  

  
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n
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kc
11
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1

1
ReRe


    (*) 

where ω = e2πi/n.  

 

Suppose n = 2m+1, where m = 1,2,3,…. 

We have c1+c2+⋯+cm  = −1/2 (using cn = 1 

and ck = cn−k). Hence  

 

   (2m+2)(c1+c2+⋯+cm)=−(m+1)c2m+1. 

 

Since ck = c2m+1−k, we have 

 

   (2m+1)c1+2mc2+⋯+(m+2)cm 

= (m+2)cm+1+⋯+2mc2m−1+(2m+1)c2m. 

 

Subtracting the two displayed equations 

above and transposing all terms to the left, 

we get 

.0)1()1( 12
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This solves the cases n = 3,5,7,….  

 

Next, assuming the case n is true, we will 

show the case 2n is also true. Let dm = 

cos(mπ/n) for m = 1,2,…,2n. The case n 

gives us an equation of the form 

 
       a1d2 + a2d4 + ⋯ + and2n= 0,         (**) 
 
where a1, a2, …, a2n is a permutation of 

1,2,…,n. 
 
Using (*), we have  
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Subtracting these equations, we have 

d1+d3+⋯+d2n−1=0.  For k=1,3,…,2n−1, 

we have  
 
d2n−k = cos((2n−k)π/n) = cos(kπ/n) =dk.  
 
Using this, d1+ 3d3+ ⋯+ (2n−1)d2n−1 = 

d2n−1 + 3d2n−3 + ⋯ + (2n−1)d1. Adding 

the left and right sides, we get the 

equation 2n(d1+d3+⋯+d2n−1) = 0. So  
 
     d1+3d3+⋯+(2n−1)d2n−1= 0.     (***) 
 
Finally, taking twice the equation in 

(**) and adding it to the equation in 

(***), we solve the case 2n. 

 

Comments: Titu ZVONARU 

(Comăneşti, Romania) and Neculai 

STANCIU (“George Emil Palade’’ 

Secondary School, Buzău, Romania) 

pointed out that Problem 435 is the 

same as Problem 26753 in the 

Romanian Mathematical Gazette 

(G.M.-B) and a solution was appeared 

in G.M-B, No. 10, 2013, pp. 468-469. 
 
 

 
 

Olympiad Corner 
 
                       (Continued from page 1) 

 

Problem 4. Determine all positive 

integers n ≥ 2 satisfying 
 

)2(mod



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
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j

n

i

n
ji  

for all i and j such that 0 ≤ i ≤ j ≤ n. 
 
Problem 5. Let ABCDEF be a cyclic 

hexagon satisfying AB⊥BD and 

BC=EF. Let P be the intersection of 

lines BC and AD and let Q be the 

intersection of lines EF and AD. 

Assume that P and Q are on the same 

side of D and that A is on the opposite 

side. Let S be the midpoint of AD. Let 

K and L be the centres of the incircles 

of ΔBPS and ΔEQS respectively. Prove 

that ∠KDL = 90°. 
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Olympiad Corner 
 
Below are the problems of the Fourth 

Round of the 53rd Ukrainian National 

Math Olympiad for 10-th Graders. 
 

Problem 1. Suppose that for real x,y,z,t 
the following equalities hold: {x+y+z} 
= {y+z+t} = {z+t+x} = {t+x+y} = 1/4. 
Find all possible values of {x+y+z+t}. 
(Here {x}=x−[x].) 
 
Problem 2. Let M be the midpoint of 
the side BC of ΔABC. On the side AB 
and AC the points F and E are chosen. 
Let K be the point of the intersection of 
BF and CE and L be chosen in a way 
that CL||AB and BL||CE. Let N be the 
point of intersection of AM and CL. 
Show that KN is parallel to FL. 
 
Problem 3. It is known that for natural 
numbers a,b,c,d and n the following 
inequalities hold: a+c < n and a/b+c/d 
< 1. Prove that a/b+c/d < 1−1/n3. 
 
Problem 4. There are 100 cards with 
numbers from 1 to 100 on the table. 
Andriy and Nick took the same number 
of cards in a way that the following 
condition holds: if Andriy has a card 
with a number n then Nick has a card 
with a number 2n+2. What is the 
maximal number of cards could be 
taken by the two guys? 
 

                                 (continued on page 4) 

Using Tangent Lines to Prove Inequalities (Part II)  
Ibragim Ibatulin and Adilsultan Lepes 

The Republican Specialized Physics Mathematics Secondary Boarding School 

Named after O. Zhautykov, Almaty, Kazakhstan 
    
     We offer a continuation of the paper 

by Kin-Yin Li (cf. Math Excalibur, vol. 

10, no. 5) where he considers using 

tangent lines to prove inequalities. 

 

Example	 1.	 Suppose	 that a, b, and c 

are positive real numbers satisfying 

a+b+c=3. Find the minimum of the 

expression a4+2b4+3c4. 

 

Solution. Let fk(x)=kx4, where x∈(0,3), 

k = 1, 2, 3. As fk"(x) = 12kx2 > 0, where 

x>0, so functions fk are convex, which 

means that their graphs do not fall 

below their tangents drawn at any point 

xk∈(0,3) (k=1,2,3). Points x1, x2 and x3 

are chosen such that f1′(x1) = f2′(x2) =  

f3′(x3) and x1+x2+x3=3. That is, 
 

4x1
3=8x2

3=12x3
3 and x1+x2+x3=3. 
 

Hence,  
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and for any x∈(0,3), we have the 

inequalities (k = 1,2,3, see Fig. 1) 
 
           kx4  ≥ fk(xk) + fk′(xk)(x–xk).         (1) 

 

 
Fig. 1 

 
Adding inequalities (1) for x equals a, b 

and c, we obtain  
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which is the minimum (with equality 

holding at a=x1, b=x2 and c=x3).  

Example 2. Let a, b, c > 0 be real 

numbers such that ab+bc+ca = 1. Prove 

the inequality 

.
2

3222
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 ba

c

ac

b

cb
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Solution. Let S=a+b+c. Based on the 

inequality (a+b+c)2 ≥ 3(ab+bc+ca), 

which is equivalent to (a–b)2  + (b–c)2 + 

(c–a)2 ≥ 0, we find that .3S  
 
Let f(x) = x2/(S–x) for x∈(0,S). Let us 

construct the tangent equation at the 

point x0=S/3 (see Fig. 2a,b): 
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Fig. 2a 

 
Fig. 2b 

 
Since the inequality x2/(S–x) ≥ (5x–S)/4 

is equivalent to (S–3x)2 ≥ 0 on the 

interval (0,S), applying it thrice, based 

on the previously proved inequality  

,3S  we find that 
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Example 3. Let a, b, c ≥ 0 be real 

numbers. Prove the inequality 
 

.)(6111 222 cbacba   

 
Solution. Assume that S=a+b+c and 

1)( 2  xxf for x∈(0,S). We form the 

tangent equation at the point x0=S/3 : 
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Since on the interval (0,S), the 

inequality  
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3
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Sx
x                 (2) 

is equivalent to the inequality (x – S/3)2 

≥ 0, we find that 
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Example 4. Let a, b and c be positive 

real numbers  such that a+2b+3c ≥ 20. 

Prove the inequality  

.13
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Solution. Note that if a=2, b=3, c=4, 

the inequality becomes equality. Let 

f(x)=1/x for x >0. Then f is convex in 

the interval (0,+∞). Hence the graph of 

the function f does not go below the 

tangent line drawn at any point x0 > 0. 

Thus, the following inequalities are 

valid (see Fig. 3): 
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Fig. 3 

As given in the statement of the problem, 

we find that 
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Example 5. (Pham Kim Hung) Let a, b 

and c be positive real numbers such that 

a2+b2+c2=3. Prove the inequality 
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Solution. Note that when a=b=c=1, the 

inequality becomes an equality. Consider 

f(x) = 1/(2–x) and g(x) = kx2+m, where 

x∈(0, 3 ). The numbers k and m are to be 

chosen so that f (1) = g (1) and f ′(1) = 

g′(1). That is, 1=k+m and 1=2k. Hence, 

k=m=1/2 and g(x)=(x2+1)/2. Since the 

inequality 1/(2 –x) ≥ (x2+1)/2 is equivalent 

to x(x–1)2 ≥ 0, it is true for any x∈(0, 3 ) 

(see Fig. 4). Hence, 
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Fig. 4 

 

Example 6. Let a, b and c be positive real 

numbers. Prove the inequality 
 

.)()3)(3)(3( 3252525 cbaccbbaa   

 
Solution. Note that when a=b=c=1, the 

inequality becomes an equality. Consider 

f(x)=x5–x2+3 and g(x) = kx3+m, where x>0. 

The numbers k and m are to be chosen so 

that f (1) = g (1) and f ′(1) = g′(1). That is, 

3=k+m and 3=3k. Hence, k=1, m=1/2 and 

g(x)=x3+2. The inequality (see Fig. 5) 
 

               23 325  xxx           (3) 
 
is true for any x >0 as it can be represented 

in the form (x–1)2(x3+2x2+2x+1) ≥ 0. 

 
Fig. 5 

 
Example 7. Let a, b, c, d and e be 

positive real numbers such that  
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Prove the inequality 
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Solution. Consider f(x) = x/(4+x2) and 

g(x) = m + k/(4+x), where x ≥ 0. The 

numbers k and m are to be chosen so 

that f (1) = g (1) and f ′(1) = g′(1). 

Hence k = –3 and m = 4/5. Since the 

inequality 
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is equivalent to (x–1)2(x+1)≥0, it is true 

for any x ≥ 0 (see Fig. 6). 
 

 

Fig. 6 
 

Applying this inequality, we have 
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Finally, we have some exercises for the 

readers. 
 
Exercise 1. (Gabriel Dospinescu) Let 

a1, a2, …, an be positive real numbers 

such that a1a2⋯an = 1. Prove that 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is April 12, 2014. 

 

Problem 441.  There are six circles on 

a plane such that the center of each 

circle lies outside of the five other 

circles. Prove there is no point on the 

plane lying inside all six circles. 
  

Problem 442. Prove that if n > 1 is an 

integer, then n5+n+1 has at least two 

distinct prime divisors. 
 

Problem 443. Each pair of n (n≥6) 

people play a game resulting in either a 

win or a loss, but no draw. If among 

every five people, there is one person 

beating the other four and one losing to 

the other four, then prove that there 

exists one of the n people beating all 

the other n–1 people.   

 

Problem 444. Let D be on side BC of 

equilateral triangle ABC. Let P and Q 

be the incenters of ∆ABD and ∆ACD 

respectively. Let E be the point so that 

∆EPQ is equilateral and D, E are on 

opposite sides of line PQ. Prove that 

lines BC and DE are perpendicular. 
 

Problem 445. For each positive integer 

n, prove there exists a polynomial p(x) 

of degree n with integer coefficients 

such that p(0), p(1), …, p(n) are 

distinct and each is of the form 

22014k+3 for some positive integer k. 

 

***************** 

Solutions 

**************** 
 
Problem 436. Prove that for every 

positive integer n, there exists a 

positive integer p(n) such that the 

interval [1, p(n)] can be divided into n 

pairwise disjoint intervals with each 

contains at least one integer and the 

sum of the integers in each of these 

intervals is the square of some integer. 
 
Solution. Jerry AUMAN, Math 

Activity Center (Carmel Alison Lam 

Foundation Secondary School), Jon 

GLIMMS (Vancouver, Canada) and 

ZOLBAYAR Shagdar (Orchlon 

International School, Ulaanbaatar, 

Mongolia). 
 
 
We look for a pattern. Since 1=12, let 

p(1)=1. Since 2+3+4=32, let p(2)=1+3=4 

and divide [1,4] into [1,1] and (1,4]. Since 
 

5+6+7+8+9+10+11+12+13 = 92, 
 
let p(3) = 1+3+9=13 and divide [1,13] into 

[1,1], (1,4], (4,13].  
 
This suggests we let p(n) = 1 + 3 + 32 + ⋯ 

+ 3n–1 = (3n–1)/2 and divide [1, p(n)] into 

[1, p(1)], (p(1), p(2)], …, (p(n–1), p(n)]. 

The integers in (p(k), p(k+1)] are from 

(3k+1)/2 to (3k+1–1)/2, which sums to 32k.  

So we are done. 
 
Other commended solvers: Kaustav 

CHATTERJEE (MCKV Institute of 

Engineering College, India) and SP47 

(Hanoi, Vietnam). 
 

Problem 437. Determine all real numbers 

x satisfying the condition that cos x, cos 2x, 

cos 4x, …, cos 2nx, … are all negative. 
 
Solution 1. Jerry AUMAN, T. W. LEE 
(Alumni of New Method College) and 
Math Activity Center (Carmel Alison 
Lam Foundation Secondary School). 
 
For such x, we have 2nx=2π(kn+θn), where 

kn∈ℤ and 1/4 < θn < 3/4. In base 2 this is 

.012< θ0=.d1d2d3…2<.10111…2. No dndn+1 

can be 00 or 11, otherwise θn-1=.00…2 or 

.11…2 would not be in (1/4,3/4). So θ0 = 

.010101…2 =1/3 or .101010…2=2/3. Then 

x=2π(k0+1/3) or 2π(k0+2/3) and for all n = 

0,1,2,⋯, cos 2nx = −1/2. 
 
Solution 2. Ioan Viorel CODREANU 
(Secondary School Satulung, Maramures, 
Romania) and GLIMMS (Vancouver, 
Canada). 
 
Let t=cos 2θ. Suppose cos θ, cos 2θ and 

cos 4θ are negative. Then t<0 and 2t2–1<0 

imply .01cos22/2 2  t  We get 
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Suppose sn = cos 2nx < 0 for n = 0,1,2,3,⋯. 

Then sn ∈[–1, –1/4). So |sn–1/2| > 3/4. 

Using this and sn+1=2sn
2–1, we have 
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Repeating this, since –1≤ sn+1<0, we get 
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Then |s0+1/2| < (2/3)n. Taking limit, we 

see cos x = s0= –1/2, i.e. x = ±2π/3+2kπ, 
where k is integer. Conversely, s0= –1/2 

implies sn= –1/2 for n = 1,2,3,⋯. 
 

Other commended solvers: Henry 

LEUNG Kai Chung (Graduate of 

HKUST Maths). 
 

Problem 438. Suppose P(x) is a 

polynomial with integer coefficients 

such that for every integer n, P(n) is 

divisible by at least one of the positive 

integers a1, a2,…, am. Prove that there 

exists one of the ai such that for all 

integer n, P(n) is divisible by that ai. 
 

Solution. Jerry AUMAN, Jon 

GLIMMS (Vancouver, Canada) and 

Math Activity Center (Carmel Alison 

Lam Foundation Secondary School).  
 
Assume the contrary that for each ai, 

there exists integer ni such that P(ni) is 

not divisible by ai. Consider the prime 

factorizations of ai and |P(ni)|. Then 

there exists a prime divisor pi of ai such 

that  ie

ii pd  is the greatest power of pi 

dividing ai, however di does not divide  

| P(ni)|. If two of the di’s are powers of 

the same prime, then eliminate the one 

with the larger exponent. (In this way, 

each of a1, a2,…, am is still divisible by 

one of the remaining di’s.)  

 

By the Chinese remainder theorem, 

there exist integers n such that n ≡ ni 

(mod di) for the remaining di’s. Now 

P(n)–P(ni) is divisible by n–ni, which is 

divisible by di. Since P(ni) is is not 

divisible by di. So P(n) is not divisible 

by any di’s, contradicting P(n) is 

divisible by at least one of the positive 

integers a1, a2,…, am, hence also 

divisible by at least one di. 

 

Problem 439. In acute triangle ABC, T 

is a point on the altitude AD (with D on 

side BC). Lines BT and AC intersect at 

E, lines CT and AB intersect at F, lines 

EF and AD intersect at G. A line ℓ 

passing through G intersects side AB, 

side AC, line BT, line CT at M, N, P, Q 

respectively. 
 
Prove that ∠MDQ =∠NDP. 
 
Solution. William FUNG and Math 

Activity Center (Carmel Alison Lam 

Foundation Secondary School). 
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Set the origin at D and A, B, C at (0,a), 

(b,0), (c,0) respectively.  

A

B CD

T
E

F G
M

PN

Q

 

Let T be at (0,1). The equations of the 

lines BT, CT, AB, AC are  
 

y = – (x/b) + 1,    y = – (x/c) + 1, 
 

y = – (ax/b) + a,    y = – (ax/c) + a 

 

respectively. Since E = BT ∩ AC and F 

= CT ∩ AB, we can solve the equations 

of the lines to get 
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From the y-intercept of line EF, we get 

G=(0, 2a/(a+1)). Let the equation of ℓ 

be y=mx+2a/(a+1). Then M = ℓ ∩AB is  

at  
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Using role symmetry of B and C, we 

can replace b by c in the coordinates of 

M to get coordinates of N. Similarly, P 

= ℓ ∩BT is at 
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The coordinates of Q can be found by 

replacing b by c in the coordinates of P.  
 
Since D is the origin, the slopes of lines 

DM and DP can be found by taking the 

y-coordinates of M and P dividing by 

their respective x-coordinates, which 

turn out to be the negative of each other! 

So lines DM and DP are symmetric 

with respect to the y-axis! Similarly, 

lines DN and DQ are symmetric with 

respect to the y-axis. Therefore, 

∠MDQ =∠NDP. 
 

Comments: There is a pure geometry 

solution using a number of equations 

from applying Menelaus’ theorem to 

different triangles. There is also a 

solution using harmonic division and 

cross-ratios from projective geometry. 

  

Other commended solvers: Georgios 

BATZOLIS (Mandoulides High School, 

Thessaloniki, Greece), Andrea 

FANCHINI (Cantu, Italy), T. W. LEE 

(Alumni of New Method College), SP47 

(Hanoi, Vietnam), Titu ZVONARU 

(Comăneşti, Romania) and Neculai 

STANCIU (“George Emil Palade’’ 

Secondary School, Buzău, Romania). 

 

Problem 440. There are n schools in a city. 

The i-th school will send Ci students to 

watch a performance at a field. It is known 

that 0 ≤ Ci ≤ 39 for i=1, 2, …, n and 

C1+C2+⋯+Cn=1990. The seats will be put 

in a rectangle arrangement with each row 

having 199 seats. Determine the least 

number of rows needed to satisfy the 

condition that all students from the same 

school must sit in the same row for all 

possibilities of the known conditions 

above. 
 
Solution. Adnan ALI (9th Grade, Atomic 

Energy Central School 4 (AECS4), 

Mumbai, India), Jerry AUMAN and Jon 

GLIMMS (Vancouver, Canada). 
 
Let k be the minimal number of rows 

needed. For m =1, 2,…, k, let there be am 

students in row m. If there are no more 

than 160 students in some row, then since 

each school sends at most 39 students, we 

can put in students from one more school 

in that row. So we may assume am ≥ 161. 

Now 
 

1990 = a1 + a2 + ⋯ + ak  ≥ 161k, 
 
which implies k ≤ 12.   
 
Next, we show 11 rows may not be 

enough. Suppose there are n = 80 schools 

with Ci = 25 for i = 1, 2, …, 79 and C80 = 

15. This totals to 1990 students. Then 

there can only be one row with 25×7+15 

= 190 students and the other 10 rows with 

25×7=175 students. This only totals to 

1940 students. 
 
So the least number of rows needed to 

satisfy the condition that all students from 

the same school must sit in the same row 

for all possibilities of the known 

conditions is 12. 
 

Other commended solvers: T. W. LEE 

(Alumni of New Method College) and 

Math Activity Center (Carmel Alison 

Lam Foundation Secondary School). 
 

 
 

Olympiad Corner 
 
                           (Continued from page 1) 

 

Problem 5. Find the values of x such 

that the following inequality holds 
 
min{sin x,cos x} < min{1−sin x,1−cos x}. 

Problem 6. Find all pairs of prime 

numbers p and q that satisfy the 

following equation  
 

.1923 1  pq qp  
 
Problem 7. Is it possible to choose 24 

points in the space, such that no three 

of them lie on the same line and choose 

2013 planes in a way that each plane 

passes through at least 3 of the chosen 

points and each triple of points belongs 

to at least one of the chosen planes? 

 

Problem 8. Let M be the midpoint of 

the internal bisector AD of ΔABC. 

Circle ω1 with diameter AC intersects 

BM at E and circle ω2 with diameter AB 

intersects CM at F. Show that B, E, F, 

C belong to the same circle. 

 

 
 

Using Tangent Lines … 
 
                       (Continued from page 2) 

 

Exercises 2. Let a, b and c be 

non-negative real numbers. Prove that 
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Exercise 3. Let a, b and c be positive 

real numbers. Determine the minimal 

value of  
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Exercise 4. Let a, b and c be positive 

real numbers such that ab+bc+ca=3. 

Prove that  
 

.27)3)(3)(3( 42547  ccbbaa  
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Olympiad Corner 
 
Below are the problems of the 2014 

International Math Olympiad on July 8 

and 9, 2014. 
 

Problem 1.  Let a0 < a1< a2 < ⋯ be an 
infinite sequence of positive integers. 
Prove that there exists a unique integer 
n ≥ 1 such that  

0 1
1

...
.n

n n

a a a
a a

n
+

+ + +
< ≤  

 
Problem 2. Let n ≥ 2 be an integer. 
Consider a n×n chessboard consisting 
of n2 unit squares. A configuration of n 
rooks on this board is peaceful if every 
row and every column contains exactly 
one rook. Find the greatest positive 
integer k such that, for each peaceful 
configuration of n rooks, there is a k×k 
square which does not contain a rook 
on any of its k2 unit squares. 
 
Problem 3. Convex quadrilateral 
ABCD has ∠ABC = ∠CDA = 90°.  
Point H is the foot of the perpendicular 
from A to BD. Points S and T lie on 
sides AB and AD, respectively, such 
that H lies inside triangle SCT and 
∠CHS − ∠CSB = 90°,  ∠THC − ∠DTC 
= 90°.  Prove that line BD is tangent to 
the circumcircle of triangle TSH. 
 
 

                                 (continued on page 4) 

 

IMO2014 and Beyond  
 

Leung Tat-Wing 
�    

   I write this article with three goals in 

mind: (1) to report on IMO 2014; (2) to 

give some idea how we can further train 

our team members and (3) finally and 

hopefully provide us some help of how 

to organize IMO 2016. 

 

Itinerary The 55th International 

Mathematical Olympiad was held in 

Cape Town, South Africa from 3 July to 

13 July, 2014. It took us 13 hours flying 

from Hong Kong to Johannesburg, 

waiting for a couple of hours, then 

another 2 hours’ flight to Cape Town. 

Surely when compared with Argentina 

and Colombia, it was a much easier trip. 

Because we have to host IMO 2016, this 

year several observers (with leaders or 

deputy leaders) came with us. We have 

gathered a lot of information in this trip, 

which will help us tremendously in our 

preparation. This IMO was held when 

world cup matches were going on, and 

we were lucky that we still managed to 

watch several games, and at better times 

(6 pm or 10 pm). We missed only the 

final game, Germany vs Argentina, 

when we were exactly in our return 

flight, and I managed to get the result 

only when we got off the plane. 
 

Weather in South Africa was nice. It 

was winter, and usually 20°C during the 

day time and about 10°C during the 

night. If it was raining, then it got a bit 

cooler. We first stayed in a hotel, right 

below a mountain, which I believe 

belongs to the Table Mountain range. 

The view, if I may say, is simply 

majestic. The city structure looks nice. 

It looks like a decent English town. The 

hotel is pretty normal and we stayed 

there for 6 days. Then we moved to the 

University of Cape Town (UCT) and 

stayed with the students. Our students 

arrived Cape Town three days after us, 

and they were stationed in dormitories 

of the University all the time. Though 

accommodation and food were not as 

good as in the hotel, I believe I can bear 

it.  Only  thing  is,  every  entrance  of  a 

 
 
dormitory in the University is equipped 

with heavy iron gate and is watched by a 

security guard, which I found it a bit 

scary. This reminds me of the security 

issue in South Africa. Of course, it is a 

country with high unemployment rate 

(25%), high Gini index (6.3), and there 

are racial problems and other things. 
 
Leaders spent three days to select the 6 

problems from a shortlist of 30 

problems, then refined the wordings and 

wrote the English version and other 

official versions. They discussed the 

marking schemes proposed by the 

Problem Group and coordinators, and 

approved the marking schemes. The 

students then arrived, and the next day 

leaders and contestants together 

participated in the Opening Ceremony, 

with leaders and contestants still 

separated so that they could not 

communicate during the Ceremony. 

Students then wrote the two 4.5 hour 

contests on the mornings of the next two 

days, while leaders had the time to do a 

bit of sight-seeing and the like. After the 

two contests, leaders were then moved 

to the University. After the two contests, 

students were free, then they had the 

chances to see further things. I knew my 

students got the chances to see the Cape 

of Good Hope, and took a cable-car to 

the top of the Table Mountain. Because 

I, as a leader, had to participate in the 

coordination process, had to miss both 

events. Coordination is a process in 

which the leader and deputy leader, plus 

two coordinators of the host county, 

come together to decide how many 

points are to be awarded to a particular 

problem submission of a student. Given 

that we had nice and detailed marking 

schemes, and the coordinators are 

generally very experienced, we 

encountered little trouble in deciding 

points. Then we had a final day 

excursion and the Closing Ceremony, 

on the same day. The next day we  

headed home. 

                                  (continued on page 2) 
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Problem Selection By the end of 

March 2014, the host country (South 

Africa) received 141 problem 

proposals from 43 countries. I don’t 

know when the problem selection 

group started to work, but surely, it 

took them more than a month to select 

30 shortlisted problems. Furthermore 

they modified them, supplied 

alternative solutions and comments, 

and prepared a booklet for Jury 

members to consider. Incidentally the 

problem group was composed of six 

international members. I was told, they 

managed to do something before they 

formally met in South Africa, and also 

after they left. The selected problems 

are of course of high quality. However 

I cannot say I am totally happy with the 

selection. Indeed I think the problems 

selected were rather skewed, there 

were 6 algebra problems, 9 

combinatorics problems, 7 geometry 

problems and 8 number theory 

problems. Some algebra problems and 

number theory problems in fact have 

quite a bit of combinatorics flavor. 

Moreover, several hard combinatorics 

problems were simply too hard. The 

Jury worried very much if one of them 

was selected, no one would be able to 

solve it.  
 

When the Jury members met, it was 

suggested that first we selected 2 out of 

4 easy problems, with one problem 

from each of the topics algebra, 

combinatorics, geometry and number 

theory. Again 4 medium problems 

from the four topics were selected. 

When the two easy problems were 

chosen, the two medium problems 

from the other two categories were 

automatically selected. Then the hard 

problems (problem 3 and 6) were 

chosen arbitrary. The suggestion was 

adapted. Finally two easy problems of 

algebra and geometry were selected, 

and so were two medium problems on 

combinatorics and number theory. 

However I am not sure if the easy 

algebra problem is really an algebra 

problem, of course it involves some 

algebraic manipulations, but I think the 

result very much depends on the 

discrete structure of integers. It is not 

an inequality problem nor a functional 

equation problem anyway. The 

medium combinatorics problem 

concerns “holes” within a distribution 

of rooks in a checker board. The 

number theory problem again is not 

really number theory. There is no�need 

for congruence or other number theory 

things. It basically involves merging or 

grouping of coins of different values, so it 

is more like a combinatorics problem. 

Finally a hard geometry problem and a 

hard combinatorics problem were selected. 

It is quite certain in these days two 

geometry problems are to be selected. 

Those are the problems contestants cannot 

easily quote high power theorems or use 

more specialized techniques. However 

due to the preference of leaders, in general 

there is no 3D geometry problems. In this 

contest, three problems are really of 

combinatorial flavor. So I think the new 

method of choosing problems does not 

guarantee a good distribution of problems. 

Concerning Problem 6, I have to say I 

don’t like it and I have something more to 

say, but let’s wait. 
 

Coordination The process of 

coordination was done seriously and 

rigorously. After the six problems were 

selected by the Jury (composed of leaders 

from 101 countries), I believed the chief 

coordinator then instructed the six 

problem captains to write up detailed 

marking schemes, incorporating various 

solutions supplied by leaders. Each 

problem captain was responsible for only 

one specific problem, he knew essentially 

everything concerning that problem, 

originality, various solutions, etc. The 

marking schemes were then formally 

approved by the Jury. After the two 

contests, they scanned all the answers 

scripts of the students. We leaders then got 

back answer scripts of our students and 

tried to allocate suitable points for our 

contestants. A minor mishap was, the 

scanner could not scan marks of 

correcting fluid, and thus I was asked 

several times why were there correcting 

fluids found on my students’ scripts. 

Luckily of course was, we did not add 

anything new.  
 
Detailed schedules were given to us, so 

leaders knew when and where to go. The 

process of coordination was done 

formally within two days. I believe 

because of language issue and other 

reasons, coordinators were recruited 

internationally. They were composed of 

old time leaders, experienced problem 

solvers etc. Some we met more than 10 

years’ ago. They were very experienced 

and were able to spot errors made by 

students, whether an error is trivial (no 

point deducted), minor (1 or 2 points 

deducted) or major (at least 4 to 5 points 

deducted). I thank my deputy leader, 

Ching Tak Wing, our old-time trainee and 

IMO gold medalist, who helped us to 

go through the many convoluted 

arguments of our members. We were 

able to discuss (or argue) with our 

coordinators, to convince them that our 

members did do somethings of certain 

parts of a problem or so, and thus got 

few extra points. On the whole, I think 

our papers were fairly marked and the 

process of coordination was done well. 

 

Results of our Students We got 4 

silvers and 2 bronzes, ranked 

(unofficially) 18 out of 101 countries. 

Indeed 3 of our 4 silver medalists 

solved essentially 4 problems and the 

other silver medalist got 3 problems 

correct. Also our 2 bronze medalists 

essentially got 3 problems correct and 

were real close to silver. I don’t think I 

can blame our students for not trying 

hard. Indeed they picked up a lot of 

techniques in these few years, learned 

(and are still learning) to face a 

problem fairly and squarely. I observed 

when they were doing problem 2 and 5 

(medium problems), they had 

generated the habit of gathering data 

and information, using various 

grouping and simplification methods, 

induction and other techniques to solve 

them, even though their approaches 

were later found to be a bit clumsy and 

there were a few gaps (thus few points 

deducted). Because a lot of time were 

spent on problems 2 and 5, no one 

could do problems 3 and 6, thus no one 

could tackle the hard problems. Four of 

our six members were old-timers, and 

they are leaving us for universities. I 

think we need 2 to 3 years to have 

another group of members of this 

caliber. 
 

Think of this issue the other way. If we 

want to keep our ranking, surely 

several silver and bronze medals are 

required. If we want to be ranked 

within the top 10 countries, for 

instance, we need two or three gold 

medals, and some silvers and bronzes. 

It depends on really what we want. For 

me, I think it is fine if we can produce a 

bunch of well-trained students, good 

and brave to face problems and are 

ready to pick up necessary skills and 

other things in the process. Getting a 

gold medal in an IMO is a process, is 

part of a training process, but not 

necessarily is an end, (not like getting a 

world cup).  

 
 

                                 (continued on page 4) 



���������������������
���������������������
���������������������
���������������������

�������	
������
���
��������������� �������

 

Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is October 12, 2014. 

 

Problem 446.  If real numbers a and b 

satisfy 3a+13b=17a and 5a+7b=11b, then 

prove that a < b. 
  

Problem 447. For real numbers x, y, z, 

find all possible values of sin(x+y) + 

sin(y+z) + sin(z+x) if  

.
)sin(

sinsinsin

)cos(

coscoscos

zyx

zyx

zyx

zyx

++

++
=
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++  

 
Problem 448. Prove that if s,t,u,v are 

integers such that s2−2t2+5u2−3v2=2tv, 

then s = t = u = v = 0.  

 

Problem 449. Determine the smallest 

positive integer k such that no matter 

how {1,2,3,…,k} are partitioned into 

two sets, one of the two sets must 

contain two distinct elements m, n such 

that mn is divisible by m+n. 
 

Problem 450. (Proposed by Michel 

BATAILLE) Let A1A2A3 be a triangle 

with no right angle and O be its 

circumcenter. For i = 1,2,3, let the 

reflection of Ai with respect to O be Ai' 

and the reflection of O with respect to 

line Ai+1Ai+2 be Oi (subscripts are to be 

taken modulo 3). Prove that the 

circumcenters of the triangles OOiAi'   

(i = 1,2,3) are collinear. 

 

***************** 

Solutions 

**************** 
 
Problem 441. There are six circles on a 

plane such that the center of each circle 

lies outside of the five other circles. 

Prove there is no point on the plane 

lying inside all six circles. 
 
Solution. Kaustav CHATTERJEE 

(MCKV Institute of Engineering 

College, India), William FUNG, 

KWOK Man Yi (Baptist Lui Ming 

Choi Secondary School, S4), Corneliu 

Mănescu-Avram (Transportation 

High school, Ploieşti, Romania), Math 

Activity Center (Carmel Alison Lam 

Foundation Secondary School), 
 
 
Assume there is a point P inside all six 

circles C1, C2, …, C6 with centers O1, 

O2, …, O6 and radii r1, r2, …, r6 

respectively. Then OiP < ri for i = 1,2,…,6. 

Connecting the six Oi��	�P
�since the six 

angles about P sum to 360°, there exists 

∠OmPOn ≤ 60°. Then in �OmPOn, either 

OmOn ≤ OmP < rm or OmOn ≤ OnP < rn. This 

leads to either On is inside Cm or Om is 

inside Cn, which is a contradiction. 
 

Problem 442. Prove that if n > 1 is an 

integer, then n5+n+1 has at least two 

distinct prime divisors. 
 
Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India), Ioan 
Viorel CODREANU (Secondary School 
Satulung, Maramures, Romania), Luke 
Minsuk KIM (Stanford University) and 
KWOK Man Yi (Baptist Lui Ming Choi 
Secondary School, S4). 
 
The case n = 2 is true as n5+n+1=5×7. For 

n≥3, we have n5+n+1=(n3−n2+1)(n2+n+1) 

and n3−n2+1=(n2+n+1)(n−2)+(n+3). Then  

n3−n2+1 > n2+n+1 > 1. Assume n5+n+1 is 

a power of some prime p. Then n3−n2+1= 

ps and n2+n+1=pt with s > t ≥ 1. Now 
 
n+3=n3−n2+1−(n2+n+1)(n−2)=ps−pt(n−2) 
 
is a multiple of pt = n2+n+1. This leads to 

n+3 ≥ pt=n2+n+1, i.e. 2 ≥n2, contradiction. 
 

Other commended solvers: Christian 

Pratama BUNAIDI (SMA YPK Ketapang 

I, Indonesia), CHAN Long Tin 

(Cambridge University, Year 2), Kaustav 

CHATTERJEE (MCKV Institute of 

Engineering College, India), Victorio 

Takahashi CHU (Pontifícia 

Universidade Católica - São Paulo SP, 

Brazil), Gabriel Cheuk Hung LOU, 

Corneliu Mănescu-Avram 

(Transportation High school, Ploieşti, 

Romania), Math Activity Center 

(Carmel Alison Lam Foundation 

Secondary School), NGUYEN Van 

Thien (Luong The Vinh High School, 

Dong Nai, Viet Nam), Milan PAVIC 

(Serbia), Mamedov SHATLYK (School 

of Young Physics and Mathematics No. 21, 

Dashoguz, Turkmenistan), Titu 

ZVONARU (Comăneşti, Romania) and 

Neculai STANCIU (“George Emil 

Palade’’ Secondary School, Buzău, 

Romania). 
 

Problem 443. Each pair of n (n≥6) people 

play a game resulting in either a win or a 

loss, but no draw. If among every five 

people, there is one person beating the 

other four and one losing to the other 

four, then prove that there exists one of 

the n people beating all the other n–1 

people.   
 

Solution. Jon GLIMMS (Vancouver, 

Canada).  
 
Assume no one beat all other n–1 

people. Then the number of wins for 

each of the n people is 0,1,…, n–2. By 

the pigeonhole principle, there exist 

two people, say A and B with the same 

number of wins. Now, say A beat B. 

Due to same wins, there exists C such 

that A beat B, B beat C and C beat A. 

 

Next add two other people to A, B, C. 

By given condition, one of these five 

lost to the other four. Observe that this 

one cannot be A, B, C, say it is D. Since 

n≥6, ignoring D, we can add two other 

people to A, B, C.  Again, by given 

condition, one of these five lost to the 

other four. Observe that this one cannot 

be A, B, C, D, say it is E. Then none of 

A,B,C,D,E beat the other four, 

contradicting the given condition. 

 

Other commended solvers: Kaustav 

CHATTERJEE (MCKV Institute of 

Engineering College, India), KWOK 

Man Yi (Baptist Lui Ming Choi 

Secondary School, S4) and Math 

Activity Center (Carmel Alison Lam 

Foundation Secondary School). 

 

Problem 444. Let D be on side BC of 

equilateral triangle ABC. Let P and Q 

be the incenters of ∆ABD and ∆ACD 

respectively. Let E be the point so that 

∆EPQ is equilateral and D, E are on 

opposite sides of line PQ. Prove that 

lines BC and DE are perpendicular. 
 

Solution. Jon GLIMMS (Vancouver, 

Canada) and T. W. LEE (Alumni of 

New Method College). 

60

α α
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δ
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Β CD
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G F
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We have ∠QDP = ∠QDA+∠PDA = 

½(∠CDA+∠BDA)= 90°. Also, ∠QDA 

=∠QDC=90°−∠PDB. To show 

BC⊥DE, i.e. ∠PDE+∠PDB=90°, it 

suffices to show ∠QDA =∠PDE. This 

is the same as showing lines AD, ED 
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are symmetric with respect to the angle 

bisector of ∠QDP. For convenience, 

we refer to this condition by saying 

lines AD, ED are isogonal with respect 

to ∠QDP. 

 

This will follow from the isogonal 

conjugacy theorem (see comments 

below) if we can show that (1) lines AQ, 

EQ are isogonal with respect to ∠PQD 

and (2) lines AP, EP are isogonal with 

respect to ∠DPQ. For (1), we have 

∠AQD = 180°− ½(∠CAD +∠CDA) = 

120°. Let lines AQ, BC meet at F. Then 

∠FQD = 180°−∠AQD = 60° =∠EQP 

implies (1). For (2), similarly ∠APD = 

120°. Let lines AP, BC meet at G. Then 

∠GPD = 180°−∠APD = 60° = ∠EPQ 

implies (2). 

 

Comments: If we have (1) and (2), we 

can write down the two trigonometric 

forms of Ceva’s theorem for points A 

and E with respect to Δ QDP. 

Cancelling common factors in the two 

equations leads to  

.
sin

sin

sin

sin

EDQ

PDE

ADP

QDA

∠

∠
=

∠

∠  

Then ∠QDA=∠PDE follows from f (x) 

= sin x / sin (∠QDP − x) is strictly 

increasing for 0 < x < ∠QDP. 

  
Other commended solvers: CHAN 

Long Tin (Cambridge University, Year 2) 

and Math Activity Center (Carmel 

Alison Lam Foundation Secondary 

School). 

 

Problem 445. For each positive integer 

n, prove there exists a polynomial p(x) 

of degree n with integer coefficients 

such that p(0), p(1), …, p(n) are 

distinct and each is of the form 

2×2014k+3 for some positive integer k. 
 

Solution. Math Activity Center 

(Carmel Alison Lam Foundation 

Secondary School). 
 
Let a = 2014. Write n!=n1n2, where n2 

is the greatest divisor of n! that is 

relatively prime to a. Then n1 and a 

have the same prime divisors. By 

Euler’s theorem, for t=φ(n2), we have 

at ≡1 (mod n2). For the polynomial 
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Let s be the maximum of the exponents 

appeared in the prime factorization of n1. 

Then as(at−1)/n! is a positive integer and 

p(x)=2asf(x)+3 is a polynomial of degree n 

with integer coefficients such that 

p(j)=2as+tj+3 for  j = 0,1,…,n. 
 
 

 
 
Olympiad Corner 
 
                           (Continued from page 1) 

 

Problem 4. Points P and Q lie on side BC 

of acute-angled triangle ABC such that 

∠PAB = ∠BCA and ∠CAQ = ∠ABC. 

Points M and N lie on lines AP and AQ, 

respectively, such that P is the midpoint of 

AM, and Q is the midpoint of AN. Prove 

that lines BM and CN intersect on the 

circumcircle of triangle ABC.  

 

Problem 5. For each positive integer n, 

the Bank of Cape Town issues coins of 

denomination 1/n. Given a finite 

collection of such coins (of not 

necessarily different denominations) with 

total value at most 99+½, prove that it is 

possible to split the collection into 100 or 

fewer groups, such that each group has 

total value at most 1.  

 

Problem 6. A set of lines in the plane is in 

general position if no two are parallel and 

no three pass through the same point. A set 

of lines in general position cuts the plane 

into regions, some of which have finite 

areas; we call these its finite regions. 

Prove that for all sufficiently large n, in 

any set of n lines in general position it is 

possible to color at least √n of the lines 

blue in such a way that none of its finite 

regions has a completely blue boundary. 
 
Notes: Results with √n  replaced by c√n 

will be awarded points depending on the 

value of the constant c. 
 

 

 

 

IMO2014 and Beyond 
 
                           (Continued from page 2) 

 

So far, about 10 Fields’ medalists 

participated in the IMOs, but not everyone 

was a gold medalist (about half of them 

were). Even Terry Tao got bronze in his 

first year, then silver, then gold. Yes, of 

course I realize some administrators may 

think otherwise and have different ideas of 

what it means by sending a team to an 

IMO.  

 

I heard many theories why we cannot 

produce even stronger team. Our 

students have to devote too much time 

on DSE, in particular SBA. We have no 

specialized schools, unlike Vietnam 

and Singapore. Our pool is too small, 

trainers are no good, training time are 

not enough, etc. All these are hard to 

rebuke (no counter-examples?), and 

not sure how to verify. They may well 

be so and so what can we do? Indeed in 

these few years we have strengthened 

our training process, more tests, asking 

our members to present and 

substantiating their views, etc. Indeed 

we received many suggestions from 

our former trainees. 
 

We observed a few things by simply 

looking at the overall results. For 

instance, despite political trouble in the 

east, the Ukrainian team still did very 

good. They ranked 6 out of 101. The 

Israelites did as well as us (ranked 18). 

The Koreans, as usual, did very good, 

but not as formidable as last year. 

Indeed, Republic of Korea was ranked 

7 and the Democratic Republic of 

Korea was ranked 14. During these 20 

or so years, the North Koreans missed 

the contest altogether for 10 years, but 

during the times they were around, 

they did reasonably well. Although we 

were not as good as the populous 

countries like China (ranked 1), and 

USA (ranked 2). We did better than 

India (ranked 40) and Indonesia 

(ranked 30). This year we did slightly 

better than Thailand (ranked 22), the 

country to host IMO 2015. They have 

been good, and I was told they put a lot 

of money into the event and in training 

their team. We also did better than 

several traditionally strong countries 

such as Poland (ranked 28), Iran 

(ranked 21) and Bulgaria (ranked 37). 

Indeed Bulgaria has a long tradition of 

mathematical competitions, and their 

competition materials are often very 

well sought. As in the last few years, 

we still did not do as well as Singapore 

(ranked 8). However, when I looked 

closely at their results, I found their 

gold medalists were not really much 

better than our silver medalists and I 

think we can do as well? In short, it is 

very interesting by simply looking at 

the results of countries during the years, 

we may gather some ideas on how we 

should train our members in the future.  
 

(to be continued) 
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Olympiad Corner 
 
Below are the problems of the 2014 

Bulgarian National Math Olympiad on 

May 17-18, 2014. 
 

Problem 1.  (Teodosi Vitanov, Emil 
Kolev) Given is a circle k and a point A 
outside it. The segment BC is a 
diameter of k. Find the locus of the 
orthocenter of ABC, when BC is 
changing. 
 
Problem 2. (Nikolay Beluhov) 
Consider a rectangular n×m table 
where n  2 and m  2 are positive 
integers. Each cell is colored in one of 
the four colors: white, green, red or 
blue. Call such a coloring interesting if 
any 2×2 square contains every color 
exactly once. Find the number of 
interesting colorings. 
 
Problem 3. (Alexander Ivanov) A real 

nonzero number is assigned to every 

point in space. It is known that for any 

tetrahedron  the number written in the 

incenter equals the product of the four 

numbers written in the vertices of . 

Prove that all numbers equal 1. 
 
Problem 4. (Peter Boyvalenkov) Find 
all prime numbers p and q such that  
 

p2 | q3 + 1   and   q2 | p6  1. 
 
                                 (continued on page 4) 

IMO2014 and Beyond (II) 
 

Leung Tat-Wing 

    
To discuss the IMO2014 problems, 
let’s proceed from the easier problems 
to the harder problems. 

Problem 1. Let a0 < a1< a2 <  be an 
infinite sequence of positive integers. 
Prove that there exists a unique integer 
n  1 such that  
 

0 1
1

...
.n

n n

a a a
a a

n
 

 
This problem is nice and easy. It gave us 
no problem. All of us got full scores in 
this problem. Nevertheless the problem 
is not entirely trivial, and indeed about 
100 contestants scored nothing in this 
problem! First notice the middle term is 
not an arithmetical mean. Really during 
the question and answer period, some 
contestants did ask why the sequence 
doesn’t start at index 1. Moreover the 
problem is not exactly an algebra 
problem, as it involves a strictly 
increasing sequence of integers. Try 
small cases, say n = 1. Then we need a1 

< a0+a1 sure, but not necessarily a0+a1  
a2, why is that so? For n = 2, then we 
need a2 < (a0+a1+a2)/2, or a2< a0+a1, not 
necessarily true, but say when compared 
with the case of n = 1, if it is false, then 
a0+a1  a2 is true and we have an n 
satisfying the inequality! And the other 
side a0+a1+a2  2a3, why true again? If it 
is false, look at the left hand side for the 
case of n = 3. After several attempts, we 
really see what is going on. Indeed the 
inequality is equivalent to nan < 
a0+a1+ +an  nan+1. The left hand 
inequality corresponds to (a0+a1+ +an ) 

 nan >0, while the right hand inequality 
corresponds to (a0+a1+ +an) nan+1  0, 

same as (a0+a1+ +an+1) (n+1)an+1  0. 

Alas, if we define dn=(a0+a1+ +an )  

nan, then we just have to show there 

exists a unique n such that  dn > 0  dn+1! 

The proof is then complete if we can see 

(prove) dn is a strictly decreasing 

sequence of integers. Not too bad. 

 

Using induction, or other measures on 

the expression (a0+a1+ +an)/n, our 

team members managed to solve the 

problem. 
 

Problem 4. Points P and Q lie on side 

BC of acute-angled triangle ABC such 

that PAB = BCA and CAQ = 

ABC. Points M and N lie on lines AP 

and AQ, respectively, such that P is the 

midpoint of AM, and Q is the midpoint 

of AN. Prove that lines BM and CN 

intersect on the circumcircle of triangle 

ABC.  

 

This is the easiest problem in the 

competition, yet about 30 contestants 

did not get anything from it. Altogether 

more than 10 solutions were received, 

using synthetic geometry, coordinate 

geometry, complex numbers and the 

like. Some of us did it by coordinate 

geometry, setting the foot of A be (0,0), 

and coordinates A(0,a), B(b,0) and 

C(c,0). Then get everything out of it via 

complicated calculations. But indeed if 

we can draw the picture properly, and do 

the angle tracings correctly, the problem 

is really not hard at all.  

 

Indeed suppose BM and NC meet at S. 

Let ABC= CAQ=  and ACB= 

BAP = , then ABP~ CAQ. Hence
 

.
BP BP AQ QN

PM PA QC QC
 

 
Also, NQC= BQA= APC= BPM.

The last two statements imply BPM ~

NQC, hence BMP= NCQ. Then 

we also have BPM ~ BSC!  
 
Finally, we have CSB = MPB = +  

=180° ABC. So CSB+ BAC=180° 

and we are done. 
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Problem 2. Let n  2 be an integer. 

Consider a n×n chessboard consisting 

of n2 unit squares. A configuration of n 

rooks on this board is peaceful if every 

row and every column contains exactly 

one rook. Find the greatest positive 

integer k such that, for each peaceful 

configuration of n rooks, there is a k×k 

square which does not contain a rook 

on any of its k2 unit squares. 

 

All of us managed to give (basically) 

the correct answer ( 1n   ) and 

knew essentially how to tackle the 

question. There were gaps here and 

there and few points eventually 

deducted, but in my opinion, not really 

serious mistakes. Here n rooks are 

placed in a n×n board so that they are 

not attacking each other, and this time 

we ask for the largest possible gap 

(square with no rook). Of course the k2 

squares should be congruent to others 

and the “gap” square should be in one 

piece. Indeed several candidates had 

the same concern. This is really a 

classical chess board problem and I am 

not at all sure if the question was asked 

before somewhere.  

 

First, given a n×n board with n rooks 

non-attacking (peaceful configuration). 

Suppose l is such that  l2 < n, then we 

can find a l×l square with no rook in it. 

Indeed there is a rook in the first 

column, consider the l consecutive 

rows starting with the row where the 

particular rook is placed. Now remove 

the first n  l2 columns of this piece 

(hence at least one rook is removed). 

The remaining l×l2 piece can be 

decomposed into l l×l pieces of 

squares, but contain at most l 1 rooks, 

hence we have an empty l×l square.  

 

Now we want to construct a peaceful 

configuration with largest possible 

square of size 1n  × 1n . 

Most of us see what the configuration 

should look like. We first let n be of the 

form l2. Label the square with row i  

and column j as (i,j),  with 0  i  l 1 

and 0  j  l 1. The rooks are then 

placed on the positions (il+j,jl+i), 0  

i,j  l 1. One can easily check that any 

l×l square contains a rook.  

 

Now comes where the most common 

gap lies. If n < l2, we need to produce a 

peaceful configuration with no rook in 

any l×l  square. The idea is of course to 

remove columns and rows from the 

previous construction. Only when (say) 

the top row and the leftmost column 

removed, two rooks may be removed, we 

have to put a rook back to an appropriate 

position (naturally where it should be) to 

return to a peaceful configuration! 
 
(A 9×9 peaceful configuration with 2×2 

squares as largest possible empty 

squares.) 
 

 
Problem 5. For each positive integer n, 

the Bank of Cape Town issues coins of 

denomination 1/n.Given a finite collection 

of such coins (of not necessarily different 

denominations) with total value at most 

99+½, prove that it is possible to split the 

collection into 100 or fewer groups, such 

that each group has total value at most 1.  
 
I am happy to see how our students 

handled this problem. In short, they used 

various grouping and induction 

techniques and tricks, and changed the 

problem to a format they can handle, thus 

solved the problems. Even though our 

arguments were sometimes rather unclear 

and convoluted, thus some points 

deducted because of gaps and other things, 

four of us essentially solved the problem. 

Indeed the main idea of solving the 

problem is by “merging” or “cleaning” the 

set of coins. Clearly if the process can still 

be completed after merging the coins, it 

can be done before merging! 
 
Indeed the problem can be generalized as 

follows. Given coins of total value at most 

N ½, they can be split into N groups each 

of value at most 1. The problem then can 

be completed by the following steps.  

 

(i) Two coins of values 1/(2k) may be 

merged into a coin of value 2×1/(2k)=1/2, 

thus for every even number ,m  we may 

assume there is at most one coin of value 

1/m.  

 

(ii) For every odd number m, there are at 

most m 1 coins of such value, otherwise 

they can be merged to form a coin of value 

1 first.  

 

(iii) Coins of value 1 must form a group 

of itself. Thus if there are d coins of 

value 1 in a group of N coins, we might 

as well consider a group of N d coins 

of values less than 1.  

 

(iv) Now consider coins of values 

1/(2k 1) and 1/(2k), with k=1,2,…,N. 

We first place them into N groups 

according different values of k. In each 

group, the total value is at most  

1 1 1 1
(2 2) 1 1.

2 1 2 2 1 2
k

k k k k
  

The total value of all N groups is at 

most N ½. By taking average, there 

exists a group of total value at most 

1 1 1
( ) 1 .

2 2
N

N N
 

(v) All the remaining coins are of 

values less than 1/(2N). We may put 

them one by one into each group, as 

long as the value of each group does 

not exceed 1 1/(2N) and we are done! 

 

The problem is meant to be a number 

theory problem, but is really more like 

a combinatorial problem. Our members 

managed to give different proofs to this 

problem and it is very nice. But indeed 

it is natural to consider coins of larger 

values (greedy method) first then 

consider coins of small values (a lot of 

them). 

 

Problem 3. Convex quadrilateral 

ABCD has ABC = CDA = 90°.  

Point H is the foot of the perpendicular 

from A to BD. Points S and T lie on 

sides AB and AD, respectively, such 

that H lies inside triangle SCT and 

CHS  CSB = 90°,  THC  DTC 

= 90°.  Prove that line BD is tangent to 

the circumcircle of triangle TSH.   
 

In these few years, problems of this 

kind appear rather frequently. Proving 

a certain line is tangent to a certain 

(hidden) circle, or two (hidden) circles 

will touch each other, or the like, are 

generally not too easy. Still one should 

be able to handle them by first finding 

out some related geometric properties, 

and then obtain final results still by 

using only basic geometric properties 

and techniques.  

 

Let us look at this problem. It is not 

easy to draw an accurate and nice 

picture, let alone proving it. 

 
 

                                 (continued on page 4) 
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Problem Corner 

We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is November 20, 2014. 

 

Problem 451.  Let P be an n-sided 

convex polygon on a plane and n>3. 

Prove that there exists a circle passing 

through three consecutive vertices of P 

such that every point of P is inside or 

on the circle. 
 

Problem 452. Find the least positive 

real number r such that for all triangles 

with sides a,b,c, if a  (b+c)/3, then 
 
c(a+b c)  r ((a+b+c)2+2c(a+c b)). 
 
Problem 453. Prove that there exist 

infinitely many pairs of relatively 

prime positive integers a,b with a>b 

such that b2 5 is divisible by a and 

a2 5 is divisible by b. 

 

Problem 454. Let 1, 2 be two circles 

with centers O1, O2 respectively. Let P 

be a point of intersection of 1 and 2. 

Let line AB be an external common 

tangent to 1, 2 with A on 1, B on 2 

and A, B, P on the same side of line 

O1O2. There is a point C on segment 

O1O2 such that lines AC and BP are 

perpendicular. Prove that APC=90°. 
 
Problem 455. Let a1, a2, a3, … be a 

permutation of the positive integers. 

Prove that there exist infinitely many 

positive integer n such that the greatest 

common divisor of an and an+1 is at 

most 3n/4.  

 

***************** 

Solutions

**************** 
 
Problem 446. If real numbers a and b 

satisfy 3a+13b=17a and 5a+7b=11b, then 

prove that a < b. 
 
Solution. Kaustav CHATTERJEE 
(MCKV Institute of Engineering College, 
India), Ioan Viorel CODREANU 
(Secondary School Satulung, Maramures, 
Romania), KWOK Man Yi (Baptist Lui 
Ming Choi Secondary School, S4), Elaine 
LAM (Tsuen Wan Secondary School), 
Corneliu M NESCU-AVRAM (Transportation 

High school, Ploie ti, Romania), NGUYÊN 
Viêt Hoàng (Hà Nôi, Viêt Nam), PANG Lok 
Wing, YAN Yin Wang (United Christian 
College (Kowloon East), Teaching Staff) and 
Simon YAU. 
 
If a  b, then 3a+13a   3a+13b=17a. (*) 

Since 3/17<13/17<1, the function f(x) 

=(3/17)x+(13/17)x is strictly decreasing. 

By (*), f(a)  1> f(1). So a < 1.  

 

    Next, 5b+7b  5a+7b = 11b. (**) Since 

5/11 < 7/11 < 1, the function g(x) = (5/11)x 

+ (7/11)x is strictly decreasing. By (**), 

g(b)  1 < g(1). So b>1>a, contradiction. 
 
Other commended solvers: Math Activity 
Center (Carmel Alison Lam Foundation 

Secondary School), Nicu or ZLOTA (“Traian 

Vuia” Technical College, Foc ani, Romania), 

Titu ZVONARU (Com ne ti, Romania) and 
Neculai STANCIU (“George Emil Palade’’ 

Secondary School, Buz u, Romania). 
 

Problem 447. For real numbers x, y, z, 

find all possible values of sin(x+y) + 

sin(y+z) + sin(z+x) if  
 

.
)sin(

sinsinsin

)cos(

coscoscos

zyx

zyx

zyx

zyx  

 
Solution. KWOK Man Yi (Baptist Lui Ming 

Choi Secondary School, S4), Corneliu 
M NESCU-AVRAM (Transportation High 

school, Ploie ti, Romania), YAN Yin Wang 
(United Christian College (Kowloon East), Teaching 

Staff), Titu ZVONARU (Com ne ti, Romania) 
and Neculai STANCIU (“George Emil 

Palade’’ Secondary School, Buz u, Romania). 
 
Let S=x+y+z. Cross multiply and transfer 

all terms to one side. We get 
 
0 = sin S cos x  cos S sin x + sin S cos y 

       cos S sin y + sin S cos z  cos S sin z 

   = sin(S x) + sin(S y) + sin(S z) 

   = sin(y+z) + sin(z+x) + sin(x+y). 
 

Other commended solvers: Kaustav 
CHATTERJEE (MCKV Institute of 
Engineering College, India), Ioan Viorel 
CODREANU (Secondary School Satulung, 
Maramures, Romania) and Math Activity 
Center (Carmel Alison Lam Foundation 
Secondary School). 
 

Problem 448. Prove that if s,t,u,v are 

integers such that s2 2t2+5u2 3v2=2tv, 

then s = t = u = v = 0. 

Solution. Ioan Viorel CODREANU 
(Secondary School Satulung, Maramures, 
Romania), KWOK Man Yi (Baptist Lui Ming 
Choi Secondary School, S4), Corneliu 
M NESCU-AVRAM (Transportation High 
school, Ploie ti, Romania), Math Activity 
Center (Carmel Alison Lam Foundation 
Secondary School), NGUYÊN Viêt Hoàng 
(Hà Nôi, Viêt Nam), YAN Yin Wang (United 

Christian College (Kowloon East), Teaching Staff), 
Titu ZVONARU (Com ne ti, Romania) and 

Neculai STANCIU (“George Emil Palade’’ 
Secondary School, Buz u, Romania). 
 
Assume s,t,u,v are not all zeros. By 

cancelling all common factors of s,t,u,v, 

we may assume they are relatively 

prime. We can rewrite the equation as  
 
        2(s2+5u2) = (2t+v)2+5v2.             (†) 

 
For 0  x, y  4, we have 2x2 y2 (mod 5) 

if and only if x  y  0 (mod 5).       (‡)  

So s2+5u2  2t+v  0 (mod 5), which 

implies s = 5m and 2t+v = 5n for some 

integers m,n. Substituting these into (†), 

we get 2(5m2+u2)=5n2+v2. By (‡), u, v 

are divisible by 5. Then s,t,u,v are 

divisible by 5, contradicting they are 

relatively prime. So s,t,u,v are all zeros. 

 

Other commended solvers: Kaustav 
CHATTERJEE (MCKV Institute of 

Engineering College, India), 

 

Problem 449. Determine the smallest 

positive integer k such that no matter 

how {1,2,3,…,k} are partitioned into 

two sets, one of the two sets must 

contain two distinct elements m, n such 

that mn is divisible by m+n. 
 
Solution. Titu ZVONARU 
(Com ne ti, Romania) and Neculai 
STANCIU (“George Emil Palade’’ 
Secondary School, Buz u, Romania). 

 
Call distinct positive integers m,n a 

good pair if mn is divisible by m+n. 

Collect all good pairs with m,n 40. We 

will try to separate m,n first. Let A 

={1,2,3,5,8, 10, 12, 13, 14, 18, 19, 21, 

22, 23, 30, 31,32,33,34} and B = {4, 6, 

7, 9, 11, 15, 16, 17, 20, 24, 25, 26, 27, 

28, 29, 35, 36, 37, 38, 39}. Each of A 

and B do not contain any good pair. For 

1  k  39, we can remove integers 

greater than k from A and B to get 2 

disjoint subsets of {1, 2, …, k} with no 

good pair in each subset.  
 

For k=40, put 6, 12, 24, 40, 10, 15 and 

30 around a circle. Notice any two 

consecutive terms in this circle is a 

good pair. No matter how we divide 

{1,2,…,40} into 2 disjoint subsets, one 

of the subsets will contain at least 4 of 

7 numbers in the circle. So there will be 

a good pair in that subset. Therefore, 

40 is the desired least integer. 
  
Other commended solvers: NGUYÊN 
Viêt Hoàng (Hà Nôi, Viêt Nam). 

 

Problem 450. (Proposed by Michel 

BATAILLE) Let A1A2A3 be a triangle 
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with no right angle and O be its 

circumcenter. For i = 1,2,3, let the 

reflection of Ai with respect to O be Ai' 

and the reflection of O with respect to 

line Ai+1Ai+2 be Oi (subscripts are to be 

taken modulo 3). Prove that the 

circumcenters of the triangles OOiAi'   

(i = 1,2,3) are collinear. 

O

A
3

A
1

A
2

A'
1

H

M
1

O
1

J
1 I

1

 

Solution. KWOK Man Yi (Baptist 

Lui Ming Choi Secondary School, S4). 
 
Notice that O1 is the reflection of O 

with respect to the midpoint M1 of A2A3. 

By the nine point circle theorem (see 

Math Excalibur, vol.3, no 1, p,1), AH, 

OM1 are parallel and their lengths are 

2:1. Now A1O=OA1 . So, in A1A1 H, 

M1 is the midpoint of A1 H, i.e. H is the 

reflection of A1  with respect to M1.  
 
Let I1 be the circumcenter of OO1A1 . 

Then I1 lies on the perpendicular 

bisector A2A3 of OO1. Reflect I1 with 

respect to M1 to J1. Then J1 also lies on 

A2A3. With respect to M1, J1 is the 

circumcenter of the reflection of 

OO1A1 , i.e. OO1H. So, J1 also lies 

on the perpendicular bisector of OH.  

 

Define I2, I3, J2, J3 similarly. As J2, J3 

also lie on the perpendicular bisector of 

OH by a similar proof, J1, J2, J3 are 

collinear. Then by Menelaus’ theorem, 
 

.1
23

31

12

23

31

12

AJ

JA

AJ

JA

AJ

JA  

 
As A3I1/I1A2=A2J1/J1A3 (due to I1, J1 are 

reflection of the midpoint of A2A3) and 

similarly for I2, J2, I3, J3, we have 
 

.1
13

32

32

21

21

13

AI

IA

AI

IA

AI

IA  

 
By the converse of Menelaus’ Theorem, 

I1, I2, I3 are collinear as desired. 
 
Other commended solvers: Andrea 
FANCHINI (Cantú, Italy), Corneliu 
M nescu-Avram (Transportation High 

school, Ploie ti, Romania), NGUYÊN Viêt 
Hoàng (Hà Nôi, Viêt Nam), Samiron 
SADHUKHAN (Kendriya Vidyalaya, 

Barrackpore, Kolkata, India), Titu 

ZVONARU (Com ne ti, Romania) and 
Neculai STANCIU (“George Emil Palade’’ 

Secondary School, Buz u, Romania). 
 

 

Olympiad Corner 
 
                       (Continued from page 1) 

 
Problem 5. (Nikolay Nikolov) Find all 

functions f : +  + such that   
 
 f(xy) = f(x+y)(f(x)+f(y)) for any x,y +. 

 
Problem 6. (Nikolay Beluhov) The 

quadrilateral ABCD is inscribed in the 

circle k. The lines AC and BD meet in E 

and the lines AD and BC meet in F. Show 

that the line through the incenters of 

ABE and ABF and the line through the 

incenters of CDE and CDF meet on k.  

 

 
 

IMO2014 and Beyond (II) 
 
                           (Continued from page 2) 

 

First, let the line passing through C and is 

perpendicular to SC meets AB at Q. Then 

SQC=90° BSC=180° SHC. So C, H, 

S, Q are concyclic. Moreover SQ is a 

diameter of this circle, thus the 

circumcenter K of SHC lies on AB. 

Likewise, circumcenter L of the circle 

CHT lies on AD. To show the circumcircle 

of the triangle SHT is tangent to BD, it 

suffices to show the perpendicular 

bisectors of HS and HT meet at AH. But 

the two perpendicular bisectors coincide 

with the angle bisectors of AKH and ALH, 

thus by the bisector theorem, it suffices to 

show AK/KH=AL/LH. Let M be the 

midpoint of CH, then B,C,M,K are 

concyclic, L,C,M,D are concyclic. By the 

sine law, AK/AL= sin ALK / sin AKL = 

(DM/CL)/(BM/CK) = CK/CL = KH/LH. 

 

Problem 6. A set of lines in the plane is in 

general position if no two are parallel and 

no three pass through the same point. A set 

of lines in general position cuts the plane 

into regions, some of which have finite 

areas; we call these its finite regions. 

Prove that for all sufficiently large n, in 

any set of n lines in general position it is 

possible to color at least n of the lines 

blue in such a way that none of its finite 

regions has a completely blue boundary. 
 
Notes: Results with n replaced by c n 

will be awarded points depending on the 

value of the constant c. 

 

I have to admit that I don’t like this 

problem at all. Indeed it was meant to 

be an “open end” problem, that 

students may produce different results 

with different degrees of difficulty. But 

when I first saw the problem, I thought 

we should give an algorithm, say a 

greedy algorithm, or other heuristic 

that gives good pattern (with as many 

blue colored lines as possible), and 

then analyze the pattern and give an 

estimate. Not so. (I guess I have 

become kind of intuitionist.) I doubt if 

there was any algorithmic solution 

anyway. Indeed in the official solution, 

a best possible solution is assumed, 

surely it exists, but we were not told 

how to get there.  
 

Let me reproduce a part of the proof as 

follows. Given a set of n lines colored 

blue and red, and the lines colored blue 

is as large as possible (maximality 

argument), so that every finite region 

still has at least one boundary line 

colored red. Assume k lines are colored 

blue. Call a vertex which is the 

intersection of two blue lines blue as 

well, so there are kC2 blue vertices.  
 
Now take any red line l, using the 

maximality argument, there exists at 

least one region with this red line l as 

the only red side, (for if all regions 

have two or more red lines, surely we 

can change one more red line to blue). 

In this region there is at least one blue 

vertex v since any finite region has at 

least three lines. We then associate the 

blue vertex with the red line. Now 

finally every blue vertex v belongs to 

four regions, (some may be 

unbounded), hence it may be 

associated with at most four red lines. 

Therefore the total number of red lines 

is at most   4kC2=2k(k 1).  
 
On the other hand, there are n k red 

lines, thus, n k  2k(k 1). Solving for 

n, we get n  2k2 k  2k2. Hence, k  

2/n  and we get an estimate on 

the number of blue lines! 

l

IV II

III

I

v

 
By putting some weights on the blue 

vertices, or by refining local analysis, 

one may get the stronger result k n.  
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Olympiad Corner 
 
Below are the problems of the 

IMO2015 Hong Kong Team Selection 

Test 2 held on 25th October, 2014. 
 

Problem 1.  Assume the dimensions of 
an answer sheet to be 297 mm by 210 
mm. Suppose that your pen  
leaks and makes some non-intersecting 
ink stains on the answer sheet. It turns 
out that the area of each ink stain does 
not exceed 1 mm2. Moreover, any line 
parallel to an edge of the answer sheet 
intersects at most one ink stain. Prove 
that the total area of the ink stains is at 
most 253.5 mm2. (You may assume a 
stain is a connected piece.) 
 
Problem 2. Let {an} be a sequence of 

positive integers.  It is given that a1=1, 

and for every n≥1, an+1 is the  

smallest positive integer greater than an 

which satisfies the following condition: 

for any integers i, j, k,  with 1 ≤ i, j, k ≤ 

n+1, ai+aj ≠ 3ak. Find a2015.  
 
Problem 3. Let ABC be an equilateral 

triangle, and let D be a point on AB 

between A and B. Next, let E be a point 

on AC with DE parallel to BC. Further, 

let F be the midpoint of CD and G the 

circumcentre of ΔADE. Determine the 

interior angles of ΔBFG. 
 
                                 (continued on page 4) 

Variations and Generalisations 

to the Rearrangement Inequality 
 

Law Ka Ho
    
 
A. The rearrangement inequality 

 

In Math Excalibur, vol. 4, no. 3, we can 

find the following  

 

Theorem 1  (Rearrangement inequality) 

Let a1 ≤ a2 ≤ ⋯ ≤ an and b1 ≤ b2 ≤ ⋯ ≤ bn  

be two increasing sequences of real 

numbers. Then amongst all random 

sums of the form 
 

1 21 2 nna b a b a b     , 
 
where (σ1,σ2,…,σn) is a permutation of  

(1,2,…,n),  

 the greatest is the direct sum 

a1b1+a2b2+⋯+anbn; 

 the smallest is the reverse sum 

a1bn+a2bn−1+⋯+anb1. 

 

A well-known corollary of the 

rearrangement inequality is the 

following 

 

Theorem 2  (Chebyshev’s inequality) 

With the same setting in Theorem 1, the 

quantity 
 

1 2 1 2( )( )n na a a b b b

n

      
 

 
lies between the direct sum and the 

reverse sum, again with equality if and 

only if at least one of the two sequences 

is constant. 

 

B. A variation --- from ‘sum’ to 

‘product’ 

 

The different ‘sums’ in the 

rearrangement inequality are in fact 

‘sums of products’. For this reason we 

shall from now on call them P-sums, to 

remind ourselves that we take products 

and then sum them up. Naturally, we ask 

what happens if we look at ‘product of 

sums’ (S-products) instead. 
 

A little trial suggests that, opposite to 

the case of P-sums, the direct S-product 

is minimum while the reverse S-product 
 

 
is maximum. For example we may take 

the sequences 1≤2≤3≤4 and 5≤6≤7≤8. 

The direct S-product of these sequences 

is (1+5)(2+6)(3+7)(4+8) = 5760 and the 

reverse S-product of the sequences is 

(1+8)(2+7)(3+6)(4+5) = 6561. We can 

also check some random S-products, e.g 

we have (1+6)(2+5)(3+8)(3+7) = 5929 

and (1+6)(2+7)(3+8)(4+5) = 6237.  

 

But then a little further thought shows 

that this is not quite right. For instance 

we may take 1≤2≤3≤4 and −5≤−2 ≤1≤ 2

and end up with a reverse S-product 

(1+2)(2+1)[3+(−2)][4+(−5)], which is 

negative. Yet, some random S-products, 

such as [1+(−2)](2+2)(3+1)[4+(−5)], 

can be positive. 

 

It turns out that we have to require the 

variables to be non-negative for the 

result to hold. 

 

Theorem 3  (Rearrangement inequality 

for S-products) Let a1 ≤ a2 ≤ ⋯ ≤ an and 

b1 ≤ b2 ≤ ⋯ ≤ bn be two increasing 

sequences of non-negative real 

numbers. Then amongst all random 

S-products of the form 

1 21 2( )( ) ( )
nna b a b a b      

where (σ1,σ2,…,σn) is a permutation of 

(1,2,…,n), 

 the smallest is the direct S-product 

(a1+b1)(a2+b2)⋯(an+bn); 

 the greatest is the reverse S-product 

(a1+bn)(a2+bn−1)⋯(an+b1). 

 

Proof Take any random S-product   

1 21 2( )( ) ( )
nna b a b a b      

which is not the direct S-product. Then 

there exists i < j such that   
i j

b b  .  

Let’s see what happens if we swap σi 

and σj. In that case only two terms are 

changed. Consider the two products 

1 ( )( )
i ji jP a b a b     and 

2 ( )( )
j ii jP a b a b    . 

                                  (continued on page 2) 
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After expanding, cancelling and 

factoring, we have  
 

2 1 ( )( ),
j ii jP P a a b b      

which is non-positive since ai−aj ≤ 0 

and 
i j

b b  . So  P2 ≥ P1. This means  

swapping σi and σj leads to a larger (or 

equal) S-product. It follows that the 

direct S-product is the minimum 

amongst all random S-products. In a 

similar manner we can prove that the 

reverse S-product is the maximum. 

 

Example 4  (IMO 1966) In the interior 

of sides BC, CA, AB of ABC, points K, 

L, M respectively, are selected. Prove 

that the area of at least one of the 

triangles AML, BKM, CLK is less than 

or equal to one quarter of the area of 

ABC. 
 
Solution Let a, b, c denote the lengths 

of the sides opposite A, B, C 

respectively. Let also a1 and a2 denote 

the lengths of the two segments after 

the side with length a is cut into two 

parts by the point K (i.e. BK = a1 and 

KC = a2), and similarly for b1, b2, c1, c2. 

The six variables a1, a2, b1, b2, c1, c2 

can be ordered to form an increasing 

sequence. By the rearrangement 

inequality for S-products, the direct 

S-product  
 

1 1 2 2 1 1 2 2 1 1 2 2( )( )( )( )( )( )a a a a b b b b c c c c     

= 64a1a2b1b2c1c2 
 
is less than or equal to the random 

S-product 
 

1 2 2 1 1 2 2 1 1 2 2 1( )( )( )( )( )( )a a a a b b b b c c c c     

= a2b2c2. 

 
Let S denote the area of ABC. If 

triangles AML, BKM, CLK all have 

areas greater than S/4, then using the 

above result we have 

3

1 2 2 1 2 1

2 2 2

3

1 1 1
sin sin sin

4 2 2 2

sin sin sin
8 64

1 1 1 1
sin sin sin

64 2 2 2

4

S
c b A c a B a b C

a b c
A B C

ab C bc A ca B

S

          
     

 

       
   

   
 

which is a contradiction.  
 
Example 5  (IMO 1984) Prove that  
 

0 ≤ xy + yz + zx − 2xyz ≤ 7/27, 
 

where x, y and z are non-negative real 

numbers for which x+y+z=1. 

Solution The left-hand inequality is pretty 

easy. We have 

2

( ) ( ) ( )

(1 ) (1 ) (1 )

( ) ( ) ( ) 0.

xy yz zx xyz

xy xyz yz xyz zx xyz xyz

xy z yz x zx y xyz

xy x y yz y z zx z x xyz

  
      
      
       

 

For the right-hand inequality, it is 

well-known that  
 

2

2 2 2

1 ( )

3( )

x y z

x y z xy yz zx

xy yz zx

  

     
  

 

 
and so xy + yz + zx ≤ 1/3. By the 

rearrangement inequality for S-products, 

we have 

(1 2 )(1 2 )(1 2 )

1 2 1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2

.

x y z

x y y z z x

zxy

  

              
   



 

(The rearrangement inequality for 

S-products applies only if the three terms 

on the left hand side are non-negative. 

However, if this is not true then exactly 

one of them is negative and the result 

therefore still holds.) Expanding gives 
 
1 2( ) 4( ) 8x y z xy yz zx xyz xyz       

 

or 9 4( ) 1xyz xy yz zx    . From this, 

we have 
 

1
3

2

4( ) 1
2

9

2 2 7
.

9 9 27

xy yz zx xyz

xy yz zx
xy yz zx

xy yz zx

  

        
 

  
  

 

 
C. A generalisation — from two 

sequences to more 

 

Another natural direction of generalising 

the rearrangement inequality (for P-sums) 

is to consider the case in which there are 

more than two sequences. This time we 

need two subscripts to index the terms, 

one for the index of the sequence and one 

for the index of a particular term of a 

sequence. Again, we need to restrict 

ourselves to sequences of non-negative 

numbers (for both P-sums and S-products), 

otherwise one can easily construct 

counter- examples. Also, note that there is 

no such thing as ‘reverse 

P-sum/S-product’ when there are more 

than two sequences. 

 

Theorem 6  (Rearrangement inequality for 

multiple sequences) Suppose there are m 

increasing sequences (each with n 

terms) of non-negative numbers, say, 

ai1 ≤ ai2 ≤ ⋯ ≤ ain  , where 1i  , 2, …, m. 

Then 

 the direct P-sum 
1 2

1

n

j j mj

j

a a a

   

is greater than or equal to any other 

random P-sum of the form 

1 21 2

1
j j mj

n

m

j

a a a  

  ; 

 the direct S-product 

1 2

1

( )
n

j j mj

j

a a a


     is smaller 

than or equal to any other random 

S-product of the form 

1 21 2

1

( ).
j j mj

n

m

j

a a a  


     

Here (σi1,σi2,…,σin) is a permutation of 

(1,2,…,n) for i = 1,2, …, m. 

 

Remarks.   
 
(1) Theorem 6 is sometimes known 

as ‘微微對偶不等式’ in Chinese. 

 

(2) A less clumsy way to express 

Theorem 6 is to use matrices. 

With the above m sequences we 

may form the matrices 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a
A

a a a

 
 
 
 
 
 





   



 and     

11 12 1

21 22 2

1 2

1 1 1

2 2 2

n

n

m m mnm m m

a a a

a a a
B

a a a

  

  

  

 
 
   
 
 
 





   



. 

Here each row of A is in ascending 

order (corresponding to one of the m 

increasing sequences) while each row 

of B is a permutation of the terms in the 

corresponding row of A (corresponding 

to a permutation of the corresponding 

sequence). Then Theorem 6 says 
 
 the sum of column products (P-sum) 

in A is greater than or equal to that in 

B; 
 
 the product of column sums (S- 

product) in A is less than or equal to 

that in B. 

 

(3) The proof of Theorem 6 is 

essentially the same as that of 

Theorem 3, and is therefore 

omitted. 
 

                                 (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is January 31, 2015. 

  

Problem 456.  Suppose x1, x2, …, xn 

are non-negative and their sum is 1. 

Prove that there exists a permutation σ 

of {1,2,⋯,n} such that  
 
xσ(1)xσ(2)+xσ(2) xσ(3)+⋯+xσ(n)xσ(1) ≤ 1/n. 

 
Problem 457. Prove that for each n = 

1,2,3,…, there exist integers a, b such  

that if  integers x, y are relatively prime, 

then .)()( 22 nybxa   

 
Problem 458. Nonempty sets A1, A2, 

A3 form a partition of {1,2,…,n}. If 

x+y=z have no solution with x in Ai , y 

in Aj , z in Ak and {i,j,k}={1,2,3}, then 

prove that A1, A2, A3 cannot have the 

same number of elements.  

 

Problem 459. H is the orthocenter of 

acute ΔABC. D,E,F are midpoints of 

sides BC, CA, AB respectively. Inside 

ΔABC, a circle with center H meets 

DE at P,Q, EF at R,S, FD at T,U. Prove 

that CP=CQ=AR=AS=BT=BU.  
 

Problem 460. If x,y,z > 0 and x+y+z+2 

= xyz, then prove that  
 

      .26 xyzxyzzyx    

 

***************** 

Solutions 

**************** 
 
Problem 451. Let P be an n-sided 

convex polygon on a plane and n>3. 

Prove that there exists a circle passing 

through three consecutive vertices of P 

such that every point of P is inside or 

on the circle. 
 
Solution. Adnan ALI (Atomic Energy 
Central School 4, Mumbai, India) and T.W. 
LEE (Alumni of New Method College).   
 
Let RXYZ denote the radius of the circle 

through vertices X,Y,Z of P. Let circle Γ 

through vertices A,B,C of P be one 

with maximal radius. Without loss of 

generality, we may assume ∠ABC and 

∠ACB < 90°. If there is a vertex D of P 

outside Γ, let AD meet Γ at E. Then ∠ADC 

<∠AEC=∠ABC. By the extended sine law 

,
sin2sin2

ABCADC R
ABC

AC

ADC

AC
R 





  

contradicting maximality of Γ. So all 

vertices of P is on or inside Γ.   
 
Let F be the vertex of P next to A (toward 

C). If F is inside Γ, then AFCB is convex 

and ∠AFC+∠ABC > 180°. Hence 0° < 

180°−∠AFC <∠ABC < 90°. Then 

,
sin2sin2

ABCAFC R
ABC

AC

AFC

AC
R 





  

contradiction. So F is on Γ. Similarly, the 

vertex of P next to A (toward B) is on Γ. 
 

Problem 452. Find the least positive real 

number r such that for all triangles with 

sides a,b,c, if a ≥ (b+c)/3, then 
 
  c(a+b−c) ≤ r ((a+b+c)2+2c(a+c−b)). 
 
 
Solution. Jon GLIMMS and Samiron 
SADHUKHAN (Kendriya Vidyalaya, India). 
 
Let I = a+b−c. Then a ≥ (b+c)/3 implies 

a−b ≥ −(a+b−c)/2 = −I/2   (*) 
 
Using a+b+c=I+2c, (*) and the AM-GM 

inequality, we have 

.
2

3
2

2

33

22

3

3
2

2

2

44

)(2

)(2)(

22

2

















I

c

c

I

I

ba

I

c

c

I

I

bca

cI

ccII

cbac

bcaccba
J

 

Equality hold if a = (b+c)/3 and I2=6c2, i.e. 

.4:632:62:: cba The least r 

such that 1/(2J)≤ r is 15/)324(  . 

 

Problem 453. Prove that there exist 

infinitely many pairs of relatively prime 

positive integers a,b with a>b such that 

b2−5 is divisible by a and a2−5 is divisible 

by b. 
 

Solution. Adnan ALI (Atomic Energy Central 
School 4, Mumbai, India), LKL Excalibur 
(Madam Lau Kam Lung Secondary School of 
MFBM) and Samiron SADHUKHAN 
(Kendriya Vidyalaya, India). 
 
Note (a,b) = (11,4) is a solution. From any 

solution (a,b) with a>b≥4, we get a2−5=bc 

and b2−5=ad for some positive integers c 

and d. Now we show (c,a) is another such 

solution. First bc = a2−5 > a2−a = a(a−1) 

≥ ab implies c>a. If a prime p divides 

gcd(a,c), then a2−5=bc and b2−5=ad 

imply b2=ad+5=ad+a2−bc is divisible by 

p. Since gcd(a,b)=1, we get gcd(c,a)=1. 

Using gcd(a,b)=1 and a(a+d)=a2+b2−5 

= b(b+c), we see a divides b+c. Then a 

divides (b+c)(c−b) + (b2−5) = c2−5. So 

there are infinitely many solutions. 
 
Other commended solvers: Corneliu 

MĂNESCU-AVRAM (Transportation 

High school, Ploieşti, Romania), O Kin 

Chit (G. T. (Ellen Yeung College), WONG 

Yat (G. T. (Ellen Yeung) College), Titu 

ZVONARU (Comăneşti, Romania) and 

Neculai STANCIU (“George Emil Palade’’ 

Secondary School, Buzău, Romania). 

 

Problem 454. Let Γ1, Γ2 be two circles 

with centers O1, O2 respectively. Let P 

be a point of intersection of Γ1 and Γ2. 

Let line AB be an external common 

tangent to Γ1, Γ2 with A on Γ1, B on Γ2 

and A, B, P on the same side of line 

O1O2. There is a point C on segment 

O1O2 such that lines AC and BP are 

perpendicular. Prove that ∠APC=90°. 
 
Solution. Serik JUMAGULOV 
(Karaganda State University, 
Qaragandy City, Kazakhstan). 
 
Other than P, let the circles also meet at 

Q. If PQ ∩ AB = M, then M is the 

midpoint of AB as MA2 = MP×MQ = 

MB2. Let PQ ∩ O1O2 = K, BP∩AC=N 

and AL be a diameter of the circle with 

center O1. Since PQ ⊥ O1O2 and 

BN⊥AC, PNCK is cyclic. Now ∠PBM 

= 90°−∠NAB = ∠CAO1 and ∠BPM 

=∠KPN=∠ACO1. So ΔACO1∼ΔBPM. 

Then AC/BP = AO1/BM = AL/BA. So 

ΔACL∼ΔBPA. Then ∠ALP = ∠BAP 

=∠ALC. So L,C,P are collinear. As AL 

is a diameter, ∠APC = 90°. 
  
Other commended solvers: Andrea 

FANCHINI (Cantú, Italy), Titu 

ZVONARU (Comăneşti, Romania) and 

Neculai STANCIU (“George Emil Palade’’ 

Secondary School, Buzău, Romania). 

 

Problem 455. Let a1, a2, a3, … be a 

permutation of the positive integers. 

Prove that there exist infinitely many 

positive integer n such that the greatest 

common divisor of an and an+1 is at 

most 3n/4.  
 
Solution. Jon GLIMMS and Samiron 
SADHUKHAN (Kendriya Vidyalaya, 
India). 
 
Assume that there exists N such that for 

all n≥N, gcd(an,an+1)>3n/4. Then for all 

n ≥ 4N, an≥ gcd(an,an+1) > 3n/4 ≥ 3N. 

Since a1, a2, a3, … is a permutation of 

the positive integers, we see {1,2,⋯,3N} 

is a subset of {a1, a2,⋯, a4N−1}. Now the 

intersection of {1,2,⋯,3N} and {a2N, 

a2N+1,⋯,a4N−1} has at least 3N−(2N−1) 
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= N+1 elements. By the pigeonhole 

principle, there exists k such that 2N ≤ 

k < 4N−1 and ak, ak+1 ≤ 3N. Then 

gcd(ak,ak+1) ≤ ½max{ak, ak+1} ≤ 3N/2 ≤ 

3k/4, contradiction. 
 

 
 

Olympiad Corner 
 
                       (Continued from page 1) 

 

Problem 4. A 11×11 grid is to be 

covered completely without 

overlapping by some 2×2 squares and 

L-shapes each composed of three unit 

cells. Determine the smallest number 

of L-shapes used. (Each shape must 

cover some grids entirely and cannot 

be placed outside the 11×11 grid. The 

L-shapes may be reflected or rotated 

when placed on the grid. )  

 
 

 

Variations and Generalisations  
 
                       (Continued from page 2) 

 

Example 7 Let x1, x2, …, xn be 

non-negative real numbers whose sum 

is at most 1/2. Show that (1−x1) 

(1−x2)⋯(1−xn) ≥ 1/2. 
 
Solution Form the n×n matrix 

1

2

1 1 1

1 1 1

1 1 1
n

x

x
A

x

 
  
 
 
 





   



 

whose rows are in ascending order. 

Consider the matrix 

1

2

1 1 1

1 1 1

1 1 1
n

x

x
B

x

 
  
 
 

 





   



 

in which each row is a permutation of 

the terms in the corresponding row of A. 

By the rearrangement inequality for 

multiple sequences, the P-sum in A is 

greater than the P-sum in B, i.e. 
 
          (1−x1) (1−x2)⋯(1−xn) + n − 1 

       ≥ (1−x1) + (1−x2) + ⋯ + (1−xn). 
 
It follows that 
 
        (1−x1) (1−x2)⋯(1−xn)  

     ≥ 1 − (x1 + x2 + ⋯ + xn)  

     ≥ 1−1/2 = 1/2. 

 

Example 8 Let x1, x2, …, xn be positive 

real numbers with sum 1. Show that 

1 2

1 2

1

(1 )(1 ) (1 ) ( 1)

n

n

n

x x x

x x x n


   



. 

 
Solution Without loss of generality 

assume x1 ≤ x2 ≤ ⋯ ≤ xn. Form the (n−1)×n 

matrix 

1 2

1 2

1 2

n

n

n

x x x

x x x
A

x x x

 
 
 
 
 
 





   



 

 
whose rows are in ascending order. The 

S-product of A is thus (n−1)nx1x2⋯xn. Now 

the matrix B given by 
 

1 2

2 3 1

1 2

n

n n n

x x x

x x x
B

x x x 

 
 
 
 
 
 





   



 

 
has the property that each of its rows is a 

permutation of the terms in the 

corresponding row of A. Furthermore, 

since x1, x2, …, xn have sum 1, the 

S-product of B is equal to (1−x1)(1−x2) 

⋯(1−xn). By the rearrangement inequality 

for multiple sequences, we have 

(n−1)nx1x2⋯xn≤ (1−x1)(1−x2) ⋯(1−xn). 

 

D.  Proofs of some classic inequalities 
 
The rearrangement inequality for multiple 

sequences can be used to prove a number 

of classic inequalities. We look at some 

such examples in this final section. 
 
 
Theorem 9  (Bernoulli inequality) 

For real numbers x1, x2, …, xn , where 

either all are non-negative or all are 

negative but not less than –1, we have 

11

(1 ) 1 .
n n

i i

ii

x x


    

 
Proof Without loss of generality assume x1 

≤ x2 ≤ ⋯ ≤ xn. Suppose x1, x2, …, xn are all 

non-negative.  Consider the n×n matrices 

 

    

1

2

1 1 1

1 1 1

1 1 1
n

x

x
A

x

 
  
 
 

 





   



     and   

1

2

1 1 1

1 1 1

1 1 1
n

x

x
B

x

 
  
 
 

 





   



. 

Then A and B satisfy the properties 

stated in Theorem 6. Thus the P-sum in 

A is greater than or equal to that in B,  

i.e. 
11

1 (1 ) (1 ).
n n

i i

ii

n x x


      

This gives 
11

(1 ) 1 .
n n

i i

ii

x x


    

The proof in the latter case (in which x1, 

x2, …, xn are negative but not less 

than –1) is essentially the same; just 

move the rightmost column of A to the 

leftmost. 
 
Theorem 10 (Generalised Chebyshev’s 

inequality) For m increasing sequences 

(each with n terms) of non-negative 

real numbers, say, ai1 ≤ ai2 ≤ ⋯ ≤ ain , 

where i=1,2,…, m,  

the direct P-sum 
1 2

1

n

j j mj

j

a a a

  is 

greater than or equal to 

 1 21
1

1
.

m

i i inm
i

a a a
n 



     

 
Proof Let 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a
A

a a a

 
 
 
 
 
 





   



. 

Now we can randomly form a matrix B 

as follows. The first row of B is the 

same as that of A. Each other row of B 

is obtained by shifting the 

corresponding row of A to the right by 

k places, where k is randomly chosen 

from 0, 1, 2, …,n−1. (For instance, if 

k=1, then the second row of B will be 

(a2 n, a2 1, ⋯, a2 n−1.) Thus a total of nm−1 

different possible B’s can be formed. 

Each of them has a P-sum less than or 

equal to that of A, according to 

Theorem 6. The sum of all the P-sums 

for these nm−1 is precisely  

 1 2

1

,
m

i i in

i

a a a


     

which should therefore be less than or 

equal to nm−1 times the P-sum of A, i.e. 

nm−1 times the direct P-sum. This gives 

us the desired result. 
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Olympiad Corner 
 
Below are the problems of the Team 

Selection Test 1 for the Dutch IMO 

team held in June, 2014. 
 

Problem 1.  Determine all pairs (a,b) 
of positive integers satisfying  
 

a2+b | a2b+a  and  b2−a | ab2+b. 
 
Problem 2. Let ΔABC be a triangle. 

Let M be the midpoint of BC and let D 

be a point on the interior of side AB. 

The intersection of AM and CD is 

called E. Suppose that |AD|=|DE|. 

Prove that |AB|=|CE|.  
 
Problem 3. Let a, b and c be rational 

numbers for which a+bc, b+ac and 

a+b are all non-zero and for which we 

have 

.
111

baacbbca 






 

 
Prove that )1)(3(  cc  is rational. 

 
Problem 4. Let ΔABC be a triangle 

with |AC|=2|AB| and let O be its 

circumcenter. Let D be the intersection 

of the angle bisector of ∠A and BC. Let 

E be the orthogonal projection of O on 

AD and let F≠D be a point on AD 

satisfying |CD|=|CF|. Prove that 

∠EBF=∠ECF. 
 
                                 (continued on page 4) 

Polygonal Problems 
 

Kin Yin Li 
 

    
 
    In geometry textbooks, we often 

come across problems about triangles 

and quadrilaterals. In this article we will 

present some problems about n-sided 

polygons with n > 4. This type of 

problem appears every few years in 

math olympiads of many countries. 
 

Example 1. Prove that if ABCDE is a 

convex pentagon with all sides equal 

and ∠A≥∠B≥∠C≥∠D≥∠E, then it is 

a regular pentagon. 
 
Solution.   

A

B

C D

E

 
Since 

,
2

sin2
2

sin2 CE
D

CD
B

ABAC 





  

we get ∠AEC≥∠EAC. Next, 
 

.

2

180
90

2

90
22

180

AEC

D
E

D
E

B
A

B
AEAC























 

 
Hence, ∠EAC=∠AEC. Then equality 

holds everywhere above so that ∠A=∠E 

and we are done. 
 
Example 2. (Bulgaria, 1979) In convex 

pentagon ABCDE, ΔABC and ΔCDE 

are equilateral. Prove that if O is the 

center of ΔABC and M, N are midpoints 

of BD, AE respectively, then ΔOME∼
ΔOND. 
 
Solution.  

A

C B

D

E

P

Q

M

N

O

 
Let P, Q be the midpoints of BC, AC 

respectively. Observe that ∠COP=60°, 

OC=2OP, PM||CD, ∠DCE=60° and EC 

= DC = 2MP. Then rotating about O by 

60° clockwise and follow by doubling 

distance from O, we see ΔOPM goes to 

ΔOCE. Hence ∠EOM =∠COP =60° 

and OE=2OM.  Similarly we can rotate 

about O by 60° counterclockwise and 

double distance from O to bring ΔOQN 

to ΔOCD. Then ∠DON = 60°, OD = 

2ON and so ΔOME∼ΔOND. 
 
Example 3. (IMO 2005) Six points are 

chosen on the sides of an equilateral 

triangle ABC: A1, A2 on BC, B1, B2 on 

CA and C1, C2 on AB, so that they are the 

vertices of a convex hexagon 

A1A2B1B2C1C2 with equal side lengths. 

Prove that A1B2, B1C2 and C1A2 are 

concurrent. 
 
Solution.  







A

B C

C1 B2

B1

A2

C2

A1

P

 
Let P be the point inside ΔABC such 

that ΔA1A2P is equilateral. Observe that 

A1P||C1C2 and A1P=C1C2. So A1PC1C2 is 

a rhombus. Similarly, B1PB2B1 is a 

rhombus. So ΔC1B2P is equilateral. Let 

α = ∠B2B1A2, β = ∠B1A2A1 and γ = ∠ 

C1C2A1. Then α and β are external 

angles of ΔCB1A2 with ∠C=60°. So 

α+β=240°. Now∠B2PA2=α and ∠C1PA1 

= γ. So α+γ=360°−(∠C1PB2 +∠A1PA2) 

=240°. So β=γ. Similarly, ∠C1B2B1=β. 
Hence, Δ A1A2B1, Δ B1B2C1 and Δ
C1C2A1 are congruent, which implies Δ
A1B1C1 is equilateral. Since sides of 

A1A2B1B2C1C2 have equal lengths, lines 

A1B2, B1C2 and C1A2 are the 

perpendicular bisectors of the sides of 

ΔA1B1C1 and the result follows.  
 

                                  (continued on page 2) 
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Example 4. (Czechoslovakia, 1974) 

Prove that if a circumscribed hexagon 

ABCDEF satisfies  
 

AB=BC,  CD=DE  and  EF=FA, 
 

then the area of ΔACE is less than or 

equal to the area of ΔBDF. 

 

Solution. Let O be the circumcenter of 

hexagon ABCDEF and R be the radius 

of the circumcircle. Let 

 

.,, ACEAECCAE    

 

From the given conditions on the sides, 

we get 

.

,

,









FOAEOF

DOECOD

BOCAOB
 

 
Let [XYZ] denote the area of ΔXYZ. 

We have 

.sinsinsin2

4

sin2sin2sin2

4
][

2 



R

R

RRR

R

AECAEC
ACE









 

Similarly, 

.
2

sin
2

sin
2

sin2][ 2  
 RBDF  

Now for positive α, β, γ satisfying 

α+β+γ = 180°, we have 
 

.
2

sin
2

sin
2

sin

2

)cos(1

2

)cos()cos(

)sin)(sinsin)(sinsin(sin

sinsinsin

222

222

























cyc

cyc

 

Therefore, [ACE]≤[BDF]. 

 

Example 5.  (IMO 1996) Let ABCDEF 

be a convex hexagon such that AB is 

parallel to DE, BC is parallel to EF and 

CD is parallel to FA. Let RA, RC, RE be 

the circumradii of triangles FAB, BCD, 

DEF respectively, and let P denote the 

perimeter of the hexagon. Prove that 

.
2

P
RRR ECA   

 
Solution. Let a, b, c, d, e, f denote the 

lengths of the sides AB, BC, CD, DE, 

EF, FA respectively. By the parallel 

conditions, we have ∠A=∠D, ∠B=∠E, 

∠C=∠F.  

 

Consider rectangle PQRS such that A is on 

PQ; F,E are on QR; D is on RS and B,C are 

on SP. 

b

e
f

a c

d

Q

P S

RF

A

B C

D

E

 

We have BF≥PQ=SR. So 2BF≥PQ+SR, 

which is the same as 
 

).sinsin()sinsin(2 BdCcCfBaBF   

 

Similarly, 
 

).sinsin()sinsin(2

),sinsin()sinsin(2

CbAaAdCcDF

AfBcBbAcBD


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Next, by the extended sine law, 

.
sin2

,
sin2

,
sin2 E

DE
R

C

BD
R

A

BF
R ECA   

 
Then using the inequalities and equations 

above, we have 
 

.
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sin
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4sin
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4
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




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




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
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Example 6. (Great Britain, 1988) Let four 

consecutive vertices A, B, C, D of a 

regular polygon satisfy 
 

.
111

ADACAB
  

Determine the number of sides of the 

polygon. 

 

Solution. Let the circumcircle of the 

polygon have center O and radius R. Let α 

=∠AOB, then 0 < 3α =∠AOD < 360°. So 

0 < α < 120°. Also, from 
 

,
2

3
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,sin2,
2
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


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RACRAB


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we get 
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3
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1
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1

2
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1

   

Clearing denominators, we have 
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Then 7α/4=90°, that is α=360°/7. So the 

polygon has 7 sides. 

 

Example 7. (Austria, 1973)  Prove that 

if the angles of a convex octagon are all 

equal and the ratio of all pairs of 

adjacent sides is rational, then each 

pair of opposite sides has equal length.  

 

Solution. Without loss of generality, we 

may assume the sides of such a 

polygon A1A2…A8 are rational (since 

the conclusion is the same for octagons 

similar to such an octagon). Now the 

sum of all angles of the octagon is 

6×180°. Hence each angle is 45°.  

 

Let vn be the vector from An to An+1 for 

n=1,2,…,8 (with A9=A1). Then the 

angle between vn and vn+1 at the origin 

is 45°. Observe that the sum of these 

vectors is zero since we start at A1 and 

traverse the octagon once to return to 

A1.  

 

Let i and j be a pair of unit vectors 

perpendicular to each other at the 

origin. By rotation, we may assume v1 

is a vector in the i direction and v3 is in 

the j direction. Then v1+v5=xi and v3+v7 

= yj for some rational x and y. Also,  
 

jrirvvvv 228642   

 
for some rational r. Then 

.0)2()2(
8

1

 
n

nvjryirx  

Since, x and r are rational, we must 

have x = r = 0. That is, v5 = −v1. By 

rotating the i, j vectors by 45°, similarly 

we get v6= −v2. Then also v7= −v3 and 

v8= −v4. The result follows. 

 

 

 

                                 (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is April 10, 2015. 

  

Problem 461.  Inside rectangle ABCD, 

there is a circle. Points W, X, Y, Z are on 

the circle such that lines AW, BX, CY, 

DZ are tangent to the circle. If AW=3, 

BX=4, CY=5, then find DZ with proof. 
 
Problem 462. For all x1, x2, …, xn ≥ 0, 

let xn+1 = x1, then prove that 
 


 

 





n

k k

k

k

n

x

x

x1
2

1

2

1

2
.

2)1()1(

1  

 
Problem 463. Let S be a set with 20 

elements. N 2-element subsets of S are 

chosen with no two of these subsets 

equal. Find the least number N such 

that among any 3 elements in S, there 

exist 2 of them belong to one of the N 

chosen subsets. 

 

Problem 464. Determine all positive 

integers n such that for n, there exists 

an integer m with 2n−1 divides m2+289. 
 

Problem 465. Points A, E, D, C, F, B 

lie on a circle Γ in clockwise order. 

Rays AD, BC, the tangents to Γ at E and 

at F pass through P. Chord EF meets 

chords AD and BC at M and N 

respectively.  Prove that lines AB, CD, 

EF are concurrent. 

 

***************** 

Solutions 

**************** 
 
Problem 456. Suppose x1, x2, …, xn are 

non-negative and their sum is 1. Prove 

that there exists a permutation σ of 

{1,2,⋯,n} such that  
 

xσ(1)xσ(2)+xσ(2) xσ(3)+⋯+xσ(n)xσ(1) ≤ 1/n. 
 
Solution. CHAN Long Tin (Cambridge 

University, Year 3), Ioan Viorel 

CODREANU (Secondary School 

Satulung, Maramures, Romania), 

KWOK Man Yi (Baptist Lui Ming 

Choi Secondary School, S4), Samiron 

SADHUKHAN (Kendriya Vidyalaya, 

India) and WONG Yat (G. T. (Ellen 

Yeung) College). 
 
 
Assume the contrary is true. Let σ(n+1) = 

σ(1) for all permutations σ. For 1≤i<j≤n, 

the terms xixj and xjxi appear a total of 

2n(n−2)! times in 
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This simplifies to (*) .
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n
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 However, 

by the Cauchy-Schwarz inequality,  
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which contradicts (*). 

 

Problem 457. Prove that for each n = 

1,2,3,…, there exist integers a, b such  that 

if  integers x, y are relatively prime, then  

.)()( 22 nybxa   
 
 
Solution. Samiron SADHUKHAN 

(Kendriya Vidyalaya, India) and WONG 

Yat (G. T. (Ellen Yeung) College). 
 
There are (2n+1)2 ordered pairs (r,s) of 

integers satisfying |r|, |s| ≤ n. Assign a 

distinct prime number pr,s to each such 

(r,s). By the Chinese remainder theorem, 

there exist integers a,b such that for all 

integers r, s satisfying  |r|, |s| ≤ n, we have 

a≡r (mod pr,s) and b≡s (mod pr,s).  

 

Let integers x, y be relatively prime. 

Assume (x,y) has distance at most n from 

(a,b). Then |a−x|≤n and |b−y|≤n. Let 

a−x=r and b−y=s. Then x=a−r and 

y=b−s are multiples of pr,s , contradicting 

gcd(x,y) = 1. Therefore, 
 

.)()( 22 nybxa   

 

Problem 458. Nonempty sets A1, A2, A3 

form a partition of {1,2,…,n}. If x+y=z 

have no solution with x in Ai , y in Aj , z in 

Ak and {i,j,k}={1,2,3}, then prove that A1, 

A2, A3 cannot have the same number of 

elements.  
 

Solution. Oliver GEUPEL (Brühl, 

NRW, Germany) and John GLIMMS. 

 
Without loss of generality, say 1∈A1 and 
the smallest element in A2∪ A3 is b∈ A2. 
Let the elements in A3 be c1, c2, …, ck in 
increasing order.  
 
Assume ci+1−ci=1 for some i. Then take i 
to be the smallest possible. Since b∈A2, 
the equations (ci−b)+b=ci and 
(ci−b+1)+b=ci+1 imply ci−b and ci−b+1 
are both not in A1. 
 
Since 1∈A1 and (ci−b)+1= ci−b+1, so 
either ci−b+1 and ci−b both are in A2 or 
both are in A3. Since i is smallest such 
that ci+1−ci=1, so ci−b+1 and ci−b cannot 
be in A3. However, ci−b+1 and ci−b in 
A2, b−1 in A1 (by property of b) and 
(b−1)+(ci−b+1)=ci  lead to contradiction. 
So ci+1−ci ≥ 2 for all i. 
 
Finally, since 1+(ci−1)=ci , we get 
ci−1∉B. Hence ci−1∈A. Then A1 
contains 1, c1−1, c2−1, … , ck−1. 
Therefore, A1 has more elements than A3. 
 

Problem 459. H is the orthocenter of 

acute ΔABC. D,E,F are midpoints of 

sides BC, CA, AB respectively. Inside 

ΔABC, a circle with center H meets 

DE at P,Q, EF at R,S, FD at T,U. Prove 

that CP=CQ=AR=AS=BT=BU.  
 
Solution. John GLIMMS. 
 

r
r

r r r

r

I=A,B,C

D

E

FH

P
Q R

S

TU

J

 

Let lines AH and FE meet at J. From 

AH⊥BC and BC||FE, we get FE is 

perpendicular to AJ and HJ. By folding 

along DE, EF and FD, we can make a 

tetrahedron having ΔDEF as the base 

and points A, B, C meet at a point I. 

Then FE is perpendicular to IJ and HJ. 

So FE is perpendicular to the plane 

through I,J,H. Then FE⊥IH. Similarly, 

DE⊥IH. Then the plane through D,E,F 

is perpendicular to IH. By Pythagoras’ 

theorem, IH2+r2 = CP2 = CQ2 = AR2 = 

AS2 = BT2= BV2, where r is the radius of 

the circle. 
 
Other commended solvers: Adnan 

ALI (Atomic Energy Central School 4, 

Mumbai, India), Andrea FANCHINI 
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(Cantú, Italy), William FUNG, Oliver 

GEUPEL (Brühl, NRW, Germany), 

MANOLOUDIS Apostolis (4 High 

School of Korydallos, Piraeus, Greece), 

Samiron SADHUKHAN (Kendriya 

Vidyalaya, India), Titu ZVONARU 

(Comăneşti, Romania) and Neculai 

STANCIU (“George Emil Palade’’ 

Secondary School, Buzău, Romania). 

 

Problem 460. If x,y,z > 0 and x+y+z+2 

= xyz, then prove that  
 

  .26 xyzxyzzyx   

 
Solution. Adnan ALI (Atomic Energy 

Central School 4, Mumbai, India), 

CHAN Long Tin (Cambridge 

University, Year 3), Ioan Viorel 

CODREANU (Secondary School 

Satulung, Maramures, Romania), 

Oliver GEUPEL (Brühl, NRW, 

Germany), KWOK Man Yi (Baptist 

Lui Ming Choi Secondary School, S4), 

Vijaya Prasad NULLARI (Retired 

Principal, AP Educational Service, India), 

Nicuşor ZLOTA (“Traian Vuia” 

Technical College,Focşani, Romania) 

and Titu ZVONARU (Comăneşti, 
Romania). 
 
Let  
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
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Using x+y+z+2 = xyz, we get a+b+c = 

1. Then x = (1−a)/a = (b+c)/a and 

similarly y=(c+a)/b and z=(a+b)/c. By 

the AM-GM inequality, we have 
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Other commended solvers: Paolo 

PERFETTI (Dipartimento di 

Matematica, Università degli studi di 

Tor Vergata Roma, via della ricerca 

scientifica, Roma, Italy), WONG Yat 

(G. T. (Ellen Yeung) College). 

 

 
 

Olympiad Corner 
 
                       (Continued from page 1) 

 

Problem 5. On each of the 20142 

squares of a 2014×2014-board a light 

bulb is put. Light bulbs can be either on or 

off. In the starting situation a number of 

light bulbs are on. A move consists of 

choosing a row or column in which at 

least 1007 light bulbs are on and changing 

the state of all 2014 light bulbs in this row 

or column (from on to off or from off to 

on). Find the smallest non-negative 

integer k such that from each starting 

situation there is a finite sequence of 

moves to a situation in which at most k 

light bulbs are on. 
   

 
 
 

Polygonal Problems  
 
                           (Continued from page 2) 

 

 

Example 8. (IMO 1997) Equilateral 

triangles ABK, BCL, CDM, DAN are 

constructed inside the square ABCD. 

Prove that the midpoints of the four 

segments KL, LM, MN, NK and the 

midpints of the eight segments AK, BK,  

BL, CL, CM,  DM,  DN,  AN are the twelve 

vertices of a regular dodecagon. 

 

Solution.  

D

A B

C

M

NL

P2

O

P1

 

Let us denote the midpoints of segments 

LM, AN, BL, MN, BK, CM, NK, CL, DN, 

KL, DM, AK by P1, P2, P3, P4, P5, P6, P7, 

P8, P9, P10, P11, P12, respectively. To prove 

the dodecagon 
  

P1P2P3P4P5P6P7P8P9P10P11P12 
 
is regular, we observe that BL=BA and 

∠ABL=30°. Then ∠BAL=75°. Similarly 

∠DAM =75°. So  
 
∠LAM =∠BAL+∠DAM −∠BAD=60°. 

 
Along with AL=AM, we see triangle ALM 

is equilateral.  

 

Looking at triangles OLM and ALN, we 

get OP1=½LM, OP2=½AL and OP2|| AL. 

Hence, OP1=OP2, ∠P1OP2=∠P1AL = 30°, 

∠P2OM =∠DAL=15° and ∠P2OP3 = 

2∠P2OM = 30°. By symmetry, we can 

conclude that the dodecagon is regular. 

Example 9. (IMO 1992, Shortlisted 

Problem from India) Show that in the 

plane there exists a convex polygon of 

1992 sides satisfying the following 

conditions: 
 
(i) its sides lengths are 1,2,3,…,1992 in 

some order; 
 
(ii) the polygon is circumscribable 

about a circle. 

 

Solution. For a positive number r, let us 

draw a circle of radius r and let us draw 

a polygonal path A1A2…A1993 such that 

for i=1 to 1992, side AiAi+1 is tangent to 

the circle at a point Ti and T1992A1993 = 

A1T1, T1A2 = A2T2, … , T1991A1992 = 

A1992T1992.  
 

O

T1A1

A2

A1992

A1993

T1992

T1991

T2

 

To achieve condition (i), we need A1A2, 

A2A3, …, A1992A1993 to be a permutation 

of 1, 2, …, 1992. This can be done as 

follow:  
 
   If i≡1 (mod 4), then let AiTi=1/2. 

   If i≡3 (mod 4), then let AiTi=3/2. 

   If i≡0,2 (mod 4), then let AiTi=i−3/2. 

 

We can check that the lengths of AiAi+1 

for i=1 to 1992 are 1, 2, 4, 3, 5, 6, 8, 

7,…, 1989,1990,1992,1991. 

 

To achieve condition (ii), we define a 

function 

.arctan2

)(

1992

1

1992

1

1











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i

ii

i

ii

r

TA

OAArf
 

Observe that f (r) is a continuous 

function on (0,∞). As r tends to 0, f (r) 

tends to infinity and as r tends to 

infinity, f (r) tends to 0. By the 

intermediate value theorem, there 

exists r such that f (r) = 2π. Then 

A1993=A1 and A1A2…A1992 is a desired 

polygon. 

 

We remark that if 1992 is replaced by 

other positive integers of the form 4k, 

then there are such 4k-sided polygon.  
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Olympiad Corner 
 
Below are the problems of the 2015 

Canadian Mathematical Olympiad 

held in January 28, 2015. 
 

Notation: If V and W are two points, 
then VW denotes the line segment with 
endpoints V and W as well as the length 
of this segment. 
 
Problem 1. Let ℕ = {1,2,3,…} denote 
the set of positive integers. Find all 
functions f, defined on ℕ and taking 
values in ℕ, such that (n−1)2 < 
f(n)f(f(n)) < n2+n for every positive 
integer n. 
 
Problem 2. Let ABC be an 

acute-angled triangle with altitudes 

AD, BE and CF. Let H be the 

orthocenter, that is, the point where the 

altitudes meet. Prove that 
 

.2



CFCHBEBHADAH

CBCABABCACAB  

 

Problem 3. On a (4n+2)×(4n+2) 

square grid, a turtle can move between 

squares sharing a side. The turtle 

begins in a corner square of the grid 

and enters each square exactly once, 

ending in the square where she started.  

 
 
                                 (continued on page 4) 

Tournament of the Towns 
 

Kin Yin Li 
 

    
 
        In 1980, Kiev, Moscow and Riga 

participated in a mathematical problem 

solving contest for high school students, 

later called the Tournament of the 

Towns.  At present thousands of high 

school students from dozens of cities all 

over the world participate in this 

contest. In this article, we present some 

very interesting math problems from 

this contest. At the end of the article, 

there are some information on where 

interested readers can find past 

problems and solutions of this contest. 
 
        Here are some examples we enjoy. 
 

Example 1. (Junior Questions, Spring 

1981, proposed by A. Andjans) Each of 

64 friends simultaneously learns one 

different item of news. They begin to 

phone one another to tell them their 

news. Each conversation last exactly 

one hour, during which time it is 

possible for two friends to tell each 

other all of their news. What is the 

minimum number of hours needed in 

order for all of the friends to know all 

the news? 
 
Solution. More generally, suppose there 

are 2n friends. After n rounds, the most 

anyone can learn are 2n
 pieces of gossip. 

Hence n rounds are necessary. We now 

prove by induction on n that n rounds 

are also sufficient. For n=1, the result is 

trivial. Suppose the result holds up to 

n−1 for some n≥2. Consider the next 

case with 2n friends. Have them call 

each other impairs in the first round. 

After this, divide them into two groups, 

each containing one member from each 

pair who had exchanged gossip. Each 

group has 2n−1 friends who know all the 

gossip among them. By the induction 

hypothesis, n−1 rounds are sufficient for 

everyone within each group to learn 

everything. This completes the 

induction argument. In particular, with 

64 friends, 6 rounds are both necessary 

and sufficient. 

  

 
Example 2. (Senior Questions, Spring 

1983, proposed by A. Andjans) There 

are K boys placed around a circle. Each 

of them has an even number of sweets. 

At a command each boy gives half of his 

sweets to the boy on his right. If, after 

that, any boy has an odd number of 

sweets, someone outside the circle gives 

him one more sweet to make the number 

even. This procedure can be repeated 

indefinitely. Prove that there will be a 

time at which all boys have the same 

number of sweets. 

 

Solution. Suppose initially the 

maximum number of sweets a boy has is 

2m, and the minimum is 2n. We may as 

well assume that m>n. After a round of 

exchange and possible augmentation, 

we claim that the most any boy can have 

is 2m sweets. This is because he could 

have kept at most m sweets, and 

received m more in the exchange, but 

will not be augmented if he already has 

2m sweets.  

 

On the other hand, at least one boy who 

had 2n sweets will have more than that, 

because as long as m>n, one of these 

boys will get more than he gives away. 

It follows that while the maximum 

cannot increase, the minimum must 

increase until all have the same number 

of sweets.  
 

Example 3. (Junior Questions, Autumn 

1984) Six musicians gathered at a 

chamber music festival. At each 

scheduled concert some of these 

musicians played while the others 

listened as members of the audience. 

What is the least number of such 

concerts which would need to be 

scheduled in order to enable each 

musician to listen, as a member of the 

audience, to all the other musicians?  

 

 
 

                                  (continued on page 2) 
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Solution. Let the musicians be A, B, C, D, 

E and F. Suppose there are only three 

concerts. Since each of the six must 

perform at least once, at least one 

concert must feature two or more 

musicians. Say both A and B perform in 

the first concert. They must still perform 

for each other. Say A performs in the 

second concert for B and B in the third 

for A. Now C, D, E and F must all 

perform in the second concert, since it is 

the only time B is in the audience. 

Similarly, they must all perform in the 

third. The first concert alone is not 

enough to allow C, D, E and F to 

perform for one another. Hence we need 

at least four concerts. This is sufficient, 

as we may have A, B and C in the first, A, 

D and E in the second, B, D and F in the 

third and C, E and F in the fourth.  

 

Example 4. (Junior Questions, Autumn 

1984, proposed by V. G. Ilichev) On the 

Island of Camelot live 13 grey, 15 

brown and 17 crimson chameleons. If 

two different chameleons of different 

colours meet, they both simultaneously 

change colour to the third colour (eg. If 

a grey and a brown chameleon meet 

each other they both change to 

crimson). Is it possible that they will 

eventually all be the same colour? 

 

Solution. In this case the numbers of 

chameleons of each colour at the start 

have remainders of 0, 1 and 2 when 

divided by three. Each “meeting” 

maintains such a situation (not 

necessarily in any order) as two of 

these remainders must either be 

reduced by 1 (or increased by 2) while 

the other must be increased by 2 (or 

reduced by 1). Thus at least two 

colours are present at any stage, 

guaranteeing the possibility of 

obtaining all of the three colours in fact 

by future meetings.  

 

Note. The only way of getting 

chameleons to be of the same colour 

would be getting an equal number of 

two colours first. This would mean 

getting two with the same remainder on 

division by three. This would have 

been possible if we had started with, 

say 15 of each colour. From this 

position we can obtain sets with 

remainders equal to {0,0,0}, {1,1,1} 

and {2,2,2}. 

 

Example 5.  (Junior Questions, Spring 

1985, proposed by S. Fomin) There are 

68 coins, each coin having a different 

weight that that of each other. Show how 

to find the heaviest and lightest coin in 

100 weighings on a balance beam. 
 

Solution 1. First divide into 34 pairs and 

perform 34 weighings, each time 

identifying the heavier and lighter coins. 

Put all the heavier coins into one group 

and the lighter coins into another. Divide 

the group with heavier coins into 17 pairs, 

and perform 17 weighings on these to 

identify the 17 heavier coins. Continue 

this process with the group of heavier 

coins each time. If there is an odd number 

of coins at any stage, the odd coin out 

must be carried over to the following stage. 

There will be a total of 17+8+4+2+1+1=3 

such weighings required for identifying 

the heaviest coin. 

 

A similar 33 weighings of the lighter 

group will identify the lightest coin. The 

total number of weighing is thus 

34+33+33=100, as required.  

 

Solution 2. More generally, we show that 

3n−2 weighings are sufficient for 2n coins. 

We first divide the coins into n pairs, and 

use n weighings to sort them out into a 

“heavy” pile and a “light” pile. The 

heaviest coin is among the n coins in the 

“heavy” pile. Each weighing eliminates 1 

coin. Since there are n coins, n−1 

weighings are necessary and sufficient. 

Similarly, n−1 weighings will locate the 

lightest coin in the “light” pile. Thus the 

task can be accomplished in 3n−2 

weighings. 

 

Example 6. (Junior Questions, Spring 

1987, proposed by D. Fomin) A certain 

number of cubes are painted in six colours, 

each cube having six faces of different 

colours (the colours in different cubes 

may be arranged differently). The cubes 

are placed on a table so as to form a 

rectangle. We are allowed to take out any 

column of cubes, rotate it (as a whole) 

along its long axis and place it in a 

rectangle. A similar operation with rows is 

also allowed. Can we always make the 

rectangle monochromatic (i.e. such that 

the top faces of all the cubes are the same 

colour) by means of such operations?  

 

Solution. The task can always be 

accomplished, and we can select the top 

colour in advance, say red. By fixing a 

cube, we mean bringing its red face to the 

top. Given a rectangular block, we fix one 

cube at a time, from left to right, and from 

front to back. 

 

Suppose that the cube in the i-th row 

and the j-th column is the next to be 

fixed. Suppose that we need to rotate 

the i-th row. In order not to unfix the 

first j−1 cubes of this row, we rotate 

each of the first j−1 columns so that all 

red faces are to the left. They remain to 

the left when the i-th row is rotated. We 

can now refix the first j−1 columns.  

 

Similarly, if we need to rotate the j-th 

column, we can go through an 

analogous three-step process. 
 
Example 7. (Senior Questions, Autumn 

1987, proposed by A. Andjans)  A 

certain town is represented as an 

infinite plane, which is divided by 

straight lines into squares. The lines are 

streets, while the squares are blocks. 

Along a certain street there stands a 

policeman on each 100th intersection. 

Somewhere in the town there is a 

bandit, whose position and speed are 

unknown, but he can move only along 

the streets. The aim of the police is to 

see the bandit. Does there exist an 

algorithm available to the police to 

enable them to achieve their aim?    

 

Solution. We assume that (a) there is no 

limit to how far a policeman can see 

along the street he is on; (b) there is no 

overall time limit, and (c) if the bandit 

is ever on the same street as a 

policeman he will be seen. 

 

Let i, j and k denote integers, let the 

North-South streets be x=i for all i, the 

East-West streets y=j for all j and 

suppose the k-th policeman is at 

(100k,0). 

 

For all even k the k-th policeman 

remains stationary throughout. This 

traps the bandit in the infinite strip 

between x=200k and x=200(k+1) for 

some k, say k*. 

 

All other policemen first travel along 

y=0 towards (0,0) until they reach the 

first cross street x=s for which there is 

a policeman on every street x=i for i 

between 0 and s. Police are to travel at 

regulation speed, say one block per 

minute, but nevertheless there will 

come a time, dependent only on k*,  

when every street x=i on the k* strip 

will be policed.  

 

 

                                 (continued on page 4) 
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Problem Corner 

 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is August 27, 2015. 

  

Problem 466.  Let k be an integer 

greater than 1. If k+2 integers are 

chosen among 1,2,3,…,3k, then there 

exist two of these integers m,n such 

that k<|m−n|<2k. 
 

Problem 467. Let p be a prime number 

and q be a positive integer. Take any pq 

consecutive integers. Among these 

integers, remove all multiples of p. Let 

M be the product of the remaining 

integers. Determine the remainder 

when M is divided by p in terms of q. 
 
Problem 468. Let ABCD be a cyclic 

quadrilateral satisfying BC>AD and 

CD>AB.  E, F are points on chords BC, 

CD respectively and M is the midpoint 

of EF. If BE=AD and DF=AB, then 

prove that BM⊥DM. 

 

Problem 469. Let m be an integer 

greater than 4. On the plane, if m points 

satisfy no three of them are collinear 

and every four of them are the vertices 

of a convex quadrilateral, then prove 

that all m of the points are the vertices 

of a m-sided convex polygon. 
 
Problem 470. If a, b, c>0, then prove 

that 

.
3

)2()2()2( 222222

cabcab
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***************** 

Solutions 

**************** 
 
Problem 461. Inside rectangle ABCD, 

there is a circle. Points W, X, Y, Z are on 

the circle such that lines AW, BX, CY, 

DZ are tangent to the circle. If AW=3, 

BX=4, CY=5, then find DZ with proof. 
 
Solution. Adnan ALI (Atomic Energy 

Central School 4, Mumbai, India), 

Adithya BHASKAR (Atomic Energy 

School 2, Mumbai, India), Andrea 

FANCHINI (Cantú, Italy), William 
FUNG, KWOK Man Yi (Baptist Lui 

Ming Choi Secondary School, S4), Jon 
GLIMMS, LKL Excalibur (Madam Lau 

Kam Lung Secondary School of MFBM), 

Corneliu MĂNESCU-AVRAM (“Henri 

Mathias Berthelot” Secondary School, 

Ploieşti, Romania), MANOLOUDIS 

Apostolos (4 High School of Korydallos, 

Piraeus, Greece), Vijaya Prasad 
NALLURI (Retired Principal, AP 

Educational Service, India), Alex 
Kin-Chit O (G.T. (Ellen Yeung) College), 

Toshihiro SHIMIZU (Kawasaki, Japan), 

Titu ZVONARU (Comăneşti, Romania) 
and Neculai STANCIU (“George Emil 

Palade’’ Secondary School, Buzău, 

Romania). 
 

A B

CD

O

P

Q

W X

Z
Y

 

 
Let r be the radius of the circle. By 

Pythagoras’ theorem, we have  
 

r2 = AW2−AO2 =BX2−BO2 = CY2−CO2 

        = DZ2−DO2.    (*) 
 

Let P,Q be the feet of perpendiculars from 

O to AB, CD respectively. Then  
 
    AO2−BO2 = (AP2 +PO2) − (BP2+PO2) 

 = (DQ2+QO2) − (CQ2+QO2) = DO2−CO2.  
 

Using (*), we get AW2−BX2 =AO2−BO2 = 

DO2−CO2 =DZ2−CY2. Then 
  

.23222  CYBXAWDZ  

 

Problem 462. For all x1, x2, …, xn ≥ 0, let 

xn+1 = x1, then prove that 
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Solution. Adnan ALI (Atomic Energy 

Central School 4, Mumbai, India), 

Adithya BHASKAR (Atomic Energy 

School 2, Mumbai, India), Ioan Viorel 
CODREANU (Secondary School 

Satulung, Maramures, Romania), 

DHRUV Nevatia (10th Standard, 

Ramanujan Academy, Nashik, India), 

KWOK Man Yi (Baptist Lui Ming Choi 

Secondary School, S4), LKL Excalibur 
(Madam Lau Kam Lung Secondary School 

of MFBM), MAMEDOV Shatlyk 
(School of Young Physics and Maths N 

21, Dashogus, Turkmenistan), Corneliu 
MĂNESCU- AVRAM (“Henri Mathias 

Berthelot” Secondary School, Ploieşti, 
Romania), Paolo PERFETTI (Math 

Dept, Università degli studi di Tor 

Vergata Roma, via della ricerca 

scientifica, Roma, Italy), Ángel 
PLAZA (Universidad de Las Palmas 

de Gran Canaria, Spain), Toshihiro 
SHIMIZU (Kawasaki, Japan), 

WADAH Ali (Ben Badis College, 

Algeria), Nicuşor ZLOTA (“Traian 

Vuia” Technical College, Focşani, 

Romania), Titu ZVONARU 
(Comăneşti, Romania) and Neculai 
STANCIU (“George Emil Palade’’ 

Secondary School, Buzău, Romania). 

 

By squaring both sides or RMS-AM 

inequality, we have for all a,b ≥ 0,  
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Applying this, we get 
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Problem 463. Let S be a set with 20 

elements. N 2-element subsets of S are 

chosen with no two of these subsets 

equal. Find the least number N such 

that among any 3 elements in S, there 

exist 2 of them belong to one of the N 

chosen subsets. 
 

Solution. Jon GLIMMS, KWOK 
Man Yi (Baptist Lui Ming Choi 

Secondary School, S4), LKL 
Excalibur (Madam Lau Kam Lung 

Secondary School of MFBM) and 

Toshihiro SHIMIZU (Kawasaki, 

Japan). 

 

Let x∈S be contained in k of the N 

2-elements subsets of S, where k is least 

among the elements of S.  

 

Let x1, x2, …, xk be the other elements in 

k of the N 2-element subsets with x. As k 

is least, so each of the xi’s is also 

contained in at least k of the N 2-element 

subsets of S.  
 
Also, there are m=19−k elements w1, 

w2, …, wm∈S not in any of the N 

2-element subsets of S with x. For 
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every pair wr, ws of these, {wr, ws} is 

one of these N 2-element subsets of S 

(otherwise, no two of x, wr, ws form one 

of the N 2-element subsets). Then 
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To get the least case of N=90, we 

divide the 20 elements into two groups 

of 10 elements. Then take all 2-element 

subsets of each of the two groups to get 

45+45=90 2-element subsets of S. 
 

Problem 464. Determine all positive 

integers n such that for n, there exists 

an integer m with 2n−1 divides m2+289. 
 
Solution. Adnan ALI (Atomic Energy 

Central School 4, Mumbai, India), 
Adithya BHASKAR (Atomic Energy 

School 2, Mumbai, India), KWOK 
Man Yi (Baptist Lui Ming Choi 

Secondary School, S4), LKL 
Excalibur (Madam Lau Kam Lung 

Secondary School of MFBM), Corneliu 
MĂNESCU-AVRAM (“Henri Mathias 

Berthelot” Secondary School, Ploieşti, 
Romania), PANG Lok Wing and 
Toshihiro SHIMIZU (Kawasaki, 

Japan). 
 
The case n=1 is a solution. For n>1, we 

first show if a prime q of the form 4k+3 

divides a2+b2, then q divides a and b. 

Assume gcd(q,a)=1. Let c=aq−2. Then 

by Fermat’s little theorem, ac=aq−1≡1 

(mod q). As q|a2+b2, so b2≡−a2 (mod 

q). Then (bc)2≡−(ac)2≡ −1 (mod q) 

and (bc)q−1 = (bc)2(2k+1) ≡ = −1 (mod q), 

contradicting Fermat’s little theorem. 

So q divides a (and b similarly). 

 

If n>1, then 2n−1≡3 (mod 4). Hence 

2n−1 has a prime divisor q≡3 (mod 4). 

By the fact above, q divides m2+289 

implies q divides m and 17. Then q=17 

≢3 (mod 4), contradiction. 

 

Problem 465. Points A, E, D, C, F, B 

lie on a circle Γ in clockwise order. 

Rays AD, BC, the tangents to Γ at E and 

at F pass through P. Chord EF meets 

chords AD and BC at M and N 

respectively.  Prove that lines AB, CD, 

EF are concurrent. 
 
Comments. A number of solvers 

pointed out if lines AB, CD are parallel, 

then by symmetry lines AB, CD, EF are 

all parallel. So below, we present 

solutions for the case when lines AB 

and CD intersect at a point. 

 

Solution 1. Jon GLIMMS.  
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Let lines AB, CD meet at Q. We have  
 

(1) ∠AFE =∠ADE=180°−∠PDE,  

(2) ∠EFD =∠PED,  

(3) ∠FDQ =∠PFC,  

(4) ∠QAF =∠FCB=180°−∠PCF. 

(5) ∠DAQ =∠DCP,  

(6) ∠QDA =180°−∠PDC. 
 
Then 
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Multiplying these and using PE=PF, we 

have 
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Applying the converse of the 

trigonometric form of Ceva’s theorem to 

ΔADF and point Q, we get lines AB, CD, 

EF are concurrent at Q. 

 

Solution 2. Adnan ALI (Atomic Energy 

Central School 4, Mumbai, India), 
Adithya BHASKAR (Atomic Energy 

School 2, Mumbai, India) and William 
FUNG. 
 
Since the tangents to Γ at E and at F 

intersect at P, line EF is the polar of P. 

Since lines AD, BC intersect at P, the 

polar of P (that is, line EF) passes through 

the intersection of lines AB and CD.  
 

Other commended solvers: KWOK Man 
Yi (Baptist Lui Ming Choi Secondary 

School, S4), MANOLOUDIS Apostolos 
(4 High School of Korydallos, Piraeus, 

Greece) and Toshihiro SHIMIZU 
(Kawasaki, Japan). 
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Problem 3 (Cont’d). In terms of n, 

what is the largest positive integer k 

such that there must be a row or a 

column that the turtle has entered at 

least k distinct times? 

 

Problem 4. Let ABC be an 

acute-angled triangle with circum- 

center O. Let Γ be a circle with centre 

on the altitude from A in ABC, passing 

through vertex A and points P and Q on 

sides AB and AC. Assume that 

BP·CQ=AP·AQ. Prove that Γ is 

tangent to the circumcircle of triangle 

BOC. 

 

Problem 5. Let p be a prime number 

for which (p−1)/2 is also prime, and let 

a, b, c be integers not divisible by p. 

Prove that there are at most p21  

positive integers n such that n<p and p 

divides an+bn+cn. 
   

 
 
 

Tournament of the Towns  
 
                       (Continued from page 2) 

 

When this happens the bandit will be 

trapped on some street y=j*, on a single 

block between x=i* and x=i*+1 for 

some i*. 

 

For each k, as soon as all streets on the 

k-th strip are policed, one of the 

policemen travels north and another 

travels south. For k=k* this will 

inevitably reveal the bandit. 

 

After reading these examples, should 

anyone want to read more, below are 

websites, which books on this contest 

can be ordered or problems and 

solutions of the recent Tournament of 

the Towns can be found. 

 

www.amtt.com.au/ProductList.php?pa

ger=1&startpage=1 

 

www.artofproblemsolving.com/comm

unity/c3239_tournament_of_towns 

 

www.math.toronto.edu/oz/turgor/archi

ves.php 



 

Volume 20, Number 1                                                                  July 2015 – October 2015 

 

Olympiad Corner 
 

Below are the problems of the 2015 

International Mathematical Olympiad 

held in July 10-11, 2015. 
 

Problem 1. We say that a finite set S of 
points in the plane is balanced if, for 
any two different points A and B in S, 
there is a point C in S such that 
AC=BC. We say that S is center-free if 
for any three different points A, B and 
C in S, there is no point P in S such that 
PA=PB=PC. 
 
(a) Show that for all integers n≥3, 

there exists a balanced set 
consisting of n points. 

 
(b) Determine all integers n≥3 for 

which there exists a balanced 
center-free set consisting of n 
points.   

 

Problem 2. Determine all triples 

(a,b,c) of positive integers such that 

each of the numbers  
 

ab−c,  bc−a,  ca−b 
 
is a power of 2.  
 
(A power of 2 is an integer of the form 

2n, where n is a non-negative integer.) 
 
                                 (continued on page 4) 

 

IMO 2015 – Problem Report 
 

Law Ka Ho 
 

    
 
        IMO 2015 was held in Chiang Mai, 

Thailand from July 4 to 16. The 

examinations were held in the mornings 

of July 10 and 11 (contestants unable to 

adhere to this schedule with religious 

reasons were allowed to be quarantined 

in the day and sit the Day 2 paper after 

sunset). The Hong Kong team was 

consisted of the following students: 

 

CHEUNG Wai Lam  (Queen Elizabeth 

School, Form 5) 

KWOK Man Yi (Baptist Lui Ming 

Choi College, Form 4) 

LEE Shun Ming Samuel (CNEC 

Christian College, Form 4) 

TUNG Kam Chuen (La Salle College, 

Form 6) 

WU John Michael (Hong Kong 

International School, Form 4) 

YU Hoi Wai (La Salle College, Form 4)

 

Cheung and Yu were in the IMO team 

last year, while the rest are first-timers. 

 

Since Hong Kong will host IMO 2016, 

we sent a total of 14 observers in 

addition to the contestants, the leader 

and the deputy leader. 

  

The following consists mainly of the 

discussions of the problems, marking 

schemes, performance etc., rather than 

of the solutions. The problems can be 

found from the Olympiad Corner in this 

issue. (Some readers may want to try the 

problems before reading this section.) 

 

Problem 1. This is quite a standard 

question in combinatorial geometry. 

Clearly odd polygons would work for 

both (a) and (b). The construction for 

even n in (a) would take some effort, 

although there were a number of ways 

to get it done. In (b), the proof that even 

n does not work involves a standard 

double counting technique. The Hong 

Kong team did very well in this 

question, with five perfect scores plus a 

6 out of 7. 

 
This question allows partial progress to 

various degrees. One may complete the 

whole question. Those who didn't may 

just figure out the odd polygons, or in 

addition they could complete the rest of 

either part (a) or (b). This is better than 

an all-or-nothing problem. (The 

marking scheme does not require 

students to give any proof that their 

constructions are balanced and/or 

centre-free.) 
 

Students raised quite a lot of queries on 

this question during the contest. The 

most popular question was whether the 

point C has to be unique. There were 

also questions like whether the points 

must be lattice points, and whether the 

points A, B, C could be collinear. 

 

Problem 2. This looks like a typical 

number theory problem. The problem is 

easy to understand. However, all known 

solutions involve a heavy amount of 

considerations of different cases, and 

very limited number theory techniques 

were involved. It ended up more like an 

algebra problem, where one deals with 

the different algebraic expressions by 

inequality bounds and so on. 
 

Although the known solutions were not 

particularly elegant, the answers turned 

out to be surprisingly nice. While most 

contestants would get (2,2,2) and (2,2,3) 

(and its permutations) by trial-and-error 

or whatever methods, there are two 

other sets of solutions (3,5,7) and 

(2,6,11) (and their permutations). 
 

The problem was much more difficult 

than imagined. Very few students 

managed to get a complete solution, 

even among the strongest teams. Most 

of our team members obtained partial 

results on this one. The question also 

killed a lot of the contestants' time, 

leaving them with little time for the last 

problem of Day 1. 
 

                                  (continued on page 2) 
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During the problem selection, there 

were discussions of whether the note 

defining what a power of 2 is should be 

included. Some leaders felt that this 

destroyed the beauty and elegance of the 

paper. Some others insisted that it 

should be there because it would 

otherwise lead to heaps of questions as 

for whether 1 is a power of 2. Some even 

said that in their countries a power of 2 

would mean 2 to the power 2 or above! 
 

While discussing the marking scheme, it 

was decided that no penalty would be 

levied on students who forgot to list the 

permutations. In other words, one would 

not be penalized for saying that there are 

in total four solutions, namely, (2,2,2), 

(2,2,3), (3,5,7) and (2,6,11). I also asked 

for clarification whether points would 

be deducted for not checking the 

solutions satisfied the conditions of the 

problem. The answer was negative. 
 

Problem 3. This is again a difficult 

question, even for members of some 

strong teams. Of course, as previously 

mentioned, most students spent a lot of 

time dealing with the different cases in 

Problem 2. So they simply did not have 

much time left for this one. This could 

be one of the important reasons for the 

general poor performance. However, 

our deputy leader pointed out there is a 

very simple solution using inversion. 

Interested readers may wish to try it out. 
 

During problem selection, there had 

been discussions of whether there 

should be a note (as in Problem 2) 

explaining what orthocenter means. It 

was eventually decided that such note 

should not appear in the question paper. 

During the contest, when a question on 

the meaning of the orthocenter arrived, 

the leader of UK shouted “Finally!”. 
 

Another issue is the possibility of 

having two different configurations. To 

avoid making students spend extra time 

working on the two cases, it was decided 

to fix one configuration, and so the 

phrase ‵A, B, C, K and Q are all different, 

and lie on Γ in this order ʹ was added. 

 

Our team obtained little in this question.  

Only two students managed to show that 

Q, M, H are collinear. According to the 

marking scheme, it is worth 1 point. One 

of the students, however, did not include 

much detail of the proof (after all, the 

question was not to prove that Q, M, H 

are collinear!), and the coordinator 

refused to award the point. This went 

into a long fight. The coordinators referred 

the case to the problem captain, then the 

chief coordinator. It turned out that there 

were many similar cases in which students 

mentioned the collinearity of the three 

points but were not accepted by the 

coordinators as a proof. 
 

To prove that Q, M, H are collinear, one 

simple way is to show that Q, H, A' are 

collinear (where A' is the point on Γ that is 

diametrically opposite A), and that H, M, A' 

are collinear. The coordinators decided that 

the latter is well-known, but the former 

requires an explicit mention that ∠AQH = 

∠AQA' = 90°. To me, it is clear that proving 

the former is more trivial than the latter. If a 

student mentioned that A' is the antipodal 

point of A, then clearly (s)he knew that 

∠AQA'=90° (it's the IMO!). Furthermore, 

∠AQH=90° is given in the problem. What 

is the point of penalizing students who 

failed to copy this again? I didn't really see 

the consistency in accepting the latter as 

well-known but requiring such a detailed 

proof for the former. An urgent Jury 

Meeting was called to discuss this issue. 

The motion of sticking to the original 

marking scheme (i.e. to accept H, M, A' 

being collinear as well-known but to award 

1 point only if ∠AQH = ∠AQA' = 90° is 

explicitly mentioned) was passed by a 

narrow margin.  
 

The next day when we went on excursion, 

the Deputy Leader of Paraguay talked to me 

saying that many people thought that my 

speech was really to-the-point (by that time 

the deputy leaders had moved to the leaders' 

site and were allowed to sit in the Jury 

Meetings). But obviously more thought the 

opposite, as shown by the result of the vote! 

 

Problem 4. This is the first problem of Day 

2. It is a geometry problem, phrased 

carefully to make it as easy as possible. The 

order of the points was clearly given to 

ensure that only one configuration is 

possible. The statement to be proved was 

also rephrased from the original version so 

that the word collinear could be avoided. 

 

Our team did not do well in this question. 

Only three students solved it. Another 

student showed that it suffices to prove 

∠AFK=∠AGL, which according to the 

marking scheme is worth 2 points. This 

sounds pretty much trivial, and the other 

two students would probably know it as 

well (only that they did not write it down 

because they did not find that useful). 

 

In fact, there had been quite a lot of 

discussions on this point. Suppose a student 

showed ∠AFK =∠AGL. How many 

points should that be worth? According 

to the original marking scheme, this 

would be worth 4 points; if a student 

added that hence we are done, that 

would make it 5; by writing by 

symmetry we are done, that would make 

it 6. (A perfect score would require some 

explanation on how symmetry leads to 

the result.) This led to strong opinion 

from the leaders. Eventually the (4,5,6) 

above was revised to (5,6,6).  

 

Problem 5. This is the only question for 

which no student asked questions. This 

is interesting because in Problem 1 set 

notations were deliberately avoided, but 

in this question notation like f: ℝ → ℝ 

did not lead to any question, which to 

me is a bit of surprise. 

 

By nature this problem is quite similar 

to Problem 2. Most students managed to 

make some partial progress, as one 

naturally starts by plugging in certain 

values of x and y into the functional 

equation, leading to some preliminary 

discoveries. However not many students 

obtained full solutions. We are glad 

everyone in our team got partial marks. 
 

The solution to this problem depends 

heavily on fixed points, which in 

hindsight is reasonable considering that 

the expression x+f(x+y) occurs on both 

sides. This also justifies starting the 

problem with setting y=1 as it would 

equate the terms f(xy) and yf(x) on the 

two sides of the equation. Completing 

the solution, on the other hand, is much 

more difficult, as there are too many 

equations and sometimes it is not clear 

what to put into which equation. 

 

There were heated debates when 

discussing the marking scheme to this 

problem. As there were two functions 

satisfying the equation, most solutions 

could be divided into two parts (e.g. 

according to whether f(0)=0 or not). 

Each part would lead to one solution, 

and then one needs to check that the two 

solutions obtained, namely, f(x)=x and 

f(x)=2−x, indeed satisfy the equation in 

the question. In the original proposal of 

the marking scheme, the coordinators 

said that they would accept students 

directly claiming that the former is a 

solution, while for the latter, it must be 

explicitly checked (expanding brackets 

and showing that the two sides are 

equal). 
 
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is November 27, 2015. 
  

Problem 471.  For n ≥ 2, let A1 , A2, …, 

An be positive integers such that Ak≤k 

for 1 ≤ k ≤ n. Prove that A1+A2+⋯+An is 

even if and only if there exists a way of 

selecting + or – signs such that 
 

A1 ± A2 ± ⋯ ± An = 0. 

 

Problem 472. There are 2n distinct 

points marked on a line, n of them are 

colored red and the other n points are 

colored blue. Prove that the sum of the 

distances of all pairs of points with 

same color is less than or equal to the 

sum of the distances of all pairs of 

points with different color. 
 
Problem 473. Determine all functions 

f: ℝ → ℝ such that  for all x,y∈ℝ, 
 

f(x) f(y f(x) − 1) = x2f(y) − f(x). 

 

Problem 474. Quadrilateral ABCD is 

convex and lines AB, CD are not 

parallel. Circle Γ passes through A, B 

and side CD is tangent to Γ at P. Circle 

L passes through C, D and side AB is 

tangent to L at Q. Circles Γ and L 

intersect at E and F. Prove that line EF 

bisects line segment PQ if and only if 

lines AD, BC are parallel.  
 
Problem 475. Let a, b, n be integers 

greater than 1. If bn−1 is a divisor of a, 

then prove that in base b, a has at least 

n digits not equal to zero. 

 

***************** 

Solutions 

**************** 

 
Problem 466. Let k be an integer 

greater than 1. If k+2 integers are 

chosen among 1,2,3,…,3k, then there 

exist two of these integers m,n such 

that k<|m−n|<2k. 
 
Solution. Corneliu MĂNESCU- 
AVRAM (“Henri Mathias Berthelot” 

Secondary School, Ploieşti, Romania). 
 

Let S be the set of the k+2 chosen integers 

and a be the smallest number in S. 

Subtracting a−1 from each element in S do 

not change the differences between the 

elements of S. So, without loss of 

generality, we can suppose 1∈ S. 
 
If S contains an element b such that 

k+2≤b≤2k, then take m=b and n=1 to get 

k<|m−n|=b−1<2k. Otherwise, none of the 

numbers k+2, k+3,…, 2k belong to S. The 

k+1 numbers from S\{1} are then among 

the components of the k pairs (2,2k+1), 

(3,2k+2), … , (k+1,3k). By the pigeonhole 

principle, there is a pair containing two 

numbers m, n from S\{1}. Then we have 

k<|m−n|=2k−1<2k.   
 
Other commended solvers: Prithwijit DE 
(HBCSE, Mumbai, India), Ángel PLAZA 

(Universidad de Las Palmas de Gran 

Canaria, Spain), Toshihiro SHIMIZU 
(Kawasaki, Japan) and Simon YAU. 
 

Problem 467. Let p be a prime number 

and q be a positive integer. Take any pq 

consecutive integers. Among these 

integers, remove all multiples of p. Let M 

be the product of the remaining integers. 

Determine the remainder when M is 

divided by p in terms of q. 
 
Solution. Adithya BHASKAR (Atomic 

Energy School 2, Mumbai, India), Mark 
LAU Tin Wai, Corneliu MĂNESCU- 
AVRAM (“Henri Mathias Berthelot” 

Secondary School, Ploieşti, Romania), Alex 
Kin-Chit O (G.T. (Ellen Yeung) College) 

and Toshihiro SHIMIZU (Kawasaki, 

Japan). 
 
For r = 0, 1, 2, …, p−1, among the pq 

consecutive integers, there are q integers 

having remainders r when divided by p. 

Then M ≣ 1q2q⋯(p−1)q = (p−1)!q (mod p). 

By Wilson’s theorem, (p−1)! ≣ −1 (mod 

p). So M ≣ (−1)q (mod p). Then the 

remainder when M is divided by p is 1 if q 

is even and is p−1 if q is odd. 
 

Problem 468. Let ABCD be a cyclic 

quadrilateral satisfying BC>AD and 

CD>AB.  E, F are points on chords BC, 

CD respectively and M is the midpoint of 

EF. If BE=AD and DF=AB, then prove 

that BM⊥DM. 
 

Solution. George APOSTOLOPOULOS 
(2 High School, Messolonghi, Greece), 

Adithya BHASKAR (Atomic Energy 

School 2, Mumbai, India) and 

MANOLOUDIS Apostolis (4 High 

School of Korydallos, Piraeus, Greece). 





CB

A

D

K
F

E

M

 

Let K be the point such that ABKD is a 

parallelogram. Let θ =∠ABK =∠ADK. 

Now BE=AD=BK, DF=AB=DK and 
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),(9090

),(9090
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Adding these and using ∠ABC + ∠ADC 

= 180°, we get ∠BKE+∠BKD+∠DKF 

=270°. Then ∠EKF = 90°, i.e. KF⊥KE. 

So ME = MK = MF. Also BE = BK and 

DF = DK. Then BM⊥KE and DM⊥KF. 

So BM||KF and DM||KE. So BM⊥DM. 
 
Other commended solvers: Prithwijit 
DE (HBCSE, Mumbai, India), 
Toshihiro SHIMIZU (Kawasaki, 
Japan), Titu ZVONARU (Comăneşti, 
Romania) and Neculai STANCIU 
(“George Emil Palade’’ Secondary 
School, Buzău, Romania). 
 

Problem 469. Let m be an integer 

greater than 4. On the plane, if m points 

satisfy no three of them are collinear 

and every four of them are the vertices 

of a convex quadrilateral, then prove 

that all m of the points are the vertices 

of a m-sided convex polygon. 
 
Solution. William FUNG, Corneliu 
MĂNESCU-AVRAM (“Henri Mathias 

Berthelot” Secondary School, Ploieşti, 
Romania) and Toshihiro SHIMIZU 
(Kawasaki, Japan). 
 
Let S be the set of the m points and C be 

the set of the vertices of the convex hull 

H of S. Then S contains C and C has at 

least 3 elements. Assume there is a 

point P in S and not in C. Let n be the 

number of elements in C. Since H is a 

convex polygon, H can be decomposed 

into n−2 triangles by selecting a vertex 

and connecting all other vertices to this 

vertex. Since no three points of S are 

collinear, P is in the interior of one of 

these triangles. This contradicts every 

four of them are the vertices of a 

convex quadrilateral. So S=C, m=n 

and S is the set of the vertices of a 

m-sided convex polygon.  
 

Problem 470. If a, b, c > 0, then prove 
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Solution. Jon GLIMMS and Henry 
RICARDO (New York Math Circle, 

New York, USA). 

 
Let x=1/a, y=1/b and z=1/c. Below all 

sums are cyclic in the order x,y,z. The 

desired inequality is the same as 
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By Cauchy’s inequality, we have 
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It suffices to show 
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Cross-multiplying and expanding, this 

is the same as 

(*)).42(
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By the AM-GM inequality, we have 
 

(1)         ,2)( 4235 yxyxx  

(2)           )()( 432432 yzyxxyyx                       
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Next,  (3)   zyxyxyx 223223 2)(  

is the same as    xyxyzyxx 322  

after expansion. To get it, we have 
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xy
xxyx 3

3

2

 

by Cauchy’s inequality and the 

AM-GM inequality. Finally adding up 

(1), (2), (3), we get (*). 
 
Other commended solvers: Alex 
Kin-Chit O (G.T. (Ellen Yeung) 

College), Paolo PERFETTI (Math 

Dept, Università degli studi di Tor 

Vergata Roma, via della ricerca 

scientifica, Roma, Italy), Ángel 
PLAZA (Universidad de Las Palmas 

de Gran Canaria, Spain), Toshihiro 
SHIMIZU (Kawasaki, Japan) and 

Nicuşor ZLOTA (“Traian Vuia” 

Technical College, Focşani, Romania). 
 

 

Olympiad Corner 
 
                           (Continued from page 1) 

 
Problem 3. Let ABC be an acute triangle 

with AB > AC. Let Γ be its circumcircle, H 

its orthocenter, and F the foot of the 

altitude from A. Let M be the midpoint of 

BC. Let Q be the point on Γ such that 

∠HQA = 90°, and let K be the point on Γ 

such that ∠HKQ = 90°. Assume that the 

points A, B, C, K and Q are all different, 

and lie on Γ in this order. 
 
Prove that the circumcircles of triangles 

KQH and FKM are tangent to each other. 

 

Problem 4. Triangle ABC has circum- 

circle Ω and circumcenter O. A circle Γ 

with center A intersects segment BC at 

points D and E, such that B, D, E and C are 

all different and lie on line BC in this order. 

Let F and G be the points of intersection 

of Γ and Ω, such that A, F, B, C and G lie 

on Ω in this order. Let K be the second 

point of intersection of the circumcircle of 

triangle BDF and the segment AB. Let L 

be the second point of intersection of the 

circumcircle of triangle CGE and the 

segment CA. 
 
Suppose that the lines FK and GL are 

different and intersect at the point X. 

Prove that X lies on the line AO. 

 

Problem 5. Let ℝ be the set of real 

numbers. Determine all functions f: ℝ → 

ℝ satisfying the equation 
 
f(x + f(x+y)) + f(xy) = x + f(x+y) + y f(x) 

 
for all real numbers x and y.  

 

Problem 6. The sequence a1, a2, … of 

integers satisfies the following conditions: 
 
(i) 1≤ aj ≤2015 for all j ≥ 1; 
 
(ii) k+ak≠l+al for all 1≤k≤l. 
 
Prove that there exist two positive integers 

b and N such that  
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for all integers m and n satisfying n > m ≥ 

N. 

 
 

IMO2015–Problem Report 
 
                      (Continued from page 2) 

 

This led to strong reactions from almost all 

the leaders, as the process of checking is 

indeed trivial, so an indication that the 

student is aware of the need of checking 

should be sufficient. This was 

eventually accepted by the coordinators. 

 

Then the Canadian leader suggested that 

no mark should be deducted at all for 

omitting the checking. The UK leader 

said that he was surprised to hear such a 

suggestion as omitting the checking 

constitutes a logical error, but he would 

be happy to let this suggestion go to a 

vote. The Jury eventually voted against 

the suggestion. So in the end a student 

must somehow mention the checking 

(but need not actually show it) to get full 

mark for this question. 

 

Interestingly, not checking that the 

solutions work would also constitute a 

logical error in Problem 2, but nobody 

made a suggestion to deduct points in 

that case. Also, while the coordinators 

first expected the checking to be 

explicitly carried out, in Problem 1 the 

coordinators did not even expect 

students to do anything to show that 

their constructed sets are balanced and 

center-free. It seems that such 

inconsistency between different 

problems is a common phenomenon. 

 

Problem 6. Traditionally, Problem 6 is 

the most difficult problem of the IMO. 

This year's Problem 6 turned out to be 

not as difficult. Although only 11 out of 

the 577 contestants obtained perfect 

scores, the mean 0.355 for this question 

was one of the highest in recent years. 

 

One of our team members solved this 

question. He mentioned that he got the 

idea by working on small cases first. So 

after all, this simple rule sometimes 

helps us solve not-so-simple problems! 

 

At first sight the problem looks like one 

in mathematical analysis concerning the 

convergence of a sequence. One may 

even be tempted to try to prove that the 

sequence eventually becomes constant, 

which is not true. 

 

There is an interesting interpretation of 

this problem (which is probably how 

this problem came up in the first place). 

At each second a ball is thrown upward, 
and the ball thrown at the i-th second 

will return to the ground after ai seconds. 

So the condition k+ak≠l+al for all 

1≤k≤l means that no two balls shall 

return to the ground at the same time. 

The interested reader may follow this 

line to see whether a solution could be 

obtained more easily. 
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Olympiad Corner 
 
Below are the problems of the 32nd 

Balkan Mathematical Olympiad held 

in May 5, 2015. 
 

Problem 1. Let a, b and c be positive 
real numbers. Prove that 
    
       a3b6+b3c6+c3a6+3a3b3c3 

  ≥  abc(a3b3+b3c3+c3a3) 
                  +a2b2c2(a3+b3+c3). 

 
Problem 2. Let ABC be a scalene 

triangle with incenter I and circum- 

circle (ω). The lines AI, BI, CI intersect 

(ω) for the second time at the point D, 

E, F, respectively. The line through I 

parallel to the sides BC, AC, AB 

intersect the lines EF, DF, DE at the 

points K, L, M, respectively. Prove that 

the points K, L, M are collinear.  

 

Problem 3. A jury of 3366 film critics 

is judging the Oscars. Each critic 

makes a single vote for his favorite 

actor, and a single vote for his favorite 

actress. It turns out that for every 

integer n∈{1,2,…,100} there is an 

actor or actress who has been voted for 

exactly n times. Show that there are 

two critics who voted for the same 

actor and the same actress. 
 
 
                                 (continued on page 4) 

Divisibility Problems 
 

Kin Y. Li 
 

    
 
      Divisibility problems are common 

in many math competitions. Below we 

will look at some of these interesting 

problems. As usual, for integers a and b 

with a≠0, we will write a | b to denote b 

is divisible by a (or in short a divides b).  
 
       In dividing b by a, we get a quotient 

q and a remainder r, we get b/a=q+r/a. 

Notice that b/a is an integer if and only 

if r/a is an integer. The following 

examples exploit this observation.  
 
Example 1. (1999 AIME) Find the 

greatest positive integer n such that 

(n−2)2(n+1)/(2n−1) is an integer. 
 
Solution. The numerator is n3−3n2+4. 

So 
 

.
12

8/27

8

5

4

5

2

1

12

43 2
23







n
nn

n

nn  

 
Multiplying by 8, we get 
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Then 2n−1|27. The greatest such n is 14. 

 

Example 2. (1998 IMO) Determine all 

pairs (a,b) of positive integers such that 

ab2+b+7 divides a2b+a+b. 
 
Solution. We can think of a as a variable 

and b as a constant, then do division of 

polynomials to get 
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Multiplying by b(ab2+b+7), we get 
 

b(a2b+a+b)= (ab2+b+7)a−(7a−b2). 

 

If ab2+b+7 | a2b+a+b, then 
 
ab2+b+7 |  (ab2+b+7)a −b(a2b+a+b) 

                        =7a−b2.    (*) 
 
Case 1 (7a−b2=0). Then 7a=b2. So 7| b. 

Then for some positive integer k, b=7k 

and a=7k2. We can check (a,b)=(7k2,7k) 

are indeed solutions. 

 
Case 2 (7a−b2<0). Then 7a < b2 and 
 

ab2+b+7 ≤|7a−b2| = b2−7a. 
 

However, b2−7a < b2 < ab2+b+7, which 

leads to a contradiction. 

 

Case 3 (7a−b2>0). Then ab2+b+7 ≤ 

7a−b2. If b ≥ 3, then ab2+b+7 ≥ 9a > 

7a > 7a−b2, contradicting (*).  
 
So b = 1 or 2. If b = 1, then (*) yields 

a+8 | 7a−1 = 7(a+8)−57. Hence, a+8 | 

57, which leads to a = 11 or 49. Then we 

can check (a,b) = (11,1) and (49,1) are 

solutions. If b=2, then (*) yields 4a+9 | 

7a−4. Now  
 

4a+9 ≤7a−4 < 8a+18 = 2(4a+9). 
 
So 4a+9 = 7a−4, contradicting a is an 

integer. 

 

Example 3. (2003 IMO) Determine all 

pairs of positive integers (a,b) such that 

a2 /(2ab2−b3+1) is a positive integer. 
 
Solution. Suppose a2 /(2ab2−b3+1) =k is 

a positive integer. Then a2−2kb2a+kb3−k 

= 0. Multiplying by 4 and completing 

squares, we get 
 
(2a−2kb2)2 = (2kb2−b)2 + (4k−b2). (**) 

 
Let M = 2a−2kb2 and N = 2kb2−b.  

 

Case 1 (4k−b2 = 0). Then b is even and 

M = ± N. If M =−N, then b=2a. If M=N, 

then 2a = 4kb2−b = b4−b. We get (a,b) = 

(b/2,b) or ((b4−b)/2,b) with b even. 

These are easily checked to be 

solutions. 
 
Case 2 (4k−b2 > 0).  Then M 2 > N2  and 

N = 2kb2−b = b(2kb−1) ≥ 1(2−1) = 1. So  

M 2 ≥ (N+1)2. Hence, by (**) 
 
          4k−b2= M 2 − N 2 

        ≥ (N+1)2−N2=2N+1 

                    = 4kb2−2b+1, 
 
which implies 4k(b2−1) + (b−1)2 ≤ 0. 
 

                                  (continued on page 2) 
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Then b = 1, k = a/2 and (a,b) = (2k,1) are 

easily checked to be solutions for all 

positive integer k.   

 

Case 3 (4k−b2 < 0). Then M 2 ≤ (N−1)2. 

By (**), 
 
           4k−b2 = M 2 − N 2 

          ≤ (N−1)2−N2=−2N+1 

  = −4kb2+2b+1. 

This implies 
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which is a contradiction.  

 

Exercise 1. Find all positive integers n, a, 

and b such that  
 

nb−1 | na+1. 

       ________________________ 

 

     For divisibility problems involving 

exponential terms, like 2n, often we will 

need to do modulo arithmetic and apply 

Fermat’s little theorem. A useful fact is 

if m>n≥0, then there exist integers s, t 

such that gcd(m,n) = ms+nt. (Proof. If 

n=0, then let s=1, t=0. Suppose it is true 

for all r with 0 ≤ r < n. Then m=qn+r, 

where q=[m/n]. We have  
         
         gcd(m,n) = gcd(m,r) = ms+rt  

      = ms+(m−qn)t = m(s+t)+n(−qt). ) 
 
So if d = gcd(m,n) and am, a n ≡1 (mod 

k), then a d ≡1 (mod k) by the fact. 
 
Example 4. (1972 Putnam Exam) Show 

that if n is an integer greater than 1, then 

2n−1 is not divisible by n. 
 
Solution. Assume there exists an integer 

n > 1 such that n | 2n−1. Since 2n−1 is 

odd, n must be odd. Let p be the least 

prime divisor of n. Then p | 2n−1, which 

is the same as 2n≡1 (mod p). By 

Fermat’s little theorem, 2p−1≡1 (mod p). 

Let d = gcd(n,p−1). Then 2d ≡1 (mod p). 

By the definition of p, since d | n and d 

≤ p−1 < p, we get d = 1. Then 2 = 2d ≡ 1 

(mod p) lead to a contradiction. 

 

       Having seen the last example, here 

comes a hard problem that one needs to 

know the last example to get a start. 

 

Example 5. (1990 IMO) Determine all 

integer n>1 such that (2n+1)/n2 is an 

integer. 
 
Solution. Since 2n+1 is odd, n must be 

odd. Let p be the least prime divisor of n. 

Then p|2n+1, which implies (2n)2≡(−1)2 

=1 (mod p). By Fermat’s little theorem, 

2p−1≡1 (mod p). Let d = gcd(2n,p−1)≥2. 

Then 2d≡1 (mod p). By the definition of p, 

we get gcd(n,p−1)=1. This gives d =2 and 

4=2d≡1 (mod p) gives p=3. Then n = 3km 

for some k ≥ 1 and m satisfying gcd(3,m)=1. 

 

      Using x3+1=(x+1)(x2−x+1) for x=2m, 

23m, 29m, …, we have 
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For odd c, 2c≡2,−1,−4 (mod 9) implies 

22c−2c+1≡3 (mod 9). From the binomial 

expansion, we see 2m+1 = (3−1)m+1 ≡ 3m 

≡ 3 or 6 (mod 9). So each of the factor on 

the right side of (*) is divisible by 3, but not 

by 9. So 2n+1=3k+1s for some integer s 

satisfying gcd(3,s)=1. Now n2 = 32km2 | 2n+1 

= 3k+1s, which implies k=1 and n=3m.  

 

       Assume m>1. Let q be the least prime 

divisor of m.  Now q is odd and q>3. Then 

gcd(m,q−1)=1. Since q | m | n, we have q2 | 

n2 | 2n+1. Then 2q−1 and 22n≡1 (mod q) lead 

to 2w≡1 (mod q), where w = gcd(2n, q−1). 

Then w|2n=6m. Also, from w|q−1 and  

gcd(m,q−1) = 1, we get w|6. Now q>3, 

w=1,2,3,6 and 2w≡1 (mod q) imply q=7. 

Then 7=q | 2n+1, but 2n≡ 1, 2, 4≢−1 (mod 

7), contradiction. Therefore, m=1 and n=3. 

Indeed, 32=9 | 23+1. 
 
Exercise 2. (1999 IMO) Find all pairs of 

positive integers (x,p) such that p is prime, 

x≤2p, and xp−1 divides (p−1)x+1.   

         _________________________ 

 

         In the following examples, we will 

see there is a very clever trick in solving 

certain divisibility problems.  

 

Example 6. (1988 IMO) Let a and b positive 

integers such that ab+1 divides a2+b2. 

Show that (a2+b2)/(ab+1) is square of an 

integer. 
 
Solution. Let k = (a2+b2)/(ab+1). Assume 

there is a case k is an integer, but not a 

square. Among all such cases, consider the 

case when max{a,b} is least possible. Note 

a=b implies 0 < k = 2a2/(a2+1) < 2, which 

implies k=1=12. So in the least case, a≠b, 

say a>b. Now k = (a2+b2)/(ab+1)>0 and it 

can be rewritten as a2−kba+b2−k=0. Note 

k≠b2
 implies a≠0. 

 

      Other than a, let c be the second root of 

x2−kbx+b2−k=0. Then k = (c2+b2)/(cb+1), 

a+c=kb and ac=b2−k. So c=kb−a=(b2−k)/a 

is an integer. Now cb+1=(c2+b2)/k > 0 and 

c=(b2−k)/a≠0 imply c is a positive integer. 

Finally, c = (b2−k)/a < (a2−k)/a < a. Now k 

= (c2+b2)/(cb+1) is an integer, not a 

square and max{b,c} < a = max{a,b}. 

This contradicts max{a,b} is the least. 
 
Example 7. (2007 IMO) Let a and b be 

positive integers. Show that if 4ab−1 

divides (4a2−1)2, then a=b. 
 
Solution. We can consider a as variable 

and b as constant to do a division as in 

example 2, but a nicer way is as follows: 

from (4a2−1)b=a(4ab−1)+(a−b), we get 
 

,)()14()14( 2222 baabJba   
 

where J=a2(4ab−1)+2a(a−b). Observe 

that gcd(b2,4ab−1) =1 (otherwise prime 

p | gcd(b2,4ab−1) would imply p|b and 

p|4ab− (4ab−1)=1). Hence,  
 

4ab−1|(4a2−1)2 ⇔ 4ab−1| (a−b)2. 
 
Now k= (a−b)2/(4ab−1) > 0 and it can be 

rewritten as a2−(4k+2)ba+b2+k=0.  
 
      Assume there exists (a,b) such that k 

is an integer and a≠b, say a>b.  Among 

all such cases, consider the case when 

a+b is least possible.  
 
       Other than a, let c be the second 

root of x2−(4k+2)bx+b2+k=0. Then k = 

(c−b)2/(4cb−1), a+c = (4k+2)b and ac = 

b2+k. So c = (4k+2)b−a = (b2+k)/a is a 

positive integer. So (c,b) is another case 

k is an integer. Since a+b is least 

possible, we would have c ≥ a > b. Now 

c = (b2+k)/a ≥ a leads to k ≥ a2−b2. Then 
 

(a−b)2 = k(4ab−1) ≥ (a2−b2)(4ab−1). 
 
Canceling a−b on both sides, we get 
 

a−b ≥  (a+b)(4ab−1) > a, 
 
a contradiction. 

          _____________________ 
 
     The next example is short and cute. 
 
Example 8. (2005 IMO Shortlisted 

Problem) Let a and b be positive 

integers such that an+n divides bn+n for 

every positive integer n. Show that a=b. 
 
Solution. Assume a≠b. For n = 1, we 

have a+1|b+1 and so a < b. Let p be a 

prime greater than b. Then let n = 

(a+1)(p−1)+1. By Fermat’s little 

theorem, a n =(a p−1) a+1a≡a (mod p). 
 

    So an+n ≡ a+n = (a+1)p ≡ 0 (mod p). 

Then p | an+n | bn+n. By Fermat’s little 

theorem,  
 

0≡bn+n=(bp−1)a+1b+n≡b−a (mod p), 
 
which contradicts 0 < a < b < p. 
 

                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is January 7, 2016. 
  

Problem 476.  Let p be a prime number. 

Define sequence an by a0=0, a1=1 and 

ak+2=2ak+1−pak. If one of the terms of 

the sequence is −1, then determine all 

possible value of p. 
 
Problem 477. In ΔABC, points D, E 

are on sides AC, AB respectively. Lines 

BD, CE intersect at a point P on the 

bisector of ∠BAC.  
 
Prove that quadrilateral ADPE has an 

inscribed circle if and only if AB=AC.  
 
Problem 478. Let a and b be a pair of 

coprime positive integers of opposite 

parity. If a set S satisfies the following 

conditions: 
 
(1) a, b ∈S; 

(2) if x,y,z∈S, then x+y+z∈S, 
 
then prove that every positive integer 

greater than 2ab belongs to S. 

 

Problem 479. Prove that there exists 

infinitely many positive integers k such 

that for every positive integer n, the 

number k2n+1 is composite. 
 

Problem 480. Let m, n be integers with 

n > m > 0. Prove that if 0 < x < π/2, then    
 
        2|sinnx−cosnx| ≤ 3|sinmx−cosmx|. 

 
 

***************** 

Solutions 

**************** 

 

Problem 471. For n ≥ 2, let A1 , A2, …, 

An be positive integers such that Ak≤k 

for 1 ≤ k ≤ n. Prove that A1+A2+⋯+An is 

even if and only if there exists a way of 

selecting + or – signs such that 
 

A1 ± A2 ± ⋯ ± An = 0. 
 
Solution. Adithya BHASKAR 
(Atomic Energy School 2, Mumbai, 
India), Jon GLIMMS and Toshihiro 
SHIMIZU (Kawasaki, Japan). 

 
If A1 ± A2 ± ⋯ ± An = 0, then using Ai ≡ 

±Ai (mod 2), we get A1+A2+⋯+An ≡ 0 

(mod 2). Hence A1+A2+⋯+An is even. 

 

Conversely, we will prove by induction 

that for t from n to 1 that there exists a way 

of selecting signs so that 
 

0 ≤ St = ±At±At+1±⋯±An ≤ t. 
 

The case t=n is 0 < An ≤ n. Suppose the 

case t=k is true, that is  
 

0 ≤ Sk = ±Ak±Ak+1±⋯±An ≤ k. 
 
If Ak−1≤Sk, then let Sk−1= −Ak−1+Sk and we 

have 0≤ Sk−1 = Sk − Ak−1 ≤ k−1. If Ak−1>Sk, 

then let Sk−1=Ak−1−Sk (here −Sk means 

reversing all the signs of Sk) and we have 

0≤ Sk−1≤Ak−1≤k−1. This completes the 

induction. 

 

The case t=1 gives us 0 ≤ ±A1±A2±⋯±An 

≤ 1. As ±A1±A2±⋯±An is an even integer, 

±A1±A2±⋯±An =0. 
 

Problem 472. There are 2n distinct points 

marked on a line, n of them are colored 

red and the other n points are colored blue. 

Prove that the sum of the distances of all 

pairs of points with same color is less than 

or equal to the sum of the distances of all 

pairs of points with different color. 
 
 
Solution. Jon GLIMMS, Toshihiro 
SHIMIZU (Kawasaki, Japan) and Raul 
A. SIMON (Chile). 
 
Let the points be on the real axis with red 

points having coordinates x1<x2<⋯<xn 

and the blue points having coordinates 

y1<y2<⋯<yn. Let Sn denote the sum of 

distances of all pairs of points with same 

color and Dn denote the sum of distances 

of all pairs of points with different color. 

We will prove Si≤Di for all i by induction. 

Now S1=0≤|x1−y1|=D1. Suppose Sn≤Dn. 

For case n+1,  
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Then Sn+1−Dn+1≤Sn−Dn≤0. So Sn+1≤Dn+1.  

 

Problem 473. Determine all functions f: 
ℝ → ℝ such that  for all x,y∈ℝ, 
 

f(x) f(y f(x) − 1) = x2f(y) − f(x). 
 

Solution. Coco YAU (Pui Ching Middle 
School). 

  

The zero function is a solution. Suppose f 

is a solution that is not the zero function. 

Then there exists a∈ℝ such that f(a)≠0. 

Denote the functional equation by (*). 

Setting x=0 in (*), we get  
 

f(0)( f (yf(0)−1) +1 )=0. 
 

If  f(0) ≠ 0, then f (yf(0)−1) = −1. Since 

{yf(0)−1: y∈ℝ}=ℝ, we can see f is the 

constant function −1. Then (*) with 

x=1 yields (−1)2 = −12+1, which is a 

contradiction. So f(0)=0. 

 

Now setting x=a, y=0 in (*), we can get  
 

f(−1) = −1. 
 

Also, if f(b)=0, then setting x=b and 

y=a, we get b=0. Hence,  
 

f(x) = 0 ⇔ x = 0. 
 

Next by setting x=y=1 in (*), we get 

f(1)f(f(1)−1)=0 ⇔ f(1)−1=0 ⇔ f(1)=1. 

 

Setting x=1 in (*), we get 
 
                   f(y−1)=f(y) −1.                (1) 
 
Applying (1) to f(yf(x)−1) in (*), we can 

simplify (*) to 
 
                f(x) f(yf(x)) = x2 f(y).                (2) 

 
Setting x=−1 in (2), we get −f(−y)=f(y). 

So f is an odd function. 

 

Applying induction to (1), we get for n 

= 1,2,3,…,   
                             
                f(y−n) =  f(y)−n.               (3) 
 
Setting y=0, this gives f(−n)= −n. As f 

is odd, we get f(n)=n for all integers n.  

Setting x=n in (2), we get  
 
                   f(ny) = nf(y).                  (4) 
 
Setting y=1/n and y=1/m we get 

1=nf(1/n) and f(n/m)=nf(1/m)=n/m. So 

f(x) = x for all rational x. 

 

Setting y=1 in (2), we get  
 
                   f(x) f( f(x)) = x2.             (5) 
 
Setting x,y to be f(x) in (2), we also get 

 
f(f(x)) f( f(x) f(f(x) ) = f(x)2 f(f(x)).  

 
Cancelling f(f(x)) on both sides, we get 

 
f(x)2 = f( f(x) f(f(x))) = f (x2), 

 
where the second equality follows 

from applying f to both sides of (5). 

Then we see w>0 implies f(w)>0. 

 

For irrational w > 0, assume f(w) > w. 

Take rational q=n/m such that m>0 and 

f(w) > q > w. We have m(q−w) > 0. So 

f(n−mw) = f(m(q−w)) > 0. As f is odd, 

using (4) and (3), we get 
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mf(w)−n = f(mw)−n = f(mw−n) < 0, 
 

which contradicts f(w) > q. Similarly, 

f(w) < w will lead to a contradiction. 

Therefore, f(w)=w for all w and we can 

check (*) holds in this case.  
 
Other commended solvers: Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 

Problem 474. Quadrilateral ABCD is 

convex and lines AB, CD are not 

parallel. Circle Γ passes through A, B 

and side CD is tangent to Γ at P. Circle 

L passes through C, D and side AB is 

tangent to L at Q. Circles Γ and L 

intersect at E and F. Prove that line EF 

bisects line segment PQ if and only if 

lines AD, BC are parallel. 
 
Solution. Jon GLIMMS and 

Toshihiro SHIMIZU (Kawasaki, 

Japan). 



L



C

 F
R

D

A

P

Q

S



K

 
 

Let EF meet PQ at K. Extend PQ to 

meet Γ and L at S and T respectively. 

Let lines AB, CD meet at R. We have   
    
     RP2=RA·RB and RQ2=RC·RD.  (*) 
 
By the intersecting chord theorem, we 

have KP·KS=KE·KF=KQ·KT. Then 

KP(KQ+QS) = KQ(KP+PT). Cancel 

KP·KQ. We have 

                   KP·QS= KQ·PT. 

Then  

              KP=KQ  

        ⇔ QS=PT  

       ⇔ PQ·QS=QP·PT 

       ⇔ AQ·QB=DP·PC. 
 
Using AQ=RQ−RA, QB=RB−RQ, 

DP=RP−RD, PC=RC−RP and (*), we 

get 

.||
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Problem 475. Let a, b, n be integers 

greater than 1. If bn−1 is a divisor of a, 

then prove that in base b, a has at least 

n digits not equal to zero.  
 

Solution. Jon GLIMMS and Toshihiro 

SHIMIZU (Kawasaki, Japan). 
 
Among all numbers that are multiples of 

bn−1, suppose the least number of nonzero 

digits in base b of these numbers is s. Let 

A be one of these numbers with least digit 

sum, say 
 

,21

21
sn

s

nn
bababaA    

 
where n1 > n2 > ⋯ > ns ≥ 0 and 1 ≤ ai < b 

for i=1,2,⋯,s.  

 

Assume there are i,j such that 1≤i<j≤s 

and ni≡nj≡r (mod n) with 0≤ r≤ n−1. 

Then consider  
 

.)( 1 rnn

ji

n

j

n

i baababaAB ji   

 
From bn ≡ 1 (mod bn−1), we get B ≡ 0 

(mod bn−1). If ai+aj<b, then the number 

of nonzero digits of B in base b is s−1, 

contradicting the choice of A. So we must 

have b ≤ ai+aj < 2b.  Let ai+aj = b+q, 

where 0≤q<b. Then  
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Then the digit sum of B is  

,
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which is the digit sum of A. This 

contradicts the choice of A. So n1, n2, …, 

ns(mod n) are pairwise distinct. Then s≤n. 
 
Assume s<n. Then let ni≡ri (mod n) with 

0≤ri<n and consider 
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Since ),1(mod  nrn

bbb ii so C is a 

multiple of bn−1. Now s<n implies 
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contradiction. Therefore, s = n. 
 
Other commended solvers: Mark LAU 

Tin Wai (Pui Ching Middle School) and 

LEUNG Kit Yat (St. Paul’s College, 

Hong Kong). 
 

 

Olympiad Corner 
 
                       (Continued from page 1) 

 

Problem 4. Prove that among any 20 

consecutive positive integers there 

exists an integer d such that for each 

positive integer n we have the 

inequality 

2

5
}{ dndn  

where {x} denotes the fractional part of 

the real number x. The fractional part 

of a real number x is x minus the 

greatest integer less than or equal to x. 
 
 

 
 

Divisibility Problems 
 
                   (Continued from page 2) 

 

Solution of Exercise 1. Let a=qb+r with 

0 ≤r ≤ b−1. Then  

.
1

1

1

1 1

0 
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So we need to find when n b−1 | nr+1. If 

b=1, then r=0 and we get n=2,3. If b>1, 

then n>1 and nb ≥ 4. For nb>4, we have 

0<nr+1≤nb−1+1≤nb/2 +1<nb−1, hence 

no solution. For nb≤4, we have three 

cases, namely (n,b,a) = (2,2,2k−1),  

(3,1,k) and (2,1,k), where k=1,2,3,…. 

 

Solution of Exercise 2. For x<3 or p<3, 

the solutions are (x,p)=(2,2) and 

(1,prime). For x and p ≥3, since p is odd, 

(p−1)x+1 is odd, so x is odd. Let q be 

the least prime divisor of x, which must 

be odd. We have q | x | xp−1 | (p−1)x+1. 

So (p−1)x≡−1 (mod q). By Fermat’s 

little theorem, (p−1)q−1≡1 (mod q). By 

the definition of q, we have gcd(x,q−1) 

=1. Then there are integers a,b such 

that ax=b(q−1)+1 is odd. Then a is odd. 

Now 
 
p−1≡(p−1)b(q−1)+1=(p−1)ax≡−1(mod q) 
 
implies q|p. So q=p. Since x is odd, p = 

q | x and the problem require the 

condition x≤2p , we must have x=p for 

the cases x,p ≥ 3. Observe that 
 

)1(1)1(| 21  mpppp pp  

 
for some m. Then p−1≤2. So x=p=3 

is the only solution. 
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Olympiad Corner 
 
Below are the problems of the Second 

Round of the 32nd Iranian Math 

Olympiad. 
 

Problem 1. A local supermarket is 

responsible for the distribution of 100 

supply boxes. Each box is ought to 

contain 10 kilograms of rice and 30 

eggs. It is known that a total of 1000 

kilograms of rice and 3000 eggs are in 

these boxes, but in some of them the 

amount of either item is more or less 

than the amount required. In each step, 

supermarket workers can choose two 

arbitrary boxes and transfer any 

amount of rice or any number of eggs 

between them. At least how many steps 

are required so that, starting from any 

arbitrary initial condition, after these 

steps the amount of rice and the 

number of eggs in all these boxes are 

equal? 
 
Problem 2. Square ABCD is given. 

Points N and P are selected on sides AB 

and AD, respectively, such that PN = 

NC, and point Q is selected on segment 

AN such that ∠NCB =∠QPN. Prove 

that ∠BCQ = ½∠PQA. 
 

 
 
                                     (continued on page 4) 

Coloring Problems 
 

Kin Y. Li 
 

    
 
      In some math competitions, there 

are certain combinatorial problems that 

are about partitioning a board (or a set) 

into pieces like dominos. We will look 

at some of these interesting problems. 

Often clever ways of assigning color 

patterns to the squares of the board 

allow simple solutions. Below, a m×n 

rectangle will mean a m-by-n or a 

n-by-m rectangle. 

 

Example 1. A 8×8 chessboard with the 

the northeast and southwest corner unit 

squares removed is given. Is it possible 

to partition such a board into thirty-one 

dominoes (where a domino is a 1×2 

rectangle)? 
 
Solution. For such a board, we can color 

the unit squares alternatively in black 

and white, say black is color 1 and white 

is color 2. Then we have the following 

pattern. 
 

1 2 1 2 1 2 1  

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2

 1 2 1 2 1 2 1
 

Each domino will cover two adjacent 

squares, one with color 1 and the other 

with color 2. If 31 dominoes can cover 

the board, there should be 31 squares 

with color 1 and 31 squares with color 2. 

However, in the board above there are 

32 squares of color 1 and 30 squares of 

color 2. So the task is impossible. 
 

Example 2. Eight 1×3 rectangles and 

one 1×1 square covered a 5×5 board. 

Prove that the 1×1 square must be over 

the center unit square of the board. 
 
Solution. Let us paint the 25 unit squares 

of the 5×5 board with colors A, B and C 

as shown on the top of the next column.

 
 

 
 
 

 

 

 

 

    There are 8 color A squares, 9 color B 

squares and 8 color C squares. Each 1×3 

rectangle covers a color A, a color B and 

a color C square. So the 1×1 square 

piece must be over a color B square. 
 
      Next, we rotate the coloring of the 

board (not the board itself) clockwise 

90° around the center unit square.  

 

 

 

 

 

 

 

 

Then observe that the 1×1 square piece 

must still be over a color B square due to 

reasoning used in the top paragraph. 

However, the only color B square that 

remains color B after the 90° rotation is 

the center unit square. So the 1×1 square 

piece must be over the center unit 

square. 

 

Example 3. Can a 8×8 board be covered 

by fifteen 1×4 rectangles and one 2×2 

square without overlapping? 
 
Solution. Consider the following 

coloring of the 8×8 board. 

 

     

     

     

     

     

     

     

     
 

                                  (continued on page 2) 

A B C A B

B C A B C

C A B C A

A B C A B

B C A B C

B A C B A

C B A C B

A C B A C

B A C B A

C B A C B
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        In the coloring of the board, there 

are 32 white and 32 black squares 

respectively. By simple checking, we 

can see every 1×4 rectangle will cover 2 

white and 2 black squares. The 2×2 

square will cover either 1 black and 3 

white squares or 3 black and 1 white 

squares. Assume the task is possible. 

Then the 16 pieces together should 

cover either 31 black and 33 white 

squares or 33 black and 31 white 

squares, which is a contradiction to the 

underlined statement above. 

 

          In coloring problems, other than 

assigning different colors to all the 

squares, sometimes assigning different 

numerical values for different types of 

squares can be useful in solving the 

problem. Below is one such example.  

  

Example 4. Let m,n be integers greater 

than 2. Color every 1×1 square of a m×n 

board either black or white (but not 

both). If two 1×1 squares sharing a 

common edge have distinct colors, then 

call this pair of squares a distinct pair. 

Let S be the number of distinct pairs in 

the m×n board. Prove that whether S is 

odd or even depends only on the 1×1 

squares on the boundary of the board 

excluding the 4 corner 1×1 squares. 

 

Solution. We first divide the 1×1 squares 

into three types. Type 1 squares are the 

four 1×1 squares at the corners of the 

board. Type 2 squares are the 1×1 

squares on the boundary of the board, 

but not the type 1 squares. Type 3 

squares are the remaining 1×1 squares.  

 

        Assign every white 1×1 square the 

value 1 and every black 1×1 square the 

value −1. Let the type 1 squares have 

values a, b, c, d respectively. Let the 

type 2 squares have values x1, x2, …, 

x2m+2n−8 and the type 3 squares have 

values y1, y2, …, y(m−2)(n−2).  

 

         Next for every pair of 1×1 squares 

sharing a common edge, write the 

product of the values in the two squares 

on their common edge. Let H be the 

product of these values on all the 

common edges. For every type 1 square, 

it has two neighbor squares sharing a 

common edge with it. So the number in 

a type 1 square appears two times as 

factors in H. For every type 2 square, it 

has three neighbor squares sharing a 

common edge with it. So the number in 

a type 2 square appears three times as 

factors in H. For every type 3 square, it 

has four neighbor squares sharing a 

common edge with it. So the number in a 

type 3 square appears four times as factors 

in H. Hence, 
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If x1x2⋯x2m+2n−8 = 1, then H = 1 and there are 

an even number of distinct pairs in the 

board. If x1x2⋯x2m+2n−8 = −1, then H = −1 

and there are an odd number of distinct 

pairs in the board. So whether S is even or 

odd is totally determined by the set of type 

2 squares. 

 

      Next we will look at problems about 

coloring elements of some sets.  

 

Example 5. There are 1004 distinct points 

on a plane. Connect each pair of these 

points and mark the midpoints of these line 

segments black. Prove that there are at least 

2005 black points and there exists a set of 

1004 distinct points generating exactly 

2005 black midpoints of the line segments 

connecting pairs of them.  
 

Solution. From 1004 distinct points, we can 

draw k=1004C2 line segments connecting 

pairs of them. Among these, there exists a 

longest segment AB. Now the midpoints of 

the line segments joining A to the other 

1003 points lie inside or on the circle center 

at A and radius ½AB. Similarly, the 

midpoints of the line segments joining B to 

the other 1003 points lie inside or on 

another circle center at B and radius ½AB. 

These two circles intersect only at the 

midpoint of AB. Then there are at least 

2×1003−1=2005 black midpoints generated 

by the line segments.  

 

          To construct an example of a set of 

1004 points generating exactly 2005 black 

midpoints, we can simply take 0, 2, 4, …, 

2006 on the x-axis. Then the black 

midpoints generated are exactly the point at 

1, 2, 3, …, 2005 of the x-axis.. 

 

Example 6. Find all ways of coloring all 

positive integers such that  
 
(1) every positive integer is colored either 

black or white (but not both) and 
  
(2) the sum of two numbers with distinct 

colors is always colored black and their 

product is always colored white. 
 
Also, determine the color of the product of 

two white numbers. 
 

Solution. Other than coloring all 

positive integers the same color, we 

have the following coloring satisfying 

conditions (1) and (2). We claim if m 

and n are white numbers, then mn is a 

white number. To see this, assume there 

are m, n both white, but mn is black. Let 

k be black. By (1), m+k is black and 

(m+k)n = mn+kn is white. On the other 

hand, kn is white and mn is black. So by 

(2), mn+kn would also be black, which 

is a contradiction. 
 

          Next, let j be the smallest white 

positive integer. From (2) and the last 

paragraph, we see every sj is white, 

where s is any positive integer. We will 

prove every positive integer p that is not 

a multiple of j is black. Suppose p=qj+r, 

where q is a nonnegative integer and 0 < 

r < j. Since j is the smallest white integer, 

so r is black. When q=0, p=r is black. 

When q ≥ 1, qj is white and so by (2), 

p=qj+r is black. 

 

Example 7. In the coordinate plane, a 

point (x,y) is called a lattice point if and 

only if x and y are integers. Suppose 

there is a convex pentagon ABCDE 

whose vertices are lattice points and the 

lengths of its five sides are all integers. 

Prove that the perimeter of the pentagon 

ABCDE is an even integer. 
 

Solution. Let us color every lattice point 

of the coordinate plane either black or 

white. If x+y is even, then color (x,y) 

white. If x+y is odd, then color (x,y) 

black. Notice (x,y) is assigned a color 

different from its four neighbors (x±1,y) 

and (x,y±1).  

 

         Now for each of the five sides, say 

AB, of the pentagon ABCDE, let A be at 

(x1, y1) and B be at (x2, y2).  Also let TAB 

to be at (x1,y2). Then ΔABTAB is a right 

triangle with AB as the hypotenuse or it 

is a line segment (which we can 

consider as a degenerate right triangle). 

 

           Since each lattice point is 

assigned a color different from any one 

of its four neighbors, the polygonal path  
 

ATABBTBCCTCDDTDEETEAA 
 
has even length. For positive integers a, 

b, c satisfying a2+b2=c2, since n2≡n 

(mod 2), we get a+b≡c (mod 2). It 

follows the perimeter of ABCDE and the 

length of ATABBTBCCTCDDTDEETEAA are 

of the same parity. So the perimeter of 

ABCDE is even. 

                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is February 29, 2016. 
  

Problem 481. Let S={1,2,…,2016}. 

Determine the least positive integer n 

such that whenever there are n numbers 

in S satisfying every pair is relatively 

prime, then at least one of the n 

numbers is prime. 

 

Problem 482. On ΔABD, C is a point 

on side BD with C≠B,D. Let K1 be the 

circumcircle of ΔABC. Line AD is 

tangent to K1 at A. A circle K2 passes 

through A and D and line BD is tangent 

to K2 at D. Suppose K1 and K2 intersect 

at A and E with E inside ΔACD. Prove 

that EB/EC= (AB/AC)3. 

 

Problem 483. In the open interval (0,1), 

n distinct rational numbers ai/bi 

(i=1,2,…,n) are chosen, where n>1 and 

ai, bi are positive integers. Prove that 

the sum of the bi’s is at least (n/2)3/2. 

 

Problem 484.  In a multiple choice test, 

there are four problems. For each 

problem, there are choices A, B and C. 

For any three students who took the 

test, there exist a problem the three 

students selected distinct choices. 

Determine the maximum number of 

students who took the test.  

 

Problem 485. Let m and n be integers 

such that m>n>1, S={1,2,…,m} and 

T={a1, a2, …, an} is a subset of S. It is 

known that every two numbers in T do 

not both divide any number in S. Prove 

that  

.
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***************** 

Solutions 

**************** 
 

Problem 476. Let p be a prime number. 

Define sequence an by a0=0, a1=1 and 

ak+2=2ak+1−pak. If one of the terms of 

the sequence is −1, then determine all 

possible value of p. 

Solution. Jon GLIMMS and KWOK 

Man Yi (Baptist Lui Ming Choi 

Secondary School, S5). 
 

Observe that p≠2 (otherwise beginning 

with a2, the rest of the terms will be even, 

then −1 cannot appear). On one hand, 

using the recurrence relation, we get 
 
      ak+2≡2ak+1≡⋯≡2k+1a1=2k+1 (mod p).  
 
If am=−1 for some m ≥ 2, then letting k = 

m−2, we get  
 
            −1 = am ≡ 2m−1 (mod p).          (*) 
 
On the other hand, using the recurrence 

relation again, we also have  
 

ak+2≡2ak+1−ak (mod p−1), 
 
which implies ak+2−ak+1 ≡ ak+1−ak ≡ ⋯ ≡ 

a1−a0  = 1 (mod p−1). Then  
 

−1 = am ≡ m+a0 = m (mod p−1), 
 
which implies p−1 divides m+1. By 

Fermat’s little theorem and (*), we get 
 

1≡2m+1≡4·2m−1≡−4 (mod p). 
 
Then p=5. Finally, if p=5, then a3= −1. 
 

Problem 477. In ΔABC, points D, E are 

on sides AC, AB respectively. Lines BD 

and CE intersect at a point P on the 

bisector of ∠BAC. 
 
Prove that quadrilateral ADPE has an 

inscribed circle if and only if AB=AC.  
 
 
Solution. Adnan ALI (Atomic Energy 

Central School 4, Mumbai, India), 

KWOK Man Yi (Baptist Lui Ming Choi 

Secondary School, S5), MANOLOUDIS 

Apostolos (4 High School of Korydallos, 

Piraeus, Greece), Jafet Alejandro Baca 

OBANDO (IDEAS High School, 

Nicaragua) and Toshihiro SHIMIZU 

(Kawasaki, Japan). 
 


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Suppose ADPE has an inscribed circle Γ. 

Since the center of Γ is on the bisector of 

∠BAC, the center is on line AP. Similarly, 

AP also bisects ∠DPE, so ∠APE=∠APD. 

It also follows that ∠APB=∠APC, since 

∠EPB=∠DPC. By ASA, we get ΔAPB≅
ΔAPC with AP common. Then AB=AC.  

 

Conversely, if AB=AC, then ΔABC is 

symmetric with respect to AP. Thus, 

lines BP and CP (hence also D and E) 

are symmetric with respect to AP. By 

symmetry, the bisectors of ∠ADP and 

∠AEP meet at a point I on AP. Then 

the distances from I to lines EA, EP, DP, 

DA are the same. So ADPE has an 

inscribed circle with center I. 

 

Other commended solvers: Mark 

LAU Tin Wai (Pui Ching Middle 

School), Titu ZVONARU (Comăneşti, 
Romania) and Neculai STANCIU 

(“George Emil Palade’’ Secondary 

School, Buzău, Romania). 

 

Problem 478. Let a and b be a pair of 

coprime positive integers of opposite 

parity. If a set S satisfies the following 

conditions: 
 
(1) a, b ∈S; 

(2) if x,y,z∈S, then x+y+z∈S, 
 
then prove that every positive integer 

greater than 2ab belongs to S. 
 

Solution. Toshihiro SHIMIZU 
(Kawasaki, Japan). 
  

Without loss of generality, we assume 

that a is odd and b is even. Let n>2ab. 

Since a and b are coprime, the equation 

ax≡n (mod b) has a solution satisfying 

0≤x<b. Then y=(n−ax)/b is a positive 

integer. Now 

.2
22
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axn
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abab
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
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
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Let x’=x+b, y’=y−a, then x’, y’ are 

positive and ax’+by’=n. Observe x+y 

and x’+y’=x+y+b−a are of opposite 

parity. So we may assume x+y is odd 

(otherwise take x’+y’). Then x+y ≥ 3 

and by (1) and (2),  
 

,Sbbaan    
 
where a appeared x times and b 

appeared y times. 
 

Other commended solvers: KWOK 

Man Yi (Baptist Lui Ming Choi 

Secondary School, S5)  and Mark 

LAU Tin Wai (Pui Ching Middle 

School). 
 

Problem 479. Prove that there exists 

infinitely many positive integers k such 

that for every positive integer n, the 

number k2n+1 is composite. 
 
Solution. KWOK Man Yi (Baptist 

Lui Ming Choi Secondary School, S5). 

 



Mathematical Excalibur, Vol. 20, No. 3, Jan. 16 – Feb. 16 Page 4

 

By the Chinese remainder theorem, 

there exist infinitely many positive 

integers k such that 

).241(mod1

),17(mod1

),13(mod10

),7(mod3

),5(mod1

),3(mod1
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k

k

k

k

k

 

If n≡1 (mod 2), then k2n+1≡2+1≡0 

(mod 3). Otherwise 2|n. If n≡2 (mod 4), 

then k2n+1≡22+1≡0 (mod 5). Other- 

wise 4|n. If n≡4 (mod 8), then k2n+1 ≡ 

24+1≡0 (mod 17). Otherwise 8|n. Then 

we have three cases: 
 
Case 1: n≡8 (mod 24). By Fermat’s 

little theorem, 224 = (212)2 ≡ 1 (mod 13). 

So 2n = 28+24m ≡ 256 ≡ −4 (mod 13) 

and k2n+1 ≡ 10(−4)+1 ≡ 0 (mod 13).  
 
Case 2: n≡16 (mod 24). Since 224 = 

(23)8 ≡1 (mod 7), we have 2n = 216+24m 

≡ 21+3(5+8m) ≡ 2 (mod 7) and k2n+1 ≡ 

3·2+1 ≡ 0 (mod 7).  

 

Case 3: n≡0 (mod 24). Since 224 = (28)3 

≡153 ≡225·15≡−16·15≡1 (mod 241). 

So 2n = 224m ≡ 1 (mod 241) and Then 

k2n+1 ≡ −1 +1 = 0 (mod 241).  
 

Comment:  We may wonder why 

modulo 3, 5, 7, 13, 17, 241 work. It 

may be that in dealing with n≡8, 16, 0 

(mod 24), we want 224≡1 (mod p) for 

some useful primes p. Then we notice  

 

224−1 = (23−1) (23+1)(26+1)(212+1) 

             = 7·32·5·13·17·241. 

 

Other commended solvers: Ioan 

Viorel CODREANU (Secondary 

School Satulung, Maramures, 

Romania), Prishtina Math 

Gymnasium Problem Solving Group 

(Republic of Kosova), Toshihiro 

SHIMIZU (Kawasaki, Japan), Titu 

ZVONARU (Comăneşti, Romania) 

and Neculai STANCIU (“George Emil 

Palade’’ Secondary School, Buzău, 

Romania). 
 

Problem 480. Let m, n be integers with 

n > m > 0. Prove that if 0 < x < π/2, then    
 

2|sinnx−cosnx| ≤ 3|sinmx−cosmx|. 
 

Solution. KWOK Man Yi (Baptist 

Lui Ming Choi Secondary School, S5). 
 
If x=π/4, both sides are 0. Since the 

inequality for x and π/2−x are the same, 

we only need to consider 0 < x < π/4. Let 

k≥0. Define ak=coskx−sinkx. We have ak≥0. 

For k≥2, we have 
 
      ak = (coskx−sinkx)(cos2x+sin2x) 

          = ak+2+sin2x cos2x ak−2 

          ≥ ak+2. 
 
Let m ≥ 2. For the case n−m = 2,4,6,…, 

we have 3am  ≥ 2am ≥ 2an. Next, for the 

case n−m = 1,3,5,…, observe that 
 

(cos x+sin x)am=am+1+sin x cos x am−1. 
 
Using this, we have 
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which is true as the left side is positive and 

the right side is negative. Then 3am ≥ 2am+1 

≥ 2an.  

 

Finally, for the case m=1, we get 3a1≥2a2 

from 3 > 2 2  ≥ 2(cos x + sin x) = 2a2/a1. 

Then 3a1 ≥ 2a2 ≥ 2an for n = 2, 4, 6, …. 

Also, we get 3a1≥2a3 from 3 ≥ 2+sin 2x = 

2a3/a1. Then 3a1 ≥ 2a3 ≥ 2an for n = 3, 5, 

7, …. 

 

Other commended solvers: Nicuşor 

ZLOTA (“Traian Vuia” Technical 

College, Focşani, Romania). 
 

 

Olympiad Corner 
 
                       (Continued from page 1) 

 

Problem 3. Let x, y and z be nonnegative 

real numbers. Knowing that 2(xy+yz+zx) 

= x2+y2+z2, prove 

.2
3

3 xyz
zyx


  

Problem 4. Find all of the solutions of the 

following equation in natural numbers:  

.mn mn
n

  
 

Problem 5. A non-empty set S of positive 

real numbers is called powerful if for any 

two distinct elements of it like a and b, at 

least one of the numbers ab or ba is an 

element of S.  
 
a)  Present an example of a powerful set 

having four elements. 
 
b) Prove that a finite powerful set cannot 

have more than four elements. 

 

Problem 6. In the Majestic Mystery 

Club (MMC), members are divided into 

several groups, and groupings change 

by the end of each week in the 

following manner: in each group, a 

member is selected as king; all of the 

kings leave their respective groups and 

form a new group. If a group has only 

one member, that member goes to the 

new group and his former group is 

deleted. Suppose that MMC has n 

members and at the beginning all of 

them form a single group. Prove that 

there comes a week for which 

thereafter each group will have at most 

1 + n2  members. 
 

 
 

Coloring Problems 
 
                   (Continued from page 2) 
 

Example 8. Numbers 1, 2, 3, 4, 5, 6, 7, 8, 

9 are divided into two groups, each 

having at least one number. Prove that 

there always exists a three term 

arithmetic progression (AP in short) in 

one of the two groups. 
 
Solution. Assume no three term AP is 

in any of the two groups. Color 

numbers in one group red and the other 

group blue. Since 5/2>2, among 1, 3, 5, 

7, 9, there exist three of them assigned 

the same color, say they are red. By 

assumption, they are not the terms of 

an AP. Below are the  possibilities of 

these red numbers: {1,3,7}, {1,3,9}, 

{1,5,7}, {1,7,9}, {3,5,9} or {3,7,9}.  
 
If 1,3,7 are red, then as 1,2,3 and 1,4,7 

and 3,5,7 are AP, so 2, 4, 5 are blue.  As 

4,5,6 and 2,5,8 are AP, so 6, 8 are red. 

So 6,7,8 is a red AP, contradiction. 
 
If 1,3,9 are red, then as 1,2,3 and 1,5,9 

and 3,6,9 are AP, so 2, 5, 6 are blue.  As 

4,5,6 and 5,6,7 an AP, so 4,7 are red. 

Then 1,4,7 is a red AP, contradiction.  
 
If 1,5,7 are red, then as 1,3,5 and 5,6,7 

and 1,5,9 are AP, so 3,6,9 are blue.  

Then 3, 6, 9 is a blue AP, contradiction.  
 
If 1,7,9 are red, then as 1,4,7 and 1,5,9 

and 7,8,9 are AP, so 4, 5, 8 are blue.  As 

3,4,5 and 4,5,6 an AP, so 3,6 are red. 

Then 3,6,9 is a red AP, contradiction.  
 
If 3,5,9 are red, then as 1,5,9 and 3,4,5 

and 5,7,9 are AP, so 1,4,7 are blue. 

Then 1,4,7 a blue AP, contradiction. 
 
If 3,7,9 are red, then as 3,5,7 and 3,6,9 

and 7,8,9 are AP, so 5, 6, 8 are blue.  As 

2,5,8 and 4,5,6 are AP, so 2, 4 are red. 

So 2,3,4 is a red AP, contradiction. 
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Olympiad Corner 
 
Below are the problems of the 28nd 

Asian Pacific Math Olympiad, which 

was held in March 2016. 
 

Problem 1. We say that a triangle ABC 

is great if the following holds: for any 

point D on the side BC, if P and Q are 

the feet of the perpendiculars from D to 

the lines AB and AC, respectively, then 

the reflection of D in the line PQ lies 

on the circumcircle of the triangle 

ABC. Prove that triangle ABC is great if 

and only if ∠A=90° and AB=AC.  
 

Problem 2. A positive integer is called 

fancy if it can be expressed in the form  
 

,222 10021 aaa    
 

where a1, a2, …, a100 are non-negative 

integers that are not necessarily 

distinct. Find the smallest positive 

integer n such that no multiple of n is a 

fancy number. 
 
 
Problem 3. Let AB and AC be two 

distinct rays not lying on the same line, 

and let ω be a circle with center O that 

is tangent to ray AC at E and ray AB at 

F. Let R be a point on segment EF. The 

line through O parallel to EF intersects 

line AB at P.  
 
                                     (continued on page 4) 

Inequalities of Sequences 
 

Kin Y. Li 
 

    
 
      There are many math competition 

problems on inequalities. While most 

symmetric inequalities can be solved by 

powerful facts like the Muirhead and 

Schur inequalities, there are not many 

tools for general inequalities involving 

sequences. Below we will first take a 

look at some relatively easy examples 

on inequalities of sequences.  

 

Example 1. (1997 Chinese Math Winter 

Camp) Let a1, a2, a3, … be a sequence of 

nonnegative numbers. If for all positive 

integers m and n, an+m  ≤ an+am , then 

prove that  

.11 mn a
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n
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Solution. Let n = mq + r, where q, r are 

integers and 0 ≤ r < m. We have 
 

.1

1

1

1

11

maa
m

n

rama
m

rm
a

m

n

aa
m

rm
a

m

n

aa
m

rn

aqaaaa

m

m

rmm

rm

rmrmqn







 










 










 








 

 

Example 2. (IMO 2014) Let a0 < a1 < a2 

< ⋯ be an infinite sequence of positive 

integers. Prove that there exists a unique 

integer n ≥ 1 such that 
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Solution. For n = 1,2,3,…, define 
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We have 
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In terms of di’s, the required conclusion 

is the same as dn > 0 ≥ dn+1 for some 

unique n≥1.  

 

   Now observe that d1 = (a0+a1) − a1 > 0. 

Also the di’s are strictly decreasing as 
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Finally, from d1 > 0, the di’s are integers 

and strictly decreasing, there must be a 

first non-positive di. So dn > 0 ≥ dn+1 for 

some unique n≥1. 

 

Example 3. (1980 Austrian-Polish Math 

Competition) Let a1, a2, a3, … be a 

sequence of real numbers satisfying the 

inequality 
 
       | ak+m−ak−am | ≤ 1   for all k, m.  
 
Show that the following inequality 

holds for all positive integers k and m, 
 

.
11

mkm
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Solution. Observe that multiplying by 

km, the desired inequality is the same as 

| mak−kam | < m+k. To get this, we will 

prove for a fixed m, | akm−kam | < k holds 

for all positive integer k by induction. 

The case k = 1 is |am−am|=0 <1. Suppose 

the k-th case is true.  Then 
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This completes the inductive step. Now 

interchanging k and m, similarly we also 

have |akm−mak| < m. Then 
 

km

kaamaakama mkmkkmmk


 ||||||  

and we are done. 

                                  (continued on page 2) 
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Example 4. (2006 IMO Shortlisted 

Problem) The sequence of real 

numbers a0, a1, a2, … is defined 

recursively by  
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Show that an > 0 for n ≥ 1. 

 

Solution. Setting n=1, we find a1=1/2. 

For n≥1, reversing the order of the 

terms in the given sum, we have 
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Suppose a1 to an are positive. Then 
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Notice the k=0 term in the last sum is 0. 

Solving for an+1, we get 
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is positive as  a1 to an are positive.  

 

     Next we will study certain examples 

that require more observation and 

possibly involve some calculations of 

limit of sequences. 

 

Example 5. (1988 IMO Shortlisted 

Problem) Let a1, a2, a3, … be a 

sequence of nonnegative real numbers 

such that  
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for all k = 1, 2, …. Prove that  
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for all k = 1, 2, ….  
 
Solution. We claim 0≤ak−ak+1 for all k. 

(Otherwise assume for some k, we 

have ak−ak+1 < 0. From ak−2ak+1+ak+2 

≥ 0, we get ak+1−ak+2≤ ak−ak+1< 0. It 

follows ak < ak+1 < ak+2 < ⋯. Then  
 

ak + ak+1 + ak+2 + ⋯ 
 

diverges to infinity,  which leads to a 

contradiction.)  

 

Let bk=ak−ak+1. Then for all positive 

integer k, we have bk≥bk+1≥0. Now we 

have 
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Therefore, 
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Example 6. (1970 IMO)  Let 1 = a0 ≤ a1 ≤ 

a2 ≤ ⋯ ≤ an ≤ ⋯ be a sequence of real 

numbers. Consider the sequence defined by  
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Prove that : 
 
(a) For all positive integers n, 0≤bn≤2. 
 
(b) Given an arbitrary 0 ≤ b < 2, there is a 

sequence a0, a1, …, an, … of the above type 

such that bn > b is true for infinitely many 

natural numbers n. 

 

Solution.  (a) For all k, we have 
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Then 
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(b) Let 0<q<1. Then an=q−2n for n = 0, 1, 

2, … satisfy 1 = a0 < a1 < a2 < ⋯ and the 

sequence bn=q(1+q)(1−qn) has  
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For an arbitrary 0 ≤ b < 2, take q satisfy 
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Then 0<q<1 and q(1+q)>b. So eventually 

the sequence bn (on its way to q(1+q)) will 

be greater than b. 

Example 7. (2006 IMO Shortlisted 

Problem) Prove the inequality 
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 for positive real numbers a1, a2, …, an. 

 

Solution. Let S be the sum of the n 

numbers. Let L and R be the left and 

the right expressions in the inequality. 

Observe that 
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Next we will write the expression R in 

two ways. On one hand, we have 
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On the other hand, 
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Multiplying the first of these equations 

by n−1 and adding it to the second 

equation, then dividing the sum by n, 

we get 
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1

2


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



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Comparing L and R and using S≥ai+aj, 

we get L≤R. 

 

Example 8. (1998 IMO Longlisted 

Problem) Let  
 

,,2,1],)1([ 22  nnnan
 

 
where [x] denotes the integer part of x. 

Prove that 
 
(a) there are infinitely many positive 

integers m such that am+1−am >1; 
 
(b) there are infinitely many positive 

integers m such that am+1−am=1=1. 

 

                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is August 14, 2016. 
  
Problem 486. Let a0=1 and  
 

.
11

1

2

1



 


n

n

n
a

a
a  

 
for n=1,2,3,…. Prove that 2n+2an > π for 

all positive integers n. 

 

Problem 487. Let ABCD and PSQR be 

squares with point P on side AB and 

AP>PB.  Let point Q be outside square 

ABCD such that AB⊥PQ and AB=2PQ. 

Let DRME and CSNF be squares as 

shown below. Prove Q is the midpoint 

of line segment MN. 

A

D C

BP

Q

R S

M

E

N

F
 

Problem 488. Let ℚ denote the set of 

all rational numbers. Let  f: ℚ →{0,1} 

satisfy f(0)=0, f (1)=1 and the condition   

f (x) = f (y) implies f (x) = f ((x+y)/2). 

Prove that if x≥1, then f (x) = 1. 

 

Problem 489.  Determine all prime 

numbers p such that there exist positive 

integers m and n satisfying p=m2+n2 

and m3+n3−4 is divisible by p. 

 

Problem 490. For a parallelogram 

ABCD, it is known that ΔABD is acute 

and AD=1. Prove that the unit circles 

with centers A, B, C, D cover ABCD if 

and only if  
 

.sin3cos BADBADAB   

 

***************** 

Solutions 

**************** 
 

Problem 481. Let S={1,2,…,2016}. 

Determine the least positive integer n 

such that whenever there are n numbers 

in S satisfying every pair is relatively 

prime, then at least one of the n numbers is 

prime. 

 

Solution. BOBOJONOVA Latofat 

(academic lycuem S.H.Sirojiddinov, 

Tashkent, Uzbekistan), KWOK Man Yi 

(Baptist Lui Ming Choi Secondary School, 

S5), Toshihiro SHIMIZU (Kawasaki, 

Japan),WONG Yat. 
 

Let k0=1 and ki be the square of the i-th 

prime number. Then k14=432<2016. Since 

the numbers k0,k1,…,k14 are in S and are 

pairwise coprime, so n≥16. 

 

Next suppose A={a1,a2,…,a16}⊂S with no 

ai prime and ar, as are coprime for r≠s.  

 

Then in case 1∉A, let pi be the least prime 

divisor of ai. We have ai≥pi
2. As the ai’s 

are pairwise coprime, no two pi’s are the 

same. Now the 15th prime is 47. So the 

largest pi is at least 47, which leads to 

some ai≥pi
2≥472>2016, a contradiction. 

 

Otherwise, 1∈A. For the 15 numbers in A 

that is not 1, let ai be their maximum, then 

ai≥pi
2≥472>2016, again contradiction. So 

the least n is 16. 

 

Other commended solvers: Joe 

SPENCER. 
 

Problem 482. On ΔABD, C is a point on 

side BD with C≠B,D. Let K1 be the 

circumcircle of Δ ABC. Line AD is 

tangent to K1 at A. A circle K2 passes 

through A and D and line BD is tangent to 

K2 at D. Suppose K1 and K2 intersect at A 

and E with E inside ΔACD. Prove that 

EB/EC= (AB/AC)3. 
 

Solution. Jafet Alejandro BACA 

OBANDO (IDEAS High School, 

Nicaragua), KWOK Man Yi (Baptist Lui 

Ming Choi Secondary School, S5), 

MANOLOUDIS Apostolos (4 High 

School of Korydallos, Piraeus, Greece), 

Vijaya Prasad NALLURI and Toshihiro 

SHIMIZU (Kawasaki, Japan). 

 

K
1

K
2

E

A

D
B

C
 

 
Line AD tangent to K1 at A implies ∠DAC 

= ∠DBA. With ∠ADC =∠BDA, we see Δ
DAC is similar to ΔDBA. Now BD/CD = 

[DBA]/[DAC] =  AB2/CA2. Then we 

have 
 

.
/

/
3

ABCD

ACBD

AC

AB

CD

BD

AC

AB







   (*) 

 
Next, ∠DBE =∠CBE =∠CAE and 

∠BDE = ∠DAE =∠ACE implies Δ
DBE is similar to ΔCAE. Similarly, 

∠ECD =∠EAB and ∠EDC = ∠EAD 

=∠EBA implies ΔECD is similar to Δ
EAB. Then 
           

       .
/

/

/

/

EC

EB

EAEC

AEEB

ABCD

CABD
     (**) 

 
Therefore, combining (*) and (**), we 

have EB/EC= (AB/AC)3. 
 
Other commended solvers: 

BOBOJONOVA Latofat (academic 

lycuem S. H. Sirojiddinov, Tashkent, 

Uzbekistan) and WONG Yat. 

 

Problem 483. In the open interval (0,1), 

n distinct rational numbers ai/bi 

(i=1,2,…,n) are chosen, where n>1 and 

ai, bi are positive integers. Prove that 

the sum of the bi’s are at least (n/2)3/2. 
 

Solution. Toshihiro SHIMIZU 

(Kawasaki, Japan). 
  
Without loss of generality, we may 

suppose the numbers ai/bi are sorted so 

that the denominators are in ascending 

order. We have the following lemma. 

 

Lemma. Let k be an integer in [1,n] and 

b be the denominator of the k-th 

number. Then we have 
 

.
2
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2

2/32/3







 









kk
b  

 
Proof. We first consider the number of 

denominators that are at most b. For 

every i = 1, 2, …, b, the number of 

denominators equal to i is at most i−1. 

Thus, 
 

.
22
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2
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This implies b≥ .2k  We will show  
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It is equivalent to 
 

1)1(4  kkkkk  
 

or .)4(1)1( kkkk   
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For k=1,2,3,4, the left hand side is 

greater than the right hand side is 

non-positive. For k≥5, squaring the 

inequality, it is equivalent to (k−1)3 ≥ 

(k−4)2 k  or 5k2−13k+1≥0. The larger 

roots of the left hand side is 

(13+ 149 )/10, which is less than 2.6. 

Then the left hand side is always 

positive for k≥5.                            QED 

 

Using the lemma and summing the 

cases k=1, 2, …,n, we get the result. 
 

Other commended solvers: Jim 

GLIMMS, Joe SPENCER and 

WONG Yat. 
 

Problem 484. In a multiple choice test, 

there are four problems. For each 

problem, there are choices A, B and C. 

For any three students who took the 

test, there exist a problem the three 

students selected distinct choices. 

Determine the maximum number of 

students who took the test. 
 
Solution. Jon GLIMMS and 

Toshihiro SHIMIZU (Kawasaki, 

Japan). 

 

More generally, suppose there are n 

problems with n≥4. Let Sn be the 

maximum number of students who 

took the test with n problems. If S1>3, 

then there would exist 2 students with 

the same choice and 1 problem cannot 

distinguish these 2 students. Now S1=3 

is certainly possible by given condition. 

In general if there is a problem which 3 

students have different choices, then 

we say the problem distinguish them.  

 

By pigeonhole principle, for problem 1, 

there is a choice among A, B, C, which 

at most [Sn/3] selected. For the 

remaining at least Sn−[Sn/3] students, 

problem 1 does not distinguish any 3 of 

them. So problem 2 to n will be used to 

distinguish these remaining students.  

Then Sn−1≥ Sn−[Sn/3] ≥ 2Sn/3. Hence, 

Sn≤ 3Sn−1/2. So S2≤4, S3≤6 and S4≤9. 

 

The following table will show S4=9 : 

 

Student\problem   I       II     III     IV 

      1                      A     A     A      A 

      2                      A     B     B       B 

      3                      A     C     C       C 

      4                      B     A     C       B 

      5                      B     B     A       C   

      6                      B     C     B       A 

      7                      C     A     B       C 

      8                      C     B     C       A 

      9                      C     C     A       B 

Other commended solvers: Joe 

SPENCER. 
 
Problem 485. Let m and n be integers 

such that m>n>1, S={1,2,…,m} and T={a1, 

a2, …, an} is a subset of S. It is known that 

every two numbers in T do not both divide 

any number in S. Prove that  

.
111

21 n

nm

aaa n


   

 
Solution. Jon GLIMMS and Toshihiro 

SHIMIZU (Kawasaki, Japan). 

 

For i=1,2,…,n, let  
 

Ti = { k∈S : k is divisible by ai }. 
 
Then Ti has [m/ai] elements. Since every 

pair of numbers in T do not both divide 

any number in S, so if i≠k, then Ti and Tk 

are disjoint. Now the number of elements 

in the union of the sets T1, T2, …, Tn is  
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Using m/ai < [m/ai]+1, we have 
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 Therefore, 

.
111

21 n

nm

m

nm

aaa n





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Other commended solvers: Joe 

SPENCER. 
 

 

 

Olympiad Corner 
 
                           (Continued from page 1) 

 

Problem 3. (Continued) Let N be the 

intersection of lines PR and AC, and let M 

be the intersection of line AB and the line 

through R parallel to AC. Prove that line 

MN is tangent to ω. 

 

Problem 4. The country Dreamland 

consists of 2016 cities. The airline 

Starways wants to establish some 

one-way flights between pairs of cities in 

such a way that each city has exactly one 

flight out of it. Find the smallest integer k 

such that no matter how Starways 

establishes its flights, the city can always 

be partitioned into k groups so that from 

any city it is not possible to reach 

another city in the same group by using 

at most 28 flights. 

 

Problem 5. Find all functions f : 

ℝ+→ℝ+ such that 

 
 (z+1)f(x+y) = f (xf (z)+y) + f (y f (z)+x), 
 
for all positive real numbers x, y, z. 

 
 

 

 

Inequalities of Sequences 
 
                   (Continued from page 2) 
 
 
Solution. For every integer n, we have 
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From this, we get 
 

   n2+(n+1)2−(n−1)2−n2 =4n > 2an+1. 

 
Hence,  
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for n=1,2,3,…. If (a) is false, then there 

exists N such that  
 
          ak+1−ak=1   for all k≥N.        (**) 
 
So aN+k=aN+k for k=0,1,2,3,…. By (*), 

for k=0,1,2,3,…, we have 
 

,3)(2 kaakN NkN  
 

i.e.   .23)12( Nak N    Since  

N is constant, when k is large, this leads 

to a contradiction. So (a) must be true. 
 

Next assume (b) is false.  By (**), we 

can see there exists N such that  
 

ak+1−ak≥2   for all k≥N. 
 
Then aN+k≥aN+2k for k = 0,1,2,3,…. 

By (*), we have  
 

),(22 kNkaN   

 
which is the same as 
 

.2)22( NaNk   

 
This leads to a contradiction when k is 

large. So (b) must be true. 
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Olympiad Corner 
 
Below are the problems of the 2016 

IMO Team Selection Contest I for 

Estonia. 
 

Problem 1. There are k heaps on the 

table, each containing a different 

positive number of stones. Jüri and 

Mari make moves alternatively; Jüri 

starts. On each move, the player 

making the move has to pick a heap 

and remove one or more stones in it 

from the table; in addition, the player is 

allowed to distribute any number of the 

remaining stones from that heap in any 

way between other non-empty heaps. 

The player to remove the last stone 

from the table wins. For which positive 

integers k does Jüri have a winning 

strategy for any initial state that 

satisfies the conditions? 
 

Problem 2. Let p be a prime number. 

Find all triples (a,b,c) of integers (not 

necessarily positive) such that  
 

abbcca = p. 
 

 
 
Problem 3. Find all functions f:ℝ→ℝ 

satisfying the equality f(2x+2y) = 

2yf( f(x) ) f(y) for every x,y∈ℝ. 

 
 
                                     (continued on page 4) 

IMO 2016 
 

Kin Y. Li 
 

    
 
      This year Hong Kong served as the 

host of the International Mathematical 

Olympiad (IMO), which was held from 

July 6 to 16. Numerous records were 

set. Leaders, deputy leaders and 

contestants from 109 countries or 

regions participated in this annual event. 

A total of 602 contestants took part in 

this world class competition. Among the 

contestants, 71 were female and 531 

were male.  

 

      After the two days of competition on 

July 11 and 12, near 700 contestants and 

guides from more than 100 countries or 

regions went to visit Mickey Mouse at 

the Hong Kong Disneyland for an 

excursion. That was perhaps the 

happiest moment in the IMO. 

 

        For Hong Kong, due to the hard 

work of the 6 team members and the 

strong coaching by Dr. Leung Tat Wing, 

Dr. Law Ka Ho and our deputy leader 

Cesar Jose Alaban along with the 

support of the many trainers and former 

team members, the team received 3 

gold, 2 silver and 1 bronze medals, 

which was the best performance ever. 

Also, for the first time since Hong Kong 

participated in the IMO, we received a 

top 10 team ranking.   

 

    The Hong Kong IMO team members 

(in alphabetical order) are as follows: 

 

(HKG1) Cheung Wai Lam, Queen 

Elizabeth School, Silver Medalist, 

 

(HKG2)  Kwok Man Yi, Baptist Lui 

Ming Choi Secondary School, Bronze 

Medalist, 

 

(HKG3) Lee Shun Ming Samuel, CNEC 

Christian College, Gold Medalist, 

 

(HKG4) Leung Yui Hin Arvin, 

Diocesan Boys’ School, Silver 

Medalist, 

 

 
(HKG5)  Wu John Michael, Hong Kong 

International School, Gold Medalist and 

 

(HKG 6) Yu Hoi Wai, La Salle College, 

Gold Medalist. 

 

        The top 10 teams in IMO 2016 are 

(1) USA, (2) South Korea, (3) China, (4) 

Singapore, (5) Taiwan, (6) North Korea, 

(7) Russia and UK, (9) Hong Kong and 

(10) Japan.  

 

         The cutoffs for gold, silver and 

bronze medals were 29, 22 and 16 

marks respectively. There were 44 gold, 

101 silver, 135 bronze and 162 

honourable mentions awardees.   

  

         Next, we will look at the problems 

in IMO 2016. 

 

Problem 1. Triangle BCF has a right 

angle at B. Let A be the point on line CF 

such that FA=FB and F lies between A 

and C. Point D is chosen such that 

DA=DC and AC is the bisector of 

∠DAB. Point E is chosen such that 

EA=ED and AD is the bisector of 

∠EAC. Let M be the midpoint of CF. 

Let X be the point such that AMXE is a 

parallelogram (where AM||EX and 

AE||MX). Prove that lines BD, FX, and 

ME are concurrent. 











D

E

A B

M

F

C

X

 
 

From the statement of the problem, we 

get a whole bunch of equal angles as 

labeled in the figure. We have ΔABF∼
Δ ACD. Then AB/AC=AF/AD. With, 

∠BAC= θ =∠FAD, we get ΔABC ∼
ΔAFD.  

 

                                  (continued on page 2) 
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Then ∠AFD =∠ABC = 90°+θ = 180°− 

½∠AED. Hence, F is on the circle with 

center E and radius EA. Then EF=EA 

=ED and ∠EFA =∠EAF = 2θ =∠BFC. 

So B, F, E are collinear. Also, ∠EDA= 

∠MAD implies ED||AM. Hence E,D,X 

are collinear. From M is midpoint of CF 

and ∠CBF=90°, we get MF=MB. Next 

the isosceles triangles EFA and MFB are 

congruent due to ∠EFA=∠MFB and 

AF=BF. Then BM=AE=XM and BE = 

BF+FE=AF+FM=AM=EX. SoΔEMB 

≅ΔEMX. As F and D lie on EB and EX 

respectively and EF=ED, we see lines 

BD and XF are symmetric respect to EM. 

Therefore, BD, XF, EM are concurrent. 

 

Problem 2. Find all positive integer n 

for which each cell of an n×n table can 

be filled with one of the letters I, M and 

O in such a way that: 
 

∙ in each row and each column, one 

third of the entries are I, one third are M 

and one third are O; and 
 
∙ in any diagonal, if the number of 

entries on the diagonal is a multiple of 

three, then one third of the entries are I, 

one third are M and one third are O. 

 
Note: The rows and columns of an n×n 
table are each labeled 1 to n in a natural 
order. Thus each cell corresponds to a 
pair of positive integers (i, j) with 1≤ i, 
j ≤ n. For n > 1, the table has 4n−2 
diagonals of two types. A diagonal of 
the first type consists of all cells (i, j) 
for which i+j is a constant, and a 
diagonal of the second type consists of 
all cells (i,j) for which i−j is a constant. 

 

For n=9, it is not difficult to get an 

example such as 


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For n=9m, we can divide the n×n table 

into m×m blocks, where in each block 

we use the 9×9 table above.  
 

Next suppose a n×n table satisfies the 

conditions. Then n is a multiple of 3, 

say n=3k. Divide the n×n into k×k 

blocks of 3×3 tables. Call the center 

entry of the 3×3 tables a vital entry and 

call any row, column or diagonal 

passing through a vital entry a vital line. 

The trick here is to do double counting 

on the number N of all ordered pairs (L,c), 

where L is a vital line and c is an entry on 

L that contains the letter M. On one hand, 

there are k occurrences of M in each vital 

row and each vital column. For vital 

diagonals, there are  
 

1+2+⋯+(k−1)+k+(k−1)+⋯+2+1=k2  
 

occurrences of M. So N=4k2. On the other 

hand, there are 3k2 occurrences of M in the 

whole table. Note each entry belongs to 

exactly 1 or 4 vital lines. Hence N ≡ 3k2 

(mod 3), making k a multiple of 3 and n a 

multiple of 9. 

 

Problem 3. Let P=A1A2…Ak be a convex 
polygon in the plane. The vertices A1, 
A2, …, Ak have integral coordinates and lie 
on a circle. Let S be the area of P. An odd 
positive integer n is given such that the 
squares of the side lengths of P are 
integers divisible by n. Prove that 2S is an 
integer divisible by n. 
 
        This is the hardest problem. 548 out 
of 602 contestants got 0 on this problem.  
 
         That 2S is an integer follows from 
the well-known Pick’s formula, which 
asserts S=I+B/2−1, where I and B are the 
numbers of interior and boundary points 
with integral coordinates respectively.  
 
Below we will outline the cleverest 
solution due to Dan Carmon, the leader of 
Israel. It suffices to consider the case n=pt 
with p prime, t≥1. By multiplying the 
denominator and translating, we may 
assume the center O is a point with 
integral coordinates, which we can move 
to the origin. We can further assume the x, 
y coordinates of the vertices are coprime 
and there exists i with xi, yi not both 
multiples of p. Then we make two claims: 
 
(1) For ΔABC with integral coordinates, 

suppose n | AB2, BC2 and let S be its area. 

Then n | 2S if and only if n | AC2. 
 
(2) For those i such that xi, yi not both 

multiples of p, let Δ be twice the area of 

triangle Ai−1AiAi+1. Then pt divides Δ. 
 
For (1), note that BCABS 2 , 
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nBCBA

BCBABCABAC


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and 22
22

BCABBCBABCAB   ≡ 0 

(mod n2).  
 

For (2), assume pt does not divide Δ . 

Note O is defined by the intersection of 

the perpendicular bisectors, which can be 

written as the following system of vectors: 
 

., 2
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1

1

2

12
1

1   iiiiiiiiii AAOAAAAAOAAA  

Say ),( 111 vuAA ii 
, ).,( 221 vuAA ii 

  

Using the fact that pt does not divide Δ
=   |u1v2−u2v1|, one can conclude that xi, 

yi are divisible by p by Cramer’s rule. 

The rest of the solution follows by 

induction on the number of sides of the 

polygon and the two claims.  

 

Problem 4. A set of positive integers is 

called fragrant if it contains at least 

two elements and each of its elements 

has a prime factor in common with at 

least one of the other elements. Let 

P(n)=n2+n+1. What is the least 

possible value of the positive integer b 

such that there exists a non-negative 

integer a for which the set  
 

{P(a+1), P(a+2), …, P(a+b)} 
 
is fragrant? 
 
  One can begin by looking at facts like   
1. gcd(P(n),P(n+1))=1 for all n 

2. gcd(P(n),P(n+2))=1 for n≢2(mod 7)  

3. gcd(P(n),P(n+2))=7 for n≡2(mod 7) 

4. gcd(P(n),P(n+3))=1 for n≢1(mod 3) 

5. 3|gcd(P(n),P(n+3)) for n≡1(mod 3). 
 

Assume P(a), P(a+1), P(a+2), P(a+3), 

P(a+4) is fragrant. By 1, P(a+2) is 

coprime to P(a+1) and P(a+3). Next 

assume gcd(P(a),P(a+2)) > 1. By 3, a≡2 

(mod 7). By 2, gcd(P(a+1),P(a+3))=1. 

In order for the set to be fragrant, we 

must have both gcd(P(a),P(a+3)) and 

gcd(P(a+1),P(a+4)) be greater than 1. 

By 5, this holds only when a and a+1 ≡ 1 

(mod 3), which is a contradiction. 

 

For a fragrant set with 6 numbers, we 

can use the Chinese remainder theorem 

to solve the system a ≡ 7 (mod 19), 

a+1≡2 (mod 7) and a+2≡1 (mod 3). For 

example, a=197. By 3, P(a+1) and 

P(a+3) are divisible by 7. By 5, P(a+2) 

and P(a+5) are divisible by 3. Using 

19|P(7)=57 and 19|P(11)=133, we can 

check 19|P(a) and 19|P(a+4). Then P(a), 

P(a+1), P(a+2), P(a+3), P(a+4), P(a+5) 

is fragrant. 
 

Problem 5. The equation 

    (x−1)(x−2)⋯(x−2016) 

                       = (x−1)(x−2)⋯(x−2016)  
 
is written on the board, with 2016 
linear factors on each side. What is the 
least possible value of k for which it is 
possible to erase exactly k of these 
4032 linear factors so that at least one 
factor remains on each side and the 
resulting equation has no real 
solutions? 

                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is October 21, 2016. 
  

Problem 491. Is there a prime number 

p such that both p3+2008 and p3+2010 

are prime numbers? Provide a proof. 

 

Problem 492. In convex quadrilateral 

ADBE, there is a point C within ΔABE 

such that  
 
∠EAD+∠CAB=180°=∠EBD+∠CBA. 

 
Prove that ∠ADE=∠BDC. 

 

Problem 493. For n ≥4, prove that 

xn−xn−1−xn−2−⋯−x−1 cannot be 

factored into a product of two 

polynomials with rational coefficients, 

both with degree greater than 1. 

 

Problem 494.  In a regular n-sided 

polygon, either 0 or 1 is written at each 

vertex. By using non-intersecting 

diagonals, Bob divides this polygon 

into triangles. Then he writes the sum 

of the numbers at the vertices of each 

of these triangles inside the triangle. 

Prove that Bob can choose the 

diagonals in such a way that the 

maximal and minimal numbers written 

in the triangles differ by at most 1.  

 

Problem 495. The lengths of each side 

and diagonal of a convex polygon are 

rational. After all the diagonals are 

drawn, the interior of the polygon is 

partitioned into many smaller convex 

polygonal regions. Prove that the sides 

of each of these smaller convex 

polygons are rational numbers. 
 

***************** 

Solutions 

**************** 
 

Problem 486. Let a0=1 and  
 

.
11

1

2

1



 


n

n

n
a

a
a  

for n=1,2,3,…. Prove that 2n+2an > π for 

all positive integers n. 

 

Solution. Charles BURNETTE 
(Graduate Student, Drexel University, 
Philadelphia, PA, USA), Prithwijit DE 
(HBCSE, Mumbai, India), FONG Ho 
Leung (Hoi Ping Chamber Secondary 
School), Mustafa KHALIL (Instituto 
Superior Tecnico, Syria), Corneliu 
MĂNESCU-AVRAM (Transportation 
High School, Ploieşti, Romania), Toshihiro 
SHIMIZU (Kawasaki, Japan), WONG 
Yat and YE Jeff York, Nicuşor ZLOTA 
(“Traian Vuia” Technical College, 
Focşani, Romania). 

 
Let an=tan θn, where 0 ≤ θn < π/2. Then 

a0=1 implies θ0= π/4. By the recurrence 

relation of an, we get 
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Then  ,
22

tan
2

tantan
22

0

 
nnnnna
  

which is the desired inequality.  
 

Problem 487. Let ABCD and PSQR be 

squares with point P on side AB and 

AP>PB.  Let point Q be outside square 

ABCD such that AB⊥PQ and AB=2PQ. 

Let DRME and CSNF be squares as shown 

below. Prove Q is the midpoint of line 

segment MN. 

A

D C

BP

Q

R S

M

E

N

F
 

Solution. FONG Ho Leung (Hoi Ping 
Chamber Secondary School), Tran My 
LE (Sai Gon University, Ho Chi Minh 
City, Vietnam) and Duy Quan TRAN 
(University of Medicine and Pharmacy, 
Ho Chi Minh City, Vietnam), Corneliu 
MĂNESCU-AVRAM (Transportation 
High School, Ploieşti, Romania),  
Toshihiro SHIMIZU (Kawasaki, Japan) 
and Mihai STOENESCU (Bischwiller, 
France), WONG Yat and YE Jeff York. 
 
Let Q be the origin, P be (0,−2) and 

B=(x,−2).  Since AB⊥PQ and PSQR is a 

square, so S=(1,−1). Using AB = 2PQ = 4, 

we get C=(x,−6). Since CS=NS and 

∠CSN=90°, we get N = (6,2−x).  
 
      Similarly, R=(−1,−1), D=(x−4,−6) and 

∠DRM=90°, so M = (−6, x−2). Then the 

midpoint of MN is (0,0) = Q. 
 

Other commended solvers: Andrea 

FANCHINI (Cantù, Italy), Apostolos 

MANOLOUDIS (4 High School of 

Korydallos, Piraeus, Greece) and 

Vijaya Prasad NALLURI (Retired 

Principal, AP Educational Service, 

India). 

 

Problem 488. Let ℚ denote the set of 

all rational numbers. Let f: ℚ →{0,1} 

satisfy f(0)=0, f (1)=1 and the condition   

f (x) = f (y) implies f (x) = f ((x+y)/2). 

Prove that if x≥1, then f (x) = 1. 
 

Solution. Jon GLIMMS. 
  
We first show f(n)=1 for n=1,2,3,… by 

induction. The case n=1 is given. For 

n>1, suppose case n=k−1 is true. If f(k) 

= 0 = f(0), then f(k) = f((0+k)/2) = 

f((1+(k−1))/2) = f(k−1) = 1, which is a 

contradiction.  
 

    Assume there exists rational r > 1 

such that f(r)=0. Suppose r=s/t, where 

s, t are coprime positive integers. 

Define g:ℚ →{0,1} by g(x)=1−f(w(x)), 

where w(x)=(r−[r])x+[r]. Observe that 

the graph of w is a line. So w((x+y)/2) 

= (w(x)+w(y))/2.  
 

      If g(x)=g(y), then f(w(x))=f(w(y)), 

which implies  

.
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So g(x)=g((x+y)/2). Then g(n)=1 by 

induction as f above. Finally, s > t 

implies w(t)= (r−[r])t+[r]=s−[r]t+[r] is 

a positive integer. Then g(t) = 1−f(w(t)) 

= 0, contradiction. 
 

Other commended solvers: Toshihiro 

SHIMIZU (Kawasaki, Japan), 

WONG Yat and YE Jeff York, 
 

Problem 489. Determine all prime 

numbers p such that there exist positive 

integers m and n satisfying p=m2+n2 

and m3+n3−4 is divisible by p. 
 

Solution. Prithwijit DE (HBCSE, 

Mumbai, India), Jon GLIMMS, 

WONG Yat and YE Jeff York. 
 

Clearly, the case p=2 works. For such 

prime p > 2, we get m>1 or n>1. Now 

we have 

)).1)1)(1((2)(2(

)4)(2))((2(

8)(

)4(2)33(
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Observe that p < p+2((m−1)(n−1)+1)  

< p+2mn ≤ p+m2+n2 = 2p. Then p 

divides m+n+2. So m2+n2 ≤ m+n+2, 

i.e. (m−1/2)2+(n−1/2)2≤(3/2)2. Then 
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(m,n)=(1,2) or (2,1) and  m3+n3−4 = 5 = 

p. So p = 2 and 5 are the solutions. 
 
Other commended solvers: Corneliu 
MĂNESCU-AVRAM (Transportation 
High School, Ploieşti, Romania) and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
Problem 490. For a parallelogram 

ABCD, it is known that ΔABD is acute 

and AD=1. Prove that the unit circles 

with centers A, B, C, D cover ABCD if 

and only if  

.sin3cos BADBADAB   
 
Solution. Corneliu MĂNESCU- 
AVRAM (Transportation High School, 
Ploieşti, Romania) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 
We first show that the unit circles with 

centers A, B, C, D cover ABCD if and 

only if the circumradius R of ΔABD is 

not greater than 1. Since ΔABD is 

acute, its circumcenter O is inside the 

triangle. Then at least one of B or D is 

closer than (or equal to) C to O, since 

the region in ΔCDB that is closer to C 

than both B and D is the quadrilateral 

CMO’N, where M is the midpoint of 

CD, O’ is the circumcenter of ΔCDB 

and N is the midpoint of BC. So for any 

point P in ΔABD, min{PA,PB,PD} 

≤PC and the maximal value of 

min{PA,PB,PD} is attained when P=O. 

So the unit circles with centers A, B, C, 

D cover ABCD is equivalent to they 

cover O, which is equivalent to R≤1.  
 
Let α = ∠BAD, β = ∠ADB and γ = 

∠DBA. By sine law, AB/sin β=1/sin γ = 

2R. Then, we have  
 

.sincotcos
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sincoscossin
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)sin(

sin
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Moreover, R≤1 is equivalent to 1 ≥ 

1/(2sin γ) or sin γ≥1/2=sin 30° or γ≥ 

30° or cot γ ≤ .3  Therefore, it is 

equivalent to AB ≤ cos α + 3 sin α. 
 

Other commended solvers: WONG 

Yat and YE Jeff York. 
 

 

Olympiad Corner 
 
                       (Continued from page 1) 
 
Problem 4. Prove that for any positive 

integer n, .432 13 nnn    
 

Problem 5. Let O be the circumcenter of 

the acute triangle ABC. Let c1 and c2 be 

the circumcircles of triangles ABO and 

ACO. Let P and Q be points on c1 and c2 

respectively, such that OP is a diameter of 

c1 and OQ is a diameter of c2. Let T be the 

intersection of the tangent to c1 at P and 

the tangent to c2 at Q. Let D be the second 

intersection of the line AC and the circle c1. 

Prove that points D, O and T are collinear. 
 

Problem 6. A circle is divided into arcs of 

equal size by n points (n≥1). For any 

positive integer x, let Pn(x) denote the 

number of possibilities for coloring all 

those points, using colors from x given 

colors, so that any rotation of the coloring 

by i·360°/n, where i is a positive integer 

less than n, gives a coloring that differs 

from the original in at least one point. 

Prove that the function Pn(x) is a 

polynomial with respect to x. 
 

 
 

IMO 2016 
 
                      (Continued from page 2) 
 
For this problem, observe we need to 

erase at least 2016 factors. Consider 

erasing all factors x−k with k≡2,3 (mod 4) 

on the left and x−k with k≡0,1 (mod 4) on 

the right to get the equation 

 
 


503

0

503

0

)34)(24()44)(14(
j j

jxjxjxjx  

      There are 4 cases we have to check. 
 
(1) For x=1,2,⋯,2016, one side is 0 and 

the other nonzero.  
 
(2) For x∈(4k+1,4k+2)∪(4k+3,4k+4) 

where k=0,1,…,503, if j=0,1,…,503 and 

j≠k, then (x−4j−1)(x−4j−4) >0, but if j=k, 

then (x−4k−1)(x−4k−4) < 0 so that the left 

side is negative. However, on the right 

side, each product (x−4j−2)(x−4j−3) is 

positive, which is a contradiction.  
 
(3) For x<1 or x>2016 or x∈(4k,4k+1), 

where k=0,1,…,503, dividing the left side 

by the right, we get 
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Note (x−4j−2)(x−4j−3)>2 for j=0,1,…, 

503. Then the right side is less than 1, 

contradiction. 
 
(4) For x∈(4k+2,4k+3), where k = 0, 1, …, 

503, dividing the left side by the right, we 

get 
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The first two factors on the right are 

greater than 1 and the factor in the 

parenthesis is greater than 1, which is a 

contradiction. 
 
Problem 6. There are n>2 line segments 
in the plane such that every two 
segments cross, and no three segments 
meet at a point. Geoff has to choose an 
endpoint of each segment and place a 
frog on it, facing the other endpoint. 
Then he will clap his hand n−1 times. 
Every time he claps, each frog will 
immediately jump forward to the next 
intersection point on its segment. Frogs 
never change the direction of their 
jumps. Geoff wishes to place the frogs 
in such a way that no two of them will 
ever occupy the same intersection point 
at the same time.  
 
(a) Prove that Geoff can always fulfill 

his wish if n is odd. 
 
(b) Prove that Geoff can never fulfill his 

wish if n is even. 
 

Unlike previous years, this problem 6 

was not as hard as problem 3. There 

were 474 out of 602 contestants, who 

got 0 on this problem. 
 

Take a disk containing all segments. 

Extend each segment to cut the 

boundary of the disk at points Ai, Bi.  
 
(a) For odd n, go along the boundary and 

mark all these points ‘in’ and ‘out’ 

alternately. For each AiBi rename the ‘in’ 

point as Ai and ‘out’ point as Bi.  Geoff 

can put a frog on each of the ‘in’ points. 

Let AiBi∩AkBk=P. There are n−1 points 

on the open segment AiBi for every i. On 

the open arc AiAk, there is an odd 

number of points due to the alternate 

naming of the boundary points. Each of 

the points on open arc AiAk is a vertex of 

some AxBx, which intersects a unique 

point on either open segment AiP or AkP. 

So the number of points on open 

segments AiP and AkP are of opposite 

parity. Then the frogs started at Ai and Ak 

cannot meet at P. 
 
(b) For even n, let Geoff put a frog on a 

vertex of a AiBi segment, say the frog is 

at Ai, which is the ‘in’ point and Bi is the 

‘out’ point. As n is even, there will be 

two neighboring points labeled Ai and Ak. 

Let AiBi∩AkBk=P. Then any other 

segment AmBm intersecting one of the 

open segments AiP or AkP must intersect 

the other as well. So the number of 

intersection points by the other 

segments on open segments AiP and AkP 

are the same. Then the frogs started at Ai 

and Ak will meet at P. 
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Olympiad Corner 
 
Below are the problems of the Final 

Round of the 65th Czech and Slovak 

Math Olympiad (April 4-5, 2016).  
 

Problem 1. Let p>3 be a prime. Find 

the number of ordered sextuples 

(a,b,c,d,e,f) of positive integers, whose 

sum is 3p, and all the fractions 
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are integers. 
 

Problem 2. Let r and ra be the radii of 

the inscribed circle and excircle 

opposite A of the triangle ABC. Show 

that if r+ra=|BC|, then the triangle is 

right-angled. 
 

 
 
Problem 3. Mathematics clubs are 

very popular in certain city. Any two of 

them have at least one common 

member. Prove that one can distribute 

rulers and compasses to the citizens in 

such a way that only one citizen get 

both (compass and ruler) and any club 

has to his disposal both, compass and 

ruler, from its members. 

 
 
                                     (continued on page 4) 

Miscellaneous Problems 
 

Kin Y. Li 
     

 
     There are many Math Olympiad 

problems. Some are standard problems 

in algebra or in geometry or in number 

theory or in combinatorics, where there 

are some techniques for solving them. 

Then, there are problems that are not so 

standard, which cross two or more 

categories. In math problem books, they 

go under the category of miscellaneous 

problems. Some of these may arise due 

to curiosity. Then one may need to 

combine different facts to explain them. 

Below are some such problems we hope 

the readers will enjoy.  
 

Example 1 (1995 USA Math Olympiad). 

A calculator is broken so that the only 

keys that still work are the sin, cos, tan, 

sin−1, cos−1, tan−1 buttons. The display 

initially shows 0. Given any positive 

rational numbers q, show that pressing 

some finite sequence of buttons will 

yield q. Assume that the calculator does 

real number calculation with infinite 

precision. All functions are in terms of 

radians. 
 
Solution. We will show that all numbers 

of the form nm / , where m, n are 

positive integers, can be displayed by 

doing induction on k=m+n. (Since r/s = 

,/ 22 sr  these include all positive 

rational numbers.) 
 
       For k=2, pressing cos will display 1. 

Suppose the statement is true for integer 

less than k. Observe that if x is 

displayed, then letting θ=tan−1x, we see 
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So we can display 1/x=tan(cos−1(sin x)). 

Therefore, to display nm /  with 

k=m+n, we may assume m<n. By the 

induction step, since (n-m)+m = n < k, 

mmn /)(   can be displayed. Then 

using  
 

,/cos/)(tan 1 nmandmmn     

 
we can display nm / . This completes 

the induction. 

 
Example 2 (1986 Brazilian Math 

Olympiad). A ball moves endlessly on a 

circular billiard table. When it hits the 

edge it is reflected. Show that if it passes 

through a point on the table three times, 

then it passes through it infinitely many 

times. 
 
Solution. Suppose AB and BC are two 

successive chords of the ball’s path. By 

the reflection law, ∠ABO = ∠OBC. 

Now ΔOAB and ΔOBC are isosceles. 

So ∠AOB = ∠BOC.  Hence, AB =BC. 

Then every chord of the path has the 

same length d.  
 
We now claim that through any given 

point P inside the circle there are at most 

two chords with length d. Let AB and 

CD be a chord containing P, with AP=a 

and CP=b. The power of P with respect 

to the circle is PA·PB=PC·PD, which is 

a(d-a)=b(d-b). Hence, a=b or a+b=d. 

This means that P always divides the 

chord containing it in two segments of 

fixed lengths a and d-a. Now if three 

chords passes through P, the circle with 

center P and radius a would cut the 

circle of the billiard table three times, a 

contradiction.  
 
Thus if the path passes through P more 

than twice, then on two occasions it 

must be moving along the same chord 

AB. That implies ∠AOB is a rational 

multiple of 2π and hence the path will 

traverse AB repeatedly. 
 

Example 3. Is there a way to pack 250 

1×1×4 bricks into a 10×10×10 box? 
 
Solution. Assign coordinate (x,y,z) to 

each of the cells, where x,y,z= 0,1,…,9. 

Let the cell (x,y,z) be given color x+y+z 

(mod 4). Note each 1×1×4 brick contain 

all 4 colors exactly once. If the packing 

is possible, then there are exactly 250 

cells of each color. However, a direct 

counting shows there are 251 cells of 

color 0, a contradiction. So such 

packing is impossible. 

                                  (continued on page 2) 

 

  Editors: 高 子 眉 (KO Tsz-Mei)  

 梁 達 榮 (LEUNG Tat-Wing)  

 李 健 賢 (LI Kin-Yin), Dept. of Math., HKUST 

 吳 鏡 波 (NG Keng-Po Roger), ITC, HKPU 

Artist: 楊 秀 英 (YEUNG Sau-Ying Camille), MFA, CU 
 

Acknowledgment:  Thanks to Elina Chiu, Math. Dept., 

HKUST for general assistance. 
 

On-line:  http://www.math.ust.hk/excalibur/ 
 

The editors welcome contributions from all teachers and 

students.  With your submission, please include your name, 

address, school, email, telephone and fax numbers (if 

available).  Electronic submissions, especially in MS Word, 

are encouraged.  The deadline for receiving material for the 

next issue is April 15, 2017. 
 

For individual subscription for the next five issues for the 

17-18 academic year, send us five stamped self-addressed 

envelopes.  Send all correspondence to: 
 

Dr. Kin-Yin LI, Math Dept., Hong Kong Univ. of Science 

and Technology, Clear Water Bay, Kowloon, Hong Kong 

Fax: (852) 2358 1643 

Email: makyli@ust.hk 

© Department of Mathematics, The Hong Kong University 

of Science and Technology 

 
 



Mathematical Excalibur, Vol. 21, No. 1, Oct. 16 – Mar. 17 Page 2

 

Example 4 (2013 Singapore Math 

Olympiad). Six musicians gathered at a 

chamber music festival. At each 

scheduled concert some of the 

musicians played while the others 

listened as members of the audience. 

What is the least number of such 

concerts which would need to be 

scheduled so that every two musicians 

each must play for the other in some 

concert? 

 

Solution. Let the musicians be A,B,C, 

D,E,F. We first show that four concerts 

are sufficient. The four concerts with 

the performing musicians: {A,B,C}, 

{A,D,E}, {B,D,F} and {C,E,F} satisfy 

the requirement. We shall now prove 

that three concerts are not sufficient. 

Suppose there are only three concerts. 

Since everyone must perform at least 

once, there is a concert where two of 

the musicians, say A, B, played. But 

they must also played for each other. 

Thus we have A played and B listened 

in the second concert and vice versa in 

the third. Now C,D,E,F must all 

perform in the second and third 

concerts since these are the only times 

when A and B are in the audience. It is 

not possible for them to perform for 

each other in the first concert. Thus the 

minimum is 4. 

 

Example 5 (1999 Brazilian Math 

Olympiad). Prove that there is at least 

one nonzero digit between the 

1,000,000th and the 3,000,000th 

decimal digits of 2 . 
 

Solution. Let us suppose that all digits 

between the 1,000,000th and the 

3,000,000th  decimal digits of  2  are 

zeros. Then  

               ,
10

2
000,000,1


n             (*) 

 
where n is a positive integer and ε > 0 

satisfy  
 

.)10(102
000.000.1103000,000,1  andn  

 
By squaring (*), we can get 
 

.10102

102

000.000.22000,000,1

2000,000,2

 



n

n
 

 
However, the left side is a positive 

integer and the right side is less than 1, 

which is a contradiction. 

   

Example 6 (1995 Russian Math 

Olympiad). Is it possible to fill in the 

cells of a 9×9 table with positive integers 

ranging from 1 to 81 in such a way that the 

sum of the elements of every 3×3 square is 

the same? 

 

Solution. Place 0,1,2,3,4,5,6,7,8 on the 

first, fourth and seventh rows. Place 

3,4,5,6,7,8,0,1,2 on the second, fifth and 

eigth rows. Place 6,7,8,0,1,2,3,4,5 on the 

third, sixth and ninth rows. Then every 

3×3 square contains 0 to 8. Consider this 

table and its 90° rotation. For each cell, fill 

it with the number 9a+b+1, where a is the 

number in the cell originally and b is the 

number in the cell after the table is rotated 

by 90°. By inspection, 1 to 81 appears 

exactly once and every 3×3 square has 

sum 9×36+36+9=369. 

 

Example 7. Can the positive integers be 

partitioned into infinitely many subsets 

such that each subset is obtained from any 

other subset by adding the same integer to 

each element of the other subset? 

 

Solution. Yes. Let A be the set of all 

positive integers whose odd digit 

positions (from the right) are zeros. Let B 

be the set of all positive integers whose 

even digit positions (from the right) are 

zeros. Then A and B are infinite set and the 

set of all positive integers is the union of 

a+B={a+b: b∈B} as a range over the 

element of A. (For example, 12345 = 

2040+10305 ∈ 2040+B.) 

  

Example 8 (2015 IMO Shortlisted 

Problem proposed by Estonia). In 

Lineland there are n≥1 towns, arranged 

along a road running from left to right. 

Each town has a left bulldozer (put to the 

left of the town and facing left) and a right 

bulldozer (put to the right of the town and 

facing right). The sizes of the 2n 

bulldozers are distinct. Every time when a 

right and left bulldozer confront each 

other, the larger bulldozer pushes the 

smaller one off the road. On the other 

hand, the bulldozers are quite unprotected 

at their rears; so if a bulldozers reaches the 

rear-end of another one, the first one 

pushes the second one off the road, 

regardless of their sizes.  

 

Let A and B be two towns, with B being to 

the right of A. We say that town A can 

sweep town B away if the right bulldozer 

of A can move over to B pushing off all 

bulldozers it meets. Similarly, B can 

sweep A away if the left bulldozer of B can 

move to A pushing off all bulldozers of the 

towns on its way. 

 

Prove that there is exactly one town 

which cannot be swept away by any 

other one. 

 

Solution. Let T1, T2,…,Tn be the towns 

enumerated from left to right. Observe 

first that, if town Ta can sweep away 

town Tb, then Ta also can sweep away 

every town located between Ta and Tb. 

 

We prove by induction on n. The case 

n=1 is trivial.  For the induction step, 

we first observe that the left bulldozer 

in T1 and the right bulldozer in Tn are 

completely useless, so we may forget 

them forever. Among the other 2n-2 

bulldozers, we choose the largest one. 

Without loss of generality, it is the right 

bulldozer of some town Tk with k<n. 

 

Surely, with this right bulldozer Tk can 

sweep away all towns to the right of it. 

Moreover, none of these towns can 

sweep Tk away; so they also cannot 

sweep away any town to the left of Tk. 

Thus, if we remove the towns Tk+1, 

Tk+2,…,Tn, none of the remaining 

towns would change its status of being 

(un)sweepable away by the others.  

 

Applying the induction hypothesis to 

the remaining towns, we find a unique 

town among T1,T2,…,Tk which cannot 

be swept away. By the above reasons, it 

is also the unique such town in the 

initial situation. Thus the inductive step 

is established. 

 

Example 9 (1991 Brazilian Math 

Olympiad). At a party every woman 

dances with at least one man, and no 

man dances with every woman. Show 

that there are men M and M’ and 

women W and W’ such that M dances 

with W, M’ dances with W’, but M does 

not dance with W’, and M’ does not 

dance with W. 

 

Solution. Let M be one of the men who 

dance with the maximal number of 

women, W’ one of the women he 

doesn’t dance with, and M’ one of the 

men W’ dances with. If M’ were to 

dance with every woman that M dances 

with, then the maximality of the 

number of women that M dances with 

would be contradicted, so there is a 

woman W that dances with M but not 

with M’.  

 

                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is April 15, 2017. 
  

Problem 496. Let a,b,c,d be real 

numbers such that a+sin b > c+sin d, 

b+sin a > d+sin c. Prove that a+b>c+d. 

 

Problem 497. Let there be three line 

segments with lengths 1, 2, 3. Let the 

segment of length 3 be cut into n≥2 

line segments. Prove that among these 

n+2 segments, there exist three of them 

that can be put to form a triangle where 

each side is one of the three segments.  

 

Problem 498. Determine all integers 

n>2 with the property that there exists 

one of the numbers 1,2,…,n+1 such 

that after its removal,  the n numbers 

left can be arranged as  a1,a2,…,an with 

no two of |a1-a2|, |a2-a3|, …, |an−1-an|, 

|an-a1| being equal. 

 

Problem 499.  Let ABC be a triangle 

with circumcenter O and incenter I. Let 

Γ be the escribed circle of ΔABC 

meeting side BC at L. Let line AB meet 

Γ at M and line AC meet Γ at N.  If the 

midpoint of line segment MN lies on 

the circumcircle of ΔABC, then prove 

that points O, I, L are collinear. 

 

Problem 500. Determine all positive 

integers n such that there exist k≥2 

positive rational numbers such that the 

sum and the product of these k numbers 

are both equal to n. 
  

***************** 

Solutions 

**************** 
 

Problem 491. Is there a prime number 

p such that both p3+2008 and p3+2010 

are prime numbers? Provide a proof. 

 

Solution. Adnan ALI (Atomic Energy 

Central School 4, Mumbai, India), 

Ioan Viorel CODREANU (Secondary 

School Satulung, Maramures, 

Romania), Prithwijit DE (HBCSE, 

Mumbai, India), EVGENIDIS 

Nikolaos (M. N. Raptou High School, 

Palaiokastrou 10, Agia, Greece), 

Karaganda (Nazarbaev iIntellectual 

School, Nurligenov Temirlan - 9 grade 

student), Koopa KOO, KWOK Man Yi 

(Baptist Lui Ming Choi Secondary School, 

S6), Mark LAU, Toshihiro SHIMIZU 

(Kawasaki, Japan), Anderson TORRES, 

Titu ZVONARU (Comăneşti, Romania) 

and Neculai STANCIU (“George Emil 

Palade’’ Secondary School, Buzău, 

Romania). 
 

Let p be a prime. If p≠7, then p3≡-1 or 1 

(mod 7). Since 2008 ≡ -1 (mod 7) and 

2010≡1 (mod 7), so either p3+2008 or 

p3+2010 is divisible by 7, hence 

composite. If p = 7, then p3+2010 = 2353 

= 13×181 is composite. Therefore, there is 

no such prime. 
 

Problem 492. In convex quadrilateral 

ADBE, there is a point C within ΔABE 

such that  
 
∠EAD+∠CAB=180°=∠EBD+∠CBA. 

 

Prove that ∠ADE=∠BDC. 

 
Solution. KWOK Man Yi (Baptist Lui 
Ming Choi Secondary School, S6). 
 

D


F



C

 
 

Let F be the second intersection of the 

circumcircle of ΔEAD and line EB. Then 

∠DBF=180°-∠EBD=∠CBA. Moreover,  
 
∠BDF = 180°-∠AEB-∠ADB 

            = 180°-(360°-∠EAD-∠EBD) 

            = 180°-(∠CAB+∠CBA) =∠BCA.  
 
These two relations give ΔBDF∼ΔBCA. 

So BD/BF=BC/BA. Together with ∠DBF 

=∠CBA, we have ΔBDC∼ΔBFA. Then 

∠ADE=∠AFE=∠BFA=∠BDC. 
 

Other commended solvers: Toshihiro 

SHIMIZU (Kawasaki, Japan), Titu 

ZVONARU (Comăneşti, Romania) and 

Neculai STANCIU (“George Emil 

Palade’’ Secondary School, Buzău, 

Romania). 

 

Problem 493. For n ≥ 4, prove that 

xn−xn−1−xn−2−⋯−x−1 cannot be factored 

into a product of two polynomials with 

rational coefficients, both with degree 

greater than 1. 

 

Solution. Prithwijit DE (HBCSE, 

Mumbai, India) and Toshihiro 

SHIMIZU (Kawasaki, Japan). 
  
Let Pn(x) = xn−xn−1−xn−2−⋯−x−1 and 

Qn(x)= (x−1)Pn(x)= xn+1−2xn+1. The 

cases n = 2 or 3 follow directly from 

the rational root theorem. For n≥4, the 

Descartes’ rule of signs shows there is 

a positive root r. It is easy to check 

Pn( 3 ) < 0. So r > 3 .  
 
If Pn(s)=0 with |s|>1, then Qn(s)=0, 

which implies |s|n |s−2|=1. We get 

2≤|s−2|+|s| = |s|−n+|s|. So Qn(|s|) ≥ 0. 

Since Qn(x)<0 for 1<x<r, we must have 

|s|≥r. On the other hand, if Pn(t)=0 and 

|t|<1, then 1=|t-2||t|n ≤ 3|t|n. It follows 

that the absolute value of the product of 

all roots t of Pn(x) with |t|<1 is at least 

1/3. So r is the only root of Pn(x) with 

absolute value greater than 1.  
 
Assume Pn(x)=f(x)g(x), where f(x), g(x) 

are monic polynomials with integer 

coefficients and f(r)=0. Then if g(x) has 

positive degree, its roots would have 

absolute value less than 1 and so 

|g(0)|<1. This contradicts the constant 

term of g(x), being g(0), must be ±1.  
 
Other commended solvers: Anderson 

TORRES. 

 

Problem 494. In a regular n-sided 

polygon, either 0 or 1 is written at each 

vertex. By using non-intersecting 

diagonals, Bob divides this polygon 

into triangles. Then he writes the sum 

of the numbers at the vertices of each 

of these triangles inside the triangle. 

Prove that Bob can choose the 

diagonals in such a way that the 

maximal and minimal numbers written 

in the triangles differ by at most 1.  
 

Solution. Adnan ALI (Atomic Energy 

Central School 4, Mumbai, India) and 

Toshihiro SHIMIZU (Kawasaki, 

Japan). 
 

If all numbers written at the vertices of 

the polygon are equal, then the claim 

holds trivially. Hence assume that there 

are both zeros and ones among the 

numbers at the vertices. We prove by 

induction that, for every convex 

polygon, the partition into triangles can 

be chosen in such a way that Bob 

writes either 1 or 2 to each triangle. 
 

If n=3, then this claim holds since the 

sum of the numbers at the vertices of a 

triangle can be neither 0 nor 3. If n=4, 

then draw the diagonal that connects 
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the vertices where 0 and 1 are written, 

respectively, or, if such a diagonal does 

not exist, then an arbitrary diagonal. In 

both cases, only sums 1 and 2 can arise. 

If n≥5, then choose two consecutive 

vertices with different labels and a 

third vertex P that is not neighbor to 

either of them. Irrespective of whether 

the label of P is 0 or 1, we can draw the 

diagonal from it to one of the two 

consecutive vertices chosen before so 

that the labels of its endpoints are 

different. Now the polygon is divided 

into two convex polygons with smaller 

number of vertices so that both 0 and 1 

occur among their vertex labels. By the 

induction hypothesis, both polygons 

can be partitioned into triangles with 

sum of labels of vertices either 1 or 2. 
 
Other commended solvers: William 
FUNG. 
 

Problem 495. The lengths of each side 

and diagonal of a convex polygon are 

rational. After all the diagonals are 

drawn, the interior of the polygon is 

partitioned into many smaller convex 

polygonal regions. Prove that the sides 

of each of these smaller convex 

polygons are rational numbers. 
 
Solution. Adnan ALI (Atomic Energy 

Central School 4, Mumbai, India), 

Toshihiro SHIMIZU (Kawasaki, 

Japan) and Anderson TORRES. 
 
We only need to show the quadrilateral 

case, since if this is showed, then the 

length of any segment of a diagonal 

connecting a vertex to an intersection 

point with other diagonal would be 

rational. Let ABCD be a quadrilateral 

with all sides and diagonals have 

rational lengths. Let α =∠ABD and β 
=∠DBC. Let P be the intersection of 

AC and BD. Since  

,
2

cos
222

BDAB

ADBDAB




  

cos α is rational. Similarly, cos β and 

cos (α+β)=cos ∠ABC are rational. 

Then, since cos (α+β)= cos α cos β- 

sin α sin β, so sin α sin β is also rational. 

Also, sin2β=1-cos2β is rational. Thus, 

sin α/ sin β= sin α sin β/sin2β is rational. 

Then, AP/PC = area(ABD)/area(DBC) 

= (AB·BD sin α)/(BD·BC sin β) is 

rational. Therefore, AP and PC are 

rational. Similarly, PB and PD are 

rational. 
 

Other commended solvers: Corneliu 

MĂNESCU-AVRAM (Transportation 

High School, Ploieşti, Romania). 

Olympiad Corner 
 
                           (Continued from page 1) 
 
Problem 4. For positive a, b, c, it holds 

(a+c)(b2+ac)=4a. Find the maximal 

possible value of b+c and find all triples 

(a,b,c), for which the value is attained. 
 
Problem 5. There is |BC|=1 in a triangle 

ABC and there is a unique point D on BC 

such that |DA|2=|DB|·|DC|. Find all 

possible values of the perimeter of ABC. 
 

Problem 6. There is a figure of a prince 

on a field of a 6×6 square chessboard. The 

prince can in one move jump either 

horizontally or vertically. The lengths of 

the jumps are alternately either one or two 

fields, and the jump on the next field is the 

first one. Decide whether one can choose 

the initial field for the prince, so that the 

prince visits in an appropriate sequence of 

35 jumps every field of the chessboard.  
 

 
 

Miscellaneous Problems 
 
                      (Continued from page 2) 

 

Example 10. Two triangles have the same 

incircle. If a circle passes through five of 

the six vertices of the two triangles, then 

must it also pass the sixth vertex? 

 

Solution. Let ABC and DEF be the 

triangles. Let A, B, C, D, E be on the same 

circle Γ, with radius R and center O. 

Suppose that F does not belong to Γ. Let 

G≠D be the intersection of DF with Γ. Let 

θ =∠EDF=∠EDG. Let I and r be the 

common incenter and the inradius of Δ
ABC and ΔDEF. Let J and s be the 

incenter and the inradius of ΔDEG. 



s
r

G

D

J
E

M

I

A
B

C
F

 

We will prove that the incircle of ΔABC 

and ΔDEG coincide. First, we prove that 

I=J by showing IM=JM. It is well known 

that IM = 2R sin(θ/2) = EM. From Euler’s 

formula, OI2 = R2-2Rr, which implies that 

the power of I with respect to Γ is IM·ID = 

2Rr. Since ID = r/sin(θ/2), we have IM = 

2Rsin(θ/2) = JM. So I =J. This also proves 

r = s. Hence, the incircle of ΔABC and Δ
DEG are the same. Then F=G follows. 

Example 11 (1988 Brazilian Math 

Olympiad). A figure on a computer 

screen shows n points on a sphere, no 

four coplanar. Some pairs of points are 

joined by segments. Each segment is 

colored red or blue. For each point 

there is a key that switches the colors of 

all segments with that point as endpoint. 

For every three points there is a 

sequence of key presses that make all 

three segments between them red. 

Show that it is possible to make all the 

segments on the screen red. Find the 

smallest number of key presses that can 

turn all the segments red, starting from 

the worst case. 
 
Solution. Consider three of the points. 

The parity of the number of blue 

segments of the triangle with these 

points as vertices doesn’t change while 

switching the keys. Since it is possible 

to make all three segments red, the 

number of blue segments in each 

triangle is even. 

 

Let P be one of the n points. Let A be 

the set of points connected to P by red 

points and B be the set of points 

connected to P by blue segments. Let 

A1, A2∈A. So PA1 and PA2 are both red 

and thus A1A2 is red. Now consider 

B1B2∈B. Then PB1 and PB2 are both 

blue and B1B2 is red. Finally consider 

A∈A and B∈B. PA is red and PB is 

blue, so AB is blue. Put P in A. All this 

reasoning shows that segments in the 

same set are red and segments connect- 

ing points in different sets are blue. 

 

Switching all points in set A will make 

all segments red. Indeed, all segments 

in A will change twice, one time from 

each of its edges, all segments 

connecting points from A and B will 

change once, turning from blue to red 

and segments in B won’t change. This 

proves the first part. 

 

For the second part, notice first that one 

needs to switch each point at most once. 

Let |A|=k and |B|=n-k. If we switch a 

point from A and b points from B, we 

change at most a(n-k)+bk blue 

segments. Suppose without loss of 

generality that k≤n-k, hence k≤[n/2]. 

Then k(n-k) ≤ a(n-k) + bk ≤ a(n-k) + 

b(n-k), hence k≤a+b. So the number 

of key presses is at most k and in the 

worst case, [n/2]. This number is 

needed to make all segments red if 

|A|=[n/2]. 
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Olympiad Corner 
 
Below are the problems of the 2017 

International Mathematical Olympiad 

(July 18-19, 2017) held in Brazil.  
 

Problem 1. For each integer a0 >1, 

define the sequence a0, a1, a2, … by: 
 






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,3

,int
1

otherwisea

egeranisaifa
a

n

nn
n

 

 
for each n≥0. Determine all values of 

a0 for which there is a number A such 

that an=A for infinitely many values of 

n. 
 

Problem 2. Let ℝ be the set of real 

numbers. Determine all functions f : 

ℝ→ ℝ such that, for all real numbers x 

and y, f (f(x) f(y)) + f(x+y) = f(xy). 
 

 
 
Problem 3. A hunter and an invisible 

rabbit play a game in the Euclidean 

plane. The rabbit’s starting point, A0, 

and the hunter’s starting point, B0, are 

the same. After n−1 rounds of the 

game, the rabbit is at point An-1 and the 

hunter is at point Bn-1. In the nth round 

of the game, three things occur in order. 
 

 
                                 (continued on page 4) 

 

Notes on IMO2017 
 

Tat Wing Leung 
 

    
 
 International Mathematical Olympiad 

(IMO) 2017 was held in Rio De Janeiro, 

Brazil from 12 to 24 July, 2017. 

Members of Hong Kong Team are as 

follows. 

 

Tat Wing Leung (Leader) 

Tak Wing Ching (Deputy Leader) 

Man Yi Mandy Kwok, Shun Ming 

Samuel Lee, Yui Hin Arvin Leung, 

Cheuk Hin Alvin Tse, Jeff York Ye, Hoi 

Wai Yu (Contestants) 

 

All contestants except Alvin Tse are 

entering universities during the 

academic year 2017-18. Thus we will 

have an essentially new team next year. 

 

I went first to Brazil in July 13. 

Professor Shum Kar Ping, chairman of 

our Committee also went with me. He 

was to present the report of IMO2016. It 

was over quickly. Apparently members 

of the Advisory Board had nothing more 

to ask. Luckily it was done. 

 

Upon arrival, I just had to follow the 

program closely and to attend Jury 

meetings. As claimed, I did experience 

the famous Brazilian Hospitality (this 

clause was copied from the program 

book) and I was quite happy in general. 

 

As in these few years, in choosing the 

problems, first 4 easy problems, 1 from 

each of the four categories (Algebra, 

Combinatorics, Geometry and Number 

Theory) were selected. Then 4 medium 

problems, again 1 from each category 

was selected. Then members of the Jury 

(leaders) selected two easy problems of 

two categories, and the 2 medium 

problems from the two complementary 

categories were selected. It was claimed 

this scheme will help to produce a more 

balanced paper. But after a few years, I 

do think it is not necessarily true. First 

almost certain an easy geometry 

problem  will   be   selected,   thus    all 

 
medium but nice geometry problems 

will be discarded. It is also almost 

certain two combinatorics problems will 

be selected. The papers will then 

become more predictable. Anyway 

members still chose this scheme. 
 
Our contestants arrived on July 16. 

During the opening ceremony, July 17, I 

had a chance to look at them (from far 

away). In the opening ceremony, the 

speech of Marcelo Viana, director of 

IMPA (Instituto de Mathematica Pura e 

Applicada) was particularly genuine 

and moving. He talked about the IMO 

training and selection in Brazil in these 

38 years. (Certainly it was not an easy 

task to select a team of 6 from 18 

million youngsters). Then he also talked 

about Maryam Mirzakhani, the Iranian 

Mathematician, who was a 1994 and 

1995 IMO gold medalist, 2014 Fields’ 

medalist and passed away prematurely 

at age 40. Finally, he also talked about 

the upcoming International Congress of 

Mathematicians (ICM) 2018, to be held 

in Brazil. 
 
The next two days (July 18 and 19) are 

contest days. The contestants had to sit 

for two 4.5 hours exam during the 

mornings. In the first half hours of the 

exams, there were Q&A times. In this 

year again they adapted a new scheme, 

namely they had 4 tables, 3 tables for 

problems 1, 2 and 3 (problems 4, 5 and 6 

the next day), and so they were 4 

queues. Clearly this is a more efficient 

scheme than before. 

 

Again the next two days (July 20 and 

21) were days of coordination, namely 

leaders and coordinators would decide 

the score of a particular problem. We 

followed the schedule to go to a 

particular table. We had a very capable 

deputy leader this year and so he knew 

well what our team members had done. 

So the process became relatively easy. 
 

                                  (continued on page 2) 
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Since the problems of IMO2017 is 

listed in this issue of Excalibur, I shall 

not reproduce them here nor to copy 

the proofs. I will only give a few 

comments of this year’s problems. 

First a few key words came to my mind. 

My first word is algorithm (or 

construction). Indeed the proposer has 

been trying hard to think of a new 

scenario that when you try to solve the 

problem, you need to invent a new 

algorithm to solve the problem. For 

example, problems 5 and 6 do not need 

to know a lot of higher math, but you 

do need to have some sense of 

ingenuity to think of a new scheme or 

method to solve a particular problem. 

In Problem 3, you had to show an 

algorithm does not exist. The second 

word is induction, namely in these 

problems, small cases (cases with 

smaller parameters) were easy. So one 

might try to consider if the method of 

induction does work. It was not 

obvious. The third word is geometry. 

In this year, only 3 of us could solve 

the relatively easy geometry problem. 

Indeed this year’s geometry problem 

(P4), no new constructions are required, 

no new transformations (inversion, 

homothety, etc.) are needed. It is 

simply correct drawing and angle 

chasing. So I must admit that we have 

reverted back to our usual tradition.  
 
Now I will say a few more words on 

the individual problems and the 

performance of our team. Problem 1 is 

a number theory problem. Once a 

contestant tries a few cases and guess 

the correct answer (a0 ≣0 (mod 3)), 

then it is not too hard to prove a0 ≣1,2 

(mod 3)  do not work but a0≣0 (mod 3) 

works. Our team this year is relatively 

mature and relatively well trained. So 

all of them solved the problem and we 

have a perfect score. 
 
Problem 2 is a functional equation, 

showing f(f(x)f(y))+f(x+y)=f(xy) for all 

real x and y will imply f(x)=0 or f(x) = 

±(x−1). The most troublesome thing is 

the marking scheme. It is easy to get 

the first 3 points, but it is real hard to 

get an extra point, i.e., proving 

injectivity and onward. A leader 

secretly showed me the scores of 

problem 2 of his team, apparently he 

was dismayed by the performance. I 

was not sure. At the end I found their 

team scored 1 more point than us. 
 
For problem 3, I had (and still have) a 

very serious concern about it. Observe 

only two contestants scored 7 points (a 

Russian and an Australian contestant), 

and also none of the USA team and the 

Chinese team (plus other teams) together 

scored any point at all. I suspect many 

contestants are like me and simply don’t 

know what exactly is going on. Indeed it is 

not quite sure what it means by “no matter 

how” and what exactly it means by a 

tracking device, I was told it is not like the 

“best strategy”.  Indeed when you look at 

the solution, you get the idea such a 

strategy (or algorithm) does not exist. The 

solution is roughly as follows. Assume the 

rabbit moves in a straight line, and with 

luck (this term appears quite a few times 

in the solution) the tracking device also 

moves in a straight line. Because of this 

happening, the hunter can only move 

along a straight line (also with no 

justification but intuition) and follow the 

rabbit, and after finitely many steps, the 

distance between the rabbit and the hunter 

will only increase (easy to show by simple 

geometry). Thus there is no best strategy. I 

am still awaiting members to educate me 

on this problem. 
 
Problem 4 was a relatively easy geometry 

exercise. 
 
We did best in problem 5 among all teams, 

(our deputy leader reminded me about this 

point). Indeed altogether we scored 26 

points. So essentially 4 of us solved the 

problem, while other teams scored at most 

23 points. This shows our team does know 

something about problem solving. Indeed 

the problem is equivalent to say there are   

N(N+1) distinct integers randomly placed 

in a row, say, you can throw away N(N−1) 

of them, and among the remaining   

integers, the largest integer and the second 

largest integer will stick together, so are 

the third largest and the fourth largest 

integer will stick together, and so on. Not 

too hard? 
 
For Problem 6, an ordered pair (x,y)  of 

integers is a primitive point if gcd(x,y)=1.  

Now given a set of finitely many primitive 

points (xi, yi), 1≤i≤n, we need to find a 

homogeneous polynomial g(x,y) such that 

g(xi,yi)=1. If there is only one primitive 

point, then it is trivial, by Euclidean 

algorithm. The hard part is how to move 

on by induction. But it is not at all easy. 
 
At the end Shun Ming was awarded a gold 

medal (25 points), Mandy a silver (23 

points), Jeff (18 points), Hoi Wai (17 

points) and Cheuk Hin (17 points) all 

received Bronze medals. Yui Hin (11 

points) managed to get a honorable 

mention. Our rank is 26 among 111 

countries/regions. Surely the result was 

not as good as last year nor as we had 

hoped for. Nevertheless there were 

certain things we can say. Indeed this 

was the 30th consecutive year that we 

sent teams to IMOs. No matter what, it 

is not an easy matter and it should be a 

date to remember. (Better still, we 

hosted the event in 1994 and 2016). 

Also Mandy Kwok was the second 

girls among all girl contestants. IMPA 

this year gave out 5 prizes to female 

contestants. Initially I thought Mandy 

should have a chance to get a prize. 

Later I found out the prizes were for the 

top female students who contribute the 

most to their respective team’s score. 

So I understand why she was not 

eligible for the prize. Nevertheless I 

must say we are very glad to see her 

improving very well in these few years. 

Finally we managed to get the highest 

score in Problem 5. I think this is an 

indication that our team is comparable 

with any other team. They really don’t 

have much special recipe we don’t 

envisage.  

I hasten to say the cut scores of IMO 

this year cannot be said to be ideal. 

Indeed the cut scores for gold is 25, for 

silver 19, and bronze 16. One may say 

the easy problems (problems 1 and 4) 

were too easy and the four other 

problems too hard. The easy problem 

were too easy. Hence 14 points was not 

enough for a bronze and the hard 

problems too hard. Thus 25 points was 

good enough to get a gold. Really we 

expect a contestant to solve at least 2 

problems (≥14  points) to get a bronze, 

at least 3 problems (≥21 points) a silver, 

and at least 4 problems (≥28 points) to 

get a gold. Some people expect a 

contestant should solve nearly at least 5 

problems to get a gold. Really what is 

the point to set a problem so that only 2 

out of 615 contestants can solve it?  

 
Since we are trailing behind some other 

Asian countries this year, it was 

suggested that more money should be 

put into this activity. In my opinion the 

stakeholders (members of the 

Committee, the Academy and the 

Gifted Section of Education, but most 

important of all, past and present 

trainees) should sit together and sort 

out what exactly do we want, how 

much money/resource should be put 

into it and who will contribute what, 

etc. I suppose it is time to start 

thinking. 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is October 21, 2017. 
  

Problem 501. Let x, y, s, m, n be 

positive integers such that x+y=sm and 

x2+y2=sn. Determine the number of 

digits s300 has in base 10.   

 

Problem 502. Let O be the center of 

the circumcircle of acute ΔABC. Let P 

be a point on arc BC so that A, P are on 

opposite sides of side BC. Point K is on 

chord AP such that BK bisects ∠ABC 

and ∠AKB > 90°. The circle Ω passing 

through C, K, P intersect side AC at D. 

Line BD meets Ω at E and line PE 

meets side AB at F. Prove that ∠ABC = 

2∠FCB. 

 

Problem 503. Let S be a subset of 

{1,2,…,2015} with 68 elements. Prove 

that S has three pairwise disjoint 

subsets A, B, C such that they have the 

same number of elements and the sums 

of the elements in A, B, C are the same. 

 

Problem 504. Let p>3 be a prime 

number. Prove that there are infinitely 

many positive integers n such that the 

sum of kn for k=1,2,…,p-1 is divisible 

by p3. 

 

Problem 505. Determine (with proof) 

the least positive real number r such 

that if z1, z2, z3 are complex numbers 

having absolute values less than 1 and 

sum 0, then  
 

|z1z2+z2z3+z3z1|2 + |z1z2z3|2  < r. 

 
  

***************** 

Solutions 

**************** 
 

Problem 496. Let a,b,c,d be real 

numbers such that a+sin b > c+sin d, 

b+sin a > d+sin c. Prove that a+b>c+d. 

 

Solution. Toshihiro SHIMIZU 

(Kawasaki, Japan). 
 

For x≥0, |sin x|≤ x. Let s = a − c and t 

= d −b. We have  

         s = a-c > sin d-sin b 

            = 2cos[(d+b)/2]sin[(d-b)/2] 

            ≥ -2|sin (t/2)| 
 
and    t = d-b < sin a-sin c 

            = 2cos[(a+c)/2]sin[(a-c)/2] 

            ≤ 2|sin (s/2)|. 

 

If s ≥0, then t< 2|sin(s/2)|≤s. Similarly, if 

t≤0, then s > -2|sin(-t/2)| ≥ -2(-t/2) = t. 
 
    Finally, if s < 0 < t, then –s < 2|sin(t/2)| 

≤ t and t < 2|sin(s/2)| = |sin(−s/2)| ≤ −s, 

which leads to a contradiction. 

   

Comment: The above solution avoided 

calculus as it used sin x ≤ x for 0≤x≤1, 

which followed by taking points A, B on a 

unit circle with center O such that ∠ AOB 

= 2x, then the length 2x of arc AB is 

greater than the length 2sin x of chord AB. 
 
Other commended solvers: Jason FONG 

and LW Solving Team (S.K.H. Lam Woo 

Memorial Secondary School). 
 

Problem 497. Let there be three line 

segments with lengths 1, 2, 3. Let the 

segment of length 3 be cut into n≥2 line 

segments. Prove that among these n+2 

segments, there exist three of them that 

can be put to form a triangle where each 

side is one of the three segments.  
 
Solution. William FUNG, Mark LAU 
(Pui Ching Middle School), LW Solving 
Team (S.K.H. Lam Woo Memorial 
Secondary School) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 

 
Note line segments with lengths a≤b≤c 

form a triangle if and only if a+b>c. Let 

a1≤ a2 ≤⋯≤an be the lengths of such n 

segments with sum equals to 3. Assume 

there exists i such that ai>1. If 1<ai<2, 

then the segments with length 1,ai,2 forms 

a triangle since 1+ai>2. If 2≤ai, then the 

segments with length 1,2,ai forms a 

triangle since 1+2>ai. It remains to 

consider the case all ai≤1. Then i≥3. 

 

Assume no 3 of these segments form a 

triangle. Then a1+a2≤a3, a2+a3≤a4, …, 

an-2+an-1≤an, an+1≤2. Adding these and 

cancelling a3,…,an,1 on both sides, we 

have  
 
       3+a2 = (a1+a2+⋯+an)+a2 ≤ 2,  
 
which yields a2≤-1, a contradiction. 

 

Problem 498. Determine all integers n>2 

with the property that there exists one of 

the numbers 1,2,…,n+1 such that after its 

removal,  the n numbers left can be 

arranged as  a1,a2,…,an with no two of 

|a1-a2|, |a2-a3|, …, |an−1-an|, |an-a1| 

being equal. 

 

Solution. LW Solving Team (S.K.H. 

Lam Woo Memorial Secondary 

School), George SHEN and Toshihiro 

SHIMIZU (Kawasaki, Japan). 
  
Since no two of |a1-a2|, |a2-a3|, …, 

|an−1-an|, |an-a1| being equal and each 

is at most n, they must be 1,2,…,n in 

some order. So |a1-a2| + |a2-a3| + ⋯ + 

|an−1-an|+|an-a1|=1+2+⋯+n=n(n+1)/2. 

From a ≡ |a| (mod 2) and (a1-a2)+ 

(a2-a3)+⋯+(an−1-an)+(an-a1)=0, we 

see |a1-a2|+ |a2-a3| + ⋯ + |an−1-an| + 

|an-a1| is even. For n(n+1)/2 to be even, 

this implies n ≡ 0 or -1 (mod 4). 

 

In the case n=4k, remove k+1 and let 

a1=4k+1, a2=1, a3=4k, a4=2, …, a2k-1 

=3k+2, a2k=k, a2k+1=3k+1, a2k+2=k+2, 

a2k+3=3k, a2k+4= k+3, …, a4k-1=2k+2 

and a4k=2k+1.   

 

In the case n=4k-1, remove 3k and let 

a1=4k, a2=1, a3=4k-1, a4=2, …, a2k-1 

=3k+1, a2k=k, a2k+1=3k-1, a2k+2=k+1, 

a2k+3=3k-2, …, a4k-2= 2k-1, a4k-1=2k.   

 

Problem 499.  Let ABC be a triangle 

with circumcenter O and incenter I. Let 

Γ be the escribed circle of ΔABC 

meeting side BC at L. Let line AB meet 

Γ at M and line AC meet Γ at N.  If the 

midpoint of line segment MN lies on 

the circumcircle of ΔABC, then prove 

that points O, I, L are collinear. 
 

Solution. George SHEN.  
 

O

P

A
X

Q

C

M

N

B

J

L

I

 
 

Let P be the midpoint of MN. From 

AM=AN, we see AP⊥MN. So A,I,P are 

collinear. Let Q be on MN such that 

LQ⊥MN. Now ∠BMQ=∠CNQ and 
 

.
coscos2

coscos2

cos

cos

NC

MB

LMBLNCNC

LNCLMBMB
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This implies Δ BMQ, Δ CNQ are 

similar.   

 

Let a=BC, b=CA, c=AB, s=(a+b+c)/2 

= AM =AN and α =∠BAC.  

 

We have  
 

AP =AMcos(α/2) = s cos(α/2).  
 
By extended sine law, BC =a =2R sin α. 

From IP=BP=CP [see Math Excalibur, 

vol. 11, no. 2, page 1, Theorem in 

middle column−Ed.], we have  

,
2

cos2
2

180
sin2


BPBPBCa 






 

.

)
2

cos(2
)(222

cos
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a

AIAP

a

IP

a








  

Applying AI cos(α/2)=s-a and the last 

equation, we can get 
 

.
2

sin2

,2
2

cos2

2

2

as

cbass








 

 
Next MN = 2AMsin(α/2) = 2ssin(α/2) 

and (MQ+NQ) sin(α/2) = MB+NC. 

Using MQ/NQ=MB/NC, we get 
 

MQ sin(α/2)=MB 

and 

NQ sin(α/2)=NC, 

 
which says ∠QBA = 90°=∠QCA. Then 

Q is on Γ and AQ is a diameter of Γ.  

 

Let line LQ meet the circumcircle Γ of 

ΔABC at X as labeled in the figure. 

Observe that APQX is a rectangle and 

AQ, XP are diameters of Γ intersecting 

at O. We claim LQ=AI (then LI∩AQ at 

O and so O,I,L are collinear). 

 

Now BO=CO, BJ=CJ and ∠BAP = 

∠CAP implies BP=CP. Hence, O, J, P 

are collinear. Next OJ⊥BC implies 

∠LJP=90°=∠LQP. Then, J,P,Q,L are 

concyclic. Hence, 
 

XL·XQ=XJ·XP 
 

Let R be the circumradius of ΔABC. 

From 

,
2

cos,
2

sin2

,2,
2

cot
2





sAPRIP

RXP
a

XJ




 

  
We get XJ·XP=IP·AP. Then XL·XQ 

=IP·AP. Since XQ=AP, so XL=IP. 

Then QL=XQ-XL=AP-IP=AI. The 

conclusion follows. 

 
Other commended solvers: LW Solving 
Team (S.K.H. Lam Woo Memorial 
Secondary School) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 

Problem 500. Determine all positive 

integers n such that there exist k≥2 

positive rational numbers such that the 

sum and the product of these k numbers 

are both equal to n. 
 
Solution. Mark LAU (Pui Ching Middle 

School), LW Solving Team (S.K.H. Lam 

Woo Memorial Secondary School) and 

Toshihiro SHIMIZU (Kawasaki, Japan). 
 
Observe that for a composite number n, 

there exist integer s,t≥2 such that n=st, 

the sequence s,t,1,1,…,1 (with st-s-t 1’s) 

has sum and product equals st=n.  

 

For prime numbers n≥11, the sequence 

n/2,1/2,2,2,1,1,…,1 (with n-4-(n+1)/2 

1’s) satisfies the condition by a simple 

checking. 

 

For n=7, the sequence 9/2, 4/3, 7/6,  

satisfies the condition by a simple 

checking. 

 

Next we claim the cases n=1,2,3,5 have no 

solution. Assume a1, a2,…,ak are positive 

rational numbers with sum and product 

equals to n. By the AM-GM inequality, we 

have 

.1
1 kk

k
k naa

k

aa

k

n



 

  

Then n≥kk/(k-1)>k. Since n>k≥2, cases 

n=1 or 2 are impossible.  

 

Finally, for n=3 or 5, since 33/(3-1) =5.1… 

implies k=2, so only cases (n,k) = (3,2) 

and (5,2) remain. Now  
 

(a1-a2)2  = (a1+a2)2-4a1a2  

= n2-4n = -3 or 5,  
 

which have no rational solutions a1, a2. 

Therefore, the answers are all positive 

integers except 1,2,3,5. 

 

 
 

Olympiad Corner 
 
                           (Continued from page 1) 
 
 

Problem 3 (Cont’d).   

 

(i) The rabbit moves invisibly to a point An 

such that the distance between An-1 and An 

is exactly 1. 

 

(ii) A tracking device reports a point Pn 

to the hunter. The only guarantee 

provided by the tracking device to the 

hunter is that the distance between Pn 

and An is at most 1. 

 

(iii) The hunter moves visibly to a 

point Bn such that the distance between 

Bn-1 and Bn is exactly 1. 

 

  Is it always possible, no matter how 

the rabbit moves, and no matter what 

points are reported by the tracking 

device, for the hunter to choose her 

moves so that after 109 rounds she can 

ensure that the distance between her 

and the rabbit is at most 100? 
 

Problem 4. Let R and S be different 

points on a circle Ω such that RS is not 

a diameter. Let ℓ be the tangent line to 

Ω at R. Point T is such that S is the 

midpoint of the line segment RT. Point 

J is chosen on the shorter arc RS of Ω 

so that the circumcircle Γ of triangle 

JST intersects ℓ at two distinct points. 

Let A be the common point of Γ and ℓ 

that is closer to R. Line AJ meets Ω 

again at K. Prove that the line KT is 

tangent to Γ. 
 

Problem 5. An integer N≥2 is given. A 

collection of N(N+1) soccer players, no 

two of whom are of the same height, 

stand in a row. Sir Alex wants to 

remove N(N−1) players from this row 

leaving a new row of 2N players in 

which the following N conditions hold: 

 

(1) no one stands between the two 

tallest players, 
 
(2) no one stands between the third and 

fourth tallest players, 
 
∶ 
 
(N) no one stands between the two 

shortest players. 

 

Show that this is always possible. 
 

Problem 6. An ordered pair (x,y) of 

integers is a primitive point if the 

greatest common divisor of x and y is 1. 

Given a finite set S of primitive points, 

prove that there exist a positive integer 

n and integers a0, a1, … , an such that, 

for each (x,y) in S, we have: 
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Olympiad Corner 
 
Below are the problems of the 20th 

Hong Kong (China) Mathematical 

Olympiad held on December 2, 2017. 

Time allowed is 3 hours. 
 

Problem 1. The sequence {xn} is 

defined by x1=5 and xk+1=xk
2-3xk+3 for 

k=1,2,3,…. Prove that 
123



k

kx for all 

positive integer k. 
 

Problem 2. Suppose ABCD is a cyclic 

quadrilateral. Produce DA and DC to P 

and Q respectively such that AP=BC 

and CQ=AB. Let M be the midpoint of 

PQ. Show that MA⊥MC. 
 

 
 
Problem 3. Let k be a positive integer. 

Prove that there exists a positive 

integer ℓ with the following property: if 

m and n are positive integers relatively 

prime to ℓ such that mm≡nn (mod ℓ), 

then m≡n (mod k). 

 

Problem 4. Suppose 2017 points in a 

plane are given such that no three 

points are collinear. Among the 

triangles formed by any three of these 

2017 points, those triangles having the 

largest area are said to be good. Prove 

that there cannot be more than 2017 

good triangles. 
 
                                  

Functional Inequalities 
 

Kin Y. Li 
 

 

     In the volume 8, number 1 issue of 

Math Excalibur, we provided a number 

of examples of functional equation 

problems. In the volume 10, number 5 

issue of Math Excalibur, problem 243 in 

the problem corner section was the first 

functional inequality problem we posed. 

That one was from the 1998 Bulgarian 

Math Olympiad. In this article, we 

would like to look at some functional 

inequality problems that appeared in 

various math Olympiads. 

 

Example 1 (2016 Chinese Taipei Math 

Olympiad Training Camp. Let function 

f:[0,+∞)→ [0,+∞) satisfy 
 
(1) for arbitrary x,y≥0, we have 
 

;
22
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













y
fx

x
fyyfxf  

 
(2) for arbitrary 0≤x≤1, we have f(x) ≤ 

2016. 
 
Prove that for arbitrary x≥0 we have 

f(x) ≤ x2. 

 

Solution. In (1), let x=y=0, then f(0)=0. 

Assume there is x0> 0 such that f(x0) > 

x0
2. By (1), we see f(x0/2)> x0

2/2. By 

math induction, for all positive integer 

k, we have 
 

  .22/ 2

0

122

0 xxf kk k   
 

As k gets large, eventually we have x0/2k 

is in [0,1], but f(x0/2k) > 2016. This 

contradicts (2). So for all x≥0, f(x) ≤ x2.

 

Example 2 (2005 Russian Math 

Olympiad). Does there exist a bounded 

function f:ℝ→ℝ such that f(1)> 0 and 

for all x, y ∈ ℝ, it satisfies the inequality 
 

f 2(x+y) ≥ f 2(x) + 2f (xy) + f 2(y) ? 

 

Solution. Assume such f exists. Let a = 

2f(1) > 0. For x1≠0, let y1=1/x1, then 

 

f 2(x1+y1) ≥ f 2(x1) + 2f (1) + f 2(y1) 

                ≥ f 2(x1) + a. 
 

 
For n>1, let xn=xn−1+yn−1, yn=1/xn. Then 
 
f 2(xn+yn) ≥ f 2(xn)+a= f 2(xn−1+yn−1)+a 

      ≥ f 2(xn−1)+2a ≥⋯≥ f 2(x1)+na. 
 
As n→∞, f becomes unbounded, which 

is a contradiction. 

 

Example 3 (2016 Ukranian Math 

Olympiad). Does there exist a function 

f:ℝ→ℝ such that for arbitrary real 

numbers x, y, we have 
 

f(x-f(y)) ≤ x -yf(x) ? 
 
Solution. Assume such function exists. 

Let y=0. Then f(x−f(0))≤x. Replacing x 

by x+f(0), we get f(x)≤x+f(0). Then 

setting x=f(y), we get  
 

f(0)≤f(y) –yf(f(y))≤y+f(0)−yf(f(y)), 
 
which implies yf(f(y))≤y. If y<0, then  
 

1≤f(f(y))≤f(y)+f(0)≤y+2f(0). 
 

The last inequality is satisfied for all 

y<0, which is a contradiction. 

 

Example 4 (The Sixth IMAR Math 

Competition, 2008). Show that for any 

function f:(0,+∞)→(0,+∞) there exists 

real numbers x>0 and y>0 such that    

f (x+y) < yf (f (x)). 
 
Solution. Assume f (x+y) ≥ yf (f (x)) for 

all x, y > 0. Let a > 1, then t = f(f(a)) > 0. 

Now for b≥a(1+t−1+t−2)>a, we have 
 
 f(b)=f(a+(b-a))≥(b-a)f(f(a))=(b-a)t 

                           ≥ a(1+t−1) > a. 

Then   
 

f(f(b))=f(a+(f(b)−a))≥(f(b)−a)t≥a. 
 

If we take x≥(ab+2)/(a−1)>b, then 
 
    f(x)=f(b+(x−b))≥(x−b)f(f(b)) 

         ≥(x−b)a≥x+2. 
 
Hence, f(x) > x+1 (*). However, 

 
f(f(x))=f(x+(f(x)−x))≥(f(x)−x)f(f(x)). 

 
Cancelling f(f(x)) on both sides, we get 

f(x)≤x+1, which contradicts (*). 
 

                                  (continued on page 2) 

 

  Editors: 高 子 眉 (KO Tsz-Mei)  

 梁 達 榮 (LEUNG Tat-Wing)  

 李 健 賢 (LI Kin-Yin), Dept. of Math., HKUST 

 吳 鏡 波 (NG Keng-Po Roger), ITC, HKPU 

Artist: 楊 秀 英 (YEUNG Sau-Ying Camille), MFA, CU 
 

Acknowledgment:  Thanks to Sindy Ting, Math. Dept., 

HKUST for general assistance. 
 

On-line:  http://www.math.ust.hk/excalibur/ 
 

The editors welcome contributions from all teachers and 

students.  With your submission, please include your name, 

address, school, email, telephone and fax numbers (if 

available).  Electronic submissions, especially in MS Word, 

are encouraged.  The deadline for receiving material for the 

next issue is February 10, 2018. 
 

For individual subscription for the next five issues for the 

17-18 academic year, send us five stamped self-addressed 

envelopes.  Send all correspondence to: 
 

Dr. Kin-Yin LI, Math Dept., Hong Kong Univ. of Science 

and Technology, Clear Water Bay, Kowloon, Hong Kong 

Fax: (852) 2358 1643 

Email: makyli@ust.hk 

© Department of Mathematics, The Hong Kong University 

of Science and Technology 

 
 



Mathematical Excalibur, Vol. 21, No. 3, Oct. 17 – Jan. 18 Page 2

 

Example 5 (2016 Romanian Math 

Olympiad). Determine all functions 

f:ℝ→ℝ satisfying for arbitrary a, b∈ℝ, 

we have  
 
      f(a2)-f(b2)≤(f(a)+b)(a-f(b)).     (1) 

 
Solution. Let a=b=0, then f 2(0)≤0, so 

f(0)=0. Let b=0, then f(a2)≤af(a). Let 

a=0, then f(b2)≥bf(b). So for all x, we 

have (2) f(x2)=xf(x). Using this on the 

left side of (1), we get (3) f(a)f(b)≤ab. 

Next, by (2), we have 
 

−xf(−x)=f((−x)2)=f(x2)=xf(x). 
 
So f is an odd function. This implies  
 
    f(a)f(b)= −f(a)f(−b)≥ −(−ab)=ab.  
 
Using (3), we have f(a)f(b)=ab. Then     

f 2(1) =1. So f(1)=±1. Hence, for all x, 

f(x)f(1)=x, i.e. either f(x)=x for all x       

or  f(x)= −x for all x. Simple checking 

shows both of these satisfy (1). 

 

Example 6 (1994 APMO). Let f: ℝ→ℝ 

be a function such that  
 
(i) for all x,y∈ℝ 
 
           f(x)+f(y)+1≥f(x+y)≥f(x)+f(y), 
 
(ii) for all x∈[0,1), f (0) ≥ f (x), 
 
(iii) -f(-1)=f(1)=1. 
 
Find all such functions.      
 
Solution. By (iii), f(−1)= −1,  f(1)=1. So 

f(0)=f(−1+1)≥f(1)+f(−1)=0. By (i), f(1) 

= f(1+0)≥f(1)+f(0). So f(0)≤0. Then 

f(0)=0. 
 
      Next we claim f(x)=0 for all x in 

(0,1). Since f(0) = 0, by (ii), f(x) ≤ 0  

for all x in (0,1). By (i) and (ii), 

f(x)+f(1−x)+1f(1)=1. So  f(x) ≥ −f(1−x).  

If x∈(0,1), then 1− x∈(0,1). So f(1 −x) 

≤0 and f(x)≥−f(1−x) ≥0.  Then f(x)=0. 
 
       Next by (i) and (iii), we have f(x+1) 

≥ f(x)+f(1) = f(x)+1 and f(x) ≥ f(x+1) + 

f(−1) = f(x+1)−1. These give  f(x+1) = 

f(x)+1. 
 
        So f(x)=0 for x∈[0,1) and f(x+1) = 

f(x)+1. Hence, f(x)=[x]. We can check 

directly [x] satisfies (i), (ii) and (iii). 

 

Example 7 (2007 Chinese IMO Team 

Training Test). Does there exist any 

function f:ℝ→ℝ satisfy f(0)> 0 and 
 

  f(x+y)≥f(x)+y f (f(x)) for all x,y∈ℝ? 
 
Solution. Assume such function exists. 

In that case, we claim there would exist 

real z such that f(f(z))>0. (Otherwise, 

for all x, f(f(x))≤0. So for all y≤0, we 

have f(x+y) ≥f(x)+yf(f(x))≥f(x). Then f 

is a decreasing function. So for all 

x∈ℝ, f(0)>0≥f(f(x)), which implies f(x)>0. 

This contradicts f(f(x))≤0.)  
 
        From the claim, we see as x→+∞, 

f(z+x)≥f(z)+xf(f(z))→+∞. So we get  
 

f(x) →+∞ as well as f(f(x)) →+∞. 
 

Then there are x, y > 0 such that f(x) ≥ 0, 

f(f(x))>1, f(x+y)>0, f(f(x+y+1))>0 and  (*)  

y≥(x+1)/(f(f(x))−1). Define A = x+y+1, B 

= f(x+y)−(x+y+1). Then f(f(A)) > 0 and 
  

f(x+y) ≥ f(x)+yf(f(x)) ≥ x+y+1  by (*). 
 
So B≥0. Next,  
 
   f(f(x+y)) =  f(A+B) ≥ f(A)+Bf(f(A)) 

                  ≥ f(A) = f((x+y)+1) 

                  =  f(x+y)+f(f(x+y)) 

                  > f(f(x+y)), 
 
which is a contradiction. 

 

Example 8 (2015 Greek IMO Team 

Selection Test). Determine all functions 

f:ℝ→ℝ such that for arbitrary x, y∈ℝ, we 

have  

                 f(xy)≤yf(x)+f(y).             (1) 
 
Solution. In (1), using −y to replace y, we 

get  

                  f(−xy)≤−yf(x)+f(−y).             (2) 
 
Adding (1) and (2), we get  
 

           f(xy)+f(−xy) ≤ f(y)+f(−y).       (3) 
 
Setting y=1, we get 
 

             f(x)+f(−x) ≤ f(1)+f(−1).          (4) 
 
In (3), using 1/y with y≠0 to replace x, we 

get  

              f(1)+f(−1) ≤ f(y)+f(−y).       (5) 
 
By (4) and (5), for y≠0, we have 
 

             f(y)+f(−y) = f(1)+f(−1).  
 
Let c = f(1)+f(−1). Then (2) becomes 
 

c −f(xy) ≤ −yf(x)+c −f(y). 

Then  

                    f(xy)≥yf(x)+f(y).             (6) 
 
By (1) and (6), for all x,y≠0, 
 
                      f(xy)=yf(x)+f(y).                  (7) 
 
Setting x=y=1, we get f(1)=0. In (7), 

interchanging x and y, we get 
 
                       f(yx)=xf(y)+f(x).              (8) 
 
Subtracting (7) and (8), we get 
 

     (y −1)f(x)=(x −1)f(y). 
 

Then for x, y ≠ 0,1, we get .
1

)(

1

)(




 y

yf

x

xf  

       Since f(1)=0, we see there exists a 

such that f(x)=a(x−1) for all x≠0. Setting 

x=0 in (1), we get f(y)≥(1−y)f(0). Then for 

y≠0, we get a(y−1)≥(1−y)f(0), which is  

(y−1)(a+f(0)) ≥ 0. Then a = −f(0) and 

we get for all real x, f(x)=f(0)(1−x). 

Setting f(0) to be any real constant, we 

can check all such functions satisfy (1). 

 

Example 9 (2013 Croatian IMO Team 

Selection Test). Determine all functions 

f:ℝ→ℝ such that for all real numbers x, 

y, we have f(1)≥ 0  and   
 
             f(x)-f(y) ≥ (x-y) f(x-y).    (*) 

 
Solution. Setting y=x−1, we get f(x) 

−f(x−1) ≥ f(1) ≥ 0.  So  
 
                     f(x) ≥ f(x−1).              (1) 
 
Setting y=0, we get 
 
                   f(x)−f(0) ≥xf(x).            (2) 
 
Replacing y by x and x by 0, we get 

 
                f(0)−f(x) ≥ −xf(−x).         (3) 
 
Adding (2) and (3), we get 
 

0 ≥xf(x)−xf(−x). 
 

Then for every x>0, we get  
 
                      f(−x)≥f(x).                  (4) 
 
Setting x=1, y=0 in (0), we get  
 
                       f(0)≤0.                       (5) 
 
By (5), (1), (4), we get 0 ≥ f(0) ≥ f(−1) 

≥ f(1) ≥ 0. So f(0) = f(−1) = f(1) = 0.  

Using (1) repeatedly, we get  
 
      f(x) ≥ f(x −1) ≥ f(x −2) ≥⋯,    (6) 

 
i.e. f(x) ≥ f(x−k) for all real x, positive 

integer k. Using (6), (1) and replacing x 

by x −1 and y by −1 in (*), we get 
 

   f(x)≥f(x−1)=f(x−1)−f(−1)≥xf(x). 
 

Then f(x)(x −1) ≤0. So if x>1, then f(x) 

≤0. If x<1, then f(x) ≥0. 
 
For x>1, there is y<1 such that k=x−y 

is a positive integer. Then 
 

0 ≥ f(x) ≥ f(x −k) = f(y) ≥ 0. 
 

So for x>1, f(x)=0. Similarly, for x<1, 

there is y>1 such that k=y−x is a 

positive integer. Then as above, all 

f(x)=0. We can check directly f(x)=0 

satisfies (*). 

 

Example 10 (2011 IMO Problem 3 

proposed by Belarus). Let f:ℝ→ℝ be a 

real-valued function defined on the set 

of real numbers that satisfies 
  
               f(x+y)≤yf(x)+f(f(x))             (1) 
 
for all real numbers x and y. Prove that 

f(x)=0 for all x≤0.  
 
 
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is February 10, 2018. 
  

Problem 506. Points A and B are on a 

circle Γ1. Line AB is tangent to another 

circle Γ2 at B and the center O of Γ2 is 

on Γ1. A line through A intersects Γ1 at 

points D and E (with D between A and 

E). Line BD intersects Γ1 at a point F, 

different from B. Prove that D is the 

midpoint of BF if and only if BE is 

tangent to Γ1. 

 

Problem 507. Determine all functions 

f:ℝ→ℝ such that for all x, y ∈ℝ, 
 

(x-2)f(y) + f(y+2f(x)) = f(x+yf(x)). 

 

Problem 508. Determine the largest 

integer k such that for all integers x,y, if 

xy+1 is divisible by k, then x+y is also 

divisibly by k. 

 

Problem 509. In ΔABC, the angle 

bisector of ∠CAB intersects BC at a 

point L. On sides AC, AB, there are 

points M, N respectively such that lines 

AL, BM, CN are concurrent and 

∠AMN=∠ALB. Prove that ∠NML= 

90°.  

 

Problem 510. Numbers 1 to 20 are 

written on a board. A person randomly 

chooses two of these numbers with a 

difference of at least 2. He adds 1 to the 

smaller one and subtracts 1 from the 

larger one. Then he performs an 

operation by replacing the original two 

chosen numbers on the board with the 

two new numbers. Determine the 

maximum number of times he can do 

this operation. 
  

***************** 

Solutions 

**************** 
 

Problem 501. Let x, y, s, m, n be 

positive integers such that x+y=sm and 

x2+y2=sn. Determine the number of 

digits s300 has in base 10.   

 

Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School, P4), 

Soham GHOSH (RKMRC Narendrapur, 

Kalkata, India), Mark LAU, LEE Jae 

Woo (Hamyang High School, South 

Korea), Toshihiro SHIMIZU (Kawasaki, 

Japan). 
 

Since s2m = (x+y)2 > x2+y2 = sn, so 2m > n. 

Then  

           0 ≤ (x-y)2 = 2(x2+y2)-(x-y)2 

                       = 2sn-s2m = sn(2-s2m-n). 
 
If s≥3, then we have 2-s2m-n≤2-s<0, a 

contradiction. If s=1, then we have 

1+1≤x+y=sm=1, a contradiction. So s 

must be 2. Since log102300 = 300log102 = 

0.3010…×300= 90.3…, 2300 has 91 digits.  
 
Other commended solvers: DBS Maths 

Solving Team (Diocesan Boys’ School), 

Akash Singha ROY (Hariyana Vidya 

Mandir High School, India) and George 

SHEN. 
 

Problem 502. Let O be the center of the 

circumcircle of acute ΔABC. Let P be a 

point on arc BC so that A, P are on 

opposite sides of side BC. Point K is on 

chord AP such that BK bisects ∠ABC and 

∠AKB > 90°. The circle Ω passing 

through C, K, P intersect side AC at D. 

Line BD meets Ω at E and line PE meets 

side AB at F. Prove that ∠ABC = 2∠FCB. 
 
Solution. George SHEN and Toshihiro 
SHIMIZU (Kawasaki, Japan). 



O

A

K

P

CB

DM
F

E

 

Take point M on line KB such that 

MB=MC. Then we have Δ BMC is 

isosceles and  
 
        ∠KPC = ∠APC=∠ABC 

                      = ∠MBC+∠MCB 

                      = 180°-∠BMC 

                      = 180°-∠KMC.  
 
This implies M is on the circle Ω. 

Applying Pascal’s theorem to the points P, 

E, D, C, M, K on Ω, we have PE∩CM, 

ED∩MK=B and DC∩KP=A are collinear. 

Since this line coincides with line AB, so 

PE∩CM=F. Then 
 

2∠FCB=2∠MCB=2∠MBC=∠ABC. 
 

Other commended solvers: LEE Jae 

Woo (Hamyang High School, South 

Korea), Vijaya Prasad NALLURI 

(Retd Principal APES, Rajahmundry, 

India) and Akash Singha ROY 

(Hariyana Vidya Mandir High School, 

India). 

 

Problem 503. Let S be a subset of 

{1,2,…,2015} with 68 elements. Prove 

that S has three pairwise disjoint 

subsets A, B, C such that they have the 

same number of elements and the sums 

of the elements in A, B, C are the same. 

 

Solution. Mark LAU and George 

SHEN. 
  
There are totally (68×67×66)/6=50116 

3-element subsets of S. The possible 

sums of the three elements in these 

subsets of S are from 1+2+3=6 to 

2013+2014+2015=6042. Now 50116 > 

8×(6042-6+1). So by the pigeonhole 

principle, there are 9 distinct 3-element 

subsets A1, A2,…, A9 of S with the same 

sum of elements. 
 

    Assume x∈S appears in A1, A2,…, A9 

at least 3 times, say in A1, A2, A3. Then 

no two of the sets U=A1\{x}, V=A2\{x}, 

W=A3\{x} are the same. Otherwise say 

U=V, then A1=A2, contradiction.  

 

     So every x∈S appear at most twice 

among A1, A2,…, A9. Then there can 

only be at most 3 of A2,…, A9 (say A2, 

A3, A4) having an element in common 

with A1 (as every element of A1 can 

only appear in at most one of A2,…, A9). 

Without loss of generality, say each of 

A5,…, A9 is disjoint with A1. Similarly, 

among A6,…, A9, there are at most 

three of them (say A6, A7, A8) have a 

common element with A5. Then A9 and 

A5 are disjoint. So the pairwise disjoint 

sets A=A1, B=A5, C=A9 have the same 

sum of elements.        
 
Other commended solvers: LEE Jae 

Woo (Hamyang High School, South 

Korea), Akash Singha ROY 

(Hariyana Vidya Mandir High School, 

India), and Toshihiro SHIMIZU 

(Kawasaki, Japan). 

 

Problem 504.  Let p>3 be a prime 

number. Prove that there are infinitely 

many positive integers n such that the 

sum of kn for k=1,2,…,p-1 is divisible 

by p3. 
 
Solution. CHUI Tsz Fung (Ma Tau 
Chung Government Primary School, 
P4), DBS Maths Solving Team 
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(Diocesan Boys’ School), Mark LAU, 
LEE Jae Woo (Hamyang High School, 
South Korea), LEUNG Hei Chun 
(SKH Tang Shiu Kin Secondary School), 
Akash Singha ROY (Hariyana Vidya 
Mandir High School, India) and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
 
As φ(p3)=p2(p-1), by Euler’s theorem, 

for all positive integers r,s, we have 
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In the case r=p2, we have 
 











2/)1(

1

1

1

))((
222

p

k

pp
p

k

p kpkk  

 


 
























2/)1(

1 0

22

22

)(
p

k

p

t

tptp kp
t

p
k

).(mod0

2

)1(

3

2/)1(

1

2
24

13 22

p

k
pp

kp
p

k

pp










 
 





  

So all cases n=p2+p2(p-1)s works. 
 
Other commended solvers: Soham 
GHOSH (RKMRC Narendrapur, 
Kalkata, India) and George SHEN.  

 

Problem 505. Determine (with proof) 

the least positive real number r such 

that if z1, z2, z3 are complex numbers 

having absolute values less than 1 and 

sum 0, then  
 

|z1z2+z2z3+z3z1|2 + |z1z2z3|2  < r. 
 
Solution. Akash Singha ROY 

(Hariyana Vidya Mandir High School, 

India) and George SHEN. 
 
For i=1,2,3, let ai=|zi|2, then 0≤ai<1. 

Since z1+z2+z3=0, we have 

.
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Let b= z1z2+z2z3+z3z1 and c= z1z2z3. Let 

the notation ∑f(u,v,w) denote the sum 

of f(u,v,w), f(v,w,u) and f(w,u,v). We 

have  
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Next, for 0<x<1, consider z1=x, z2=−x and 

z3=0. Then |z1z2+z2z3+z3z1|2 + |z1z2z3|2 =x4 < 

r. Letting x tend to 1, we get 1≤r. 

Therefore, the least positive r is 1. 
  
Other commended solvers: DBS Maths 

Solving Team (Diocesan Boys’ School), 

LEE Jae Woo (Hamyang High School, 

South Korea) and Toshihiro SHIMIZU 

(Kawasaki, Japan). 
 

 
 

Functional Inequalities 
 
                      (Continued from page 2) 
 
Solution. In (1), let y=t−x, then 
 

             f(t)≤tf(x)−xf(x)+f(f(x)).        (2) 
 
Consider a,b∈ℝ. Using (2) to t=f(a), x=b 

and t=f(b), x=a, we get 
 

f(f(a))−f(f(b)) ≤ f(a)f(b) −bf(b), 

f(f(b))−f(f(a)) ≤ f(b)f(a) −af(a). 
 

Adding these, we get 
 

2f(a)f(b)≥af(a)+bf(b). 
 

Setting b=2f(a), we get  
 

2f(a)f(b)≥af(a)+2f(a)f(b) or af(a)≤0. 
 

Then for a < 0, f(a) ≥ 0.                      (3) 
 
Now suppose f(x)>0 for some x. By (2), 

we see for every t < (xf(x)−f(f(x)))/f(x), we 

have f(t)<0. This contradicts (3). So  
 
                 f(x) ≤ 0   for all real x.         (4) 
 
By (3) again, we get f(x)=0 for all x < 0. 

Finally setting t=x<0 in (2), we get f(x) 

≤f(f(x)). As f(x)=0, this implies 0≤f(0). 

This together with (4) give f(0)=0. 
 

Example 11 (2009 IMO Shortlisted 

Problem proposed by Belarus). Let f be 

any function that maps the set of real 

numbers into the set of real numbers. 

Prove that there exist real numbers x and y 

such that  

                     f(x-f(y)) > yf(x)+x.           (1) 
 
Solution. Assume the contrary, i.e. f(x-f(y)) 

≤ yf(x)+x for all real x and y. Let a=f(0). 

Setting y=0 in (1) gives f(x−a)≤x for all 

real x. This is equivalent to 
 
             f(y)≤y+a  for all real y.           (2) 
 
 Setting x=f(y) in (1) and using (2), we get 
 

a=f(0)≤yf(f(y))+f(y)≤yf(f(y))+y+a. 
 

This implies 0≤y(f(f(y))+1) and so 
 
               f(f(y))≥−1 for all y>0.            (3) 
 
By (2) and (3), we get −1≤f(f(y))≤f(y)+a 

for all y>0. So 
 
              f(y)≥−a−1 for all y > 0.           (4) 

Next, we claim  f(x)≤0 for all real x. (5) 

Assume the contrary, i.e. there is some 

f(x)>0. Now take y such that y<x−a and 
                  

               y < (−a−x−1)/f(x).              (6) 
 
By (2), we get x−f(y) ≥ x−(y+a) > 0. 

By (1) and (4), we get  
 

   yf(x)+x ≥ f(x−f(y)) ≥ −a−1. 
 
Then y ≥ (−a−x−1)/f(x), contradicting 

(6). So (5) is true. 
 
       Now setting y=0 in (5) leads to 

a=f(0)≤0 and using (2), we get  
 
               f(x)≤x  for all real x.             (7) 
 
Now choose y > 0,  y > −f(−1)−1 and 

set x=f(y)−1. By (1),(5) and (7), we get 
 
     f(−1) = f(x−f(y)) 

             ≤ yf(x)+x = yf(f(y)−1)+f(y)−1 

             ≤ y(f(y)−1)−1 ≤ −y −1. 
 
Then y≤−f(−1)−1, which contradicts 

the choice of y. 
 

Example 12 (64th Bulgarian Math 

Olympiad in 2015). Determine all 

functions f:(0,+∞)→ (0,+∞) such that 

for arbitrary positive real numbers x, y, 

we have  
 
   (1)   f(x+y)≥f(x)+y ; 

   (2)   f(f(x))≤x. 
 
Solution. As y>0, (1) implies f is 

strictly increasing on (0,+∞). By (2) 

and (1), we have  
 
            x+y≥f(f(x+y))≥f(f(x)+y).     (*) 
 
Using (*) and in (1), replacing x by y 

and y by f(x), we get  
 
       x+y ≥ f(f(x)+y) ≥ f(x)+f(y).     (**) 
 
Since f is strictly increasing and f(x)>0, 

so the limit of f(x) as x→0+ is a 

nonnegative number c. By (2), the limit 

of f(f(x)) as x→0+ is 0. 
 
     If c>0, then since f is strictly 

increasing, f(f(x)) ≥ f(c) > 0. Taking 

the limit of f(f(x)) as x→0+ leads to 0 ≥ 

f(c) > 0, contradiction. So c=0. 
 
     Now taking limit as y→0+ in (**), 

we get x≥f(x) for all x>0. This and (1) 

lead to  

              x+y≥f(x+y)≥f(x)+y.       (***) 
 
Subtracting f(x)+y in (***), we get  

x−f(x) ≥ f(x+y)−f(x)− y ≥ 0. Letting 

w=x+y in (***) and taking limit of 

w≥f(w)≥f(x)+w−x as x→0+, we get 

w=f(w). So f(x+y)=f(w)=w=x+y. Then 

f is the identity function on (0,+∞), 

which certainly satisfy (1) and (2). 
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Olympiad Corner 
 
Below were the problems of the 2017 

Serbian Mathematical Olympiad for 

high school students. The event was 

held in Belgrade on March 31 and 

April 1, 2017.  

 

Time allowed was 270 minutes. 
 

First Day  

 

Problem 1. (Nikola Petrović) Let a, b 

and c be positive real numbers with 

a+b+c=1. Prove the inequality 
 
 

.)(2
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Problem 2. (Dušan Djukić) A convex 

quadrilateral ABCD is inscribed in a 

circle. The lines AD and BC meet at 

point E. Points M and N are taken on 

the sides AD, BC respectively, so that 

AM:MD=BN:NC. Let the circum- 

circles of triangle EMN and 

quadrilateral ABCD intersect at points 

X and Y. Prove that either the lines AB, 

CD and XY have a common point or 

they are all parallel. 

 

                                 (continued on page 4)  
                  

Perfect Squares 
 

Kin Y. Li 
 

 

     In this article, we will be looking at 

one particular type of number theory 

problems, namely problems on integers 

that have to do with the set of perfect 

squares 1, 4, 9, 16, 25, 36, …. This kind 

of problems have appeared in many 

Mathematical Olympiads from different 

countries for over 50 years.  Here are 

some examples. 

 

Example 1 (1953 Kürschák Math 

Competition Problems). Let n be a 

positive integer and let d be a positive 

divisor of 2n2. Prove that n2+d is not a 

perfect square. 
 
Solution. We have 2n2=kd for some 

positive integer k. Suppose n2+d=m2 for 

some positive integer m. Then m2 = 

n2+2n2/k so that (mk)2=n2(k2+2k). Then 

k2+2k must also be the square of a 

positive integer, but k2<k2+2k<(k+1)2 

leads to a contradiction.  

 

Example 2 (1980 Leningrad Math 

Olympiad). Find all prime numbers p 

such that 2p4
-p2+16 is a perfect square. 

 
Solution. For p=2, 2p4

-p2+16=44 is not 

a perfect square. For p=3, 2p4
-p2+16 

=169=132. For prime p>3, p ≡ 1 or 2 

(mod 3) and 2p4
-p2+16≡ 2 (mod 3). 

Assume 2p4
-p2+16=k2. Then k2 ≡ 02,12 

or 22 ≡ 0 or 1 (mod 3). So 2p4
-p2+16 ≠ 

k2. Then p=3 is the only solution. 

 

Example 3 (2008 Singapore Math 

Olympiad). Find all prime numbers p 

satisfying 5p+4p4 is a perfect square.  
 
Solution. Suppose 5p+4p4=q2 for some 

integer q. Then  
 

5p = q2
-4p4  = (q-2p2) (q+2p2). 

 
Since 5 is a prime number, we have 
 

q-2p2 = 5s and q+2p2 = 5t 
 
for some integers s, t with t > s ≥ 0 and 

s+t = p. Eliminating q, we have 
 

4p2 = 5s(5t−s
-1). 

 

 
If s>0, then from 5 divides 4p2, we get 

p=5. So 5p+4p4=5625=752 and q=75 is a 

solution. If s=0, then t=p. So 5p=4p2+1. 

Now, for integer k≥2, we claim 

5k
>4k2+1. The case k=2 is clear. 

Suppose the case k is true. Then 
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So 5k+1=5×5k

 > 5(4k2+1) > 4(k+1)2+1. 

By mathematical induction, the claim is 

true. Therefore, 5p = 4p2+1 has no prime 

solution p. 

 

Example 4 (2009 Croatian Math 

Olympiad). Find all positive integers m, 

n such that 6m+2n+2 is a perfect square.   

 

Solution. If 
 

6m+2n+2=2(3m×2m−1+2n−1+1) 
 

is a perfect square, then 3m×2m−1+2n−1+1 

is even. So one of the integers 3m×2m−1 

and 2n−1 is odd and the other is even.  

 

      Suppose 3m×2m−1 is odd, then m = 1 

and 6m+2n+2 = 8+2n = 4(2n−2+2). So 

2n−2+2 is a perfect square. Since every 

perfect square dived by 4 has remainder 

0 or 1, so 2n−2+2 cannot be of the form 

4k+2. Hence, n-2=1, i.e. n=3. So 

(m,n)=(1,3) is a solution.   

 

        If 2n−1 is odd, then n=1 and 
 

6m+2n+2 = 6m+4 ≡ (-1)m+4 (mod 7). 
 
This means 6m+2n+2 divided by 7 has 

remainder 3 or 5. However,  
 
(7k)2 ≡ 0 (mod 7), (7k±1)2 ≡ 1 (mod 7), 

(7k±2)2≡ 4 (mod 7), (7k±3)2≡ 2 (mod 7).  
 
So every perfect square divided by 7 

cannot have remainder 3, 5 or 6.  

Therefore, (m,n) = (1,3) is the only 

solution. 
 
 

                                  (continued on page 2) 
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Example 5 (2008 German Math 

Olympiad). Determine all real numbers 

x such that 4x5
-7 and 4x13

-7 are 

perfect squares. 
 
Solution. Suppose there are positive 

integers a and b such that 
 

4x5
-7=a2   and   4x13

-7=b2. 
 
Then x5 = (a2+7)/4 > 1 is rational and  

x13 = (b2+7)/4 > 1 is rational. So x = 

(x5)8/(x13)3 is rational. Suppose x = p/q 

with p and q positive relatively prime 

integers. Then from (p/q)5 = (a2+7)/4 , 

it follows q5 divides 4p5 and so q=1. So 

x must be a positive integer and x≥2. 

 

In the case x is an odd integer, we have 

a2≡ 0, 1, 4 (mod 8), but a2 = 4x5
-7 ≡ 5 

(mod 8), contradiction. So x is even. In 

the case x=2, we have 4x5
-7=112 and 

4x13
-7=1812. For an even x≥4, (ab)2 = 

(4x5
-7)(4x13−7)=16x18

-28x13
-28x7+49. 

However, expanding (4x9
-7x4/2-1)2 

and (4x9
-7x4/2)2 and using x9 ≥ 4x8 ≥ 

42x7 ≥ 45x4, we see (ab)2 is strictly 

between them. Then x=2 is the only 

solution. 

 

Example 6 (2011 Iranian Math 

Olympiad). Integers a, b satisfy a>b. 

Also ab-1, a+b are relatively prime 

and ab+1, a-b are relatively prime. 

Prove that (a+b)2+(ab-1)2 is not a 

perfect square. 

 

Solution. Assume (a+b)2+(ab-1)2=c2 

for some integer c. Then 
 

c2=a2+b2+a2b2+1=(a2+1)(b2+1). 
 

Assume (*) there is a prime p such that 

p | a2+1 and p | b2+1, then p | a2+1–b2+1 

= a2
-b2. So (**) p | a-b or p | a+b.  

 

Assume p | a-b. Then p | ab–b2. Since 

p | b2+1, so p | ab–b2+b2+1 = ab+1, 

which contradicts ab+1, a-b are 

relatively prime. Similarly, assume p | 

a+b. Then p | ab+b2. Since p | a2+1, so 

p | ab+b2+b2
-1 = ab-1, which 

contradicts ab-1, a+b are relatively 

prime. So (**) as well as (*) are wrong.  

 

Then a2+1, b2+1 are relatively prime. 

Since a>b, not both of them are 0. So 

(a+b)2+(ab-1)2  equals  a2+1 (if b=0) 

or b2+1 (if a=0) or (a2+1)(b2+1). Then 

(a+b)2+(ab-1)2 is not a perfect square. 

 

Example 7 (2000 Polish Math 

Olympiad). Let m, n be positive 

integers such that m2+n2+m is divisible 

by mn. Prove that m is a perfect square. 

Solution. Since m2+n2+m is divisible by 

mn, so for some positive integer k, 

m2+n2+m=kmn. Then n2
-kmn+(m2+m) = 

0, which can be viewed as a quadratic 

equation in n. Then the discriminant 

∆=k2m2
-4m2

-4m is a perfect square. 

Suppose d is gcd(m, k2m-4m-4)=1. If d=1, 

then m (and k2m-4m-4) are both perfect 

squares. If d > 1, then  
 
   d = gcd(m, k2m-4m-4) = gcd(m,4). 
 
 Since d >1 divides 4, so d is even. Then m 

is even. Also, n2 ≡ m2+n2+m (mod 2).  So n 

is even. Then mn, m2+n2 are divisible by 4.  

 

As m2+n2+m is given to be divisible by mn, 

so m2+n2+m is divisible by 4. Then m = 

m2+n2+m-(m2+n2) is divisible by 4. So we 

get d = 4. Then  
 

1 = gcd(m/4, k2(m/4)-m-1). 
 

Now ∆/16 = (m/4)(k2(m/4)-m-1) is a 

perfect square. So m/4 and k2(m/4)-m-1 

are perfect squares. Therefore, m is a 

perfect square. 

 

Example 8 (2006 British Math Olympiad). 

Let n be an integer If 212122 n is an 

integer, then it is a perfect square. 

 

Solution. If 212122 n is an integer, 

then 1+12n2 is a perfect square. Suppose 

1+12n2=m2 for some odd  positive integer 

m. Then 12n2 = (m+1)(m-1). Let t be the 

integer (m+1)/2 and we have (*) 

t(t−1)=3n2.  

 

Now we claim 212122 n  = 2 + 2m 

= 4t is a perfect square. By (*), we see t-1 

or t is divisible by 3. Now gcd(t-1, t)= 1. 

Assume t is divisible by 3, then (t 

/3)(t-1)= n2 and both t/3 and  t-1 are 

perfect squares. Let t/3=k2 for some 

integer k, Then t-1=3k2
-1≡ 2 ≢ 02, 12 or 

22 (mod 3), contradiction. So t -1 is 

divisible by 3. Then we have gcd(t, 

(t-1)/3)=1. From t×(t-1)/3=n2, we see t is 

a perfect squares. So the claim is true. 

 

Example 9 (2002 Australian Math 

Olympiad). Find all prime numbers p, q, r 

such that pq+pr is a perfect square. 
 
Solution. If q=r, then pq+pr=2pq. So p=2 

and q is an odd prime at least 3. All prime 

triples (p,q,r)=(2,q,q) are solutions.  

 

If q≠r, then without loss of generality, let 

q<r and so  pq+pr = pq(1+ps), where s=r-q 

is at least 1. Since pq and 1+ps are 

relatively prime, so they are both perfect 

squares. Then, the prime q is 2. Also, 

since 1+ ps is a perfect square, 1+ ps=u2 

for some positive integer u. Then 
 

ps=u2
-1=(u+1)(u-1). 

 
Since gcd(u+1,u-1)=1 or 2, so if it is 2, 

then u is odd and p is even. Hence, p=2 

and both u+1 and u-1 are powers of 2. 

Then u can only be 3 and 1+ ps=32 so 

that p=2, s=3, r=q+s=2+3=5. These 

lead to the  solutions (p,q,r)=(2,2,5) or 

(2,5,2). 

 

If gcd(u+1,u-1)=1, then u is even and 

u-1 must be 1 (otherwise u+1 and u-1 

have different odd prime factors and 

cannot be powers of the same prime). 

Then u=2, ps=(u-1)(u+1)=3, p=3, s=1, 

r=q+s=3. The only such prime triples 

are (p,q,r) = (3,2,3) or (3,3,2). 

 

Then all the solutions are (p,q,r) = 

(2,2,5), (2,5,2), (3,2,3), (3,3,2) and 

(2,q,q) with q being a prime at least 3. 

 

Example 10 (2008 USA Team Selection 

Test). Let n be a positive integer. Prove 

that n7+7 is not a perfect square. 

 

Solution. Assume n7+7=x2 for some 

positive integer x. Then  
 
(1) n is odd (for otherwise x2≡ 3 (mod 

4), which is false).  

(2) n≡ 1 (mod 4) (due to n odd and x2≢ 

2 (mod 4)). 
 
(3) x2+112 = n7+128 =(n+2)N, where N 

 is n6
-2n5+4n4

-8n3+16n2
-32n+64. 

 
(4) If 11 ∤ x, then every prime factor p 

of x2+112 must be odd and p≡1 (mod 4)      

(for if p = 4k+3, then x2  ≡ -112 (mod p) 

and by Fermat’s little theorem, xp−1  ≡ 
-11p−1 ≡ -1 (mod p), contradiction). 

 

From (3), we get n+2 | x2+112, n+2≡3 

(mod 4) implies x2+112 has a prime 

factor congruent 3 (mod 4), which   

contradicts (4).  

 

If x=11y for some integer y, then (3) 

becomes 121(y2 +1) = (n + 2)N, but 

checking n ≡ -5 to 5 (mod 11), we see 

N is not a multiple of 11. So n+2 is a 

multiple of 121, say M = (n+2)/121. 

Then y2+1 =MN. Similarly, it can be 

checked that every prime factor of y2+1 

is congruent to 1 (mod 4). Hence, every 

odd factor of y2+1 is congruent to 1 

(mod 4). However, M ≡ 3 (mod 4), so 

y2+1 =MN cannot be true. Therefore, 

n7+7 is not a perfect square. 

 
 
 
                                 (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is April 21, 2018. 
  

Problem 511. Let x1,x2,…,x40 be 

positive integers with sum equal to 58. 

Find the maximum and minimum 

possible value of  x1
2+x2

2+⋯+x40
2. 

 

Problem 512. Let AD, BE, CF be the 

altitudes of acute ∆ABC. Points P and 

Q are on segments DF and EF 

respectively. If ∠PAQ=∠DAC, then 

prove that AP bisects ∠FPQ. 

 

Problem 513. Let a0,a1,a2,… be a 

sequence of nonnegative integers 

satisfying the conditions: 
 
(1) an+1=3an-3an−1+an−2 for n>1, 

(2) 2a1=a0+a2-2, 

(3) for every positive integer m, in the 

sequence a0,a1,a2,…, there exist m 

terms ak,ak+1,…,ak+m−1, which are 

perfect squares. 
 
Prove that every term in  a0,a1,a2,… is a 

perfect square. 

 

Problem 514. Let n be a positive 

integer and let p(x) be a polynomial 

with real coefficients on the interval 

[0,n] such that p(0)=p(n). Prove that 

there are n distinct ordered pairs (ai, bi) 

with i=1,2,…,n such that 0≤ai<bi≤n, 

bi-ai is an integer and p(ai)=p(bi). 

 

Problem 515. There are ten distinct 

nonzero real numbers. It is known that 

for every two of the numbers, either the 

sum or the product of them is rational. 

Prove that the square of each of the ten 

numbers is rational. 
  

***************** 

Solutions 

**************** 
 

Problem 506. Points A and B are on a 

circle Γ1. Line AB is tangent to another 

circle Γ2 at B and the center O of Γ2 is 

on Γ1. A line through A intersects Γ2 at 

points D and E (with D between A and 

E). Line BD intersects Γ1 at a point F, 

different from B. Prove that D is the 

midpoint of BF if and only if BE is tangent 

to Γ1. 

 

Solution. FONG Tsz Lo (SKH Lam Woo 

Memorial Secondary School) and George 

SHEN. 


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Let point K be the intersection of Γ1 with 

line DE. Then ∆KFD ~ ∆ABD. Since 

∠ABD = ∠AEB, so ∆ABD ~ ∆AEB. 

Then ∆KFD ~ ∆AEB. Hence, FD/DK = 

AB/BE.  

 

Let O be the center of Γ2. Since OB⊥AB, 

AO is a diameter of Γ1. So AK⊥OK. Then 

∠DKO =∠AKO = 90°. So DK=EK. Now 

BE is tangent to Γ1 ⇔ ∠EBK = ∠BAD ⇔ 

∆EBK ~ ∆BAD ⇔ AB/BE=DB/KE ⇔ 

FD/DK=DB/KE ⇔FD=DB (i.e. D is the 

midpoint of BF). 
 
Other commended solvers: DBS Maths 
Solving Team (Diocesan Boys’ School), 
Jae Woo LEE (Hamyang High School, 
South Korea), LIN Meng Fei, Akash 
Singha ROY (West Bengal, India) and 
Toshihiro SHIMIZU (Kawasaki, Japan). 
 

Problem 507. Determine all functions 

f:ℝ→ℝ such that for all x, y ∈ℝ, 
 
    (x-2)f(y) + f(y+2f(x)) = f(x+yf(x)).    (*) 
 
Solution. DBS Maths Solving Team 
(Diocesan Boys’ School), FONG Tsz Lo 
(SKH Lam Woo Memorial Secondary 
School), Jae Woo LEE (Hamyang High 
School, South Korea) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 

 

If f(0)=0, then setting x=0 in (*) yields 

f(y)=0 for all  y ∈ℝ, i.e. f is the zero 

function, which is a solution of (*). 
 

If f(0)≠0, then setting y=0 in (*) yields 

(x-2)f(0) + f(2f(x)) = f(x) for all x ∈ℝ. 

Now f(x) = f(y) implies (x-2)f(0) + f(2f(x)) 

= f(x) = f(y) = (y-2)f(0) + f(2f(y)) = 

(y-2)f(0) + f(2f(x)) yielding x=y. So f is 

injective.  

 

Setting x=2 in (*) yields f(y+2f(2)) = 

f(2+yf(2)) for all y∈ℝ. Since f is injective, 

y+2f(2)=2+yf(2) for all y∈ℝ. Setting y=0, 

we get f(2)=1. Since f is injective, f(3)≠1. 

Setting x=3, y=3/(1-f(3)) in (*), we get 

f(3/(1-f(3))+2f(3))=0. Thus, f has a 

root at a =3/(1-f(3))+2f(3). Setting y=a 

in (*), we get f(a+2f(x))=f(x+af(x)) for 

all x∈ℝ. Since f is injective, we get 

a+2f(x) = x+af(x). Now a≠2. So f(x) = 

(x-a)/(2-a). Putting this in (*), we get 

a=1. Then the function can only be (1) 

f(x)=0 for all x∈ℝ or (2) f(x)=x-1 for 

all x∈ℝ. Putting these in (*) show they 

are in fact solutions of (*). 
 
Other commended solvers: Yagub N. 

ALIYEV (Problem Solving Group of 

ADA University, Baku, Azerbaijan) 

and Akash Singha ROY (West Bengal, 

India). 

 

Problem 508. Determine the largest 

integer k such that for all integers x,y, if 

xy+1 is divisible by k, then x+y is also 

divisibly by k. 
 
Solution. George SHEN. 
  
Let k be such an integer. Let S be the 

set of all integers x such that gcd(x,k)=1. 

For x in S, choose integer m in [1,k−1] 

such that mx2 ≡-1 (mod k). Let y=mx, 

then k | xy+1. So k | x+y and k | (x+y)x − 

(xy+1) = x2−1.  Then for every x in S,  

every prime factor p of k satisfies x2≣1 

(mod p). If all prime factors p of k are 

at least 5, then x=2, 3 are in S, but x2≣1 

(mod p) fails. So the prime factors of k 

can only be 2 or 3. So k is of the form 

2r3s and S={x: gcd(x,2)=1=gcd(x,3)} 

Then for x=5 in S, x2≣1 (mod 2r) 

implies 2r | 24 and so r≤3. Also, for x=5 

in S, x2≣1 (mod 3s) implies 3s | 24 and 

so s≤1. Then k ≤ 233=24. 

 

Finally, for k=24, xy≣−1 (mod 24) 

implies gcd(x,24) = 1 = gcd(y,24). 

Then x,y ≣ 1, 5, 7, 11, 13, 17, 19 or 23 

(mod 24). The only possible cases for  

xy≣−1 (mod 24) are {x,y} = {1,23}, 

{5,19}, {7,17}, {11,23}. Then 24 | x+y. 

So k=24 is the required largest integer. 
 
Other commended solvers: CHUI Tsz 

Fung (Ma Tau Chung Government 

Primary School, P4) and DBS Maths 

Solving Team (Diocesan Boys’ 

School), Jae Woo LEE (Hamyang 

High School, South Korea), Akash 

Singha ROY (West Bengal, India) and   

Toshihiro SHIMIZU (Kawasaki, 

Japan). 

 

Problem 509.  In ΔABC, the angle 

bisector of ∠CAB intersects BC at a 

point L. On sides AC, AB, there are 

points M, N respectively such that lines 

AL, BM, CN are concurrent and ∠AMN 

=∠ALB. Prove that ∠NML= 90°.  
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Solution 1. Apostolis MANOLOUDIS 

and George SHEN. 
 
 
Let T=MN∩BC. From ∠AMT=∠AMN 

=∠ALB =∠ALT, we get A, M, L, T are 

concyclic. So ∠NML=∠TML=∠TAL.  

To get ∠TAL=90°, it suffices to show 

AT is the exterior bisector of ∠CAB.  

 

By Menelaos’ theorem, as M,N,T are   

collinear, (AM/MC)(CT/TB)(BN/NA) = 

1. By Ceva’s theorem, as AL, BM, CN 

concur, (AM/MC)(CL/LB)(BN/NA) =1. 

Then CL/LB=CT/TB. By the angle 

bisector theorem, CA/AB=CL/LB= 

CT/TB. So AT is the external bisector 

of ∠CAB.  

 

Solution 2. FONG Tsz Lo (SKH Lam 

Woo Memorial Secondary School), 

Akash Singha ROY (West Bengal, 

India) and Toshihiro SHIMIZU 

(Kawasaki, Japan). 

 

AL, BM, CN concurrent implies T, B, L, 

C is a harmonic range of points. Then 

∠AMT =∠AMN =∠ALB =∠ALT led 

to T, A, M, L concyclic. By Apollonius’ 

Theorem,  90° =∠TAL =∠NML. 
 
Other commended solvers: Jae Woo 
LEE (Hamyang High School, South 
Korea), LEUNG Hei Chun (SKH Tang 
Shiu Kin Secondary School), Titu 
ZVONARU (Comăneşti, Romania) and 
Neculai STANCIU (“George Emil 
Palade” School, Buzău, Romania). 

 

Problem 510. Numbers 1 to 20 are 

written on a board. A person randomly 

chooses two of these numbers with a 

difference of at least 2. He adds 1 to the 

smaller one and subtracts 1 from the 

larger one. Then he performs an 

operation by replacing the original two 

chosen numbers on the board with the 

two new numbers. Determine the 

maximum number of times he can do 

this operation. 
 
Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School, 

P4), FONG Tsz Lo (SKH Lam Woo 

Memorial Secondary School), Akash 

Singha ROY (West Bengal, India) and 

Toshihiro SHIMIZU (Kawasaki, 

Japan). 
 

Note after each operation, the sum of the 

numbers is always 210. Suppose the 

person chooses m,n with m-n≥2, then 

(m-1)2 + (n+1)2 = n2 + m2 + 2 - 2(m-n) ≤ 

n2+m2
-2 with equality only for m-n=2. If 

the absolute value of the difference of the 

two numbers is 1, then the operation does 

not change anything. At the end, the board 

has ten 10’s and ten 11’s.  

 

In the beginning, the sum of the squares is 

12+22+⋯+202=2870 and at the end, it is 

10×(102+112)=2210. After each operation, 

the sum of squares reduces by at least 2, so 

the number of operation that can be done 

is at most (2870-2210)/2=330.  Below we 

will show the person can do 330 

operations with the absolute values of the 

difference of the two numbers is 2.  

 

The plan is to eliminate the minimum and 

the maximum of the remaining numbers 

until we get only 10’s and 11’s. In round 1, 

we eliminate 1’s and 20’s by operating on 

pairs (1,3), (2,4), …, (18,20) one time for 

every pair. In round 2, we eliminate 2’s 

and 19’s by operating on pairs (2,4), 

(3,5), …, (17,19) two times for every pair.  

Keep on eliminating in this way until we 

have only 9’s, 10’s, 11’s and 12’s. In round 

9, we eliminate 9’s and 12’s by operating 

on pairs (9,11) and (10,12) nine times. The 

total number of operations is 18×1+16×2+ 

⋯ +2×9=330.  
  

 
 
Olympiad Corner 
 
                      (Continued from page 2) 
 
Problem 3. (Dušan Djukić) There are 

2n-1 bulbs in a line. Initially, the central 

(n-th) bulb is on, whereas all others are off. 

A step consists of choosing a string of at 

least three (consecutive) bulbs, the 

leftmost and rightmost ones being off and 

all between them being on, and changing 

the states of all bulbs in the string (for 

instance, the configuration ●○○○● will 

turn into ○●●●○). At most how many 

steps can be performed? 

 
Second Day  

 

Problem 4. (Dušan Djukić) Suppose that 

a positive integer a is such that, for any 

positive integer n, the number n2a-1 has a 

divisor greater than 1 and congruent to 1 

modulo n. Prove that a is a perfect square. 

 

Problem 5. (Bojan Bašić and PSC) 

Determine the maximum number of 

queens that can be placed on a 2017×2017 

chessboard so that each queen attacks 

at most one of the others. 

 

Problem 6. (Dušan Djukić) Let k be 

the circumcircle of triangle ABC, and 

let ka be its excircle opposite to A. The 

two common tangents of k and ka meet 

the line BC at points P and Q. Prove 

that ∠PAB=∠QAC. 
 

 

Perfect Squares 
 
                   (Continued from page 2) 
 
 
Example 11 (2006 Thai Math 

Olympiad).  Determine all prime 

numbers p such that (2p−1
-1)/p are 

perfect squares. 
 

Solution. For every prime number p, let 

f(p)= (2p−1
-1)/p. We will show for p>7, 

f(p) is not a perfect square.  
 
Assume there is a prime p>7 such that  

2p−1
-1=pm2 for some positive integer 

m. Then m must be odd. Now there are 

two cases, (1) p is of the form 4k+1 

with k>1 or (2) p is of the form 4k+3 

with k>1. 
 
In case (1), we have 2p−1 

-1 = pm2 = 

(4k+1)m2 ≡ 1 (mod 4), but also 2p−1 
-1 

= 24k 
-1 ≡ 3 (mod 4), which is a 

contradiction.  
 
In case (2), we have  2p−1

-1= 24k+2
-1 = 

(22k+1
-1)(22k+1

+1) = pm2. 
 
Since gcd(22k+1

-1,22k+1
+1)=1, again 

we have two subcases: 

 

(a) 22k+1
-1=u2, 22k+1

+1=pv2 for some 

positive integers u, v; 
 
(b) 22k+1

-1=pu2, 22k+1
+1=v2 for some 

positive integers u, v. 
 
In subcase (a), since k > 1, 22k+1+1≡1 

(mod 4), but pv2≡3×1=4 (mod 4), 

which is a contradiction. 
 
In subcase (b), we have 22k+1 = v2

-1 = 

(v-1)(v+1). Then v-1=2s, v+1=2t for 

some positive integers s<t. Observe 

that 2t−s =(v+1)/(v-1)=2/(v-1)+1. Then 

v=2 or 3. If v=2, then 22k+1+1=v2=4, 

which is a contradiction. If v=3, then  

22k+1=v2
-1=8 leads to k=1, which is a 

contradiction as  k>1.  
  
Finally, checking the cases p=2,3,5,7, 

we see only cases p=3 and 7 have 

solutions (23−1
-1)/3=12 and  (27−1

-1)/7 

= 32. 

 

 



 

Volume 21, Number 5                                                                      April 2018 – June 2018 

 

Olympiad Corner 
 
Below were the problems of the 2017 

Serbian IMO Team Selection 

Competition for high school students. 

The event was held in Belgrade on 

May 21 and 22, 2017.  

 

Time allowed was 270 minutes per 

day. 
 

First Day  

 

Problem 1. (Dušan Djukić) Let D be 

the midpoint of side BC of a triangle 

ABC. Points E and F are taken on the 

respective sides AC and AB such that 

DE=DF and ∠EDF=∠BAC. Prove that  
 

.
4

ACAB
DE


  

 

Problem 2. (Bojan Bašić) Given an 

ordered pair of positive integers (x,y) 

with exactly one even coordinate, a 

step maps this pair to (x/2, y+x/2) if 2|x, 

and to (x+y/2,y/2) if 2|y. Prove that for 

every odd positive integer n>1 there 

exists an even positive integer b, b<n, 

such that after finitely many steps the 

pair (n,b) maps to the pair (b,n). 

 

                                 (continued on page 4)  
                  

Strategies and Plans 
 

Kin Y. Li 
 

 

     In this article, we will be looking at 

some Math Olympiad problems from 

different countries and regions. Some 

require strategies or plans to perform 

certain tasks. We hope these arouse your 

interest. Here are the examples.  

 

Example 1 (1973 IMO). A soldier has to 

investigate whether there are mines in 

an area that has the form of an 

equilateral triangle. The radius of his 

detector is equal to one-half of an 

altitude of the triangle. The soldier starts 

from one vertex of the triangle. 

Determine the shortest path that the 

soldier has to traverse in order to check 

the whole region. 

 

Solution. Suppose that the soldier starts 

at the vertex A of the equilateral triangle 

ABC of side length a. Let φ and ψ be the 

arcs of circles with centers B and C and 

radii a 3 /4 respectively, that lie inside 

the triangle. In order to check the 

vertices B and C he must visit some 

point D in φ and E in ψ.  
 

 
 
Thus his path cannot be shorter than the 

path ADE (or AED) itself. The length of 

the path ADE is AD+DE≥AD+DC- 

a 3 /4. Let F be the reflection of C 

across the line MN, where M and N are 

the midpoints of AB and BC 

respectively. Then DC≥DF and hence 

AD+DC≥AD+DF≥AF. So 











4

3

2

7

4

3
a

a
AFDEAD  

with equality if and only if D is the 

midpoint of arc φ and E is the 

intersection point of CD and arc ψ. In 

following the path ADE, the soldier will 

check the whole region. Therefore, this  

 
path (as well as the one symmetric to it) 

is the shortest path the soldier can check 

the whole field. 
 
Example 2 (2011 Saudi Arabia Math 

Competition). A Geostationary Earth 

Orbit is situated directly above the 

equator and has a period equal to the 

Earth’s rotational period. It is at the 

precise distance of 22,236 miles above 

the Earth that a satellite can maintain an 

orbit with a period of rotation around 

the Earth exactly equal to 24 hours. 

Because the satellites revolve at the 

same rotational speed of the Earth, they 

appear stationary from the Earth 

surface. That is why most stationary 

antennas (satellite dishes) do not need to 

move once they have been properly 

aimed at a target satellite in the sky. In 

an international project, a total of ten 

stations were equally spaced on this 

orbit (at the precise distance of 22,236 

miles above the equator). Given that the 

radius of the Earth is 3960 miles, find 

the exact straight distance between two 

neighboring stations. Write your answer 

in the form a + b c , where a, b, c are 

integers and c>0 is square-free. 
 
Solution. Let A and B be neighboring 

stations and O be the center of the Earth. 

Now ∠AOB=36°. Let θ=18°. Then 

AB=2R sin θ, where R = 22236 + 3960 

=26196. Since we have sin 36°=cos 54°, 

so sin 2θ=cos 3θ. That is, 2cos θ sin θ = 

4 cos3θ−3cos θ. Dividing by cos θ and 

expressing in terms of sin θ, we get 

4sin2θ+2sinθ−1=0. Using the quadratic 

formula, we have sin θ=( 5 -1)/4. Then 

AB=2Rsin θ =13098( 5 -1). So a = 

-13098, b = 13098 and c = 5. 

 

Example 3 (2008 German National 

Math Competition).  On a bookshelf, 

there are n books (n≥3) from different 

authors standing side by side. A 

librarian inspects the two leftmost 

books and  changes  their  places  if  and  
 
                                  (continued on page 2) 
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only if they are not in alphabetical 

order. Afterward, he does the same to 

the second and the third book from the 

left and so on. Acting this way, he 

passes the whole row of books three 

times in total. Determine the number 

of different starting arrangements for 

which the books will finally be 

ordered alphabetically. 

 

Solution. There are exactly 6·4n-3 

arrangements for which the books are 

in order after 3 runs. For a proof, we 

number the positions and the books in 

alphabetical order from 1 to n. 

Obviously, for the position of p(k) of 

book number k at the beginning it is 

necessary that p(k)-k≤3. Now this 

condition is also sufficient: At every 

ordering run, all of the books standing 

right to their correct place are shifted 

one place to the left. On the other hand, 

no book can be shifted to the right 

beyond its correct place because if 

there is a book at position p(k) with 

p(k)>k, there must be at least one book 

on the left side of p(k) with its number 

larger than p(k). Such a book takes 

over any book with a number smaller 

than p(k).  

 

The number given in the answer is 

then calculated by regarding that each 

of the books with numbers 1,2,…, n−4 

that is not occupied by a book with a 

smaller number. For the last three 

books there are only 3, 2 and 1 places 

left. Hence the result follows.   

 

Example 4 (2000 Russian Math 

Olympiad). Two pirates divide their 

loot, consisting of two sacks of coins 

and one diamond. They decide to use 

the following rules. On each turn, one 

pirate chooses a sack and takes 2m coin 

from it, keeping m for himself and 

putting the rest into the other sack. The 

pirates alternatively taking turns until 

no more moves are possible; the first 

pirate unable to make a move loses the 

diamond, and the other pirate takes it. 

For which initial numbers of coins can 

the first pirate guarantee that he will 

obtain the diamond? 
 
Solution. We claim that if there are x 

and y coins left in the two sacks, 

respectively, then the next player P1 to 

move has a winning strategy if and 

only if |x-y|>1. Otherwise, the other 

player P2 has a winning strategy. 

 

We prove the claim by induction on the 

total numbers of coins, x+y. If  x+y=0, 

then no moves are possible and the next 

player does not have a winning strategy. 

Now assuming that the claim is true when 

x+y≤n for some nonnegative n, we prove 

that it is true when x+y=n+1.  

 

First consider the case |x-y|≤1. Assume 

that a move is possible. Otherwise, the 

next player P1 automatically loses, in 

accordance with our claim. The next 

player must take 2m coins from one sack, 

say the one containing x coins, and put m 

coins into the sack containing y coins. 

Hence the new difference between the 

number of coins in the sacks is  
 
|(x-2m)-(y+m)|≥|-3m| −|y-x|≥3-1=2. 

 
At this point, there are now a total of 

x+y-m coins in the sacks, and the 

difference between the numbers of coins 

in the two sacks is at least 2. Thus, by 

induction hypothesis, P2 has a winning 

strategy. This proves the claim when 

|x-y|≤1. 

 

Now consider the case |x-y|≥2. Without 

loss of generality, let x>y. P1 would like to 

find a m such that 2m≤x, m≥1 and 
 

|(x-2m)-(y+m)|≤1. 
 

The number m=[(x-y-1)/3] satisfies the 

last two inequalities above and we claim 

2m≤x as well. Indeed, x-2m is 

nonnegative because it differs by at most 1 

from the positive number y+m. After 

taking 2m coins from the sack with x coins, 

P1 leaves a total of x+y-m coins, where 

the difference between the numbers of 

coins in the sacks is at most 1. Hence, by 

the induction hypothesis, the other player 

P2 has no winning strategy. It follows that 

P1 has a winning strategy, as desired. 

 

This completes the proof of the induction 

and of the claim. It follows that the first 

pirate can guarantee that he will obtain the 

diamond if and only if the number of coins 

initially in the sacks differs by at least 2. 

 

Example 5 (2015 Croatian National Math 

Competition). In a country between every 

two cities there is a direct bus or a direct 

train line (all lines are two-way and they 

don’t pass through any other city). Prove 

that all cities in that country can be 

arranged in two disjoint sets so that all 

cities in one set can be visited using only 

train so that no city is visited twice, and all 

cities in the other set can be visited using 

only bus so that no city is visited twice.  

 

Solution. Let G be the set of all cities in 

the country. For disjoint subsets A, Z of G, 

we call a pair (A,Z) good if all cities in 

the set A can be visited using only bus 

such that no city is visited twice and all 

cities in the set Z can be visited using 

only train such that no city is visited 

twice. 
 
Let (A,Z) be a good pair such that A∪Z 

has the maximum number of elements. 

If we prove A∪Z=G, then the statement 

of the problem will follow. 
 
Let us assume the opposite, i.e. there is 

a city g which is not from A nor Z. 

Without loss of generality we can 

assume that A and Z are non-empty 

because otherwise we can transfer any 

city from a non-empty set to an empty 

one. 
 
Let n be the number of cities in the set 

A and m be the number of cities in the 

set Z. Let us arrange the cities from A 

in the series a1,…,an such that every 

two consecutive cities in that series are 

connected by a direct bus line. Also, let 

us arrange the cities from Z in the series 

z1,…,zm such that every two 

consecutive cities in that series are 

connected by a direct train line. 
 
Since we assumed that the pair (A,Z) is 

maximum, the cities g and a1 have to 

be connected by train (otherwise the 

pair (A∪{g},Z) would be a good pair 

whose union would have more 

elements than A∪Z, and g and z1 have 

to be connected by bus (otherwise the 

pair (A,Z ∪{g}) would be a good pair 

whose union would have more element 

than A∪Z). 
 
The cities a1 and z1 have to be 

connected by bus or by train. If a1 and 

z1 are connected by bus, let us put 

A’={z1,g,a1,…,an} and Z’={z2,…,zm}. 

Then (A’,Z’) is a good pair and the 

number of elements of A’∪Z’ is greater 

than the number of elements of A∪Z, 

which contradicts the assumption. 
 
If a1 and z1 are connected by train, let 

us put A”={a2,…,an} and Z”={a1,g, 

z1,…,zm}. Then (A”,Z”) is a good pair 

and the number of elements of A”∪Z” 

is greater than the number of elements 

of A∪Z, which contradicts the 

assumption. 
 
Since all cases lead to contradiction, 

we conclude that the assumption was 

wrong and that every city is either in 

the set A or in the set Z. 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is August 31, 2018. 
  
Problem 516. Determine all triples 

(p,m,n) of positive integers such that p 

is prime and 2mp2+1=n5 holds. 

 

Problem 517. For all positive x and y, 

prove that  
 
      x2y2(x2+y2-2) ≥ (xy-1)(x+y). 

 

Problem 518. Let I be the incenter and 

AD be a diameter of the circumcircle of 

∆ABC. Let point E be on the ray BA 

and point F be on the ray CA. If the 

lengths of BE and CF are both equal to 

the semiperimeter of ∆ABC, then 

prove that lines EF and DI are 

perpendicular.  

 

Problem 519. Let A and B be subsets 

of the positive integers with 10 and 9 

elements respectively. Suppose for 

every x,y,u,v∈A satisfying x+y=u+v, 

we have {x,y}={u,v}. Prove that the set 

A+B={a+b: a∈A, b∈B} has at least 50 

elements. 

 

Problem 520. Let P be the set of all 

polynomials f(x)=ax2+bx,where a,b are 

nonnegative integers less than 201018. 

Find the number of polynomials f in P 

for which there is a polynomial g in P 

such that g(f(k))≡k (mod 201018) for all 

integers k. 
  

***************** 

Solutions 

**************** 
 

Problem 511. Let x1,x2,…,x40 be 

positive integers with sum equal to 58. 

Find the maximum and minimum 

possible value of  x1
2+x2

2+⋯+x40
2. 

 

Solution. Arpon BASU (AECS-4, 

Mumbai, India), CHUI Tsz Fung (Ma 

Tau Chung Government Primary 

School, P4), William KAHN (Sidney, 

Australia), LAI Wai Lok (La Salle 

Primary School), LEUNG Hei Chun, 

LUI On Ki, George SHEN, 

Toshihiro SHIMIZU (Kawasaki, Japan) 

and ZHANG Yupei (HKUST). 

 

If there exist xm, xn≥2, then we can replace 

them by xm+xn-1, 1 due to  
  
              (xm+xn-1)2+12-(xm

2+xn
2) 

           = 2(xm-1)(xn-1) ≥ 0.  
 
So the maximum case can be attained by 

one 19 and thirty-nine 1’s. This gives the 

maximum value 39×12+1×192=400. 

 

For the minimum case, there exists at least 

one 1, otherwise 58=x1+x2+⋯+x40≥2×40 

=80, contradiction. Let xk be a largest term. 

If xk≥3, then we can replace xk and 1 by 

xk-1 and 2 to lower the square sums since  
 

(xk
2+12)-[(xk-1)2+22] = 2(xk-2) > 0. 

 
So in the minimum case, there are 

twenty-two 1’s and eighteen 2’s yielding 

22×12+18×22=94. 

 
Other commended solvers: George 
SHEN and Nicuşor ZLOTA (“Traian 
Vuia” Technical College, Focşani, 
Romania). 
 

Problem 512. Let AD, BE, CF be the 

altitudes of acute ∆ABC. Points P and Q 

are on segments DF and EF respectively. 

If ∠PAQ=∠DAC, then prove that AP 

bisects ∠FPQ. 
 
Solution. George SHEN and Toshihiro 

SHIMIZU (Kawasaki, Japan). 

A

B CD

E

H
F

S

T

P

Q

 

Let H be the orthocenter of ∆ABC. Let S 

be the intersection of AP and CF. Let T be 

the intersection of AQ and CF. Now 

∠AFC=90°=∠ADC. As AFDC is cyclic, 
 
∠PAT=∠PAQ=∠DAC=∠DFC=∠PFT, 
 
points A, T, F, P are concyclic. Also, since  
 
          ∠SFQ =∠HFE=∠HAE 

          =∠DAC =∠PAQ =∠SAQ, 
 
points A, F, S, Q are concyclic. Then since 
 
       ∠SQT =∠SFA=90° 

   =∠AFT =∠APT =∠SPT =∠SAQ, 
 
points S,P,T,Q are concyclic. Therefore, 

we have 

 
 
     ∠FPA =∠FTA=∠STQ =∠SPQ, 
 

which implies AP bisects ∠FPQ. 

  

Other commended solvers: Andrea 

FANCHINI (Cantù, Italy), William 

KAHN (Sidney, Australia), LEUNG 

Hei Chun, George SHEN and 

ZHANG Yupei (HKUST). 

 

Problem 513. Let a0, a1, a2, … be a 

sequence of nonnegative integers 

satisfying the conditions: 
 
(1) an+1=3an-3an−1+an−2 for n>1, 
 
(2) 2a1=a0+a2-2, 
 
(3) for every positive integer m, in the 

sequence a0, a1, a2, …, there exist m 

terms ak, ak+1, … , ak+m−1, which are 

perfect squares. 
 
Prove that every term in a0,a1,a2,… is a 

perfect square. 

 

Solution. William KAHN (Sidney, 

Australia), LEUNG Hei Chun, 

George SHEN and Toshihiro 

SHIMIZU (Kawasaki, Japan).  

 

We show we can select integers α, β, γ 
such that an=n(n-1)α/2+nβ+γ. For n=0, 

we must have γ=a0. For n=1, we must 

have a1=β+γ and we can set integer β 
as a1-γ = a1-a0. Finally for n=2, we 

must have a2=α+2β+γ and we can set 

integer α = a2-2β-γ = a2-2(a1-a0) - a0. 

Then since all three sequences bn=n2, 

bn=n and bn=1 satisfy the relation 

bn+1=3bn-3bn-1+bn-2, we also have an= 

n(n-1)α/2 + nβ + γ = n2α/2+n(β-α/2)+γ 
satisfies the relation. 

 

From (2), we get 2(β+γ) = γ + α + 2β + 

γ - 2 or α = 2. Therefore, we have an = 

n(n-1)+nβ+γ, which can be put in the 

form [(2n+t)2+s]/4 for some integers s 

and t.  

 

Assume s≠0. If  
 
(2n+t-1)2 <(2n+t)2+s < (2n+t+1)2   (*), 
 
then an cannot be a perfect square. 

However, (*) is equivalent to  
 

-(4n+2t-1) < s < 4n+2t+1 
 
or -2t+1-s<4n and s-2t-1<4n, which 

is valid for sufficiently large n. 

Therefore, (3) would lead to s=0.  

 

Since a0 = t2/4 must be an integer, so t 

must be even. Let t=2t’, then  
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which implies that every term in an is a 

perfect square. 
 
Other commended solvers: Arpon 

BASU (AECS-4, Mumbai, India), 

George SHEN and ZHANG Yupei 

(HKUST). 

 

Problem 514.  Let n be a positive 

integer and let p(x) be a polynomial 

with real coefficients on the interval 

[0,n] such that p(0)=p(n). Prove that 

there are n distinct ordered pairs (ai, bi) 

with i=1,2,…,n such that 0≤ai<bi≤n, 

bi-ai is an integer and p(ai)=p(bi). 
 

Solution. Toshihiro SHIMIZU 

(Kawasaki, Japan) and ZHANG Yupei 

(HKUST). 
 
 
We can solve the problem with 

continuous functions in place of  

polynomials. We will prove this by 

using mathematical induction. The 

case n=1 is trivial.  Suppose the case 

n-1 is true. Define f(x)=p(x+1)-p(x). 

Then 
 
f(0)+f(1)+⋯+f(n-1)=p(n)-p(0)=0.  (*) 
 
First we show there exists w∈[0,n-1] 

such that p(w)=p(w+1). In fact, if there 

exists k∈{0,1,2,…,n-1} such that 

f(k)=0, then taking w=k, we are done. 

Otherwise, from (*), we know there 

exists j∈{0,1,2,…,n-1} such that 

f(j)f(j+1)<0. Then there is w∈(j, j+1) 

such that f(w)=0. So p(w) = p(w+1).  

 

Next, define g(x)=p(x) for x∈[0,w] and 

g(x)=p(x+1) for x∈[w,n-1]. Then g(x) 

is continuous on [0,n-1] and g(0) = 

g(n-1). From induction hypothesis, 

there exist xi and yi with yi-xi∈ℕ 

satisfying g(xi)=g(yi) for i=1,2,…,n-1. 

Then there are three cases: 
 
(1) for yi<w, 0 = g(yi) - g(xi) = p(yi) - 

p(xi), 
 
(2) for xi ≤ w ≤ yi, 0 = g(yi) - g(xi) = 

p(yi+1) - p(xi) and 
 
(3) for w < xi, 0 = g(yi) - g(xi) = p(yi+1) 

- p(xi+1). 
 
Together with p(0) = p(n), we get the 

case n completing the induction step. 

 

Other commended solvers: William 

KAHN (Sidney, Australia) and 

George SHEN.  
 

Problem 515. There are ten distinct 

nonzero real numbers. It is known that for 

every two of the numbers, either the sum 

or the product of them is rational. Prove 

that the square of each of the ten numbers 

is rational. 
 

Solution. Toshihiro SHIMIZU 

(Kawasaki, Japan) and ZHANG Yupei 

(HKUST). 

 

Pick six of the nonzero distinct real 

numbers, say A1, A2, ⋯, A6 (with the 

property that for i≠j, either AiAj∈ℚ or 

Ai+Aj∈ℚ). Consider a graph with A1, A2, 

⋯, A6 as vertices and color the edge with 

vertices Ai, Aj blue if Ai+Aj∈ℚ, otherwise 

red for AiAj∈ℚ. By Ramsay’s Theorem, 

there is a red or a blue triangle in the 

complete graph with A1, A2, ⋯, A6 as 

vertices.  

 

There are two cases. In case 1, there is a 

blue triangle with vertices, say A1, A2 and 

A3. Then A1+A2, A2+A3, A3+A1∈ℚ. So 

2A1=(A1+A2)+(A3+A1)-(A2+A3)∈ℚ. Then 

A1∈ℚ and similarly A2,A3 ∈ℚ.  

 

Next, for any B∈{A4, A5, …, A10}, we see  

A1+B∈ℚ or A1B∈ℚ. So B=(A1+B)-A1 

∈ℚ or B=(A1B)/A1∈ℚ. Then all ten 

Ai∈ℚ. 

 

In case 2, there is a red triangle with 

vertices, say A1, A2 and A3. Then A1A2, 

A2A3, A3A1∈ℚ. Now 
 

A1
2=(A1A2)(A3A1)/(A2A3)∈ℚ 

 
and similarly A2

2, A3
2

 ∈ℚ. If at least one 

of A1,  A2, A3∈ℚ, say A1∈ℚ, then pick 

any C∈{A2, A3, …, A10}. Observe that 

A1+C∈ℚ or A1C∈ℚ. It follows that we 

get C=(A1+C)-A1∈ℚ or C=(A1C)/A1∈ℚ. 

Then all ten Ai∈ℚ.  

 

Otherwise, if A1
2∈ℚ, but A1∉ℚ, then 

A1=m√x, where m=1 or m=-1 and x∈ℚ. 

Since A1A2∈ℚ, we get A1A2=(m√x)A2 =b 

for some b∈ℚ. Then we get A2=b/(m√x) 

=r√x, where r=b/(mx)∈ℚ and m≠r due 

to A1≠A2. For Ai≠A1, A2, if A1+Ai∈ℚ and 

A2+Ai∈ℚ, then (A1+Ai)-(A2+Ai)∈ℚ, but 

(A1+Ai)-(A2+Ai)= A1- A2 = (m-r)√x∉ℚ. 

Finally, if A1Ai∈ℚ or A2Ai∈ℚ, then as 

above we get Ai= si√x for some si∈ℚ 

with si≠m,r. Then we have Ai
2 =si

 2 x∈ℚ. 

 

Other commended solvers: Arpon BASU 

(AECS-4, Mumbai, India), CHUI Tsz 

Fung (Ma Tau Chung Government 

Primary School, P4), William KAHN 

(Sidney, Australia), LUO On Ki and 

George SHEN. 

  

 
 
 
Olympiad Corner 
 
                   (Continued from page 2) 
 
 
Problem 3. (Marko Radovanović) Call 

a function f:ℕ→ℕ lively if  
 
f(a+b−1)=f(f(⋯f(b)⋯)) for all a,b∈ℕ, 

where f appears a times on the right 

side. 
 
Suppose that g is a lively function such 

that g(A+2018)=g(A)+1 holds for some 

A≥2. 
 
(a) Prove that g(n+20172017)=g(n) for 

all n≥A+2. 
 
(b) If g(A+20172017)≠g(A), determine 

g(n) for n≤A−1. 

               
Second Day  

 

Problem 4. (Dušan Djukić) An n×n 

square is divided into unit squares. One 

needs to place a number of isosceles 

right triangles with hypotenuse 2, with 

vertices at grid points, in such a way 

that every side of every unit square 

belongs to exactly one triangle (i.e. lies 

inside it or on its boundary). Determine 

all numbers n for which this is possible.  

 

Problem 5. (Dušan Djukić) For a 

positive integer n≥2, let C(n) be the 

smallest positive real constant such 

that there is a sequence of n real 

numbers x1,x2,…,xn, not all zero, 

satisfying the following conditions: 
 
 (i) x1+x2+⋯+xn=0;  
 
(ii) for each i=1,2,…,n, it holds that 

xi≤xi+1 or xi≤xi+1+C(n)xi+2 (the indices 

are taken modulo n). 
 
Prove that: 
 
(a) C(n)≥2 for all n; 
 
(b) C(n)=2 if and only if n is even. 

 

Problem 6. (Bojan Bašić) Let k be a 

positive integer and let n be the 

smallest positive integer having 

exactly k divisors. If n is a perfect cube, 

can the number k have a prime divisor 

of the form 3j+2? 
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Olympiad Corner 
 
Below were the problems of the 

Balkan Mathematical Olympiad which 

took place in Belgrade, Serbia on May 

9, 2018.  

 

Time allowed was 270 minutes. Each 

problem was worth 10 points 

 

Problem 1. A quadrilateral ABCD is 

inscribed in a circle k, where AB > CD 

and AB is not parallel to CD. Point M is 

the intersection of the diagonals AC 

and BD and the perpendicular from M 

to AB intersects the segment AB at the 

point E. If EM bisects the angle CED, 

prove that AB is a diameter of the circle 

k.                                           (Bulgaria) 

 

Problem 2. Let q be a positive rational 

number. Two ants are initially at the 

same point X in the plane. In the n-th 

minute (n=1,2,…) each of them 

chooses whether to walk due north, 

east, south or west and then walks the 

distance of qn metres. After a whole 

number of minutes, they are at the 

same point in the plane (not necessarily 

X), but have not taken exactly the same 

route within that time. Determine all 

possible values of q. (United Kingdom) 
 
                                 (continued on page 4)  
                  

Miscellaneous Inequalities 
 

Kin Y. Li 
 

 

     There are many kinds of inequality 

problems in mathematical Olympiad 

competitions. Some of these can be 

solved by applying certain powerful 

inequalities such as rearrangement or 

majorization or Muirhead’s inequalities. 

Some can be solved by techniques like 

tangent line methods using a bit of 

differential calculus.  

 

In this article, we will be looking at 

some inequality problems that are not 

solved by these kinds of powerful tools 

and techniques. 

 

Example 1. (1983 IMO Shortlisted 

Problem proposed by Finland) Let p 

and q be integers with q>0. Show that 

there exists an interval I of length 1/q 

and a polynomial P with integral 

coefficients such that  
 

2

1
)(

qq

p
xP   

for all x∈ I. 
 

Solution. Pick P(x) = p((qx−1)2n+1+1)/q 

and I = [1/(2q), 3/(2q)]. Then all the  

coefficients of P are integers and 
 

 
12

12

2

1
1)( 

 
n

n

q

p
qx

q

p

q

p
xP  

 

for all x∈ I. Choose n large so that 22n+1 

> |pq|. Then we are done. 

 

Example 2 (1994 IMO) Let m and n be 

positive integers. The set A={a1, a2, … , 

am} is a subset of 1,2,…,n. Whenever 

ai+aj≤n, 1≤i≤j≤m, ai+aj also belong 

to A. Prove that 
 

.
2

121 


 n

m

aaa m
 

 
Solution. We may assume that a1>a2> 

⋯ > am. We claim that for i=1,2,…,m,  
 
                 ai+am+1−i≥n+1.         (*) 

 

 
If not, then ai+am+1−i, …, ai+am−1, ai+am 

are i different elements of A greater than 

ai, which is impossible. By adding the 

cases i=1,2,…,m of (*), we get 
 

2(a1+⋯+am) ≥ m(n+1). 
 

The result follows. 

 

Example 3 (2001 IMO Shortlisted 

Problem proposed by Bulgaria). Find 

all positive integers a1, a2, …, an such 

that  

,
100

99 1

2

1

1

0

n

n

a

a

a

a

a

a    

 
where a0=1 and (ak+1−1)ak-1≥ak

2(ak-1) 

for k=1,2,…,n-1.  
 
Solution. Let a1, a2, … , an satisfy the 

conditions of the problem. Then ak >ak-1 

and hence ak≥2 for k=1,2,…,n. The 

inequality (ak+1−1)ak-1≥ak
2(ak-1) can 

be rewritten as 

.
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Adding these inequalities for k = i+1,…, 

n-1 and using an-1/an < an-1/(an-1), we 

obtain  

.
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Then 
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for i=1,2,⋯,n-1. Now given a0,a1,…, ai, 

there is at most one possibility for ai+1. 

By (*), this yields a1=2, a2=5, a3=56, 

a4=78400. These values satisfy the 

condition of the problem. So this is a 

unique solution. 
 

Example 4 (1999 Polish Math 

Olympiad). Let a1, a2, …, an, b1, b2, …, 

bn be integers. Prove that  

 
 


nji nji

jijiji babbaa
1 1

.|||)||(|  
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Solution. For integer x, let f{a,b}(x)=1 if 

either a≤x<b or b≤x<a and f{a,b}(x)=0 

otherwise. Observe that when a,b are 

integers, |a-b| equals the sum of f{a,b}(x) 

over all integers x. Now fix an integer x 

and suppose a≤ is the number of values 

of i for which ai≤x. 

 

Define a>, b≤, b< analogously. We have 
 
                 (a≤-b≤) + (a>-b>) 

              = (a≤+a<) – (b≤+b>) 

              = n – n = 0, 
 
which implies (a≤-b≤)(a>-b>)≤0.Thus  
 
        a≤a> + b≤b> ≤ a≤b> + a> b≤.  
 
Now  




 
nji

ba xfaa
ji

1

},{ ).(  

because both sides count the same set 

of pairs and the other terms reduce 

similarly, yielding 





nji

ba

nji

bbaa xfxfxf
jijiji

1

},{

1

},{},{ ).()()(  

Because x was an arbitrary integer, this 

last inequality holds for all integers x. 

Summing over all integers x and using 

our first observation, we get the desired 

inequality. Equality holds if and only if 

the above inequality is an inequality for 

all x, which is true precisely when the 

ai equal the bi in some order. 

 

Example 5 (2007 Chinese Math 

Olympiad). Let a,b,c be complex 

numbers. Let |a+b|=m, |a-b|=n and 

mn≠0. Prove that  

.|}||,max{|
22 nm
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Solution. Since  
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and m2+n2=|a-b|2+|a+b|2=2(|a|2+|b|2), 

so 

.|}||,max{|
22 nm

mn
bcabac


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Example 6 (1999 Balkan Math 

Olympiad). Let x0,x1,x2,… be a non- 

decreasing sequence of nonnegative 

integers such that for every k≥0, the 

number of terms of the sequence which 

are less than or equal to k is finite; let this 

number be yk. Prove that for all positive 

integers m and n,  
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Solution. Under the given construction, 

ys≤t if and only if xt>s. Thus the 

sequences x0,x1,x2,… and y0,y1,y2,… are 

dual, meaning that applying the given 

algorithm to y0,y1,y2,… will restore the 

original x0,x1,x2,…. 

 

To find x0+x1+⋯+xn, observe that among 

the numbers x0,x1,⋯,xn , there are exactly 

y0 terms equal to 0,  y1-y0  terms equal to  

1, … and 
21 


nn xx yy  terms equal to  xn-1,  

while the remaining n+1-xn-1 terms equal 

to xn. Hence, x0+x1+⋯+ xn  equals 
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First suppose that xn-1≥m. Write 

xn-1=m+k for k≥0. Because xn>m+k, 

from our initial observations we have 

ym+k≤n. Then  
 

n+1 ≥ ym+k ≥ ym+k-1 ≥ ⋯ ≥ ym. 

So  

).1)(1(

)1()1)(1(
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)1(
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Next suppose that xn-1<m. Then xn≤m 

implies ym>n, which implies ym-1≥n. 

Because x0,x1,x2,… and y0,y1,y2,… are 

dual, we may apply the same argument 

with the roles of the two sequences 

reversed. This completes the proof. 

 

Example 7 (2007 Chinese Girls’ Math 

Olympiad). Let m,n be integers, m>n≥2, 

S={1,2,…,m} and T={a1,a2,…,an} be a 

subset of S. Suppose every two elements 

of T are not both the divisors of any 

element of S. Prove that 

 

.
111

21 m

nm

aaa n


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Solution. For i=1,2,…,n, let ki be the 

integer such that ki≤m/ai<ki+1. Let Ti = 

{kai : k = 1,…, ki}. Then |Ti| = ki Since 

every two elements of T are not both the 

divisors of any element of S, so if i≠i’, 

then Ti∩Ti’ is empty. Hence, 
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Since m/ai < ki +1, we have 
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Dividing by m, we get the desired 

conclusion. 

 

Example 8 (1987 IMO Shortlisted 

Problem proposed by Netherland). 

Given five real numbers u0, u1, u2, u3, 

u4, prove that it is always possible to 

find five real numbers v0, v1, v2, v3, v4 

that satisfy the following conditions: 
 
 (i) ui-vi∈ℕ. 

(ii) ∑0≤i<j≤4 (vi-vj)
2 < 4. 

 

Solution. Observe that 
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Let us take vi’s satisfying the last line 

with v0≤ v1≤ v2≤ v3≤ v4≤1+v0. Define 

v5=1+v0. We see that one of the 

differences vi+1-vi, i=0,…,4, is at most 

1/5. Let v=(vi+1+vi)/2. Then place the 

other three vi’s in [v-1/2,v+1/2]. Now 

we have |v-vi|≤1/10, |v-vi+1|≤1/10 and 

|v-vk|≤1/2 for any k other than i and 

i+1. Finally, we have 


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40
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Example 9 (2000 Romanian Math 

Olympiad). Let n≥1 be an odd positive 

integer and x1, x2, …, xn be real 

numbers such that |xk+1-xk|≤1 for 

k=1,2,…,n-1. Show that 
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Solution. Let P, N be the sets of positive, 

negative numbers among x1, x2, …, xn 

respectively. Without loss of generality, 

assume that there are more k such that 

xk is negative than there are k such that 

xk is positive. Let (a1,…,an) be a 

permutation of (x1,…,xn) such that 

a1,…,an is a nondecreasing sequence. 

By construction, |P|≤(n-1)/2. 

 

 

                             (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is December 1, 2018. 
  

Problem 521. Given 20 points in space 

so that no three of them are collinear, 

prove that the number of planes 

determined by these points is not equal 

to 1111. 

 

Problem 522. Determine all functions 

f:ℝ→ℝ such that for all real x and y, 
 
(x-2) f(y) + f (y + 2 f(x)) = f (x + y f(x)). 

 

Problem 523. Find all positive integers 

n for which there exists a polynomial 

P(x) with integer coefficients such that 

P(d) = (n/d)2 for each positive divisor d 

of n. 
 

Problem 524.  (proposed by Andrew 

WU, St. Albans School, Mc Lean, VA, 

USA) In ∆ABC with centroid G, M and 

N are the midpoints of AB and AC, and 

the tangents from M and N to the 

circumcircle of ∆AMN meet BC at R 

and S, respectively. Point X lies on side 

BC satisfying ∠CAG =∠BAX. Show 

that GX is the radical axis of the 

circumcircles of ∆BMS and ∆CNR.  
 

Problem 525. Find all positive integer 

n such that n(n+2)(n+4) has at most 15 

positive divisors. 
  

***************** 

Solutions 

**************** 
 

Problem 516. Determine all triples 

(p,m,n) of positive integers such that p 

is prime and 2mp2+1=n5 holds. 
 

Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School) 

and ZHANG Yupei (HKUST). 
 
Let q=n4+n3+n2+n+1. Then 2mp2 = 

(n-1)q and gcd(n-1,q)=gcd(n-1,5) = 1 

or 5. Now q>1 is odd and so p is an odd 

prime. Let p=2k+1. Then gcd(2m,p2)=1. 

So n-1=2m, q=p2. Then n=2m+1. So 

n4+n3+n2+n=p2-1 can be expressed as 
 

(22m+2m+1+2)(22m+3·2m+2)=4k(k+1). 

If m≥2, then the left side is 4 (mod 8) and 

the right side is 0 (mod 8). Hence, m=1. 

Then p=11 and n=3. So (p,m,n)=(11,1,3) 

only. 
 
Other commended solvers: Ioan Viorel 
CODREANU (Satulung, Maramures, 
Romania), Akash Singha ROY (West 
Bengal, India), Ioannis D. SFIKAS 
(Athens, Greece), Toshihiro SHIMIZU 
(Kawasaki, Japan) and Nicuşor ZLOTA 
(“Traian Vuia” Technical College, 
Focşani, Romania). 
 

Problem 517. For all positive x and y, 

prove that  
 
        x2y2(x2+y2-2) ≥ (xy-1)(x+y). 
 

Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School). 
 

Let k=xy. We have 

0
)122()1(

1

2

22
2

2

2

2












k

kkkkk

k

k

k

k
k

 

Since ,22 yxxyk   so 

yx

xy
yx

yx

yx







 22222

                    

.
11

2

22
2

222 yx

xy

k

k

k

k
k








  

Then x2y2(x2+y2-2) ≥ (xy-1)(x+y). 
  
Other commended solvers: LEUNG Hei 
Chun, Paolo PERFETTI (Math Dept, 
Università degli studi di Tor Vergata 
Roma, via della ricerca scientifica, Roma, 
Italy), Ioannis D. SFIKAS (Athens, 
Greece), Nicuşor ZLOTA (“Traian Vuia” 
Technical College, Focşani, Romania). 

 

Problem 518. Let I be the incenter and 

AD be a diameter of the circumcircle of 

∆ABC. Let point E be on the ray BA and 

point F be on the ray CA. If the lengths of 

BE and CF are both equal to the 

semiperimeter of ∆ABC, then prove that 

lines EF and DI are perpendicular. 

 

Solution. ZHANG Yupei (HKUST). 
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Let circle ABC intersect line DI at S. 

Let K, J, L be the feet of the 

perpendiculars from I to sides AC, CB, 

BA of ∆ABC respectively. Since AD is 

a diameter of the circumcircle of 

∆ABC, we get ∠ASD =∠AKI =∠ALI 

= 90º. So A,S,K,I,L are concyclic.  

 

Next, ∠BLS = 180º - ∠ALS = 180º - 

∠AKS =∠CKS and ∠LBS =∠ KCS. So 

∆BLS, ∆CKS are similar. Since 

BE=CF,  AF/AE = BL/CK = SB/SC. 

We get ∠EAF = ∠CAB =∠CSB. So 

∆EAF ≅ ∆CSB. Then ∠SBC =∠SAC 

=∠EFA. We get EF || AS. Then DI ⊥ 

EF. 
 
Other commended solvers: William 

KAHN (Sidney, Australia), Akash 

Singha ROY (West Bengal, India), 

Ioannis D. SFIKAS (Athens, Greece), 

and Toshihiro SHIMIZU (Kawasaki, 

Japan).  

 

Problem 519.  Let A and B be subsets 

of the positive integers with 10 and 9 

elements respectively. Suppose for 

every x,y,u,v∈A satisfying x+y=u+v, 

we have {x,y}={u,v}. Prove that the set 

A+B={a+b: a∈A, b∈B} has at least 50 

elements. 
 

Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School). 
 
 
If a1, a2∈A and b1, b2∈B such that 

a1+b1=a2+b2, then a1-a2=b2-b1 (with 

a1≠a2 and b1≠b2). Assume the 

equation x+b1=y+b2 has two distinct 

solutions (x,y) = (a3, a4) and (a5, a6) 

such that a3, a4, a5, a6 ∈A. Then we 

have a3-a4 = b2-b1 = a5-a6, which 

implies a3+a6=a4+a5. By the condition 

of A, we have {a3, a6}={a4, a5}. Then 

we have 2 cases. 

 

Case 1: a3=a4 and a5=a6. From 

a3+b1=a4+b2, we get b1=b2. Then 

|a3-a4| + |b1-b2|=0, contradiction. 

 

Case 2:  a3=a5 and a4=a6.Then (a3, 

a4)=(a5, a6), contradiction. 

 

So x+b1=y+b2 has at most one solution. 

Since there are 36 choices of b1≠b2∈B, 

so there must be 36 solutions of (a1, a2, 

b1, b2) such that a1≠a2∈A, b1≠b2∈B 

and a1+b1=a2+b2.  

 

However, we have a1+b1, a2+b2 ∈A+B. 

Since A+B has 90 not necessary 

distinct elements, so A+B has at least 

54 distinct elements. In particular, A+B 

has at least 50 distinct elements. 
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Other commended solvers: William 

KAHN (Sidney, Australia), Akash 

Singha ROY (West Bengal, India), 

George SHEN, Toshihiro SHIMIZU 

(Kawasaki, Japan) and ZHANG 

Yupei (HKUST).  
 

Problem 520. Let P be the set of all 

polynomials f(x)=ax2+bx,where a,b are 

nonnegative integers less than 201018. 

Find the number of polynomials f in P 

for which there is a polynomial g in P 

such that g(f(k))≡k (mod 201018) for all 

integers k. 
 

Solution. William KAHN (Sidney, 

Australia) and George SHEN. 

 

We will show that there exists Q(x) = 

cx2+dx for P(x) = ax2+bx if and only if 

2810059|a and gcd(2010,b)=1. Then it 

follows that the answer is 2·20109· 

201018(1-1/2)(1-1/3)(1-1/5)(1-1/67) 

= 253·11·201026. 

 

Assume that Q(P(n))≡n (mod 201018) 

for all n. Then n→P(n) is one-to-one 

(mod 201018) and using the Chinese 

remainder theorem we deduce that 

n→P(n) is one-to-one (mod p18) for p 

in {2,3,5,67}.  

 

Let p ∈{2,3,5,67}. If p|b, then P(p17) ≡ 

P(0) (mod p18) gives a contradiction. 

Hence, p∤ b. If p∤a, then P(-a−1b) ≡ 

P(0) (mod p18) gives a contradiction. 

So p | a. Hence 2010 | a and gcd(2010,b) 

= 1. In particular, (b(a2-b2))−1 (mod 

201018) exists. Since  

 

    Q(P(1)) ≡ 1 (mod 201018)  

⇒ c(a+b)2+d(a+b)≡1 (mod 201018)  

⇒ 2b(a2-b2)c ≡2a (mod 201018) 

 

and  

 

    Q(P(-1)) ≡ -1 (mod 201018)  

⇒ c(a-b)2+d(a-b) ≡ -1 (mod 201018)  

⇒ 2b(a2-b2)d≡-2(a2+b2) (mod 201018) 

 

we have 

 

c≡(b(a2-b2))−1a+201018e (mod 201018) 

and d ≡ -(b(a2-b2))−1(a2+b2) + 201018e 

(mod 201018), where e = 0 or ½. 

 

Therefore,  

 

   Q(P(x))-x  

≡ -(b(a2-b2))−1a2x(x-1)(x+1)(ax+b) 

       +201018ex(x-1)  

≡ -(b(a2-b2))−1a2x(x-1)(x+1)(ax+2b) 

       (mod 201018). 

 

Now if x=2, we get 201018 | 223a2, hence   

2810059 | a.  

 

Conversely, if  2810059 | a and gcd(2010,b) 

=1, then we can define c and d as above. 

Since 2 | n(n-1) and 2 | an+2b for all n, 

Q(P(n))≡n (mod 201018) follows. 

 

Other commended solvers: Toshihiro 

SHIMIZU (Kawasaki, Japan) and 

ZHANG Yupei (HKUST). 

  

 

 
 
Olympiad Corner 
 
                      (Continued from page 1) 
 
 
Problem 3. Alice and Bob play the 

following game: They start with two 

non-empty piles of coins. Taking turns, 

with Alice playing first, each player 

choose a pile with an even number of 

coins and moves half of the coins of this 

pile to the other piles. The game ends if a 

player cannot move, in which case the 

other player wins.                        (Cyprus) 

 

Problem 4. Find all primes p and q such 

that 3pq-1+1 divides 11p+17p.    (Bulgaria) 

 

 

 

 

Miscellaneous Inequalities 
 
                      (Continued from page 2)                      
 

Suppose that 1≤i≤n-1. In the sequence 

x1,…,xn, there must be two adjacent terms 

xk and xk+1 which are separated by the 

interval (ai, ai+1), i.e. such that either 

xk≤ai≤ai+1≤xk+1 or xk+1≤ai≤ai+1≤xk.  So 

ai+1-ai≤|xk-xk+1| ≤1. That is a1,…,an is a 

nondecreasing sequence of terms, such 

that any two adjacent terms differ by at 

most 1. 

 

Let σP denote the sum of the numbers in P. 

We claim that σP≤(n2-1)/8. This is 

certainly true if P is empty.  

 

If P is nonempty, then the elements of P 

are ai≤ai+1≤⋯≤an for some 2≤i≤n. 

Because ai-1≤0 by assumption and ai≤ 

ai-1+1 from the previous paragraph, we 

have ai≤1.  

Similarly, ai+1≤ ai+1≤2 and so on up 

to an≤|P|. Hence, σP≤1+2+⋯+|P|. 

From |P|≤(n-1)/2, we get σP≤(n2-1)/8, 

as claimed. 

 

Let σN denote the sum of the numbers 

in N. The left-hand side of the required 

inequality then equals 

4
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as needed. 

 

Example 10 (2000 Asia Pacific Math 

Olympiad). Let n, k be positive integers 

with n > k. Prove that 
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Solution. By the binomial theorem, we 

have nn=(k+(n-k))n=a0+⋯ +an, where 

for i=0,1,…,n, 
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The right inequality holds because nn = 

a0+⋯+an>ai. To prove the left 

inequality, it suffices to prove that ai is 

larger than a0,…, ai-1, ai+1, …, an 

because then 
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Next, we will show ai is increasing for 

i≤k and decreasing for i≥k. Observe 

that 
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This expression is less than 1 when i<k 

and it is greater than 1 when i≥k. In 

other words, a0<⋯<ak and ak>⋯>an as 

desired. 
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Olympiad Corner 
 
Below were the Day 1 problems of the 

Croatian Mathematical Olympiad 

which took place on May 5, 2018.  
 

Problem A1. Let a, b and c be positive 

real numbers such that a+b+c=2. 

Prove that  

.
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Problem C1. Let n be a positive 

integer. A good word is a sequence of 

3n letters, in which each of the letters 

A, B and C appears exactly n times. 

Prove that for every good word X there 

exists a good word Y such that Y cannot 

be obtained from X by swapping 

neighbouring letters fewer than 3n2/2 

times. 

 

Problem G1. Let k be a circle centered 

at O. Let AB  be a chord of that circle 

and M its midpoint. Tangent on k at 

points A and B intersect at T. The line 

  goes through T, intersects the 

shorter arc AB at the point C and the 

longer arc AB at the point D, so that 

|BC|=|BM|.  
 
                                 (continued on page 4)  
                  

Austrian Math Problems 
 

Kin Y. Li 
 

 

    In this article, we would like to look 

at some of the Austrian Math Olympiad 

problems. This competition is going 

into its 50th year. For the young math 

students, the Austrian math problems 

are treasures that are everlasting, 

especially the problems appeared in the 

recent decades. Below are some 

examples that we hope you will enjoy.  

 

Example 1. (Beginners Competition: 

June 7th, 2001) Prove that the number 

nn
-1 is divisible by 24 for all odd 

positive integer values of n.  
 
Solution. Since n is an odd positive 

integer, we can write n=2k+1 with 

k=0,1,2,…. Substituting yields  
 

nn
-1=n(nn-1

-1)=n(n2k
-1). 

 
Since 12≡32≡52≡72≡1 (mod 8), we see 

that n2k≡1 (mod 8) certainly holds, and 

n2k
-1 is therefore divisible by 8.   

 

If n is divisible by 3, we see that 

n(n2k
-1) is certainly divisible by 3·8=24 

as required. If n is not divisible by 3, we 

note that 12≡22≡1 (mod 3), and n2k≡1 

(mod 3) holds, so that n2k
-1 is not only 

divisible by 8, but also by 3. It follows 

that n2k
-1 is therefore divisble by 

3·8=24, and therefore so is n(n2k
-1) as 

required. 
 

Example 2 (National Competition: June 

6th, 2002) Let ABCD and AEFG be 

similar inscribed quadrilaterals, whose 

vertices are labeled counter-clockwise. 

Let P be the second common point of 

the circumcircles of the quadrilaterals 

beside A. Show that P must lie on the 

line connecting B and E. 
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Solution. Rotation and stretching with 

center A, ∠BAC and factor AB:AC maps 

B onto C and E onto F. This mapping 

therefore transforms the line BE=BQ 

onto the line FC=FQ, whereby we let Q 

denote the point of intersection of lines 

BE and FC. Since this mapping rotates 

by ∠BAC, this is also the angle between 

the lines BQ and FQ, and since this is 

equal to ∠BAC (or its supplement), Q 

must lie on the circumcircle of ∆ABC, 

which is also the circumcircle of ABCD. 

By analogous reasoning, it must also lie 

on the circumcircle of AEFG, and we 

see that P=Q must hold, which proves 

that P must lie on the line BE, as 

required. 
 

Example 3 (National Competition: May 

26th, 2004). Prove without the use of 

calculus: 
 
a) If a, b, c and d are real numbers, then  

           a6+b6+c6+d6
-6abcd ≥ -2 

 
holds. When does equality hold? 
 
b) For which positive integers k does 

there exist an inequality of the form  

           ak+bk+ck+dk
-kabcd ≥ Mk 

 
that holds for all real values of a, b, c   

and d?   Determine the largest possible 

values of Mk and determine when 

equality holds. 

 

Solution. a) The given inequality can be 

proved by applying the AM-GM 

inequality as 
 

.||
6
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abcdabcd
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Equality holds for |a|=|b|=|c|=|d|=1, 

more precisely when (a,b,c,d) equals 

one of 

 

 (1,1,1,1), (1,1,-1,-1), (1,-1,1,-1), 

(-1,1,1,-1), (1,-1,-1,1), (-1,1,-1,1), 

(-1,-1,1,1) or (-1,-1,-1,-1). 
 
 

                                  (continued on page 2) 
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b) First of all, we note that no such 

number Mk can possibly exist if k is 

odd, since a choice of negative values 

for a, b, c and d with sufficiently large 

absolute value yields negative values 

with arbitrary large absolute value for 

the expression ak+bk+ck+dk
-kabcd.  

 

Similarly, no such number exists for 

k=2, since a choice of a=b=c=d=r 

yields a2+b2+c2+d2
-2abcd = 4r2

-2r4, 

for which a choice of sufficiently large 

values of r again yields negative values 

with arbitrarily large absolute value.  

 

This leaves even values of k with k≥4 

to consider. In this case, choosing 

a=b=c=d=1 yield ak+bk+ck+dk
-kabcd 

= 4-k, and as in a), we can apply 

AM-GM inequality to get  
 

 abcdabcd
k

kdcba kkkkk




||
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with equality for the same values of 

(a,b,c,d) as in a). 

 

Example 4  (National Competition: 

June 6th, 2007) We are given a convex 

n-gon with a triangulation, i.e. a 

division into triangles by non- 

intersecting diagonals. Prove that the n 

corners of the n-gon can each be 

labeled by the digits of 2007 such that 

any quadrilateral composed of two 

triangles in the triangulation with a 

common side has corners labeled by 

digits with the sum 9.  

 

Solution. We shall prove this by 

induction on n. If n=4, we label the 

vertices 2, 0, 0, 7 and the claim holds. 

(Note that this is the only possible 

combination of digits summing to 9, 

since 4·2<9 and 2·7>9 hold. Also note 

that the three corners of any triangle 

must be labeled with three of the digits 

2, 0, 0, 7.)  

 

We now assume that the claim holds as 

stated for any convex n-gon, and 

consider a convex (n+1)-gon. Any 

triangulation of such an (n+1)-gon 

certainly contains at least one triangle 

(in fact, at least two), two of whose 

sides are consecutive sides of the 

(n+1)-gon with common vertex V. The 

n-gon obtained by removing this one 

triangle from the triangulation with the 

implied triangulation in the remaining 

n-gon as given can certainly be labeled 

as required.  

 

We now note that the triangle with vertex 

V only has a side in common with one 

other triangle of the triangulation, the 

corners of which are already labeled with 

three of the four required digits. Labelling 

V with the fourth digit results in a labeling 

of the (n+1)-gon with the required 

property. 
 

Example 5 (National Competition: June 

3rd, 2010) A diagonal in a hexagon is 

considered a long diagonal if it divides the 

hexagon into two quadrilaterals. Any two 

long diagonals divide the hexagon into 

two triangles and two quadrilaterals.  
 

We are given a convex hexagon with the 

property that the division into pieces by 

any two long diagonals always yields two 

isosceles triangles with sides of the 

hexagon as bases. Show that such a 

hexagon must have a circumcircle. 

 

Solution. Since any two opposing 

isosceles triangles (such as ABP and DEP) 

have a common angle at their vertices, 

they must be similar, and their bases 

therefore parallel. The angle bisector in 

their common vertex is therefore also the 

common altitude. 
 

If all three diagonals of the hexagon 

intersect at M, this point is also a common 

point of all angle bisectors. It must 

therefore be the same distance from A to B, 

as it lies on the bisector of AB, but the 

same holds for B and C, C and D, and so 

on. This point is therefore equidistant 

from all corners of the hexagon, and is 

therefore the mid-point of the 

circumcircle of the hexagon. 
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If the diagonals of the hexagon do not 

have a common point, they form a triangle. 

The angle bisectors have a common point, 

namely the incenter of this triangle, which 

we again call M. The same holds for this 

point M as in the previous situation, and 

we once again have established the 

existence of a circumcircle of the hexagon, 

as claimed. 

 

Example 6 (National Competition: May 

1st, 2015) A police emergency number is a 

positive integer that ends with the digits 

133 in decimal representation. Prove 

that every police emergency number 

has a prime factor larger than 7.  
 
(In Austria, 133 is the emergency 

number of the police.) 

 

Solution. Let n=1000k+133 be a police 

emergency number and assume that all 

its prime divisors are at most 7. It is 

clear from the last digit that n is odd 

and that n is not divisible by 5, so 

1000k+133 = 3a7b for suitable integers 

a,b≥0. Thus, 3a7b≡ 133 (mod 1000). 

 

This also implies 3a7b≡133≡ 5 (mod 8). 

We know that 3a is congruent to 1 or 3 

modulo 8 and 7b is congruent to 1 or 7 

modulo 8. In order for the product 3a7b  

to be congruent to 5 modulo 8, 3a must 

therefore be congruent to 3 and 7b must 

be congruent to 7. Therefore, we can 

conclude that a and b are both odd. 

 

We also have 3a7b≡133≡ 3 (mod 5). As 

a and b are odd, 3a and 7b are each 

congruent to 3 or 2 modulo 5. Neither 

32, nor 3·2 is congruent to 3 modulo 5, 

a contradiction. 

 

Example 7 (National Competition: 

April 30th, 2016) Consider 2016 points 

arranged on a circle. We are allowed to 

jump ahead by 2 or 3 points in 

clockwise direction. What is the 

minimum number of jumps required to 

visit all points and return to the starting 

point? 
 
Solution. Clearly it takes at least 2016 

jumps to visit all points. It is 

impossible to use only jumps of length 

2 or only jumps of length 3 because this 

would confine us to a single residue 

class modulo 2 or 3 respectively. 

 

If the problem could be solved with 

2016 jumps, the total distance covered 

by these jumps would be strictly 

between 2·2016 and 3·2016 which 

makes a return to the original point 

impossible. Therefore, at least 2017 

jumped are required. 

 

This is indeed possible, for example 

with the following sequence of points 

on the circle 

 

0,3,6,…,2013,2015, 2,5,…,2012,2014, 

1,4,…, 2011, 2013,0. 

 

                            (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is February 15, 2019. 
  

Problem 526. Let a1=b1=c1=1, a2=b2= 

c2=3 and for n≥3, an=4an-1 –an-2,  

 .232,
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Prove that an=bn=cn for all n=1,2,3,…. 

 

Problem 527. Let points O and H be 

the circumcenter and orthocenter of 

acute ∆ABC. Let D be the midpoint of 

side BC. Let E be the point on the angle 

bisector of ∠BAC such that AE⊥HE. 

Let F be the point such that AEHF is a 

rectangle. Prove that points D, E, F are 

collinear. 

 

Problem 528. Determine all positive 

integers m satisfying the condition that 

there exists a unique positive integer n 

such that there exists a rectangle which 

can be decomposed into n congruent 

squares and can also be decomposed 

into n+m congruent squares. 

 

Problem 529.  Determine all ordered 

triples (x,y,n) of positive integers 

satisfying the equation xn+2n+1=yn+1 

with x is odd and the greatest common 

divisor of x and n+1 is 1.  

 

Problem 530. A square can be 

decomposed into 4 rectangles with 12 

edges. If square ABCD is decomposed 

into 2005 convex polygons with 

degrees of A, B, C, D at least 2 and 

degrees of all other vertices at least 3, 

then determine the maximum number 

of edges in the decomposition. 
  

***************** 

Solutions 

**************** 
 

Problem 521. Given 20 points in space 

so that no three of them are collinear, 

prove that the number of planes 

determined by these points is not equal 

to 1111. 

 

Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School), 

Eren KIZILDAG (MIT), LEUNG Hei 

Chun and Toshihiro SHIMIZU 

(Kawasaki, Japan). 

 

Assume the number of planes is 1111. The 

20 points would define (20·19·18)/3! = 

1140 planes so that 1140-1111=29 triplets 

of points lie in the planes already 

determined by other triplets. If one of the 

planes contain 7 or more points, then there 

are (7·6·5)/3! = 35 triplets of points in this 

plane and the number of triplets is greater 

than the number of planes by at least 

35-1=34. So the greatest possible number 

of planes is 1140-34=1105. Clearly, this 

cannot happen if there are 1111 planes.  

 

So each plane can contain at most 6 of the 

points. Let a, b, c be the number of planes 

containing 4, 5, 6 points respectively. 

When counting triplets, in cases k=4,5,6, 

we consider each plane containing k 

points k(k-1)(k-2)/3! = 4, 10, 20 times, 

which are 3, 9, 19 times too many, 

respectively. So the number of planes 

satisfies 1140-3a-9b-19c = 1111. Hence 

3a+9b+19c=29. However, there are no 

nonnegative integers a,b,c satisfying 

3a+9b+19c=29. So we arrive at a 

contradiction.  
 
Other commended solvers: ZHANG 
Yupei (HKUST). 
 

Problem 522. Determine all functions 

f:ℝ→ℝ such that for all real x and y, 
 
 (x-2) f(y) + f (y + 2f(x)) =  f (x + y f(x)). 
 
Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School),  

Eren KIZILDAG (MIT), Akash Singha 

ROY (West Bengal, India), Ioannis D. 

SFIKAS (Athens, Greece), George 

SHEN and Toshihiro SHIMIZU 

(Kawasaki, Japan). 

 

We will refer to the given equation as (*). 

In case f(0)=0, setting x=0 in (*), we get 

f(y)=0 for all y. In case f(0)≠0, setting y=0, 

(*) becomes (x-2)f(0)+f(2f(x)) = f(x) for 

all real x. If f(x)=f(x’), then x=x’ and so f is 

injective.  

 

Next, putting x=2 into (*), we get 

f(y+2f(2)) = f(2+yf(2)) for all real y. Since 

f is injective, we get y+2f(2) = 2+yf(2) for 

all real y. Setting y=0, we get f(2)=1. Since 

f is injective, f(3)≠1. Setting x=3 and 

y=3/(1-f(3)) (which is y=3+yf(3)) into (*), 

we get f(y+2f(3))=0. So f has a root at 

r=y+f(3). Next, setting y=r in (*), we get 

f(r+2f(x))=f(x+rf(x)) for all real x. Since f 

is injective, we get r+2f(x) = x+rf(x) for 

all real x.  
 
Now due to f(2)=1≠0, r≠2. So 

f(x)=(x-r)/(2-r). Finally, substituting 

f(x) by (x-r)/(2-r) we get r=1 so that 

f(x)=x-1.  As a result, it is easy to 

check (*) has the two solutions f(x)=0 

and f(x)=x-1. 
 
Other commended solvers: Alex Kin 
Chit O (G.T. (Ellen Yeung) College). 

 

Problem 523. Find all positive integers 

n for which there exists a polynomial 

P(x) with integer coefficients such that 

P(d) = (n/d)2 for each positive divisor d 

of n. 

 

Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School), 

Eren KIZILDAG (MIT), LEUNG 

Hei Chun, Toshihiro SHIMIZU 

(Kawasaki, Japan) and ZHANG 

Yupei (HKUST). 

 

For n=1, let P(x)=x, then P(1)=1 

satisfies the condition. If n is a prime, 

then its only positive divisors are 1 and 

n and the conditions on P is P(1)=n2 

and P(n)=1. We can satisfy this with 

P(x)=n2+(n+1)(1-x).  
 

Next we consider n=km is not prime 

with k,m>1. We have conditions 

P(1)=n2, P(k)=m2, P(m)=k2 and P(n)=1. 

For arbitrary integers a, b, by factoring, 

we see P(a)-P(b) is divisible by a-b. 

So n-k=k(m-1) divides P(n)-P(k) = 

1-m2 = (1-m)(1+m). This leads to k 

divides m+1. Similarly, n-m divides 

P(n)-P(m) and so m(k-1) divides 

(1-k)(1+k) and m divides k+1. Hence, 

km divides (k+1)(m+1) and it also 

divides (k+1)(m+1)-km = k+m+1. We 

must have km≤k+m+1, which implies 

that km-k-m+1≤2 or (k-1)(m-1)≤2. 

We may assume k≤m. Then the only 

possible case is k=2 and m=3 so that 

n=6. 
 
For n=6, we will find a polynomial P 

such that P(1)=36, P(2)=9, P(3)=4 and 

P(6)=1. We can apply the Lagrange 

interpolation formula to get P(x) = 

1−(x-6)(1+(x-3)(2x-5)), which can be 

easily checked to satisfy P(1)=36, 

P(2)=9, P(3)=4 and P(6)=1. 
 
Other commended solvers: Akash 

Singha ROY (West Bengal, India).  

 

Problem 524.  (proposed by Andrew 

WU, St. Albans School, Mc Lean, VA, 

USA) In ∆ABC with centroid G, M 
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and N are the midpoints of AB and AC, 

and the tangents from M and N to the 

circumcircle of ∆AMN meet BC at R 

and S, respectively. Point X lies on side 

BC satisfying ∠CAG = ∠BAX. Show 

that GX is the radical axis of the 

circumcircles of ∆BMS and ∆CNR. 
 
Solution. By Proposer. 

    

SB

A

C

M

R

N

X

G

Y

T

 

Observe that BN is the radical axis of 

the circumcircles of ∆ANM and 

∆CNR. To prove this, we will show 

BM·BA=BR·BC or equivalently that 

AMRC is a cyclic quadrilateral. By the 

tangency condition, we have ∠AMR = 

180º-∠ANM=180º-∠ACR, so AMRC 

is cyclic, as desired. Similarly, we have 

CM is the radical axis of the 

circumcircles of ∆ANM and ∆BMS. 

Thus, by the radical center theorem, 

BN, CM and the radical axis of the 

circumcircles of ∆BMS and ∆CNR 

concur. This implies the centroid G lies 

on the radical axis.  

 

Next, by properties of symmedians, we 

get lines MR, AX, NS concur at some 

point T. Suppose lines AX and MN 

meet at Y. Then by similar triangles, we 

have RX/XS=MY/YN=BX/XC due to 

the facts that ∆TRS∼∆TMN and 

∆AMN∼∆ABC.  

 

Thus, it follows that XR·XC=XS·XB. 

So X has equal power with respect to 

the circumcircles of ∆BMS and ∆CNR. 

Then line GX is the radical axis of 

∆BMS and ∆CNR. 

 

Other commended solvers: CHUI Tsz 

Fung (Ma Tau Chung Government 

Primary School), LEUNG Hei Chun 

and Toshihiro SHIMIZU (Kawasaki, 

Japan) and ZHANG Yupei (HKUST).  
 

Problem 525. Find all positive integer 

n such that n(n+2)(n+4) has at most 15 

positive divisors. 
 

Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School), 

Ioan Viorel CODREANU (Satulung, 

Maramures, Romania), Eren KIZILDAG 

(MIT), LEUNG Hei Chun, Ioannis D. 

SFIKAS (Athens, Greece), Toshihiro 

SHIMIZU (Kawasaki, Japan) and 

ZHANG Yupei (HKUST). 

 

Let an=n(n+2)(n+4) and let bn be the 

number of positive divisors of an. The 

values of b1 to b10 are 4, 10, 8, 14, 12, 24, 

12, 28, 12, 40. Next, we recall if a positive 

integer m has prime factorization 
je

j

e
pp 11

, then m has (e1+1)⋯(ej+1) 

positive divisors. If m divides a positive 

integer M, then M has at least as many 

divisors as m.  

 

Let n≥11. If n is even, say n=2k, then 

an=23k(k+1)(k+2). At least one of the 

numbers k, k+1, k+2 is divisible by 2 and 

exactly one of them is divisible by 3. 

Since k≥6, the numbers k, k+1, k+2 

cannot all be powers of 2 or 3. So 

k(k+1)(k+2) has a prime divisor p not 

equal to 2 or 3. Hence, 243p divides an and 

this implies that an has at least 5·2·2 =20 

positive divisors. 

 

Let n≥11 be odd. Then the numbers n and 

n+2 are relativity prime, as are n+2 and 

n+4 and also n and n+4. One of these three 

numbers is divisible by 3. This number 

has at least one other prime divisor p or 

else is a power of 3. In the latter case it is 

divisible by 33 since n≥11. Let q and r be 

prime divisors of the other two numbers. 

In the first case the number an is divisible 

by 3pqr. The number n, n+2, n+4 are 

relatively prime, so 3, p, q, r are relatively 

prime. This implies that an has at least 

2·2·2·2 =16 divisors. In the second case an 

is divisible by 33qr. The primes 3, q, r are 

again distinct. So an has at least 4·2·2=16 

divisors. 

 

The number an has at most 15 positive 

divisors only for n=1, 2, 3, 4, 5, 7, 9. 
 
Other commended solvers: Christos 

ALVANOS (Mandoulides, Thessaloniki, 

Greece), Alex Kin Chit O (G.T. (Ellen 

Yeung) College) and Akash Singha ROY 

(West Bengal, India). 

  

 
 
Olympiad Corner 
 
                      (Continued from page 1) 
 
Problem G1. (cont.) Prove that the 

circumcenter of the triangle ADM is the 

reflection of O across the line AD. 

Problem N1. Determine all pairs (m,n) 

of positive integers such that  
 

2m = 7n2+1. 
 

 
 
Austrian Math Problems 
 
                   (Continued from page 2)           
 

Example 8   (National Competition: 

April 30th, 2017) Anna and Berta play a 

game in which they take turns in 

removing marbles from a table. Anna 

takes the first turn. When at the 

beginning of a turn there are n≥1 

marbles on the table, then the player 

whose turn it is removes k marbles, 

where k≥1 either is an even number 

with k≤n/2 or an odd number with 

n/2≤k≤n. A player wins the game if 

she removes the last marble from the 

table. Find the smallest N≥100,000 

such that Berta can enforce a victory if 

there are exactly N marbles on the table 

in the beginning. 
 
Solution. We claim that the losing 

situations are those with exactly 

n=2a
-2 marbles left on the table for all 

integers a≥2. All other situation are 

winning situations. 
 
For n=1, the player wins by taking the 

single remaining marble. For n=2, the 

only possible move is to take k=1 

marbles and the opponent wins in the 

next move. For n≥3, (1) if n is odd, the 

player takes all n marbles and wins; (2) 

if n is even, but not of the form 2a
-2, 

then n lies between two other numbers 

of that form, so there is a unique b with 

2b
-2<n<2b+1

-2. From n≥3, we get 

b≥2. So all 3 parts of the inequalities 

are even and so 2b≤n≤2b+1
-4. By the 

induction hypothesis, we know 2b
-2 is 

a losing situation. Taking k = n-(2b
-2) 

≤ n/2 marbles, we leave it to the 

opponent; (3) if  n is even of the form 

2a
-2, the player cannot leave a losing 

situation with 2b
-2 marbles to the 

opponent (where b<a holds due to at 

least 1 marble must be removed and 

b≥2 holds as after a legal move 

starting from an even n, at least 1 

marble remains). The player would 

then remove k=2a
-2b marbles. As b≥2, 

k is even and greater than n/2 due to k≥ 

2a-1>2a-1 -1= n/2, which is impossible.  

This means Berta can enforce a victory 

if and only if N is of the form 2a
-2. The 

smallest number N≥100,000 of this 

form is N = 217
-2 = 131,070. 
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Olympiad Corner 
 
Below were the Day 2 problems of the 

Croatian Mathematical Olympiad 

which took place on May 6, 2018.  
 

Problem A2. determine all functions 

f:ℝ→ℝ such that  
 

f(xf(y))=(1−y)f(xy)+x2y2f(y) 
 

holds for all real numbers x and y. 
 

Problem C2. Let n be a positive 

integer. Points A1, A2, …,An are located 

on the inside of a circle, and points B1, 

B2, …,Bn are on the circle, so that the 

lines A1B1, A2B2, …, AnBn are mutually 

disjoint. A grasshopper can jump from 

point Ai to point Aj (for i,j∈{1,…,n}, 

i≠j) if and only if the lines AiAj does 

not go through any of the inner points 

of the lines A1B1, A2B2, …, AnBn. 

 

Problem G2. Let ABC be an 

acute-angled triangle such that |AB| < 

|AC|. Point D is the midpoint of the 

shorter arc BC of the circumcircle of 

the triangle ABC. Point I is the incenter 

of the triangle ABC, and point J is the 

reflection of I across the line BC.  
 
                  

                                 (continued on page 4)  
                  

Sum of Digits of Positive Integers
 

Pedro Pantoja, Natal/RN, Brazil 
 

 

    In this short article we will explore 

some types of problems in number 

theory about the sum of digits of a 

positive integer. 
 

    Throughout this article, S(a) will 

denote the sum of the digits of a positive 

integer a. For example S(12)=1+2=3, 

S(349)=3+4+9=16. Let c(n,m) denote 

the total number of carries, which arises 

when adding a and b, for example 

c(100,4)=0, c(23,17)=1, c(88,99)=2. 

 

Proposition 1. For positive integer a, we 

have 

    i) S(a)≤a; 

   ii) S(a)≡a (mod 9); 

  iii) if a is even, then S(a+1)-S(a)=1; 

  iv) S(a+b)=S(a)+S(b)−9c(a,b),        

       in particular, S(a+b)≤S(a)+S(b); 

   v) S(ab)≤min{aS(b),bS(a)}; 

  vi) S(ab)≤S(a)S(b); 

 vii) S(a)≤9([log a]+1). 
 
Proof.  i) and ii) are obvious.  
 
iii) If a is even, then S(a+1)−S(a)=1. In 

fact, a and a+1 differ only in the unit 

digit, which for a will be 0, 2, 4, 6 or 8 

and for a+1 will be, respectively, 1, 3, 5, 

7 or 9. 
 
iv) We proceed by induction on the 

maximal number of digits k of b and a. 

If both b and a are single digit numbers, 

then we have just two cases. If b+a<10, 

then we have nocarries and clearly 

S(b+a)=b+a=S(b)+S(a). If on the other 

hand, b+a=10+k≥10, then 
 
        S(b+a) = 1+k = 1+(b+a−10) 

                     =  S(b)+S(a)-9. 
 
Assume that the claim holds for all pairs 

with at most k digits each. Let  
 
    b = b1+n·10k+1  and  a = a1+n·10k+1, 
 
where b1 and a1 are at most k digit 

numbers.  If  there  is  no  carry   at   the    

 

     
k+1st digit, then c(b,a)=c(b1,a1) and    

thus     
 
   S(b+a) = S(b1+a1) + m + n 

               = S(b1)+m+S(a1)+n−9c(n1,m1) 

               = S(b)+S(a)−9c(b,a). 
 
If there is a carry, then c(n,a) = 1 + 

c(n1,ma1) and thus 
 
        S(b+a) = S(b1+a1)+m+n−9 

     = S(b1)+m+S(a1)+n−9(c(b1,a1)+1) 

     = S(b)+S(a)−9c(b,a). 
 
This finishes the induction and we are 

done. 
 
v) Because of symmetry, in order to 

prove v), it suffices to prove that S(ab) 

≤ aS(b). The last inequality follows by 

applying the subadditivity (iv) property 

repeatedly. Indeed, S(2b)=S(b+b)≤S(b) 

+S(b) = 2S(b). After a steps we obtain 

    S(ab) = S(b+⋯+b) 

             ≤ S(b)+⋯+S(b) = aS(b). 
 
vi) and vii) Left as exercises for the 

reader. 
 
   For applications, we provide 
 
Example 1: Find all positive integers 

with n ≤ 1000 such that n = (S(n))3. 
 
Solution: The perfect cube numbers 

smaller than 1000 are 1, 8, 27, 64, 125, 

216, 343, 512, 729. From these numbers 

the only one that satifies the conditions 

of the problem is n = 512. 
 
Example 2: (MAIO-2012) Evaluate  
              
     S(1) − S(2) + S(3) − S(4) + ⋯ 
 
                        + S(2011) − S(2012). 
 
Solution: The problem becomes trivial 

using Proposition 1, item iii). We have 

S(3)−S(2)=1, S(5)−S(4) = 1, …, S(2011) 

− S(2010) = 1 and S(1) = 1, S(2012) = 5. 

Therefore, S(1) − S(2) + S(3) − S(4) + ⋯ 

+ S(2011) − S(2012) =1+1005−5 =1001.  
 

                                    (continued on page 2) 
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Example 3: (Nordic Contest 1996) 

Show that there exists an integer 

divisible by 1996 such that the sum of its 

decimal digits is 1996. 
 

Solution. We affirm that the number   

m = 199619961996…199639923992 

satisfies the conditions of the statement. 

Note that S(m)=25·78 +2·23=1996. On 

the other hand, m is divisible by 1996, 

since m equals  
 

 1996·100010001000…1000200002. 

 

Example 4: Find S(S(S(S(20182018)))). 
 
Solution: Using proposition 1, item vii) 

several times we have 

 

   S(20182018)≤9([2018 log 2018]+1) 

                     <60030, 

 

    S(S(20182018))≤9([log 60030]+1) 

                           <45, 

 

  S(S(S(20182018)))≤9([log 45]+1) <18. 

 

On the other hand, 20182018 ≡ 22018 = 

(23)672·22 ≡ 4 (mod 9). Hence,  

 

         S(S(S(20182018))) = 4 or 13.  

 

So S(S(S(S(20182018)))) = 4. 

 

Example 5: Prove that S(n)+S(n2)+S(n3) 

is a perfect square for infinitely many 

positive integers n that are not divisible 

by 10. 

 

Solution: Let us prove that the 

numbers of the form 110
2

 mn  

satisfy the problem. The result follows 

immediately because there are 

infinitely many number of this form. 

Firstly, S(n)=9m2 and  

 

01...9800...99110210
2222  mmn  

 
where there are m2−1 9’s and 0’s. Then 

S(n2)=9m2. Similarly,  
 

       S(n3)=99…9700…0299…9, 
 

where there are m2−1 9’s and 0’s and 

m2 9’s at the end. Then S(n3)=18m2.  

Finally, S(n)+S(n2)+S(n3)=36m2. 

 

Remark 1: The numbers of the 

previous problem are registered in 

On-Line Encyclopedia of Integer 

Sequences (OEIS) A153185. Some 

examples of such numbers: 9, 18, 45, 

90, 171, 180, 207, 279, 297, 396, 414, 

450, 459, …. 

 

Remark 2: Notice that sometimes 

mathematical intuition deceives us. That 

is, the nine numbers 1, 11, 111, …, 111…1 

satisfy S(n2) = (S(n))2. Unfortunately, the 

next number in this family is  

 

  11111111112 = 1234567900987654321. 

 

So S(1111111111) = 10, but S(1111111112) 

= 82. The smallest positive integer such 

that S(n) = 10 and S(n2) = 100 is n = 

1101111211. 

 

Example 6: We say that a superstitious 

number is equal to 13 times a sum of its 

digits. Find all superstitious numbers. 

 

Solution: Obviously there is no 

superstitious number with one digit. If a 

two digit number ab is superstitious, then 

10a+b=13(a+b), that is 3a+12b=0, which 

is impossible. 

 

If a three-digit number abc is superstitious, 

we would have 100a+10b+c=13(a+b+c). 

that is 29a=b+4c. The maximum possible 

value for b+4c is 45 (for b=c=9). So a 

must be 1 and the equation 29=b+4c has 

solutions (b,c) = (1,7),(5,6), and (9,5). The 

numbers 117, 156 and 195 are the only 

superstitious numbers with three digits. 

 

If a four-digit number abcd is superstitious, 

it would result in 1000a+100b+10c+d 

=13(a+b+c+d). As the number on the left 

is at least 1000 and the number on the 

right is at most 13·36=468, there is no 

superstitious numbers of four digits. 

Finally, there is no superstitious number 

with more than four digits, since each 

added digit contributes at least 1,000 to 

the number on the left, while the one on 

the right contributes at most 13·9=117. So 

the only superstitious numbers are 117, 

156 and 195. 

 

Example 7: (Romanian Team Selection 

Test 2002) Let a, b > 0. Prove that the 

sequence S([an+b]) contains a constant 

subsequence. 

 

Solution. For any positive integer k, let nk 

equals [(10k+a−b)/b]. Then 

       b
a

ba
a

k
k 





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





 
  

It follows that 10k=[ank+b]≤10k+b.  

 

If k is sufficiently large, that is 10k−1>b, 

it follows from above that 
knS is one 

plus the sum of the digits of one of the 

numbers t in the set {0,1,…,[b]}. Since 

k takes infinitely many values and the 

set of the numbers t is finite, it follows 

that for infinitely many k, the sum of 

digits of numbers [ank+b] is the same. 

 

Example 8: (2016 IMO Shortlisted 

Problem) Find all polynomials P(x) 

with integer coefficients such that for 

any positive integer n≥2016, the 

integer P(n) is positive and  
 
                 S(P(n)) = P(S(n)).          (*) 
 
Solution: Let  
 

 .)( 0

1

1 axaxaxP d

d

d

d  
   

 
Clearly ad > 0. There exists an integer 

m>1 such that |ai|<10m for all 0 ≤i ≤d. 

Consider n=9·10k for a sufficiently 

large integer k in (*). If there exists an 

index 0 ≤ i ≤ d−1 such that ai < 0, then 

all digits of P(n) in positions from 

10ik+m+1 to 10(i+1)k−1 are all 9’s Hence, 

we have S(P(n))>9(k−m−1). On the 

other hand, P(S(n))=P(9) is a fixed 

constant. Therefore, (*) cannot hold for 

large k. This shows ai>0 and for all 0≤i 

≤ d−1. Hence, P(n) is an integer 

formed by the nonnegative integers 

ad9
d, ad−19

d−1,…, a0 by inserting some 

zeros in between. 

 

This yields  
 
S(P(n))=S(ad9

d)+S(ad−19
d−1)+⋯+S(a0). 

 
Combining with (*), we have  
 
 S(ad9

d)+S(ad−19
d−1)+⋯+S(a0) = P(9) 

             = ad9
d+ad−19

d−1+⋯+a0. 
 
As S(m)≤m for any positive integer m, 

with equality when 1≤m≤9, this 

forces each ai9
i to be a positive integer 

between 1 and 9. In particular, this 

shows ai=0 for i>2 and hence d≤1. 

Also, we have a1≤1 and a0≤9. If a1=1 

and 1≤a0≤9, we take n=10k+(10−a0) 

for sufficiently large k in (*). This 

yields a contradiction. Since  
 
   S(P(n)) = S(10k+10) = 2 

                ≠11 = P(11−a0) = P(S(n)). 
 
The zero polynomial is also rejected 

since P(n) is positive for large n. The 

remaining candidates are P(x)=x or 

P(x)=a0 where 1≤a0≤9, all of which 

satisfy (*), and hence are the only 

solutions. 
 

                            (continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is May 25, 2019. 
  

Problem 531. BCED is a convex 

quadrilateral such that ∠BDC =∠CEB 

= 90º and BE intersects CD at A. Let F, 

G be the midpoints of sides DE, BC 

respectively. Let O be the circumcenter 

of ∆BAC. Prove that lines AO and FG 

are parallel.  

 

Problem 532. Prove that there does not 

exist a function f:(0,+∞)→(0,+ ∞) such 

that for all x,y>0,  
 
             f 2(x) ≥ f(x+y)(f(x)+y). 

 

Problem 533. Let ℤ and ℕ be the sets 

of all integers and all positive integers 

respectively. Let r, s ∈ ℕ. Prove that 

there are exactly (r+1)s+1−rs+1 functions 

g:[1,s]∩ℕ→ [-r,r]∩ℤ such that for all 

x,y∈[1,s]∩ℕ, we have |g(x)−g(y)|≤r. 

 

Problem 534.  Prove that for any two 

positive integers m and n, there exists a 

positive integer k such that 2k -m has at 

least n distinct prime divisors. 

 

Problem 535. Determine all integers 

n>4 such that it is possible to color the 

vertices of a regular n-sided polygon 

using at most 6 colors such that any 5 

consecutive vertices have distinct 

colors.    
  

***************** 

Solutions 

**************** 

 

Problem 526. Let a1=b1=c1=1, a2=b2= 

c2=3 and for n≥3, an=4an-1 –an-2,  

 .232,
2 2

11

2

2

1 


 



nnn

n

n
n ccc

b

b
b  

Prove that an=bn=cn for all n =1,2,3,…. 

 
Solution. Angel Gerardo Napa 
BERNUY (PUCP University, Lima, 
Peru), CHUI Tsz Fung (Ma Tau 
Chung Government Primary School), 
DBS Maths Solving Team (Diocesan 
Boy’s School), Prithwijit DE 

(HBCSE, Mumbai, India), O Long Kin 
Oscar (St. Joseph’s College), TAM Choi 
Nang Julian (Yan Chai Hospital Law 
Chan Chor Si College), Duy Quan 
TRAN (University of Medicine and 
Pharmacy at Ho Chi Minh City, Vietnam) 
and Bruce XU (West Island School). 

 

The cases n = 1,2 can easily be checked. 

For n≥3, bnbn-2 = bn-1
2+2 implies bn+1bn-1 

= bn
2+2. Subtracting these and factoring, 

we get (bn+1-bn−1)/bn=(bn-bn−2)/bn−1. Then  

 

          (bn-bn−2)/bn−1= (bn−1-bn−3)/bn−2  
 

                           = ⋯ = (b3−b1)/b2 = 4. 
 
Hence, bn = 4bn−1− bn−2 for n ≥ 3. Since 

a1=b1 and a2=b2, an=bn for all n = 1,2,3,…. 

Next, from 

232 2

11   nnn ccc , 

we can see cn is strictly increasing and for 

n≥2, (cn−2cn−1)
2 = 3cn−1

2−2. Then cn
2 − 

4cncn−1 + cn−1
2  = −2 and cn+1

2−4cn+1cn + cn
2  

= −2. Subtracting these and factoring, we 

get (cn+1−cn−1)(cn+1−4cn+cn−1) = 0. As cn+1 

> cn−1, we get cn+1=4cn-cn−1 for n≥2. So 

an=bn=cn for all n = 1,2,3,…. 

 

Other commended solvers: AISINGIUR 

To To, Alvin LUKE (Portland, Oregon, 

USA), Corneliu MĂNESCU-AVRAM 

(Ploieşti, Romania), Ioannis D. SFIKAS 

(Athens, Greece), Toshihiro SHIMIZU 

(Kawasaki, Japan), SO Tsz To (S.K.H. 

Lam Woo Memorial Secondary School), 

Nicuşor ZLOTA (“Traian Vuia” 

Technical College, Focşani, Romania), 

Titu ZVONARU (Comăneşti, Romania) 

and Neculai STANCIU (Buzău, 

Romania). 
 

Problem 527. Let points O and H be the 

circumcenter and orthocenter of acute 

∆ABC. Let D be the midpoint of side BC. 

Let E be the point on the angle bisector of 

∠BAC such that AE⊥HE. Let F be the 

point such that AEHF is a rectangle. Prove 

that points D, E, F are collinear. 
   
Solution. Alvin LUKE (Portland, Oregon, 

USA).  

        

O

A

B C

M

H
E

F

D

G

 

Connect AO, OD and extend OD to 

meet the circumcircle of ∆ABC at M. 

Then OD⊥BC and M bisects arc BC. 

Also, A, E, M are collinear. Observe 

AE, AF are internal and external 

bisectors of ∠BAC. So AE⊥AF.  

 

Since HE⊥AE and HF⊥AF, so AEHF 

is a rectangle. Hence, segments AH and 

EF bisect each other. Let AH and EF 

meet at G. Then AG=½AH= ½EF=EG. 
 
Also, OA=OM and OD || AH. So 
 
    ∠OAE=∠OME=∠EAG=∠GEA. 
 
So (*) EG || OA.  
 

Next, observe O and H are the 

circumcenter and the orthocenter of of 

∆ABC respectively. Since OD⊥BC, so 

OD=½AH=AG. Finally, connect DG. 

We see AODG is a parallelogram. So 

(**) DG || OA. Therefore, by (*) and 

(**), D, E, G, F are collinear. 
 
Other commended solvers: Angel 

Gerardo Napa BERNUY (PUCP 

University, Lima, Peru), CHUI Tsz 

Fung (Ma Tau Chung Government 

Primary School), DBS Maths Solving 

Team (Diocesan Boy’s School), 

Prithwijit DE (HBCSE, Mumbai, 

India), Andrea FANCHINI (Cantú, 

Italy), Jon GLIMMS, Corneliu 

MĂNESCU-AVRAM (Ploieşti, 
Romania), Apostolos MANOLOUDIS, 

George SHEN, Toshihiro SHIMIZU 

(Kawasaki, Japan), Mihai 

STOENESCU (Bischwiller, France), 

Titu ZVONARU (Comăneşti, 
Romania) and Neculai STANCIU 

(Buzău, Romania). 

 

Problem 528. Determine all positive 

integers m satisfying the condition that 

there exists a unique positive integer n 

such that there exists a rectangle which 

can be decomposed into n congruent 

squares and can also be decomposed 

into n+m congruent squares. 

 

Solution. Angel Gerardo Napa 

BERNUY (PUCP University, Lima, 

Peru), CHUI Tsz Fung (Ma Tau 

Chung Government Primary School) , 

and Toshihiro SHIMIZU (Kawasaki, 

Japan). 

 

Suppose rectangle ABCD can be 

decomposed into n+m unit squares and 

also into n squares with sides equal x. 

Let x = a/b with gcd(a,b) = 1. Then the 

area of rectangle ABCD is n+m as well 
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as n(a/b)2. Then from n+m = n(a/b)2, 

we can solve for n to get  
 

.
))((

2

22

2

baba

mb

ba

mb
n





  

        

Since gcd(b,a+b) = gcd(b,a−b) = 

gcd(a,b) = 1, so (a−b)(a+b) | m. Now 

a+b, a−b are of the same parity. If m is 

the product of positive integers i, j, k 

with j, k odd and greater than 1, then 

(a+b,a−b) = (j,k) or (jk,1) leading to 

n=i(j−k)2/4 or i(jk−1)2/4, contradicting 

the uniqueness of n. So m can have at 

most one odd factor greater than 1, i.e. 

m=2c or 2cp with p an odd prime.  
 
In case m=2c, for c=1,2, there is no n; 

for c=3, m=8 and (a,b)=(2,4), n=1;  for 

c≥4, (a+b,a−b)=(4,2) or (8,2) resulting 

in n = 2c-3 or 2c-4 contradicting the 

uniqueness of n.  
 
In case m=2cp, for c=0, m=p and 

(a+b,a-b) = (p,1), n = (p−1)2/4; for c = 

1, (a+b,a-b) = (p,1), n = (p-1)2/2; for c 

= 2, (a+b,a-b) = (p,1), n = (p-1)2; for 

c≥3, (a+b,a−b) = (4,2) or (p,1) 

contradict the uniqueness of n. 
 
So the only solutions are m = 8, p, 2p, 

4p, where p is an odd prime. 
 
Other commended solvers: Victor 

LEUNG Chi Shing and Charles 

POON Tsz Chung.  

 

Problem 529.  Determine all ordered 

triples (x,y,n) of positive integers 

satisfying the equation xn+2n+1 = yn+1 

with x is odd and the greatest common 

divisor of x and n+1 is 1.  
 
Solution. Alvin LUKE (Portland, 

Oregon, USA) and Toshihiro 

SHIMIZU (Kawasaki, Japan). 
 
When n=1, let y=t be an integer at least 

3 and x=t2−4 are solutions. When n≥2, 




 
n

k

knknnn yyyx
0

11 .2)2(2  

For any prime factor p of y-2, from 

above, we see x must be a multiple of p. 

As x is odd, p is also odd. As gcd(x,n+1) 

= 1, we see gcd(x,(n+1)2n) = 1. Then p 

is not a factor of (n+1)2n. Now 

 
 

 
n

k

n
n

k

nknk ynyS
0 0

).2(mod2)1(22  

Hence, p is not a factor of S. So we 

have gcd(y−2,S) = 1. So S=T n for some 

positive integer T. Since y is positive, y 

is at least 3.  

 

When n≥2, we have 
 
 
              yn  < S=T n < (y+2)n.           (*) 
 
 
So T = y+1. However, when y is even, S ≡ 

yn (mod 2) is even, but then S = (y+1)n is 

odd by (*). Similarly, when y is odd, S ≡ yn 

(mod 2) is odd, but then S=(y+1)n is even 

by (*). Again this leads to a contradiction. 

 

In conclusion, when integer n is at least 2, 

there are no solutions. So the only solution 

are x=t2−4, y=t, n=1, where integer t≥3.   

 

Other commended solvers: Ioannis D. 

SFIKAS (Athens, Greece).  
 

Problem 530. A square can be 

decomposed into 4 rectangles with 12 

edges. If square ABCD is decomposed 

into 2005 convex polygons with degrees 

of A, B, C, D at least 2 and degrees of all 

other vertices at least 3, then determine 

the maximum number of edges in the 

decomposition. 
 

Solution. CHUI Tsz Fung (Ma Tau 

Chung Government Primary School), 

DBS Maths Solving Team (Diocesan 

Boy’s School) and Toshihiro SHIMIZU 

(Kawasaki, Japan). 

 

Let v, e, f be the number of vertices, edges 

and faces used in decomposing the square 

respectively. By Euler’s formula, we have 

v−e+f = 1 (omitting the exterior of the 

square).  

 

Let d(V) be the number of edges 

connected to V. Let V be a vertex on the 

square other than A,B,C,D. Then d(V)≥3, 

which is the same as d(V)≤3d(V)−6.  

 

Now there are v−4 vertices not equal to A, 

B, C, D. The sum of the degrees of the v−4 

vertices other than A, B, C, D is 

2e−[d(A)+d(B)+d(C)+d(D)], which is at 

least 3(v−4). Since d(A), d(B), d(C), d(D) 

≥2, we get  
 
     2e−8≥2e−[d(A)+d(B)+d(C)+d(D)] 

           ≥3(v−4) = 3v−12.  
 
Since v−e+f = 1, 3e = 3v+3f−3 ≤ 2e+1+3f, 

which simplies to e ≤ 3f +1. 

 

For equality case, we can decompose the 

unit square into rectangles of size 1 by 

1/2005, which has 3×2005+1=6016 

edges. 

 

 

Olympiad Corner 
 
                   (Continued from page 1) 
 
 

Problem G2. (cont.) Line DJ 

intersects the circumcircle of the 

triangle ABC at the point E which lies 

on the shorter arc AB. Prove that 

|AI|=|IE| holds.  

 

Problem N2. Let n be a positive 

integer. Prove that there exists a 

positive integer k such that  
 

51k − 17 
 

is divisible by 2n. 

 

 

 
 
 
Sums of Digits … 
 
                   (Continued from page 2)           
 

   Next, we will provide some exercises 

for the readers. 

 

Problem 1: (Mexico 2018) Find all 

pairs of positive integers (a,b) with 

a>b which simultaneously satisfy the 

following two conditions  
 
          a | b+S(a)   and   b | a+S(b). 

 

Problem 2: (Lusophon 2018) 

Determine the smallest positive integer 

a such that there are infinitely many 

positive integer n for which you have 

S(n)−S(n+a) = 2018. 

 

Problem 3: (Cono Sur 2016) Find all n 

such that S(n)(S(n)−1) = n−1. 

 

Problem 4: (Iberoamerican 2014) Find 

the smallest positive integer k such that  

 

        S(k) = S(2k) = S(3k) = ⋯ 

            = S(2013k) = S(2014k). 

 

Problem 5: (OMCC 2010) Find all 

solutions of the equation n(S(n)−1) = 

2010. 

 

Problem 6: (Iberoamerican 2012) 

Show that for all positive integers n 

there are n consecutive positive 

integers such that none is divisible by 

the sum of their respective digits. 
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Olympiad Corner 
 
Below were the Hong Kong (China) 
Mathematical Olympiad on December 
1, 2018.  

 
Problem 1. Given that a, b and c are 
positive real numbers such that 
ab+bc+ca≥1, prove that  

.3111
222 abccba
  

 
Problem 2. Find the number of 
nonnegative integers k, 0≤k≤2188, 
and such that 2188!/(k!(2188-k)!) is 
divisible by 2188. 
 
Problem 3. The incircle of ∆ABC, 
with incenter I, meets BC, CA and AB 
at D, E, F respectively. The line EF 
cuts the lines BI, CI, BC and DI at 
points K, L, M and Q respectively. The 
line through the midpoint of CL and M 
meets CK at P.  
 
(a) Determine ∠BKC.  
(b) Show that the lines PQ and CL are 
parallel. 
 
Problem 4.  Find all integers n≥3 with 
the following property: there exist n 
distinct points on the plane such that 
each point is the circumcenter of a 
triangle formed by 3 of the points.             

Notes on IMO 2019  
Tat Wing LEUNG 

  
 Despite all its sham, drudgery 

and broken dreams, the Gifted Section 
of the Education Department (EDB), the 
Hong Kong Academy of Gifted 
Education (HKAGE), and our 
Committee (International Mathematical 
Olympiad Hong Kong Committee, 
IMOHKC) managed to send a team to 
the 60th International Mathematical 
Olympiad (IMO 2019). The competition 
was held from July 11 to July 22, 2019, 
in Bath, United Kingdom.  

 
        The team was composed as 
follows: Leader: Leung Tat Wing, 
Deputy Leader: Cesar Jose C. Jr. Alaban 
(CJ), Members: Bruce Changlong Xu, 
Daniel Weili Sheremeta, Harris Leung, 
Wan Lee, Nok To Omega Tong, Sui Kei 
Ho. A lady from EDB (Miriam Cheung) 
also went with us as an observer. 

 
       Let me briefly discuss the problems 
of the two contests.  
 
        Problem 1 was very interesting. It 
was initially selected as the easy algebra 
problem and later selected as the easy 
pair. Although it was most liked, it was 
also most hated. I supposed it was 
because some leaders thought the 
problem was simply too easy. By 
substituting suitable values (say a by 0 
and b by n+1 one quickly comes to the 
conclusion that the function is linear (or 
by Cauchy), and hence by using some 
initial values to get the answers. Some 
leaders first tried to replace the easy 
algebra by another easy problem (which 
was actually classified as a 
combinatorial problem), and later tried 
to add alternate option pairs to the 
option pairs that contained the easy 
algebra problem. I myself could not say 
if it was right or wrong, I just found it 
funny. Indeed the problem was selected 
using the approach as agreed, why tried 
to change it in the middle of the 
process? At the end of the day, totally 73 
students did  not  get  anything  in  this  

     
problem, and only slightly more than 
half (382 out of 621) scored full mark.  

 
       Problem 4 was an easy Diophantine 
equation. By putting small values of n, 
one quickly comes up with the solutions 
(1,1) and (3,2), the hard part is to show 
that there are no more. Many students 
lost partial marks while trying to 
compare values (or 2-adic valuations) of 
the two sides of the equation. As learned 
from leaders of stronger teams, I found 
they considered Legendre’s formula 
and/or the lifting exponent lemma rather 
common tools, although the lemma was 
not really necessary. So yes, do we need 
to ask our students to further enhance 
their toolkit? 
 
         Problem 5 was an ouroboros-type 
problem, namely part of the problem is 
relating to other part of itself. In this 
case we are given a sequence of heads 
and tails of n coins, the kth coin is 
flipped if there are exactly k heads in the 
sequence. The problem is not too hard, 
and given its “natural” condition, it is 
probably known. Indeed if the first coin 
is head, then basically we need to deal 
with the remaining sequence of length 
n-1, and the final step is to flip the first 
coin. If the last coin is a tail, then it will 
never be flipped, and we are basically 
dealing with the first n-1 coins.  
 
         If the first coin is a tail, and the last 
coin is a head, then we first deal with the 
middle n-2 coins. After that only one 
head remaining (at the end), then the 
first n-1 coins are flipped successively 
and all become heads, then starting from 
the end, each coin is flipped, until the 
first one and every coin becomes tail. 
Using these, we can make up recursive 
relations and get the answer relatively 
easy. Our team members, using their 
own ingenuity and persistence, 
managed to do the problem well. 
 

                                    (continued on page 4) 
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  Wilson’s Theorem 

 
             Kin Y. Li 
 

      In solving number theory problems, 
Fermat’s or Euler’s theorems as well as 
the Chinese remainder theorem are 
often applied. In this article, we will 
look at examples of number theory 
problems involving factorials. For this 
type of problems, Wilson’s theorem 
asserts that for every prime number p, 
we have (p-1)! ≡ -1 (mod p). Below 
are problems using Wilson’s theorem. 
 
Problem 1. Let p be an odd integer 
greater than 1. Prove that 
 
12ꞏ32 ꞏ52 ꞏ⋯(p-2)2 ≡ (-1)(p+1)/2 (mod p). 
 
Solution. By Wilson’s theorem, (p-1)! 
≡ -1 (mod p) when p is an odd prime. 
Also, we have i ≡ -(p-i) (mod p). 
Multiplying the cases i = 1, 3, ⋯, p-2, 
we get  
 
1ꞏ3⋯(p-2)≡(-1)(p−1)/2(p-1)(p-3)⋯2 
                                               (mod p). 
 
Multiplying both sides by 1ꞏ3⋯(p-2),  
we get  
 
12ꞏ32 ꞏ52 ꞏ⋯(p-2)2 ≡ (-1)(p−1)/2(p-1)!  
                             ≡ (-1)(p+1)/2 (mod p). 
 
Problem 2. Let p be a prime number 
and N = 1+2+3+⋯+(p-1) = (p-1)p /2. 
Prove that (p-1)! ≡ p-1 (mod N). 
 
Solution. Since p is prime, by Wilson’s 
theorem, (p-1)! ≡ -1 (mod p). Then 
there exists an integer m such that   
(*)   (p-1)!=mp-1=(m-1)p+(p-1).  
 
So (m-1)p = (p-1)!-(p-1) = (p-1)k, 
where k=(p-2)!-1 and p|(p-1)k. Since 
gcd(p,p-1)=1, so p|k. Let k=np, then  
 
(**)  (m-1)p=(p-1)pn,  
 
so m-1=n(p-1). Putting (**) into (*), 
we get  
 
(p-1)!=[n(p-1)+1] p-1=n(p-1)p+p-1 
          =2n[(p-1)p/2]+p-1=2nN+p-1. 
 
So (p-1)! ≡ p-1 (mod N). 
 
Problem 3. Determine all positive 
integers n having the property that 
there exists a permutation a1, a2, … , an  
of 0,1,2,…,n-1 such that when divided 
by n, the remainders of a1, a1a2, … , 
a1a2⋯an are distinct. 

 
Solution. When n is a prime number p, 
let a1=1 and other integers ai satisfy 

0≤ai≤p-1 and iai+1 ≡ i+1 (mod p) for i = 
2,⋯, p.  
 
      Then a1, a1a2, … , a1a2⋯an when 
divided by n have remainders 1,2,⋯, p. 
Also, from iai+1 ≡ i + 1 (mod p), we see 
ai+1-1 is the inverse of i. So a1, a2, … , an  
are distinct.  
 
When n = 1 or 4, the permutations (0), 
(1,3,2,0) satisfy the condition. When n>4 
is composite, if n = p2, let q = 2p < n. 
Otherwise n=pq with 1<p<q<n so that pq| 
(n-1)!.  
 
If the required permutation exists, then 
an=0 and a1a2⋯an-1=(n-1)!≡0 (mod n), 
which is a contradiction. (In fact, when 
n>4 is composite, n | (n-1)! and 3! ≡ -2 
(mod 4) so that the converse of Wilson’s 
theorem also hold. 
 
Problem 4. For integers n, q satisfying 
n≥5 and n≥q≥2, prove that [(n-1)!/q] is 
divisible by q-1. 
 
Solution. (1) If n>q, then (q-1)q | (n-1)!. 
Hence, (q-1) | [(n-1)!/q]. 
 
(2) If q=n and q is composite, then 
[(n-1)!/q]=(n-1)!/n. Since gcd(n-1,n)=1 
and q-1=(n-1) | (n-1)!. So q-1 divides 
[(n-1)!/q]. 
 
(3)  If q=n is prime, then by Wilson’s 
theorem, (n-1)! ≡-1 (mod n) so that 
(n-1)!+1=kn for some integer k. Then 
[(n-1)!/q]=k-1 and (k-1)n=(n-1)!+1-n 
so that k-1=((n-2)!-1)(n-1)/n is an 
integer. Since gcd(n-1,n)=1, so n  divides  
(n-2)!-1. Therefore, [(n-1)!/q]=k-1 is a 
multiple of n-1. 
 
Problem 5. Let P(x)=anxn+an-1xn-1+⋯+a1x 
+a0 , where a0, a1, ⋯, an are integers, an > 0 
and n≥2. Then prove that there exists a 
positive integer m such that P(m!) is a 
composite number. 
 
Solution. If a0=0, then m! | P(m!) and the 
conclusion follows.  
 
Next let S(x) = a0xn

 + a1xn-1 + ⋯ + an. 
Suppose a0≠0. By Wilson’s theorem, for 
every prime p and positive even integer k 
< p, we have 
 
     (k-1)!(p-k)! 
  ≡ (-1)k-1(p-k)!(p-k+1)(p-k+2)(p-1) 
   = -(p-1)! ≡ 1 (mod p). 
 
So (p-1)!≡-1 (mod p) and  
 
  ((k-1)!)n P((p-k)!)≡ S((k-1)!)  (mod p). 
 
So p | P((p-k)!) if and only if p | S((k-1)!). 
Take k > 2an+1. Then u = (k-1)!/an is an 

integer divisible by all primes not 
greater than k. 
 
Problem 6. If p and p+2 are both prime 
numbers, then we say they are twin 
primes. Show that if p and p+2 are twin 
primes, then 4(p-1)!+4+p is divisible 
by p(p+2). 
 
Solution. If p and p+2 are prime, then 
p>2 so that p and p+2 are odd. By 
Wilson’s theorem, (p-1)! ≡ -1 (mod p) 
and also (p+1)! ≡ -1 (mod p+2). Then 
we have  
 
          4(p-1)!+4+p ≡ 0 (mod p). 
Also 
 
        4(p-1)!+4 ≡ -p(p+1)p[(p-1)!+1]  
≡ -p[(p+1)!+2] ≡ - p (mod p+2), 
 
which is 4(p-1)!+4+p ≡ 0 (mod p+2). 
As gcd(p,p+2)=1, we get  4(p-1)!+4+p 
≡ 0 (mod p(p+2)).  
 
Problem 6. (Wolstenholme’s Theorem) 
Let p be a prime greater than or equal 
to 5. For positive integers m and n that 
are relatively prime and  

.
)1(

1
2
1

1
1

222 


pn

m
  

Prove that p is a divisor of m and p2 is a 
divisor of  

.
1

1
2
11)!1( 











p

p   

Solution. If integer k is not divisible by 
p, then there are integers a, b such that 
ak+bp = gcd(k,p) = 1. We say a is the 
inverse of k in mod p and denote a as 
k-1. We have 
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Since gcd((p-1)!, p) = 1, so p | m. Next, 
let S=(p-1)!(1+1/2+⋯+1/(p-1)). Then 
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where 2S, p and T are integers. Since 
gcd(p,2)=1, so p divides S. Due to p|m,  
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Problem Corner  
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for sending 
solutions is November 2, 2019. 
  
Problem 536. Determine whether 
there exists a function f : ℝℝ such 
that for all real x, we have f(x3+x) ≤ x 
≤  (f(x))3 + f(x). 
 
Problem 537. Distinct points A, B, C 
are on the unit circle  with center O 
inside ∆ABC. Suppose the feet of the 
perpendiculars from O to sides BC, CA, 

AB are D, E, F. Determine the largest 
value of OD+OE+OF.  
 
Problem 538. Determine all prime 
numbers p such that there exist integers 
a and b satisfying p=a2+b2 and a3+b3-4 
is divisible by p. 
 
Problem 539.  In an exam, there are 5 
multiple choice problems, each with 4 
distinct choices. For every problem, 
every one of the 2000 students is 
required to choose exactly 1 of the 4 
choices. Among the 2000 exam papers 
received, it is discovered that there 
exists a positive integer n such that 
among any n exam papers, there exist 4 
such that for every 2 of the exam 
papers, there are at most 3 problems 
having the same choices. Determine 
the least such n. 
 
Problem 540. Do there exist a positive 
integer k and a non-constant sequence 
a1, a2, a3, … of positive integers such 
that an=gcd(an+k, an+k+1) for all positive 
integer n? 
  

***************** 
Solutions 

**************** 
 
Problem 531. BCED is a convex 
quadrilateral such that ∠BDC =∠CEB 
= 90º and BE intersects CD at A. Let F, 

G be the midpoints of sides DE, BC 

respectively. Let O be the circumcenter 
of ∆BAC. Prove that lines AO and FG 
are parallel.  
 

Solution 1. Jon GLIMMS, Hei Chun 
LEUNG and Toshihiro SHIMIZU 
(Kawasaki, Japan). 

           

G CB

D
E

A

O

F

 
Since ∠CAO = (180º-∠COA)/2 = 90º- 
∠COA/2 = 90º-∠CBA = 90º-∠CBE = 
90º-∠CDE = 90º-∠ADE, we have OA 
and DE are perpendicular. Also, since FG 
passes through the center G of the circle 
CEDG and midpoint F of chord DE, FG is 
perpendicular to DE. Thus, both AO, FG 
are perpendicular to DE. So lines AO and 
FG are parallel.  
 
Solution 2. Prithwijit DE (HBCSE, 
Mumbai, India). 
 
Let R be the radius of the circumcircle of 
triangle BAC. As ∠BAC>90º, BC is not 
the diameter of the circle ABC and 
therefore D and E are outside the circle 
ABC. Observe that EAꞏEB=EO2-R2 and 
DAꞏDC=DO2-R2. Thus 
 
   EO2-DO2=EAꞏEB-DAꞏDC 
                   =EA2-DA2+EAꞏAB-DAꞏDC 

                   =EA2-DA2. 
 
This implies OA⊥DE. Now FG⊥DE 
because G is the centre of the circle 
passing through B, C, E and D, and F is 
the midpoint of chord DE of this circle. 
Therefore, lines AO and FG are parallel. 
 
Other commended solvers: CHUI Tsz 
Fung, Andrea FANCHINI (Cantừ, Italy), 
Panagiotis N. KOUMANTOS (Athens, 
Greece), LAU Chung Man (Lee Kau Yan 
Memorial School), LW Maths Solving 
Team (SKH Lam Woo Memorial 
Secondary School), Jim MAN,   Corneliu 
MĂNESCU-AVRAM (Ploieşti, Romania) 
and Apostolis MANOLOUDIS. 
 

Problem 532. Prove that there does not 
exist a function f:(0,+∞)→(0,+ ∞) such 
that for all x,y>0,  
 
                f 2(x) ≥ f(x+y)(f(x)+y). 
   
Solution. Jon GLIMMS, Alvin LUKE 
(Portland, Oregon, USA) and Toshihiro 
SHIMIZU (Kawasaki, Japan),          
Assume such function exists. We have  
 

-y f(x+y)/f(y) ≥f(x+y)-f(x). 

Since the left hand side is negative, f 

must be strictly monotone decreasing. 
Also, for any positive integer n and 
positive real number a, taking the sum 
for x=a+i/n, y=1/n, where 1≤i≤n-1, 
we get 
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By the AM-GM inequality, we have  
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Since f(a+1)/f(a)>1, the right hand side 
will converge to 1 when n→∞. Thus, 
f(a+1)-f(a)≤-1 for all a>0. Then, 
from f(1)≥f(2)+1≥f(3)+2≥⋯, we have 
f(1)≥ f(n+1)+n for all positive integer 
n. This shows that f(1) cannot be finite, 
a contradiction. 
 
Other commended solvers: Corneliu 
MĂNESCU-AVRAM (Ploieşti, 
Romania), Apostolos MANOLOUDIS, 
George SHEN and Thomas WOO. 
 
Problem 533. Let ℤ and ℕ be the sets 
of all integers and all positive integers 
respectively. Let r, s ∈ ℕ. Prove that 
there are exactly (r+1)s+1−rs+1 functions 
g:[1,s]∩ℕ→ [-r,r]∩ℤ such that for all 
x,y∈[1,s]∩ℕ, we have |g(x)−g(y)|≤r. 
 
Solution. LAU Chung Man (Lee Kau 
Yan Memorial School), George SHEN 
and Thomas WOO. 
 
If integer k is in [-r,r]∩ℤ, then there 
are (min{r+1,r-k+1})s functions 
satisfying the given conditions which 
attain values only in {k,…,k+r}. Of 
these, (min{r,r-k})s

 functions attain 
values only in {k+1, …, k+r}. Hence, 
exactly  
 
    (min{r+1,r+1-k})s-(min{r,r-k})s 
 
functions satisfying the given 
conditions have minimum value k.  
 
This expression equals (r+1)s-rs for 
each of the r+1 values k≤0, and it 
equals (r+1-k)s-(r-k)s when k>0. Thus, 
the sum of the expression over all k≤0 
is (r+1)((r+1)s-rs), while the sumof the 
expression over all k>0 is the 
telescoping sum  
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Adding these two sums, we find that 
the total number of functions satisfying 
the given conditions is (r+1)s+1-rs+1. 
 
Other commended solvers: Jon 
GLIMMS, Michael HUI and Jeffrey 
HUI, Hei Chun LEUNG, Alvin 
LUKE (Portland, Oregon, USA) and 
Toshihiro SHIMIZU (Kawasaki, 
Japan). 
 
Problem 534.  Prove that for any two 
positive integers m and n, there exists a 
positive integer k such that 2k -m has at 
least n distinct prime divisors. 
 
Solution. Toshihiro SHIMIZU 
(Kawasaki, Japan). 
 
We show by induction that there is 
k∈ℕ such that 2k –m has at least n odd 
prime divisors. If m is even, we can 
write n=2es (with odd integer s) and 
take k>e so we have 2k-m=2e(2k-e-s). 
Then it is sufficient to show for m=s 
(odd). Thus, we assume m is odd. 
 
      Taking k∈ℕ such that 2k-m>1, we 
can take an odd prime divisor p of 
2k-m (which is odd). Assume we have 
k∈ℕ such that 2k-m has n odd prime 
divisors p1, p2, …, pn. For any i the 
pattern of 2j (mod pi) is periodic for j, 
which implies there are ei, fi ∈ℕ such 
that 2j ≡m (mod pi) if and only if 
j=eit+fi for some t∈ℕ. Since pi > 2, 
each ei is greater than 1. Thus, we can 
take fi

’ such that fi≢ fi
’ (mod ei). By the 

Chinese remainder theorem, we can 
take fi’ such that k’ ≡ fi’ (mod ei) and 
we have pi∤2k´-m for 1≤i≤n. We can 
also select k´ such that 2k´-m>1. Then 
we can take odd prime divisor pn+1 of 
2k’-m, where pn+1 is different from any 
one of p1, p2, …, pn. Then we can 
choose j such that 2j ≡ m (mod pn+1), 
where j=en+1t+fn+1 for some en+1, fn+1. 
By the Chinese remainder theorem 
again, we can take K such that K≡fi´ 
(mod ei) and we have pi∤2K-m for 
1≤i≤n+1. Then 2K-m has at least n+1 
prime factors p1, p2,…,pn+1, completing 
the induction.  
 
Problem 535. Determine all integers 
n>4 such that it is possible to color the 
vertices of a regular n-sided polygon 
using at most 6 colors such that any 5 
consecutive vertices have distinct 
colors.    
 

Solution. CHUI Tsz Fung, Hei Chun 
LEUNG, LAU Chung Man (Lee Kau 
Yan Memorial School), LW Maths 

Solving Team (SKH Lam Woo Memorial 
Secondary School) and Toshihiro 
SHIMIZU (Kawasaki, Japan). 
 
Let the colors be a, b, c, d, e, f. Denote by 
S1 the sequence a, b, c, d, e and by S2 the 
sequence a, b, c, d, e, f. If n>0 is 
representable in the form 5x+6y for x,y≥0, 
then n satisfies the conditions of the 
problem: we may place x consecutive S1 
sequences, followed by y consecutive S2 
sequences, around the polygon. Setting y 
equal to 0, 1, 2, 3 or 4, we find that n may 
equal any number of the form 5x, 5x+6, 
5x+12, 5x+18 or 5x+24. The only 
numbers greater than 4 not of this form are 
7, 8, 9, 13, 14 and 19. Below we will show 
that none of these numbers has the 
required property.  
 
Assume for a contradiction that a coloring 
exists for n equal to one of 7, 8, 9, 13, 14 
and 19. There exists a number k such that 
6k < n < 6(k+1). By the pigeonhole 
principle, at least k+1 vertices of the n-gon 
have the same color. Between any two of 
these vertices are at least 4 others, because 
any 5 consecutive vertices have different 
colors. Hence, there are at least 5k+5 
vertices, and n ≥ 5k+5. However, this 
inequality fails for n = 7, 8, 9, 13, 14, 19, a 
contradiction. Hence, a coloring is 
possible for all n≥5 except 7, 8, 9, 13, 14 
and 19. 
  

 
 
Notes on IMO 2019  
                     (Continued from page 1)                      
 
Problem 3 is a graph algorithmic problem. 
The problem is not real hard, but the 
essential difficulty is hidden by the 
numbers, students also might find it hard 
because they do not have the language of 
graph theory. Namely the graph is 
connected, with at least three vertices and 
is not complete, and there is a vertex of 
odd degree. Then it is possible to find a 
vertex and apply the operation, and reduce 
the number of edges by 1, yet maintaining 
the essential initial conditions. There is no 
worry of the existence of a cycle, for 
instance, during the operations. Otherwise 
the cycle can only be shrunk to a triangle 
and get stuck. At least a solution is 
conceivable.  
 
          I do not know what to say about 
problem 2 and 6 (medium and hard 
geometry problem). Our team did not do 
too well. It suffices to say, problem 2 may 
be done by careful angle chasing, while 

problem 6 is more complicated, but 
there is a nice and not too complicated 
complex number solution. 
 
In short, leaders generally agreed that 
those problems are do-able. If one 
understands what is going on, one 
should be able to do those problems, 
and there is no need of deep and/or 
obscure theorems. I recalled one of my 
teachers told us, there really is “no 
mystery”, if you get the point. Also it 
came to my mind Hilbert’s motto: wir 

mussen wissen, wir werden wussen (we 
must know, we will know). Indeed at 
the end, the cut-off scores were 
relatively high, 17 for bronze, 24 for 
silver, and 31 for gold, and in total 6 
contestants obtained full mark.  

After coordination and the final Jury 
meeting, we managed to get 1 silver 
medal (Harris) and 3 bronze (Wan, 
Daniel and Omega). Surely it was not 
too good, but not too bad either. Indeed 
they could do better. For instance, 
Bruce was only 1 point below bronze, 
and Sui Kei 3 points (he got a 
honorable mention by scoring full 
mark in a problem), should they not 
making several trivial mistakes (also 
made by members of several strong 
teams), they should get medals. Both 
Daniel and Wan solved three problems, 
and in my opinion potential silver 
medalists. On the whole, I notice they 
have been working hard during the last 
two months, so I don’t think I should 
blame them too much. One thing 
however I think our team members 
should watch out is, in case they will 
come back next time, they should 
know how much further effort they 
need to devote and know what they 
expect.  

      I have given my opinions and 
suggestions. Accordingly 2020 IMO 
will be held in Russia, 2021 in USA, 
2022 in Norway, 2023 in Japan, 2024 
in Shanghai China (probably) and 2025 
in Australia. Some people have been 
working hard to make future IMOs 
possible. I hope Hong Kong will 
continue to join. However I cannot be 
too sure. For one thing, not sure if 
Hong Kong will be as relatively 
free/peaceful/prosperous to sustain 
events of this kind. Even so, I am not 
quite sure if our students may maintain 
their interest. Life is hard (as usual). 
Let’s hope for the best. Good Luck. 
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