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Volume 1, Number 1

Olympiad Corner

The 35th International Mathematical
Olympiad was held in Hong Kong last
summer. The following are the six
problems given to the contestants. How
many can you solve? (The country names
inside the parentheses are the problem
proposers.) - Edirors

Problem 1. (France)

Let m and n be positive integers. Let q;, a,,
wes 8y be distinct elements of {1, 2, ..., n}
such that whenever a, + a; < n for some i, j,
lsi<j<mthereexists &, 1 < k < m, with
a, + a; = a,. Prove that '

al+a2+---+a£‘_>n+1

m B 2

Problem 2. (Armenia/Australiz)

ABC is an isosceles triangle with AB = AC.

Suppose that

(i) M is the midpoint of BC and O is the
point on the line AM such that OB is
perpendicular to AB;

(i) @ is an arbitrary point on the segment
BC different from Band ¢

(iij) E lies on the line AB and F lies on the
line AC such that E, @ and F are
distinct and collinear,

Prove that O is perpendicular to EF if and

only if QF = QF. '

{continued on page 4)
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Plgeonhole Pr1nc1ple
- Kin-Yin Li

What in the world is the pigeonhole
principle? Well, this famous principle
states that if n+1 objects (pigeons) are
taken from n boxes {pigeonholes); then at
least two of the objects will be from the
same box. This is clear enough that it does
not require much explanation. A problem
solver who takes advantage of this
principle can tackle certain combinatorial
problems in a manner that is more elegant
and systematic than case-by-case. To show
how to apply this principle, we give a few
examples below. '

Example 1. Suppose 51 numbers are
chosen from 1, 2, 3, ..., 99, 100. Show
that there are two which do not have any
commmon prime divisor,

Solution. Let us consider the 50 pairs of
consecutive numbers (1,2), (3.4),
(99.100). Since 51 numbers are chosen,
the pigeonhole principle tells us that there
will be a pair (k, k+1) among them. Now
if a prime nurmber p divides k+1 and k,
then p will divide (k+1) - k=1, whichisa
contradiction. So, &£ and k+1 have no
common prime divisor.

Example 2. Suppose 51 numbers are
chosen from 1, 2, 3, ..., 99, 100. Show
that there are two such that one divides the
other,

Solution. Consider the 50 odd numbers 1,
3, 5, ..., 99. For each one, form a box
containing the number and all powers of 2
tirnes the number, So the first box contains
1,2,4, 8, 16, ... and the next box contains
3,6, 12,24, 48, ... and so on. Then among

the 51 numbers chosen, the pigeonhole

principle tells us that there are two that
are contained in the same box. They must
be of the form 2™k and 2"k with the same
odd number k. So one will dlwde the
other.

Note that the two examples look alike,
however the boxes formed are quite
different. By now, the readers must have
observed that forming the right boxes is
the key to success. Often a certain amount
of experience as well as clever thinking
are required to solve such problems. The
additional examples below will help
beginners become familiar with this useful
principle.

Example 3. Show that among any nine
distinct real numbers, there are two, say a
and &, such that

D<(a—-b)/(1+ab)<+2 -1,

Solution. The middle expression (a-
b)/(1+ab) reminds us of the formula for
tan(x-y). So we proceed as follow. Divide
the interval (-n/2,m/2] into 8 intervals
(-n/2,-3n8], (-3n/8,-xw4], ..., (n/4,31/8],
(3n/8,w/2]. Let the numbers be 4,, a, ...,
agand let x,=arctana,, i=1,2,...9. By
the pigeonhole principle, two of the xs,
say x; and x, with x, > x,, must be in one of
the 8 subintervals. Then we have 0 < ;- x,
<T/8, s0 0 <tan(x-x,) = (ara)/(1+aay)
<tan(n/8) = 2 - 1.

Example 4. Suppose a triangle can be
placed inside a square of unit area in such
a way that the center of the square is not
inside the triangle. Show that one side of
the triangle has length less than 1. (This
example came from the XLI Mathematical
Olympiad in Poland.)

Solution. Through the center C of the
square, draw a line L, parallel to the
closest side of the triangle and a second
line L, perpendicular to L, at C. The lines
L, and L, divide the square into four
congruent quadrilaterals. Since C is not

(continued on page 2)
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Pigeonhole Principle
{continued from page I

inside the triangle, the triangle can lie in at
most two {adjacent) quadrilaterals, By the
pigeonhole principle, two of the vertices of
the triangle must belong to the same
quadrilateral. Now the furthest distance
between two points in the quadrilateral is
the distance between two of its opposite
vertices, which is at most 1. So the side of
the triangle with two vertices Iying in the
same quadrilateral must have length kess
than L.

Below we provide some exercises for
the active readers.

1. Eleven numbers are chosen from 1, 2,
3, .., 99, 100. Show that there are two
nonempty disjoint subsets of these eleven
numbers whose elements have the same
sum.

2. Suppose nine points with integer
coordinates in the three dimensional space
are chosen. Show that one of the segments
with endpoints selected from the nine
points must contain a third point with
integer coordinates,

3. Show that among any six people, either
there are three who know each other or
there are three, no pair of which knows
each other.

4. In every 16-digit number, show that
there is a string of one or more consecutive
digits such that the product of these digits
is a perfect square. [Hint: The exponents
of a factorization of a perfect square into
_prime numbers are even.] (This problem
is from the 1991 Japan Mathematical
Olympiad.)

{(Answers can be found on page 3.)

The Game of "Life"

Tsz-Mei Ko

The game of "Life" was first introduced
by John Conway, a mathematician and a
game hobbyist currently working at
Princeton University. The game is played
on an infinite chessboard, where each cell
has eight neighboring cells. Initially, an
arrangement of stones is placed on the
board (the Live cells) as the first generation.
Each new generation is determined by two
simple generic rules:

The Death Rule: Consider a live cell
(occupied by a stone). If it has 0 or 1 live
neighbors (among the eight neighboring
cells), then it dies from isolation. If it has 4
or more live neighbors, then it dies from
overcrowding. If it has 2 or 3 live
neighbors, then it survives to the next
generation.

The Birth Rule:  Consider a dead
{unoccupied) cell. K it has exactly 3 live
neighbors, then it becomes a live cell (with
a stone placed on it} in the next generation.

Here is an example. The six circles in
Figure 1 indicate the live cells in the first
generation. Those marked i and ¢ will die
due to isolation and overcrowding

respectively (Death Rule). The empty celis
marked b will become live cells in the next
generation (Birth Rule). The second
generation is shown in Figure 2,

What will happen in the third, fourth,
and nth generation? Is there an initial
generation that will grow infinitely?

O] |
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Proof Without Words

kth Power of a Natural Number n as the Sum
of n Consecutive Odd Numbers (k = 2,3,...)

nt=m* ! —n+ )+ (n* ! —n 43+ + (0 —n+2n-1)
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Problem Corner

We welcome readers to submit
solutions to the problems posed below for
publication -consideration.  Solutions
should be preceeded by the solver's name,
address and school affiliation. Please send
submissions to Dr. Kin Y. Li, Department
of Mathematics, Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon. The deadline for submitting
solutions is January 31st, 19985,

Problem 1. The sum of two positive
integers is 2310. Show that their product
is not divisible by 2310,

Problem 2. Given N objects and B(>2)
boxes, find an inequality involving N and B
such that if the inequality is satisfied, then
at teast two of the boxes have the same
number of objects.

Problem 3. Show that for every positive
integer n, there are polynomials P{x) of
degree n and Q(x) of degree n-1 such that
(Pl - 1= (- 1(Q).

Problem 4. If the diagonals of a
quadrilateral  in  the plane are
perpendicular, show that the midpoints of
its sides and the feet of the perpendiculars
dropped from the midpoints to the opposite
sides le on a circle. '

Problem 5. (1979 British Mathematical
Qlympiad) Let a,, a,, ..., a, be n distinct
positive odd integers. Suppose all the
differences |a;q] are distinct, 1 < i<j < n.
Prove that a; + a,+ - + @, > n(n*+2)/3.

Answers to Exercises
""Pigeonhole Principle"

in

1. The set of eleven numnbers have 2!'-2 =
2046 nonempty subsets with less than
eleven elements, and the maximal sum of
the elements in any of these subsets is 91 +
92 + - + 99 + 100 = 955. So, by the
pigeonhole principle, there are two
nonempty subsets with the same sum. If
they have common elements, then remove
ther from both subsets and we will get two
nonempty disjoint subsets with the same
sum,

2. For the nine points, each of the three
coordinates is either even or odd. So, there
are 2°=8 parity patterns for the coordinates.

,No. 1, Ja

onhele principle, two of the
nine points must have the same parity
coordinate patterns. Then their midpoint
must have integer coordinates,

3. Letthe six people correspond to the six
vertices of a regular hexagon, If two
people know each other, then color the
segment with the associated vertices red,
otherwise blue. Solving the problem is
equivalent to showing that a red triangle or
a blue triange exists.

Take any vertex. By the pigeonhole
principle, of the five segments issuing from
this vertex, three have the same color c.
Consider the three vertices at the other
ends of these segments and the triangle T
with these vertices. If T has an edge
colored ¢, then there is a triangle with

Page 3

color ¢. Otherwise, all edges. of T are
colored opposite to ¢. In both cases, there
is a triangle with all edges the same color.

4. Let d,, d,, ..., d\; be the digits of a 16-
digit number. I one of the digits of the
sixteen digits is either O or 1 or4 or 9, then
the problem is solved. So, we may assume
each of the digits is 2, 3, 5, 6=2x3, 7 or
B=2". Letx,=1and ¥ be the product of d,,
dy, ..d fori=1,2,.,16. Noweachzx,=
2x3% %5 x7" fori=0,1, 2, ..., 16. Each
ofthe p,, g, r;, s, is either even or odd. So
there are 2* = 16 possible parity patterns.
By the pigeonhole principle, the p, g, r, 5,
for two of the seventeen x,'s, say x, and x,
with j < k, must have the same parity
pattern. Then d,,, X - x d, = x/x;i5 a
perfect square,

Mathematical Application: Pattern Design

Roger Ng

Mathematics is by far the most
powerful tool that human race has
created. We invite articles which can
share with us different areas of
applications in mathematics. We wish that
this column will inspire students to study
mathematics. - Editors

In this first issue, I would like to
introduce an interesting application which
exemplifies the power of mathematics to
define an artistic work in a formalised
manner.

Take a look at your school uniform, It
is made up of patches of fabrics. Before the
fabric is cut, the overall shape and
measurement of each patch must be drawn.
Each patch is known as a pattern piece.

‘When a pattern is drawn, it must match
the surface of a human body. Therefore, the
pattern design process is in fact a surface
unfolding problem.

‘What makes the pattern design process
an artistic activity is the drawing of curves
in the pattern. Each person has his/her own
preference. That is why some brand
manufacturers can produce better looking
garments.

To see how mathematics can be
applied, let us consider a specific problem
in curve drawing. Take a look at your pant
or your skirt. Do you see any smooth
overlapping at the center front where you
button up the garment? If the pattern is not

drawn correctly, you should see a scissor-
like crossing at the opening along the
waist.

‘You may imagine that to button up your
pant is equivalent to let two curves meet at
the same point x. In mathematics, we
define two types of continuity conditions,
namely, C° and C' (Figure 1). C° means
that the two curves meet at the point x, i.e.,
fix) =fx"). C! means that the two curves
have the same slope at x, i.e., f{x7) = F{x*).

There will be a smooth overlapping
when a pant is buttoned up if both
continuity conditions C° and C' are met.
Thus clever fashion designers use a ruler to
keep track of the slope f1(x) (Figure 1).
This technique dramatically improves the
quality of a garment.

- In the above example, we see how the
continuity concept in mathematics can help
a fashion designer to improve the
smoothness of a pattern and thus to design
nice-looking garments. In fact, there are
many other such areas where mathematics
can be useful.

c° PN
c E
IFigure 1 |
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{continued from page 1)

Problem 3. (Romania)

For any positive integer k, let k) be the

number of elements in the set {k+1, k+2,

. 2k} whose base 2 representation has

precisely three 1s.

(a) Prove that, for each positive integer m,
there exists at least one positive
integer k such that ffk)=m.

(b) Determine all positive integers m for
which there exists exactly one k with

fil)=m.

Problem 4, (Australia)
Determine all ordered pairs (m,n) of
positive integers such that

nd 4+l

mn ~1
is an integer.

Problem 5. (United Kingdom)

Let § be the set of real numbers strictly

greater than -1. Find all functions £ § > §

satisfying the two conditions:

@ fx+Ay)+33) = y + fix) + yfix) for
all xand yin S;

(ii) fix)/x is strictly increasing on each of
the intervals -1 < x <0 and ¢ < x.

Problem 6. (Finland)

Show that there exists a set A of positive
integers with the following property: For
any infinite set § of primes there exist two
positive integers m € A and n ¢ A each of
which is a product of k distinct elements of
S forsome k > 2,

e}
L]
[ A g )
£ i u»kh
( o
. =
e

Right: A photo of the six members of the Hong Kong
Team and one of the editors (far right) taken at the
Shatin Town Hall after the closing ceremony of the
35¢h International Mathematical Olympiad.

From left to right are: Suen Yun-Leung, Chu Hoi-
Pan, Tsui Ka-Hing, Wong Him-Ting, Ho Wing-Yip,
Poon Wai-Hoi Bobby, and Li Kin-Yin.
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From Fermat Primes to Constructible Regular Polygons
Tsz-Mei Ko

Pierre de Fermat (1601-1665), an
amateur mathematician, once guessed that
all numbers in the form 2% + 1 are prime
numbers. If we try the first five n's (n = 0,
1, 2, 3, 4), they are in fact all primes:

25+ 1

17
257
65537

W L R = O

It was later discovered by Leonhard Euler
(1707-1783) in 1732 that the next Fermat
namber (n = 3) can be factored as

2% 4 1= 641 x 6700417
and thus not a prime. The story would have
ended here if without an ingenious
discovery by Carl Friedrich Gauss {(1777-
1855).

In 1794, at the age of seventeen, Gauss
found that a regular "p-gon” (a polygon
with p sides), where p is a prime, is
constructible (i.e., using only ruler and
compass} if and only if p is a "Fermat
prime" (a prime number in the form 27 +1).
He proved this by considering the solutions
of certain algebraic equations. (The
interested reader may refer to the book,
"What Is Mathematics?" written by
Courant and Rabbins, Oxford University
Press.) The young Gauss was so

overwhelmed by his discovery that he then

decided to devote his life to mathematics,
After his death, a bronze statue in memory
of him standing on a regular 17-gom
pedestal was erected in Brauschweig the
hometown of Gauss.

Which  regular  polygons are
constructible? From Gauss's result, we
know that the regular triangle, pentagon,
17-gon, 257-gon and 65537-gon are
constructible. (How?) We also know that
regular polygons with 7, 11, 13, 19, -
sides are not constructible since they are
primes but not Fermat primes. In addition,
we know how to bisect an angle and thus
regular polygons with 4, 8, 16, 32, - or 6,
12, 24, 48, - sides are also constructible.
What about the others? Is a regular 15-gon
constructible? The answer turns out to be
yes since 1/15 = 2/5 - 1/3 and thus we can
divide a circle into 15 equal parts. What
about a regular 9-gon? It can be proved
that a regular 9-gon is not constructible.
Can you find a general theorem on which
regular polygons are constructible?

Are there any other constructible p-
gons (where p is a prime) besides the five
mentioned? This question is equivalent to
asking whether there are any other Fermat
primes. To date, no other Fermat number
has been shown to be prime, and it is still
not known whether there are more than
five Fermat primes. Perhaps you- can
discover a new Fermat prime and make a
note in the history of mathematics.
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The following are the six problems
from the two-day Final Selection Exam for
the 1994 Hong Kong Mathematical
Olympiad Team. Would you like to try
these problems to see if you could have
qualified to be a Hong Kong team
member? - Editors

Instructions (the same instructions were
given on both days): Answer all three
questions. Each question carries 35 points.
Time allowed is 42 hours.

First Day

Question 1. Inatriangle AABC, £C=2/B.
P is a point in the interior of AABC
satisfying that AP = AC and PB = PC. Show
that AP trisects the angle ZA.

Question 2. In a table-tennis tournament of
10} contestants, any two contestants meet
only once. We say that there is a winning
triangle if the following situation occurs: ith
contestant defeated jth contestant, jth
contestant defeated kth contestant, and kth
contestant defeated ith contestant. Let W,
and L, be respectively the number of games
won and lost by the ith contestant. Suppose
L+ W, » 8 whenever the ith contestant wins

(continued on page 4)
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Fractal Game of Escape
Roger Ng

Consider the following sceriario. John,

a secret agent, is being held captive in
terrorists’ headquarters. He has found an
escape route, and knows it follows the
quadratic equation z,,,, = z,” + ¢ if the floor
map is encoded as a complex z-plane (i.e.,
each point (xy) is represented by a
complex number x+yi). However, John
does not know the value of the complex
constant c. John only knows that he should
start from the origin with z, = 0 + 0i. For
which values of ¢, will John have not even
a chance for a successful escape?

To help John to answer the above
question, it is natural to first try ¢ =0 and
see what will happen, The recursion
becomes z,,, = z,7 and thus z, = 0 for alt n.
That is, John will be going nowhere but
staying at the origin!

If we try other values of ¢, there are
three possible outcomes: (1) the sequence
z, converges to a fixed "point; (2) the
sequence z, repeats in a finite cycle of
points and thus becomes a periodic
sequence; or (3) the sequence z, diverges
from the origin, i.c., John may have a
chance to escape successfully.

The above story is a dramatization for
the definition of a.fractal called the
Mandelbrot set, (The word "fractal" was
coined by Benoit Mandelbrot to describe
sets with self-similarity, i.e., they lock the
same if you magnify a portion of them.)
The Mandelbrot set can be defined as the
set of complex numbers ¢ for which the
sequence Z,,, = 2,2 + ¢ is bounded (ie.,
does not diverge) when the starting point
2, 1s the origin (0,0). Figure 1 shows the
asymptotic behaviour of z, for real ¢'s that
generate  bounded sequences - (ie,
outcomes 1 and 2). The number of points
on a vertical line indicates the period of the
asymptotic sequence. Figure 2 shows the

values for ¢ (the black area) that would
keep z, bounded, i.c., the Mandelbrot set.

Now if we modify our story slightly—
assumme that John knows the constant ¢ but
not the starting point g, this will lead us to
the definition of Julia sets—narmed after the
mathematician Gaston Julia (1893-1978).
For any given complex number ¢, some
initial points z, generate divergent
sequences z,,, = 2, + ¢ while others
generate nondivergent sequences. The
Julia set is the boundary that separates the
set of "diverging” starting points from the
set of "nondiverging" starting points.

Here is a simple example. For ¢ = 0,
the equation is z,,, = z2. ‘If the starting
point lies within a distance of 1 from the
origin, the subsequent points will get
closer and closer to the origin. If the intial
point is more than a distance of 1 from the
origin, the subsequent points will get
farther and farther away from the origin.
The unit circle separates these two sets of
starting points. This boundary is the Julia
set corresponding to ¢ = 0.

(continued on page 2)
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Figure L

Figure 2
The Mandelbrot Set
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Fractal Game of Escape

(continued from page 1)

By varying ¢, we will obtain an infinite
number of different pictures of Julia sets.
Some examples are shown in the figures on
this page. However, no matter what ¢ is,
we observe that there are basically two
major types of Julia sets. Either all the
points z, are connected in one piece, or
these points are broken into a number of
pieces (in fact, an infinite number of pieces
to form something called a Cantor set).

We may ask ourselves an interesting
question. For which values of ¢, will the
corresponding Julia set be connected?
This seems to be a very hard problem. It
seems that we need to lock at all Julia sets
to find out which one is connected, and it
would take an eternity to compile this huge
amount of data. But mathematicians John
Hubbard and Adrien Douady found a quick
way to carry ot this task. They proved that
a Julia set is connected if the sequence z,,,
=z,7+ ¢ is bounded when the starting point

Z, 18 the origin (0,0). That is, if c belongs
to the Mandelbrot set, then its
coresponding Julia set will be connected!
Thus the Mandelbrot set is known as the
table of contents for all Julia sets,

Besides this interesting relationship and
the fascinating pictures, the Julia set and
many other fractals provide us insight into
many physical phenomenon. As an
example, the Julia Set is directly related to
the equipotential field lines of an
electrostatic circular metal rod. The
interested reader may refer to the book
"Chacs and Fractals: New Frontiers of
Science,” written by H.O. Peitgen, H.
Jirgens, and D. Saupe (Sprmger Verlag,
1992).

" Due to the self-similarity of fractals,
one usually needs conly a few lines of
computer programming to generate a
fractal image. (Would you like to try?)
There is also a free computer software
FRACTINT (developed by the Stone Scup
Group) that can generate many popular
fractal images. If you would like to get a
copy of this computer software, send a
stamped seif-addressed envelope and a PC-
formatted high-density diskette to the
author at the following address: Roger Ng,
Institute of Textile and Clothing, Hong
Kong Polytechnic University, Hung Hom,
Kowloon. There are over a hundred fractal
images for your investigation,

Page 2

Pythagorean Triples

Kin-Yin Li

In geometry, we often encounter
triangles whose sides are integers. Have
you ever thought about how to produce
many nonsimilar triangles of this kind
without guessing? For this, we first define
Pythagorean triples to be l:rlples (a, b,c)
of positive integers satisfying &® + b* = ¢~
For example, (3, 4, 5} and (5, 12, 13) are
Pythagorean triples. Clearly, if a® + b* = ¢2,
then (ad)? + (bd)? = (cd)’ for any positive
integer d. So, solutions of a® + b* = ¢* with
a, b, c relatively prime (i.e., having no
common prime divisors) are important.
These are called primitive solutions.
Below we will establish a famous theorem
giving all primitive solutions.

Theorem. I u, v are relatively prime
positive integers, u > v and one is odd, the
other even, then a = & — 12, b = 2uv, ¢ = &P
+ v* give a primitive solution of &® + b* =
% Conversely, every primitive solution is
of this form, with a possible permutation of
aand b.

For example, u =2, v = 1 corresponds
toa=3, b=4 c=5 Now letus try to see
why the theorem is true. For the first
statement, simple algebra shows @® + b* =
w+ 28V + vt =2 Hiwo of g, b, ¢ have

a common prime divisor p, then the
equation will imply all three have p as a
common divisor and p + 2. It will also
follow that {c - a)/2 = &* and (¢ + a)/2 = V*
are integers with p as a common divisor.
This will contradict i, v being relatively
prime. Soa, b, ¢ must be relatively prime.

For the second statement, we introduce
modulo arithmetic. If r, s are integers
having the same remainder upon division
by a positive integer m, then we say r is
congruent ta s modulo m and let us denote
this by r = s {miod m). For example, r = 0
or 1 (mod 2) depending on' whether r is
even or odd. From the definition, we see
that congruence is an equivalence refation
between r and 5. Also, if r = s (mod m)
and r' = s’ (mod m), then r + r' = s + 5
(mod m), r— r' = s — s'(mod m), rr’ = ss'
(mod m) and 7* = 5* (mod m) for any
positive integer k.

In working with squares, modulo 4 is
often considered. This comes from the
observation that ©* = 0 or ! (mod 4)
depending on r is even or odd. Now, if a?
+b = thena® + b* = 0 or 1 (mod 4).

(consinued on page 4)

Julia Sets for Various Values of ¢
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.Problem Corner

‘We  welcome readers to submit
solutions to the problems posed below for
publication consideration. Solutions
should be preceded by the solver's name,
address and school affiliation. Please send
submissions to Dr. Kin Y. Li, Department
of Mathematics, Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon. Solutions to the following
problems should be submitted by Murch
31, 1995.

Problem 6. For quadratic polynomials
P(x) = ax* + bx € ¢ with real coefficients
satisfying | P(x)| <1 for -1 < x <1, find the
maximum possible values of b and give a
polynomial attammg the maximal &
coefficient.

Problem 7. If positive integers g, &, ¢
satisfy a” + b? = c?, show that there are at
least three noncongruent right triangles
with integer sides having hypotenuses all
equal to ¢’ .

Problem 8. (1963 Moscow Mathematical
Olympiad) Leta, =a, =1 and a, = (a, * +
2)/a,, forn =3, 4, -. Show that q, is an
integer forn=3, 4, .-

Problem 9. On sides AD and BC of a
convex quadrilateral ABCD with AB < €D,
locate points F and E, respectively, such
that AF/FD = BE/EC = AB/CD. Suppose
EF when extended beyond F meets line BA
at P and meets line CD at . Show that
{BPE=¢(CQOE.

Problem 10. Show that every integer £ >
1 has a multiple which is less than k* and

can be written in base 10 with at most four |

different digits. [Hint: First consider
numbers with digits 0 and 1 only.] (This
was a problem proposed by Poland in a
past IMO.)

Wk ok e e e ootk ik ekl o

Solutions

Problem 1. The sum of two positive
integers is 2310. Show that their product
is not divisible by 2310.

Solution: W. H. FOK, Homantin
Government Secondary School. _

Let x, y be two positive integers such
that x + y = 2310. Suppose xy is divisible
by 2310, then xy = 2310n for some
positive integer n. We get x + (2310a/x)

= 2310. S0 x* - 2310x + 2310 = 0. It

follows the discriminant A = 2310° —
42310n) =22 3% 5% Tx 11 x (1155
2n) must be a perfect square. Then for
some positive integer k, 1155 -2n=3x 5
x 7% 11 x & = 1155§ > 1155, which is a
contradiction. So xy is not divisible by
2310..

Comments: A similar problem appeared
in the magazine  Quantum, Sept./Oct.
1993, p. 54, published by Springer-Verlag,

Other commended solvers: AU Kwok Nin
(Tsung Tsin College), HQ Wing Yip
(Clementi Secondary School), POON Wat
Hoi Bobby (St. Paul's College) and SZE
Hoi Wing (St. Paul's Co-ed College).

Problem 2. Given N objects and B(22)
boxes, find an inequality involving ¥ and B
such that if the inequality is satisfied, then
at least two of the boxes have the same
number of objects. -

Solution: POON Wai Hoi Bobby, St
Paul's College. '

Denote the number of objects in the kth
box by N,. Suppose no two boxes have the
same number of objects. Then N =N, + N,
o+ N2 041424 +(B-1)=R(B-
1)/2. Soif N < B {B-1)/2, then at least two
of the boxes have the same number of
objects.

Other commended solvers: CHAN Wing

Sum (HKUST), W. H. FOK (Homantin
Government Secondary School), and HO
Wing Yip (Clementi Secondary School).

Problem 3. Show that for every positive
integer n, there are polynomials P(x) of
degree n and Qfx} of degree n-1 such that
(P(xp)*- 1= (- 10Qx))".

Solution: POON Wai Hoi Bobby, St.
Paul's College. - _

For k=1, 2, -, define P(x), Q,(x) by
PI(I) =X, Ql(x) = 11 Pt+|(x) =xpk{x)'+ (IZ =
I) @yfx) and @,,,(x) = Pfx) + xQy(x). We
can check that the degree of P, is n and the
degree of O, is a-1 by showing inductively
that P,(x) = 2*'x" + - and O (x)y =271 4

.- For the problem, when n =1, P,(x)* -
1 =x—1=(1)Q,(x)%. Suppose the case
n = k holds. Then

P -1= [xP(x) + (xz'l)Qt(x)]z -1
= (P-D{PLx) + 2P, () Q%)
+ (F-DQ(x)] + P(x)’ - 1
= (- D[Pyx)* + 2xP(x)Q,(x)
+ (- l)Q,t(x)z] + (- 1Q,(x)?
=D

Comments: The solvers mainly observed
that if we substitute x = cos &, then P,{cos8)
=cos k@ and Q,(cos&) = sin k6/ siné. The
recurrence refations for P,,, and Q,,, are
Just the usual identities for cos(k&+ &) and
sin(kf + &). The polynomials P,, Q, are

(continued on page 4)

Construction Without Words:
Inscribe a Regular Pentagon in a Unit Circle

Side length = 2 sin 36° =

How would you construct a regular 17-gon inscribed in a given circle?
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Problem Comer
(continued from page 3)

called Chebychev polynomials and have
many interesting properties.

We thank Professor Andy Liu
(University of Alberta, Canada) for
informing us that his colleague Professor
Murray Klamkin located this problem in
Goursat-Hedrick's "A  Course in
Mathematical Anaysis”, wol. 1, p. 32,
published by Ginn and Company in 1504,
Professor Klamkin has a calculus solution,
first showing Q divides P, then obtaining
O = nP and solving a differential equation
in P to get P(x) = cos(rn arccos x).
Professor Liu also forwarded an alternative
recurrence approach by Byung-Kyu Chun,
a Korean-Canadian secondary school
student. He observed that P (x) = 2xP, (x)

P,,(x) and Q,(x) = 2x0,,(x) - O,,(x)
and showed by simultaneous induction that

P ()P (x) - x = (& = 1)Q,(x)0, ,(x) and
P - 1= - 12,0

Other commended selver: HO Wing Yip
(Clementi Secondary School),

Problem 4. If the diagonals of a
quadrilateral in . the plane are
perpendicular, show that the midpoints of
its sides and the feet of the perpendiculars
dropped from the midpeints to the opposite
sides lie on a circle.

Solution: Independent solution by W. H.
FOK (Homantin Government Secondary
School) and POON Wai Hoi Bobby (St.
Paul's College).

Let ARCD be a quadrilateral such that
AC s perpendicular to BD. LetE, F, G, H
be the midpoints of 4B, BC, CD, DA,
respectively. By the midpoint theorem,
EH, BD, FG are parallel to each other and
so are EF, AC, HG. Since AC and BD are
perpendicular, EFGH is -a rectangle.
Hence E, F, G, H are concyclic.

Let M be the foot of the perpendicular
from E to CD, then . EMG = (EFG = 90".
SoE, F.M, G, Hlie on a circle. Similarly,
the other feet of perpendiculars are on the
same circle.

Problem 5. (1979 British Mathematical
Olympiad) Leta,, a, ..., a',' be n distinct
positive odd integers. Suppose all the
differences |ara,| are distinct, 1 < i<j<n.
Prove that a, + a, + - + a, 2 n(n*+2)/3.

Solution: Independent solution by Julian
CHAN Chun Sang (Lok Sin Tong Wong

Chung Mmg Sécondary School), W. H.
FOK (Homantin Government Secondary
School} and HO Wing Yip (Clementi
Secondary School).

Without loss of genera]jty, suppose a;
<@ <-<a, Fork=2,3, .., n,since the
differences are distinct, @, = a, + (@, - a,} +
wtlg-a )2 1+(2+4+ - +2(k-1)) =
1 + &* — k. Summing from k=1 to n, we
geta, +a,+...+a, 2 n(nt+2)/3.

-Comments: Ho Wing Yip proved the result

by induction on #, which did not require
the formula for summing A% in the last step.

Pythagorean Triples
{continued from page 2)

So, if a, b, ¢ are also relatively prime, then
one of a or b is odd and the other is even.
Letus say e is odd and & is even. Then c is
odd and it follows m = (c —a)2 and n =
(c + a)f2 are positive integers. Note a
(= m-n) and ¢ (= m+n) 1elatively prime
implies m, n cannot have a comumon’ prime
divisor. Now considering the prime
factorization of (b/2)?, which equals mn, it
follows that both m and n are perfect
squares with no common prime divisors.
Letussaym=w*andn=1".Thena =u* -
Vyb=2uvand c = it + A,

Example 1. Show that there are exactly
three right triangles whose sides are
integers while the area is twice the
perimeter as numbers. (This was a
problem on the 1965 Putnam Exam, a
North American Collegiate Competition.)

Solution: For such a triangle, the sides are
ofthe forma = (= vAd, b=2uvd and c =
(w’ + vd, where u, v are relatively prime,
u > v, one is odd, the other even and d is
the greatest common divisor of the three
sides. The condition ab/2 = 2(a+b+c)
expressed in terms of w, v, d can be
simplified to (u-v)vd = 4. It follows that
u —vbeing odd mustbe 1. Thenv=1,2
or 4, u =2, 3 or 5;d=4,2o0r1
corresponding to the 12-16-20, 10-24-26
and 9-40-41 triangles. '

Example 2. Show that there are infinitely
many points on the unit circle such that the
distance between any two of them is
rational. (This was essentially a problem
in the 1975 International Mathematical
Olympiad). '

Solution: Let A =(-1,0), B=(1,0)and O
be the origin. Consider all points P such

that AP = 2(f.¢2 it +v2) and BP =

4uvi(*+V?), where u, v are as in the
theorem. Since AP? + BP? = AB?, all such
P's are on the unit circle. Using similar
triangles, we find the coordinates of P is
(x,»), where x = (AP¥2) — 1 and y =
+AP-BPf2 are both rational. Let #= /BOP
=2/BAP. Then cos(&2) = (1+x}/AP and
sin(&#2) = |y|/AP are rational. Finally, for
two such points P -and P, PP =
2|sin(8-6)2| = 2|sin(&2)cos(612) -
cos(&2) sin{ 872)| is rational.

Example 3. Find all positive integral
solutions of 3* + 4 = 5% (cf. W. Sierpinski,
On the Equation 3* + 4 = 5% (Polish),
Wiadom, Mat.(1955/56), pp. 194-5.)

Solution. We will show there is exactly
one solution set, némcly x=y=z=2.To
simplify the equation, we - consider
modulo 3. Wehave 1 =0+ 1'= 3+ 4=
5% = (-1)*(mod 3). It follows that z must be
even, say z=2w. Then 3* =5 -4 =(5"
+ (5" - 2). Now 5+ 2” and 5 — 2¥ are
not both divisible by 3, since their sum i3
not divisible by 3. So, 5* + 2’ =3 and 5" -
2=1. Then, (-1)* + (-1) = 0 {mod 3} and
1" = (-1Y = 1 (mod 3). Consequently,
wisodd and yis even. If y > 2, then 5= 5"
+2 =3 =1 or 3 (mod 8), a contradiction.
Soy=2.Then 5" - 2° = ] implies w= 1
and z = 2. Finally, we get x = 2.

Olympiad Corner
(continued from page I)

the jth contestant, Prove that there are
exactly 40 winning I:nanglcs in this
tournament.

Question 3. Find all the non-negative
integers x, y, and z sausfymg that 7+ 1 =
3+ 5%

Second Day _

Question 4. Suppose that yz + zx + xy =
1 and x, v, and z = 0. Prove that x(1-y*)(1-
D)+ ¥(1-2)(1-8) + 2(1-3)(1-) < 4/309.

Question 5. Given that a function fln)
defined on natural numbers satisfies the
conditions: f{in) = n - 12 if n > 2000, and

* fn) = Afn+16)) if n < 2000.

(a) Find fn).
{b) Find all solutions to f{n) =n.

Question 6. Let m and »n be positive
integers where m has d digits in base ten
and d < n. Find the sum of all the digits
(in base ten) of the product (10" — 1)m. -
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Olympiad Corner

The Seventh Asian Pacific Mathematics
Olympiad was held on March 18, 1995,
The five problems given in this contest are
listed below for you to try. Time allowed
was four hours. - Editors

Question 1. Determine all sequenceé of
real numbers a,, 4, -, G59; Which satisfy:

fa, - (1) 2 a6, - (D)

forn=1,2,-, 1994, and
2y ~ 1994 = @ + 1.

Question 2. Let a,, a, ~, a, be a
sequence of integers with values between 2
and 1995 such that:
i) any two of the a,'s are relatively prime.
ii) each g, is either a prime or a product of
different primes. '
Determine the smallest possible value of n
to make sure that the sequence will contain
a prime number.

Question 3. Let PQRS be a cyclic
quadrilaterai (i.e., P, @, R, § all lie on a
circle) such that the segments PQ and RS
are not parallel. Consider the set of circles
through P and (), and the set of circles
through R and §. Determine the set A of
points of tangency of circles in these two

sets,
(continued on page 4)
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Similar Triangles via Complex Numbers
Kin-Yin Li '

Similar triangles are familiar to
students who studied geometry. Here we
would like to ook at an algebraic way of

describing similar triangles by complex.

numbers, Recall that every point Z on the
coordinate plane corresponds to a complex
number z = r{cos@ + i sin9), where r = Izl
and O = arg z are the polar coordinates of
z. - (From now on, we will use capital
letters for peints and small letters for the
corresponding complex numbers.) |

In general, there are two possible cases
for similar triangles. Two wiangles are
said to be direcrly similar if one can be
obtained by translating and rotating the
other on the plane, then scaling up or
down. (Note a triangle is not directly
similar to its reflection unless it is
isosceles or equilateral) Suppose
AZ,Z.7Z is directly similar w AW, W,W,.
Then Z,Z/Z2.Z2, = W,W,/W,W, and /2,7, Z,
= (W,W,W;. These two equations are
equivalent to lz;-z,lAzy-z,| = Iwy=w Vlw,-wl
and arg((zz'_zl)-" (zz)) = arg((wyw)
(wy-w,)), which say exactly that

I

z, = I

-5 W, W

W, T W

Reversing steps, we see that the equation
implies the triangles are directly similar.

For the case AZ,Z,Z; directly similar to the

reflection of A W,W,W,, the equation is

Lon _wWTw

zZ, -1 W, = W,

because w, , w,, w, provide a reflection of
Wi, Wy, W

Let AW,W,W, be the equilateral

triangle with vertices at 1, w, w® (= @), .

where @ = (-1 £ iy/3)/2 is a cube root of
unity. We observe that w+ow,+w'w, =
1+w*+w* = 0. One can show that this
equation is satisfied by any equilateral
triangle in general. A triangle AZ,Z,Z, is
equilateral if and only if (z;-,/(z-2)) =

(wy-w)i(wyw,) = -0’ - (Note that -’ =
Hcos 60° + i sin 60°).) This equation can
be simplified to z+wz+w’z; = 0 by
utilizing 1+cw-+w?=0. Therefore, a triangle
AZZ7Z is equilateral if and only if
7,+wz,+w’z;=0. Here w = (-1 + {/3)/2
when Z, Z,, Z, are in counterclockwise
direction and « = (-1 — {y/3)2 when Z,,
2y, Z are in clockwise direction.

Example 1. (Napolean Triangle Theorem)
Given AABC. Draw equilateral triangles
DBA, ECB, FAC on the opposite sides of
AB, BC, CA as AABC, respectively. Let
G, H, I be the centroids of ADBA, AECR,
AFAC, respectively. Show that AGHI is
equilateral.

Solution. Sinced + wb + wla=0,e+ wc
+0h=0,ftwa+wic=0andw’=1,
we have
g+ wh+ 0¥

= (a+d+DV3+w(brete )3+ (crfra)l3
= [(d+wb+wia) + w{erwcrn?h)

 + efruateie)l3 = 0.

Example 2. Given an acute wiangle
AAA,, let H), H,, H, be the feet of the
altitndes dropped from A4,, A, A,
respectively. Show that each of the
triangles AJLH, AHH, A H, is
similar to AA, A; A,

Solution. Set up coordinates so that A =
0,0), A, =(t0) and A, = (x,y). i.e., a,=0,
a, = 1, ay = x+iy. Observe that A H, =
AA,; cos A, = t/yxiy?. Thus h, =
(txlyx2y®)ala) = syl EHP).
Also, k, = x. Now

by—a _txtp)  + _ 44
hy—a,  x%yp? Xy g - “_1.
So, in fact, AA FH, is similar to (the
reflection of) AA4,A,A,. By changing
indices, we also get similarity for the other

two triangles.

{continued on page 4)
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From The Editors' Desk:

This is the last issue for the 94-95
academic year. Thanks for all the supports,
comments, suggestions, and especially the
elegant solutions for the Problem Corner,
We will give out a few book prizes to show
our appreciation. We are also planning a
Best Paper Award for articles to be
submitted in the next academic year.
Details will be given in the September
issue. Meanwhile, we encourage our
readers to spend some spare time writing
intrigning articles for the Mathematical
Excalibur?

ol sfe o ok se o oft e ok ek e sk skeokoke

For the 95-96 academiic year, we plan
to have five issues to be delivered on Sept,
Nov, Jan, Mar and May. If you would like
to receive your personal copy directly, send
five stamped self-addressed envelopes to
Dr. Tsz-Mei Ko, Hong Kong University of
Science and Technology, Department of
Electrical and Electronic Engineering,
Clear Water Bay, Kowloon. Please write
"Math Excalibur 95-96" at the lower left
corner on all five envelopes.

e o e e v sie ok ool ofe s ok s ok kool ke

We have sent out the computer
program FRACTINT to all interested
readers. If you have requested but not yet
received the software, contact Roger Ng.

ok e s ol ok ok ke Sk o e ok e ofe e ok

Are you interested in math or in
winning a math olympiad gold medal?
The Preliminary Selection Exam for the
1996 Hong Kong Math Olympiad Team
will be held in Hong Kong Polytechnic
University on May 27, 1995. You may ask
your math teacher for further information if
you are interested in participating in this
exam. The 1996 IMO will be held in India.

Cryptarithms and Alphametics
_ Tsz-Mei Ko ' '

A cryptarithm or alphametic is a puzzle
to find the original digits in an encrypted
equation which is made by substituting
distinet letters for distinct digits in a simple
arithmetic problem. Here is an example.
Consider the alphametic

AT
X A
TEE
in which each letter répresents a distinct
digit. The puzzle is to find the original
digits each letter represents so-that the
result is arithmetically correct.

To solve this puzzle, we may reason as
follows. Since T is the "carry” from the
“tens” column, T must be equal to 1 and
thus we get

Al
A
1EE

Now, on the tens column, since Az F,

-We may check our solution that it is
arithmetically correct and each letter
indeed represents a distinct digit (with
A=9, E=0 and T=1). Also, from our
reasoning, we see that the solution for this
puzzle is unique.

There are many amusing alphametics:
that make sense in English or some
language. Here is one with a umique
solution. Do you think you can solve it?

FORTY
TEN

.+ TEN
SIXTY

How about this cryptarithm in which
the phrase "Qui Trouve Ceci" means "Who
can solve this? Each letter represents a
distinct digit and each # represents any
digit (not necessary to be distinct),

— CECT
QUI TROUVE

there must be a carry from the units iﬁ#
column, i.e., A+1 = 10+E. Thus A=9 and S48
E=0. Therefore, the solution should be $4tH
#4E
. 91 e
100 'ﬁ#‘\t}
Mathematical Thumbnotes:

(4% o9 IRT AR
fanin0 o) e
SYEN1)

i clic
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Problem Corner

We welcome readers to submit
solutions to the problems posed below for
publication consideration,-  Selutions
should be preceded by the solver's name,
address and school affiliation. Please send
submissions te Dr. Kin Y. Li, Department
of Mathematics, Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon. Solutions to the following
problems should be submitted by June 10,
1995. '

Problem 11. Simplify

1985
3 tan(ntan(e+ 1).
nml

(There .is an answer with fwo teims
involving tan 1, tan 1996 and integers.)

Problem 12. Show that for any integer
n > 12, there is a right triangle whose
sides are integers and whose area is
between # and 2n. (Source: 1993 Korean
Mathematical Olympiad.)

Problem 13. Suppose x, y, (k = 1,2, ~,
1995) are positive and x, + x, + - + xyg9¢ =
Pyt + Yiges = 1. Prove that _

1995 ¥y,

¢ 1
XYy 2

Problem 14. Suppose AABC, AA'B'C
are (directly) similar to each other and
AAAA", ABB'B", ACC'C" are also
(directly) similar to each other. Show that
AA"B"C" is (directly) similar to AABC,

Problem 15. Is there an infinite sequence
a4 @y, 4;, ~ of nonzero real numbers such
thatforn=1, 2, 3, -, the polynomial P (x)
= ay + aX + 2y + ~ + a,x" has exactly n
distinct real roots? (Source: 1990 Putnam
Exam.)

deokok ok e e e e e sk kel sk sk ook

Solutions

Problem 6. For quadratic polynomtals
P(x) = ax* + bx + ¢ with real coefficients
satisfying | P(x)! <1 for -1 < x <1, find the
maximum possible values of F and give a
polynomial attammg the maximal &
coefficient,

Solution: Independent solution by
KWOK Wing Yin (St Clare's Girls'
School), Bobby POON Wai Hoi (St.

School),

Paul's College), SZE Hoi WING (St.
Paul's Co-ed College) and WONG Chun
Keung (St. Paul's Co-ed College).

Since b = (P(1) - PC1))2 < 22 = 1,
the maximum possible values of & is at
most 1. Now the polynomial P(x) = x%/2 +
x-1/2=(x+ 1)%2 - 1 satisfy the condition
|P(x)| <1 for -1sxs1 because 0 < x+1 < 2.
So the maximum of & is 1.

Comments: With -1 < x < 1 replaced by
0 < x < 1, the problem appeared in the
1968 Putnam Exam.

Other commended solvers: CHAN Wing
Sum (HKUST), CHEUNG Kwok Koon
(S.K.H. Bishop Mok Sau Tseng Secondary
- W. H. FOK (Homantin
Government Secondary School), Michael
LAM Wing Young (St. Paul's College),
LIN Kwong Shing (University of Illinois)
and LIU Wai Kwong (Pui Tak Canossian
College).

Problem 7. If positive integers a, b, ¢
satisfy a® + b? = ¢?, show that there are at
least three noncongruent right triangles
with integer sides having hypotenuses all
equal to ¢*. -

Solution: Independent solution by EIN
Kwong Shing (University of Illinois) and
LIT Wai Kwong (Pui Tak Canossian
College). .

Without loss of generality, assume
a 2 b. The first triangle comes from {¢*)? =
(@®+bhc! = (ac®)* + (bc**. The second
trlangle comes from (¢*)* = (a® + bH%* =
(@* - 2a%° + b* + 4a%0)* = [(a LBl +
[2abc]. The third triangle comes from (c*)?
= (@) = (a® - 6a*b* + 9a%b*) + (9a'h? -
6a*b* + b%) = [ala® 332 + [B(3a2-H)°.

For the first and second triangjes,
2abc = ac? or bc* implies ¢ = 2b or 2a.
Substitute ¢ = 2b or 2a into & + b = &
will lead to the contradiction 3 = a/b or
bla. So these two triangles cannot be
congruent.

Similarly, for the first and third
triangles, since »(3a’-b*) = ac? or be? will
lead to 2 = (a+b)a or c/a by simple
algebra, these two tnangles cannot be
congruent, :

Finally, for the second and third
triangles, &(3a*-5%) = (@*b*)c or 2abe will
lead to /5 = (c-b)/b or (c+a)/a (again by
simple algebra). So these two mangles
cannot be congruent.

Comments: Au Kwok Nin obtained the
same triangles systematically by writing
® = (PcosnB)? + (PsinnB) forn=1,2, 3
and expressed cos #8, sin 78 in terms of
cos 6 = alc, sin 8 = b/c. Cheung Kwok

(continued on page 4)

Proof Without Words

L

sin(x+y) =p=sinxcosy + cos x siny

1_..
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Problem Corner
(continiied from page 3)

Koon observed that the greatest common
divisors of the sides of the triangles were
divisible by different powers of ¢, hence
the triangles could not be congruent.

Other commended solvers: AU Kwok
Nin (Tsung Tsin College}, CHAN Wing
Sum (HKUST), CHEUNG Kwok Koon
{S.K.H. Bishop Mok Sau Tseng Secondary
School) and FUNG Tak Kwan & POON
Wing Chi (La Salle College).

Problem 8. (1963 Moscow Mathematical
Olympiad) Leta, =a,=1and a, = (a, > +
2)/a, , forn=3, 4, ... Show thata, is an
integer forn =3, 4, ..

Sotution: Independent solution by CHAN
Chi Kin (Pak Kau English School),
Michael LAM Wing Young and Bobby
POON Wai Hoi (St. Paul's College).

Since a;’=a, = 1 and g,a,, =a, > + 2
for all integer n » 3, we have 4, * 0 and
Gplly = 8> =2 =a,,a,, - alforn 2 3.
We obtain (a,,,+4,.)/a, = (a.+a,.)/a,, by
rearranging terms. Hence, the value of
(a,+a,,)a,, is constant for n = 3. Since
(ay+ala, = 4, we have (a,+a,,)la,, = 4,
ie,a,=4a,,-a,,forn: 3. This shows
that a, is in fact an odd integer foralln » 1

Comments: Most solvers observed that a,
depends on a,, and a,,,, and thus guessed
that @, can be expressed as ra, , + sa,, for
some r, 5. They went on to find r= 4 and
g = -1 by setting n = 3, 4, then confirmed
the guess by mathematical induction.

Other commended solvers: CHAN Wing
Sum (HKUST), CHEUNG Kwok Koon
{8.K.H. Bishop Mok Sau Tseng Secondary
School), HUI Yue Hon Bernard
(HKUST), LIN Kwong Shing (University
of Lllinois), LIU Wai Kwong (Pui Tak
Canossian College) and Alex MOK Chi
Chiu (Homantin Government Secondary
School).

Problem 9. On sides AD and BC of a
convex quadrilateral ABCD with AB < €D,
locate points F and E, respectively, such
that AF/FD = BE/EC = AB/CD. Suppose
EF when extended beyond F meets line BA
at P and meets line CD at Q Show that
tBPE=sCQE.

Solution: Bobby POON Wai Hoi, St.

Paul's College, -
First construct parailelograms ABGF

.and CDFH. Since BG, AD, CH are

parallel, /GBE = /HCE. Also, BG/CH =
AF/DF = AB/CD = BE/CE. So, ABGE is
similar to ACHE. Then G, E, H must be
collinear and GE/HE = AB/CD = GF/HF.
Therefore, ¢ GFE=/HFE or { BPE=/ CQE.

Other commended solvers: CHEUNG
Kwok Koon (5.K.H. Bishop Mok Sau
Tseng Secondary School), W. H. FOK
(Homantin ~ Government  Secondary
School), Michael LAM Wing Young (St.

‘Paul’s College) and LIU Wai Kwong (Pm

Tak Canossnan College).

Problem 10. Show that every integer k>1
has a multiple which is less than &* and can
be written in base 10 with at most four
different digits. [Hint:
numbers with digits 0 and 1 only.] (This
was a problem proposed by Poland na
past IMQ.)

Solution: Official IMO sclution.

Choose n such that 2! < k< 2%, Let S
be the set of nonnegative integers less than
10" that can be written with digits 0 or 1
only. Then S has 2" elements and the
largest number m in 8 is composed of n
ones. Since 2" > k, by the pigeonhole
principle, there are two numbers x, y in §
which have the same remainder upon
division by k, i.e., x = ¥ (med £). Then ix—yl
is a multiple of k and

ylsm<10 x 1.2 <16 ¢ k“.

Finally, considering the cases of
subtracting a 0,1 digit by another 0,1 digit
with possible carries, we see that x - yl can
be written with digits 0, 1, 8, 9 only.

m

Similar Triangles -
(continued from page )

Example 3. A triangle 4,A,4, and a point
Py are given in the plane. For 5 » 4, define
A=A, Fork: 0, define P, to be the
image of P, under rotation with center at
A, through angle 120° clockwise, Prove
that if P = P, then AAAA; is
equilateral. (This was a problern on the
1986 IMO.)

First consider

Solution. We have p,, -a,,, = W(p-a,,,),
where w = cos120°-isin120°=(-1—i,/3 )/2.
Adding proper multiples of these equations
(s0 as to cancel all p,'s), we consider

(le'ﬂ1m)+m(1’mss'ﬂmas)+m (Pwsrﬂlm)
+ - + @ %(p-a,)

m(Plsgss Qi556) + O(P)ogq - Ayggs)

+ (P03 - Aiyge) + - + W (P, - a))

Cancelling common terms on both sides,
noting @'"™p, = py = p g4, then transposing
all terms on the left side to the right, we get

0 = (1-w)(a et Wt 0@ g+ 0'%a, )
= 662(1-w)(a;+wa+wia,)

by the definition of a, and the fact ©* = 1.

Since w = 1, AA A4, is equilateral.

Olympiad Corner

{continued from page I)

Question4. Let C be a circle with
radius R and center O, and S a fixed point

in the interior of C. Let AA’ and BB’ be

perpendicular chords through S. Consider
the rectangles SAMB, SBN'A’, SA'M'B’,
and SB'NA. Find the set of all points M, N,
M', and N when A moves around the whole
circle.

Question 5.  Find the minimum positive
integer k such that there exists a function f
from the set Z of all integers to {1, 2, -, k}
with the property that f{x)«fy) whenever
x-yte (5,7, 12}.

ok ok e ke sk s o o o o e e o o ok ok

Olympiad News:

Congratulations to CHEUNG Kwok
Koon (F. 7, SKH Bishop Mok Sau Tseng
Secondary School), HO Wing Yip (F. 6,
Clementi Secondary School), MOK Tze
Tao (F. 5, Queen's College), POON Wai
Hoi Bobby (F.- 6, St. Paul's College),
WONG Him Ting (F. 7, Salesian English
School) and YU Chun Ling (F. 6, Ying Wa
Cotllege) for being selected as the 1995
Hong Kong Mathematical Olympiad Team
Members. The selection was based on their
outstanding performances in the Hong
Kong Math Olympiad Training Program,
They will represent Hong Kong to
participate in the 36th International.
Mathematical Olympiad (IMO) to be held
in Toronto, Canada this summer. Hong
Kong was ranked 16 among 69
participating teams in 1994,
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The 36th Infernational Mathematical
Olympiad wad held in Toronto, Canada
on July, 1995, The following six
problems were given to the contestants.
(The country inside the parantheses are
the problem proposers.) -Editors

First Day

Question 1. (Bulgaria)

Let 4, B, C and D be four distinct points
on a line, in that order. The circles with
diameters AC and BD intersect at the
points X and ¥. The line X¥ meets BC at
the point Z. Let P be a point on the line
XY different from Z  The line CP
intersects the circle with diameter 4C at
the points C and Af, and the line BP
intersects the circle with diameter 5D at
the points B and N, Prove that the lines
AM, DN and XY are concurrent.

Question 2. (Russia)
Let a, b and ¢ be positve real nnmbers
such that abe=1. Prove that

1 + 1 + 1 >
a*b+e) b'(c+a) c(a+b)

(continued on page 4)
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Editors: Cheung, Pak-Hong, Curr. Studies, HKU
Ko, Tsz-Mei, EEE Dept, HKUST
Leung, Tat-Wing, Appl Math Dept, BEKPU
Li, Kin-Yir, Math Dept, HKUST
Ng, Keng Po Roger, ITC, HEKPU

Artist: Yeung, Sau-Ying Camille, MFA CU

Acknowledgment: Thanks to Debbie Leung for
her help in typesetting.

The editors welcome contributions from all
teachers and students. With your submission,
please include yeur name, address, school, email,
telephone and fax mumbers (if available).
Electronic submissions, especially in TeX, MS
Ward and WordPerfect, are encouraged. The
deadline for receiving material for the next issue
is October 15, 1995, Send all correspondence to;

Dr. Tsz-Mei Ko
Depariment of Electrical and Electronic Engineering
Hong Kong University of Science and Technelegy
Clear Water Bay, Kowloon, Hong Kong

Fax: 2358-1485
Email: eetszmei@uxmail.ust.hk

Descartes’ Rule of Signs

Andy Liu
University of Alberta, Canada

Let P(x) be a polynomial of degree n
with complex coefficients. The
Fundamental Theorem of Algebra tells
us that it has exactly » complex roots,
We are interested in the mumber of real
roots in the case where the coefficients
are real. We may assume that the
leading coefficient is 1 and the constant
term is non-zero.

As an example, consider
p(x) = X6 H10x" -2 -3x7+4x-12,

As it turns out, it has four real roots -1, 2
(with multiplicity 2) and 3, and two
non-real roots / and -i.

In general, we may not be able to find
the roots of P(x). However, we can
obtain some information sbout the
number of positive roots from the
number of sign-switches of P(x). If we
consider the sequence of the signs of the
non-zero coefficients of P(x) in order, a
sign-switch is said to occur if a + is
followed immediately by a — or vice
Versa.

For p(x) above, the sequence is + —+
— — + — Hence the number of sign
switches is 5.

The first part of Descartes’ Rule of
Signs states that the number of positive
roots of P(x) has the same parity as the
number of sign-switches of P(x).
Clearly, the latter is even if and only if
the constant term of P(x) is positive
(because the sign sequence begins and
ends with +). What we have to prove is
that the same goes for the mumber of
positive roots of P(x).

From the Fundamental Theorem of
Algebra, P(x) is a product of linear
factors and imeducible quadratic
factors. Now the constant term of a
quadratic factor with a negative

discriminant must be positive. The
constant term of a linear factor is
positive if and only if it corresponds to a
negative root. It follows that the sign of
the constant term of P(x) is positive if
and only if the number of positive roots
of P(x) is even.

Since the number of sign-switches of
p(x) is 3, we can tell that it has an odd
number of positive roots without trying
to find them,

The second part of Descartes’ Rule of
Signs states that the number of positive
roots of P(x) is less than or equal to the
number of sign-switches of P(x). We
shall build up P(x) as follows. Start
with the product of all irreducible
quadratic factors and all linear factors
corresponding te negative roots. What
we have to prove is that the number of
sign-switches increases every time we
infroduce a linear factor corresponding
to a positive root.

For any polynemial Q(x) with real
coefficients, teading coefficient 1 and a
non-zero constant term, we group
consecutive terms of the same signs
together to express ((x) as an
alternating sum of polynomials of
positive coefficients. Then the sign-
switches occur precisely between
summands. We claim that when we
multiply O(x) by x — ¢ for some positive
number £, the original sign-switches are
preserved, while at least one additional
sign-switch occurs.

Consider each saommand in tom. The
leading coefficient is positive. This does
not change after multiplication by x.
However, we may have to combine it with
-t times the last term of the preceding
summand. Since there is a sign-switch

(continued on page 2)
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Form 5, St. Paul’s Co-ed College

Descartes’ Rule of Signs
(continued from page 1)

between the two summands, the term with
which it isto be combined is also positive,
This justifies the first claim. The second
claim follows since the constant terms of
Ofx) and (x—NO{x) have opposite signs.
This completes the proof of Descartes’
Rule of Signs,

Let us illustrate the proof of the second
part with

PO = (D) x-2)"(x-3).
We first let
g(x¥) = G2+ D)+ 1) = X+ et

Since the number of sign-switches i5 0,
there is only one summand. We have

q,(x) =(x-2) q(x)
= (=2) (2 4xt1)
=y -x-2
=~ (P +x+2).

3fx) = (x=2) q,(x)
= (x~2)x* — (=2)0C P +xt2)
= (=) - ('~ £~ F-4)
=X -3¢+ +xrr+4.

Note that we have combined the terms -x*
and <2x' which have the same sipn
Finally,

D)= (-3) ()

= (=300 (x=3)(3x) + (x=3)(F -+’ +4)
= (=3G9 ' 2° -3 H4x-12)
=x0— 6 +10x* - 2° - 3% + 4x - 12,

We point ont that using the same
argument, we can prove that the number
of negative roots of P(x} is not pgreater
than the mumber of sign-switches in P(=x}),
and differs from it by an even number.
For example, the mumber of sign-switches
in p(x) = x5 +6+10x +2x° 3 —4x-12 is
1, and we can conclude that p{x) has
exactly one negative root.

M4 | —3 » BT 30R: geometria « K
thegeo- {5 T#h , (4L geography,
geology th "geo-"BO A —) » Wi
“"metria" Bl 5 4 K 3% 37 4 "metric” $H
B Rk TRE, - ROSR%E#
&2 TR, ——-FHAhRENR
B EEHETE T - BB R
Hh » PAGETE « BUNESEHTEE A B i
BEHERNE - DURESFRAKTOR
] SMBEHREENE TEENE - 8
7 BRI AR - BaRR
BR— SRR -

FMB R LA BEERN B
REREDERBFHRZRRBL 28
TEREEELREN  RRERE R
RECETHMERILE  RBRAIESRILCR
By -

E-BRHOABELEEAEEEE
W EPUETRAC BRI
(Pythagoras) Bk S 57 - 00y T
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Problem Corner

We welcome readers to submit
solutions to the problems posed below
for publication consideration.
Solutions should be preceded by the
solver’s name, address and school
affiliation, Please send submissions to
Dy. Tsz-Mei Ko, Dept of EEE, Hong
Kong University of Science and
Technology, Clear Water Bay,
Kowloon. The deadline for submitting
solutions is October 13, 1995,

Problem 16. Let g, b, ¢, p be real
numbers, with a, b, ¢ not all equal, such
that a+l=b+-1~=c+l=p.

b c a
Determine all possible values of p and
prove that abec + p = 0. (Source: 1983
Dutch Mathematical Olympiad.)

Problem 17, Find all sets of positive
integers x, y and z such that x < y < z and
¥4y =z

Problem 18. For real numbers a, b, ¢,
define

fabe)=a+rb=la—b~|a+b + |a=B -2
Show that fa,b,e) > O if and only if
Ab,e,a) > 0 if and only if fc,a,b) > 0.

Problem 19. Suppose A4 is a point inside
a given circle and is different from the
center. Consider all chords (excluding
the diameter) passing through 4. What
is the locus of the intersection of the
tangent lines at the endpoints of these
chords?

Problem 28. For n > 1, let 2n chess
pieces be placed on any 2» squares of an
n x rt chessboard. Show that there are 4
pieces among them that formed the
vertices of a parallelogram. (Note that
if 2n — 1 pieces are placed on the
squares of the first column and the first
row, then there is no parallelogram. So
27 is the best possible.)

KhkhkAR kA khhkxh

Solutions
AR AR AAARKA AR R AKX

Problem 11. Simplify
1995
2 tan ntan(n + 1)

r=1
(There is an answer with two terms
involving tanl, tan1996 and infegers.)

Solution: Independent solutidns by Iris
CHAN Chau Ping (St. Catherine’s

School for Girls, Kwun Tong), CHAN
Chi Kin (Pak Kau English School),
CHAN Sze Tai, Angie (Ming Kei
College), CHAN Wing Sum
(HKUST), CHOW Chak On
(HKUST), CHUI Yuk Man (Queen
Elizabeth School), LEUNG Ka Fai (Ju
Ching Chu Sceondary School (Yuen
Long)), LIU Wai Kwong (Pui Tak
Canossian College), Alex MOK Chi
Chiu {(Homantin Government
Secondary School), TAM Tak Wing
(Delia Memorial School (Yuet Wah))
and WOO Chin Yeung (St. Peter's
Secondary School).

From tanl = tan[(n+l) - nr] =
{tan(n+1)—tann )/(1+tanntan(n+1)), we
get

eyt 1) 3 o=ty

n=l n=l tan 1
_ani996-tanl oo tanl996 oo
tanl tanl

Comments: This problem illustrates the
telescoping method of summing a
series, i.e., by some means, write 2, as
b, — b, , then summing a, will result in
many cancellations yielding a simple
answer.

Problem 12. Show that for any integer
n > 12, there is a right triangle whose
sides are integers and whose area is
between # and 2#.  (Source: 1993
Korean Mathematical Olympiad.)

Solution: WONG Chun Keung, St
Paul’s Co-ed College.

Consider triangle 4 with sides 3d, 44,

5d, which has area 642. So for » in the
interval (3d" + 1, 64° ~ 1), triangie 4 has
an area between n and 2». Ford =3, 62
—1-[3(@+1)* + 1] =3(d-1)*-8>0. 80
the intervals (3d° + 1, 64° — 1) with d =
3, 4, 5, ... cover all positive integers n
greater than or equal to 28. Ford =2,
triangle A has area 24, which takes care
of the cases n = 13, 14, ..., 23. Finally,
the cases n = 24, 25, 26, 27 are taken
care of by the triangle with sides 5, 12,
13, which has area 30,

Other commended solvers: CHAN
Wing Sum (HKUST) and LIU Wai
Kwong (Pui Tak Canossian College).

Problem 13. Suppose x, ¥, k=1,
2, ..., 1995) are positive and x| +x, + ++
+tXigos =) F Yyt F Yises = 1

Page 3
Prove that

19895
x 1
1247 <L

Xk tVe 2

Solution: Independent solution by
CHAN Chi Kin (Pak Kau English
School), CHAN Wing Sum (HKUST),
KWOK Wing Yin (St. Clare's Girls'
School) and LEUNG Ka Fai (Ju Ching
Chu Secondary School (Yuen Long)).

Since xyp/(xty) £ Getpdf4 (s
equivalent to (x, - ¥)° = O by simple
algebra), we get

1995 1995

3 X Ve Szxk"'yk 1

-1 Xy +yk =1 4 2-

Other commended soivers; Iris CHAN
Chau Ping (5t. Catherine's School for
Girls, Kwun Tong), CHEUNG Lap
Kin (Hon Wah Middle School),
CHOW Chak On (HKUST), LTU Wai
Kwong (Pui Tak Canossian College),
Alex MOK Chi Chiu (Homantin
Government Secondary School), TAM
Tak Wing (Delia Memorial School
(Yuet Wah)), WONG Chun Keung
(St. Paul's Co-ed College) and WOO
Chin Yeung (St. Peter's Secondary
School).

Problem 14. If A4BC, AA'B'C’' are
(directly) similar to cach other and
AAA'A", ABB'B”, ACC'C" are also
(directly) similar to each other, then
show that AA"B"C", AA4BC are
(directly) similar to each other.

Solution; Independent solution by
CHAN Wing Sum (HKUST) and LIU
Wai Kwong (Pui Tak Canessian
College).

‘We will use capital letters for points and
small letters for the corresponding
complex mumbers. Since A4AA”,
ABB'B”, ACC'C" are (directly) similar
to each other,

a'-a _b'-b  "-c

a-a b-b c-c -
Then a" = ra'+(1-ra, b" = rb'+(1-1)b,
¢" = rc’+(1-r)e. Since AABC, A4'B'C’
are (directly) similar to each other,

b-a _ b-a

r.

c-ga co-a

Then
F-a"  r(b-a )+ (1-¢)b-a) b-a
'-g" He-a'y+(1-ric—a) Te-a’

{continued on page 4)
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Problem Corner
(continued from page 3)

which is equilvalent to A4"B"C"
(directly) simlar to A4BC.

Problem 15. Is there an infinite
sequence a,, a,, d,, -+ of non-zero real
numbers such thatforn=1, 2, 3, +++, the
polynomial

Px)=ay+tax+ax’+- - +ax"

has exactly n distinct real roots?
(Source: 1990 Putnam Exam.)

Solution: Yes. Take a,= 1, g, =-1 and
proceed by induction. Suppose ag, ***, @,
have been chosen so that P,(x) has »
distinct real roots and P,(x) — « or
-0 as X —> o depending upon whether
a, is positive or negative. Suppose the
roots of P (x) is in the interval (-T,7).
Let a,., = (-1)™'/M, where M s chosen
to be very large so that T™'/M is very
small. Then P, (x) =P, (x) + (-x)™"M
is very close to P,(x) on [-7,T] because
[Pi1(x) = P(x)| < T™/M for every x on
[-I,T). So, P,.(x) has a sign change
very close to every root of P,(x) and has
the same sign as P,(x) at T. Since P,(x)
and P,,,(x) take on different sign when x
— oo, there must be another sign change
beyond 7. So P,,,(x) must have n+1 real
roots,

Comments: Liu Wai Kwong sent in a
more detail solution showing that the
numbers can even be chosen to have the
same sign.

Other commended solvers: LIU Wai

Kwong (Pui Tak Canossian College).

>

Restricted Area ¢ &

Olympiad Corner
(continued from page 1)

Question 3. (Czech Republic)
Determine all integers » > 3 for which
there exist 7 points 4,, 4, *+, 4, in the
plane, and real numbers r,, r,, ---, 7,
satisfying the following two conditions:
(i) no three of the points 4, 4,, -+, 4,
lie on a line;
(i) for each triple i, j, k (1 <i<j<k
< n ) the triangle 4, 4, 4, has area
equaltor, +r, +r;.

Second Day

Question 4. (Poland)
Find the maximum value of x, for which
there exists a sequence of positive real
numbers X, Xx;, ***, X)pp5 Satisfying the
two conditions:
(B xo = X905 ;
.. 2 1 .
(i) x;,, +—=2x; +— foreachi=
X1 X;
1,2, ---, 1995,

Question 5. (New Zealand)
Let ABCDEF be a convex hexagon with

AB =BC=CD,
DE = EF =FA,
and
£ BCD = £ EF4 = 6(°.

Let G and H be two points in the interior
of the hexagon such that:

£ AGB = £ DHE = 120°,
Prove that
AG+GB+GH+ DH+ HE=>CF,

Question 6. (Poland)

Let p be an odd prime number. Find the

number of subsets A of the set {1, 2, -+,

2p} such that

(i) A has exactly p elements, and

(ii) the sum of all the elements in A4 is
divisible by p.

IMO-95, Toronto, Canada
KinY. Li

On July 16, the Hong Kong team
started their journey to Toronto, Canada
for the thirty-sixth International
Mathematical Olympiad. The flight
took about 18 hours with one stop at
Anchorage, Alaska, Shortly after
arrival, the team was interviewed by
local Chinese media. The Canadian
host certainly publicized the event very
well. During the entire period, the team
stayed at the beautiful York University
campus. The quarters provided were
very comfortable; each person had his
own room!

Opening ceremony came two days
later and the examination followed.
Team leaders and deputy leaders began
markings and coordination soon
afterward, while the students were
given tours to Toronto’s top attractions,
such as Skydome, Ontario Science
Center, Downtown Toronto, CN
(Canadian National) Tower, Canada’s
Wonderland and of course, Niagara
Falls. Meanwhile the scores were
quickly decided. This year the team
brought home two silvers, three bronzes
and one honorable mention. (One silver
was actually one mark short of a gold!)
In the closing ceremony, the winners
received their medals.  Also, for
entertainment, there were impressive
performances, which included an
awesome laser show., Throughout the
events, there were many opportunities
for students from different countries to
get to know each other. Enjoying every
moment of the whole trip, the team
finally came home reluctantly on the
evening of July 25. Everybody had
fond memories and developed new
friendships.

Photo at left: The 1995 Hong Kong Math Olympiad
Team taken at the Kai Tak Airport before departure.
From left to right are: LI Kin-Yin (leader), MOK Tze
Tao, HO Wing Yip, POON Wai Hoi, CHEUNG
Kwok Koon, YU Chun Ling, WONG Him Ting, and
KWOK, Ka Keung (deputy leader).
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The following are five problems from
the 24th USA Mathematical Olympiad
heid in April 27, 1995, The time limit for
this competition was three and a half
hours. -Editors

Problem 1. Let p be an odd prime. The
sequence {a,),., is defined as follows:
a=0,a,=1,..,4a,,=p-2and, forall
n 2 p~1, g,is the least positive integer
that does not form an arithmetic
sequence of length p with any of the
preceding terms. Prove that, for all », a,
is the number obtained by writing n in
base p- 1 and reading the result in base p.

Problem 2, A calculator is broken so
that the only keys that still work are the
sin, cos, tan, sin”!, cos’', and tan”'
buttons. The display initially shows 0.
Given any positive rational number g,
show that pressing some finite sequence
of buttons will yield g. Assume that the
calculator does real number calculations
with infinite precision. All functions are
in terms of radians.

{continued on page 4)
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Systems of Distinct Representatives
Kin-Yin Li

Suppose in a school, there are some
¢clubs. In the science club, the members
are Bob and Cathy. Inthe dance club, the
members are Bob, Mary, Joe and Emmia.
In the bridge club, the members are Joe,
Emma, Paul and Cathy. In the debate
club, the members are Bob and Cathy.
Suppose a representative is to be elected
from each club and no two clubs are
allowed to have the same representative.
Is this possible?

In the example, one possibility is to
have Bob for science, Mary for dance,
Joe for bridge and Cathy for debate. We
say the collection Bob, Mary, Joe and
Cathy is a system of distinct
representatives (SDR) for the four clubs
because each represents a different club.

If a new drama club is formed with
only Bob and Cathy as members, then
there is not any SDR for these five clubs
because the science, debate and drama
clubs together have only two members.
So far, to decide whether there is a SDR
for clubs or not is simple because there
are not too many clubs. If the number of
clubs increases, then the problem will
become difficult. Naturally we would
like to know if there is a method for
knowing whether there exists any SDR
for clubs or not. Also, we would like to
know, when a SDR. exists, how to find
such a SDR.

Suppose there are n clubs. From the
drama club situation above, we leamed
that if these » clubs have a SDR, then
every set of m (£ n) clubs together must
have at least m members. This givesus a
necessary condition to check. In fact,
there is a famous theorem, due to Philip
Hall, that asserts the condition is also
sufficient.

Hall's Theorem. There exists a SDR for
n clubs if and only if every set of m (< n)
clubs together has at least m members.

Briefly, here is how to get a SDR
inductively when the condition is met. If
we are lucky that every set of £ (< n)
clubs together has more than k members,
then pick a mermber as representative for
a club and remove this member from the
other n - 1 ¢lubs. The condition for the
# - | clubs will still be met. Inductively,
we can find a SDR for these # - 1 clubs.

If we are unlucky that there are k (< »)
clubs together having exactly ¥ members,
Since k < n, inductively we can find a
SDR for these k clubs. Now remove
these k& members from the other n - £
clubs. After removal, we can check that
the condition for the remaining # - %
clubs will still be met. {This is because
any j of these remaining clubs together
will contain the members of the j + &
clubs together, minus the % removed
members. That is, every setof j{(<n - &)
remaining clubs has at least (f + &) - k=j
members.) So inductively we can find a
SDR for the remaining » - & chubs.

For another application of SDR,
consider the situation of » boys and #
girls in a party. Each boy knows some of
the girls and vice versa. When is it
possible to match each boy with a unique
girl that he knows? This is simple if you
understand Hall's theorem. For each boy,
form a fan club consists of all the girls he
knows. There is a matching if and only if
there is a SDR for the » fan clubs, ie.,
every set of m (< n) boys together must
know at least m girls,

73 a‘k’%ﬁi‘l‘%a -8,
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration. Solutions
should be preceded by the solver’s
name, address, school affiliation and
grade level. Please send submissions to
Dr. Kin-Yin Li Dept of Mathematics,
Hong Kong University of Science and
Technology, Clear  Water Bay,
Kowloon. The deadline for submitting
solutions is December 30, 1995,

Problem 21. Show that if a polynomial
P(x) satisfies

2
P(2x2—l)=£%2‘-—1,

it must be constant,

Problem 22. An acute-angled triangle
ABC is given in the plane. The circle
with diameter 4B intersects altitude CE
and its extension at points M and N, and
the circle with diameter AC intersects
altitude BD and its extension at P and (.
Prove that the points M, &, P, Olieon a
common circle. {Source: 1990 USA
Mathematical Olympiad).

Problem 23. Determine all sequences
{a,, @y, ...} such that @, = 1 and la, — a,,|
< 2mnf(m’ + 1) for all positive integers
m and n. (Source: Past IMO problem
proposed by Finland).

Problem 24. In a party, n boys and »
girls are paired. It is observed that in
each pair, the difference in height is less
than 10 cm. Show that the difference in
height of the &-th tallest boy and the &-th
tallest girl is also less than 10 cm for k=
1,2,....n

Problem 25. Are there any positive
integers n such that the first four digits
from the left side of #! (in base 10
representation) is 19957

fhkRkkdkRhdhkbihki

Solutions
KRk Rhdkhkherihin

Problem 16. Let 4, b, ¢, p be real
numbers, with g, b, ¢ not all equal, such
that a+l=b+l=c+}-=p.

b ¢ a
Determine all possible values of p and
prove that abc + p = 0. (Source: 1983
Dutch Mathematical Olympiad.)

Solution: Official Solution.

Sinceca+ 1=gpand bc+ | =cp, we get
apt=cap+p=albc+1)+p=abc+a+
p- Hence a(p? — 1) = abc + p. Similarly,
bp* - 1)=abc+pand e(p® ~ 1) = abc +
p. Since a, b, ¢ are not all equal, p = %1
and then abe + p = 0. Both values of p
are possible by considering (a,b,c) =
(2,-1,1/2) and (-2,1,-1/2).

Comments: Most solvers use repeated
substitution to obtain the equation (p?
- g - ap + 1) = 0 (and similar
equations for 5 and c) and then show
that p = +1. (Otherwise, & - ap + 1 =0
and the other two similar equations will
lead to the contradiction ¢ = b = ¢.)
Solvers then use different approaches to
find abc for the two possible values of p
to prove abe + p=10,

Other commended solvers; CHAN
Wing Sum (HKUST), William
CHEUNG Pok Man (S.T.F.A. Leung
Kau Kui College), Wallis LEUNG Ka-
Wo (HKUST) and LIU Wai Kwong
(Pui Tak Canossian College).

Problem 17. Find all sets of positive
integers x, y and z such thatx <y < z and
XAy =2

William CHEUNG Pok
Kui

Solution:
Man (S.T.F.A. Leung Kau
College).

Since 37 > 4> 5% > | we havey* >
2 if y 2 3. Hence the equation has no
solution if ¥ > 3. Since 1 £ x <y, the
only possible values for (x,) are (1,1),
(1,2) and (2,2). These lead to the
equations 1 + [ =z, I + 2 =zand 4 + 2*
= 2%, The third equation has no solution
since 22> * forz > 4 and (2,2,3) is not a
solution to x»* + ¥ = z*, The second
equation has no solution either since 2* >
z. The first equation leads to the unique
solution (1,1,2).

Page 3

Cther commended solvers:. HO Wing
Yip (Clementi Secondary School), LIU
Wai Kwong (Pui Tak Canossian
College) and WONG Him Ting
(Salesian English School).

Problem 18. For real numbers 4, b, ¢,
define

flabey=atb=la-Y-|a+b +la-8 24
Show that fab,c) > 0 if and only if

" fib,e,a) > 0 if and only if fc,a,b) > 0.

Solution: William CHEUNG Pok
Man (S.TFA. Leung Kau Kui
College).

We have fa,b,c) > 0 ifand only if Ja + &
+la-bl - 2el <a+ b - |a-b|. Applying
the fact that |x] <y if and only if x <y and
-x < y to the last inequality and
simplifying, we see that fla,b,c) > 0 if
and only if ja — b| <candc < g + b.
Applying the fact again to ja — b} <¢ and
transposing terms, we see that fla,b,c) >
Oifand only ifa<b+cand b <c+a
and ¢ <a+ b. The assertion follows.

Comments: LIU Wai Kwong considets
the six possible orderingsaz b2 c,az¢
= b, etc. to show that fla,b,c) = fb,c,a) =
flc,a,b) = 2(a + b + ¢ — 2max{a,b,c})
and thus the assertion follows,

Other commended solvers. Wallis
LEUNG Ka-Wo (HKUST) and LIU
Wai Kwong (Pui Tak Canossian
College).

Problem 19. Suppose A is a point inside
a given circle and is different from the
center. Consider all chords (excluding
the diameter) passing through 4. What
is the locus of the intersection of the
tangent lines at the endpoints of these
chords?

Solution: WONG Him Ting (Salesian
English School).

Let O be the center and # be the radivs.
Let A” be the point on OA4 extended
beyond A4 such that 04 x 04’ = F~,
suppose BC is one such chord passing
through A and the tangents at B and C
intersect at ’. By symmetry, D’ is on
the line OD, where D is the midpoint of
BC. Since £OBD =90°, OD x OD’ =
OB* (= 04 x 04’.) So AOAD is similar
to AOD'A’. Since £L0DA =90° [ is
on the line L perpendicular to 04 at 4°.
(continued on page 4)
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Problem Corner
(continued from page 3)

Conversely, for D’ on I, let the chord
through A4 perpendicular to OD’
intersect the circle at Band C. Let D be
the intersection of the chord with Q0.
Now AQOAD and AOD’A’are similar
right triangles. So OD x 0D’ = 04 x
0A’ = OB* = OC% which implies
Z0BD’ = £20CD =90°, Therefore, D’
is on the locus. This shows the locus is
the line L.

Other commended solvers: William
CHEUNG Pok Man (S.T.F.A, Leung
Kau Kui College), Wallis LEUNG Ka-
Wo (HKUST), LIU Wai Kwong (Pui
Tak Canossian College) and Bobby
POON Wai Hoi (St Paul’s College).

Problem 20. For n > 1, let 2n chess
pieces be placed on any 2# squares of an
n x n chessboard. Show that there are 4
pieces among them that formed the
vertices of a parallelogram. (Note that if
2n — 1 pieces are placed on the squares
of the first column and the first row, then
there is no parallelogram. So 2# is the
best possible.)

Solution: Edmond MOK Tze Tao
(Queen’s College).

Let m be the number of rows that have at-

least 2 pieces. (Then each of the
remaining n ~ m rows contains at most 1
piece.} For each of these m rows, locate
the leftmost square that contains a piece.
Record the distances (i.e., number of
squares) between this piece and the
other pieces on the same row. The
distances can only be 1, 2, ..., n-1
because there are » columns.

Since the number of pieces in these m
rows altogether is at least 2n— (n— m) =
n+m,there are atleast (n+ m) —m=n
distances recorded altogether for these
m rows. By the pigeonhole principle, at
least two of these distances are the same.
This implies there are at least two rows
each containing 2 pieces that are of the
same distance apart. These four pieces
yield a parallelogram.

Other commended solvers: William
CHEUNG Pok Man (ST F.A. Leung
Kau Kui College), HO Wing Yip
(Clementi Secondary School) and
WONG Him Ting (Salesian English
School). . .
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Olympiad Corner
{continued from page I)

Problem 3. Given a nonisosceles,
nonright triangle ABC, let O denote the
center of its circumscribed circle, and let
A,, B,, and C, be the midpoints of sides
BC, CA, and AB, respectively. Point 4,
is located on the ray OA, so that AOAA4,
is similar to AOA,4. Points B, and C, on
rays OB, and OC,, respectively, are
defined similarly. Prove that lines 44,,
BB,, and CC, are concurrent, ie., these
three lines intersect at a point.

Problem 4. Suppose g, q,, g, ... is ar
infinite sequence of integers satisfying
the following two conditions:

(i) m-—ndivides g, — g, form>nz0,
(ii) there is a polynomial P such that
lg,| < P(n) for all s,

Prove that there is a polynomial ¢ such
that g, = () for all .

Problem 5. Suppose that in a certain
society, each pair of persons can be
classified as either amicable or hostile.
We shall say that each member of an
amicable pair is a fFiend of the other, and
each member of a hostile pair is a foe of
the other. Suppose that the society has
persons and ¢ amicable pairs, and that
for every set of three persons, at least
one pair is hostile. Prove that there is at
least one member of the society whose
foes include g(1 — 4g/n*) or fewer
amicable pairs.
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Problem 1. Let P(x) = g, + ax + o+
a,x"' + ax" be a polynomial with
complex coefficients. Suppose the roots
of P(x} are o, o, -+, o, with |e,| > 1,
ol > L, o jord > 1, and oyl €1, o,
o, < 1. Prove: :

Vol +fa e,

fal

Problem 2. Given a sequence of
integers x,, x,, X;, Xy, X5, Xg, Xq, X5, Ome
constructs a second sequence |x, — x|,
ey — gl by = 351, s — X, g — x5, by — xl,
[xg —%4], Ix, — x¢|. Sucha process is called
a single operation. Find all the 8-terms

[k <

integral sequences having the following

property: after finitely many -single
operations it becomes an - integral
sequence with alf terms equal.

{continued on page 4)
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Solution by Linear Combination
Kin-Yin Li

In mathematics, often we are
interested in ‘finding a solution to
equations. Consider the following two
problems:

Problem 1. Given real mumbers m,, m,,
...s 1, (2ll distinet) and a,, a,, ..., a,
find a polynomial wx) such that
vim) =a, v(m)}=a, ..., v(m)=a,

Problem 2. Given positive mtegers m,
my, ..., m, (pairwise relatively prime)

~ and integers a,, a,, ..., a,, find an integer

v such that v = a, (mod m,), v=a, (mod
m,), ..., v=a, (mod m,).

Problem 1 comes up first in algebra and
analysis (later in engineering and
statistics). It is an interpolation problem,
where we try to fit the values g, at m;
(i.e., to find a polynomial whose graph
passes through the points (m,,a),
(my,a;), ..., (m,,a.)). Problem 2 comes
up in number theory. It is a congruence
problem, where we try to count objects
by inspecting the remainders (ie., to
find a number which has the same
remainder as a; upon division by m,).

. There is a technique that can be
applied to both problems. The idea is to
solve first the special cases,” where
exactly one of the a/s is 1 and all others 0.
For problem 1, this is easily solved by
defining (for 7 = 1, 2, ..., n) the
polynomial P{x) to be (x—m,}(x—n,)--
(x~m,) with the factor (x—m,)} omitted,
ie.,

Bxy=T[(z-m),
j=1
- i
and v(x) = P{x}P(m,). Then v{m) = 1
and v{m,} = 0 for k = i because P,(m,) =
Ofork=1i).

For problem 2, this is solved similarly
by first defining (for i=1, 2, ..., n) the
integer F; to be mm,---m, with the

factor m; omitted. Consider P, 2P, ...,
mP,. Upon division by m, no two of
these will have the same remainder
because the difference of any two of
them is not divisible by m, So one of
these, say P, has remainder 1. Let v, =
P, then v; = 1 (mod m,) and v, = 0 (mod
my) for k # i because P; = 0 (mod m,).

Finally to solve problem ! or 2 in
general, we use the special case
solutions v, v,, ..., v, to form v = gv, +
ay, + - + a,v, It is now easy to check
that the expression v solves both
problems 1 and 2.

" For problem 1,

v(x) =g Pl(x) + e a"_.g’_(..f)_
: £(m) F(m,)
is called Lagrange’s interpolation

Sormula. For problem 2, aithough the ¢,'s
may be tedious to find, we know a
solution v =ga,¢,P, + +++ + a,c,P, exists.
This is the assertion of the Chinese
remainder theorem. Note also that if we
add to v any multiple of (x—m,)(x—m,) "+ *
(x—m,) in problem 1 or any multiple of
mym,--m, in problem 2, we get other
solutions. '

The expression of v, involving a sum
of multiples of v,, v, ..., v, is so
common in similar problems that it is
now come to be called a finear
combination of v,, v,, ..., v, In passing,
note that the g/'s are numbers. However,
the /s are polynomials in problem 1 and
numbers in problem 2. Like vectors
expressed in coordinates, the v's are
objects that may take on different values
at different positions. So functions
corresponding to solutions of equations
are often viewed as wvectors (with
infinitely many coordinates). Concepts
like these are the foundation of Linear

{continued on page 2)
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Solution by Linear Combination:
(continued from page 1)

Algebra, which studies the properties of
solutions of these kind of problems in an
abstract manner.

Example 1. If f{x) is a polynomial of
degree at most n and fik) = (n+l-
B/(k+1) for k=0, 1, ..., n, find fn+1).

Solution |, Applying Lagrange's
interpolation formula, we define Pix) =
x(x—1) +-- (x—n) with the factor (x—k)
omitied, Then Pyn+1) = (m+1)/(n+1-
k), PLR) = (-1)"*k(n—k)! and
S+ = 1 é('nm (rc..+(:)!+(arl:)i Y
where we used the binomial expansion
of (1-1Y"*! in the last step.

=

Solution 2. The polynomial g(x) =
(x+1)}x) — (n+1—x) has degree at most
nt+1, We are given that g(0) = g(1) = ---
= g(n) = 0. So g{x) = Cx(x—1)---(x—n).
To find C, wesetx=-1 and get g(-1)
= (n+2) = C(-1)™"'(n+1)! . Therefore,
C=(=1y{m2)(n+1) and g(ntl) =
(n+2)nt1) = (—=1Y{(n+2), which implies
Sty =(-1)"

Example 2. Prove that for each positive
integer n there exist n consecutive
positive integers, none of which is an
integral power of a prime number,
(Source: 1989 IMQ.)

Selution. Letp,, ps, ..., P2, be 2n distinct
prime numbers and consider the
congruence problem v = -1 (mod p\p,),
v=-2{mod pyp), ..., v=-n(mod
PP} SINCE PPy, P1Dss - -s ProiPon 81€
pairwise relatively prime, by the
Chinese remainder theorem, there is a
positive integer solution v. Then each of
the n» consecutive numbers v+1, w2, ...,
wtn is divisible by more than one prime
number. So each is not a power of a
prime number.

[ 9 B S B

#p T
FREAAFEER
P ER LR E R BRI SR - PR AR

(RTEE) P F 8T HRHE -
BE [ MEE

M SEUTOEE =Bk
= AABCRE i
= s
EFE: ==
BRI R - EREIR
R - AP SRR R

(HERSER] - MRARAKE
FHRETR [(RTHELD - ROBE
yali S

N=2 (mod3) :
N=3 (mod5) ;
N=2 (mod 7)

K/ I EEEN - ZE—E—XKA

[F#FH] - B —EHOER

ZARITE#
A —&
LT EEERH
BEELESN

HARAEARRE
N =70X2+21X3+15X2-105X2=23

KRBT BRI TSI ASE - B
R38R - SEBRET0 : Rt > TOX2
ER3ER2 - B 21 2 7TE3RY S H -
FAEERSER > FTA21 X 3ERSER3 5 HrF
15X 2355 - BR7ER2 < SE=BnTia
M BETERGESF &% BE3
HSHTRAEE - ENEERERE
BRI N ERES - BB HARE
i s

(%% £ %3)

cn-m)‘=_fn-m)‘#g\
BEBERI-m =A-m
A% 1-m=m-A
OO 13 ’§ 7#‘42;.?2'.
A+
VA mAl g

A KA A -
(8% 3% % SxeR
LIOE-$ A
ok

A, A 3 A< ot

=R _ [(-a* _ [-G-2)*
2TV -4 T /4
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Selutions
should be preceded by the solver’s
name, address, school affiliation and
grade level. Please send submissions to
Dr. Kin-Yin Li, Dept of Mathematics,
Hong Kong University of Science and
Technology, Clear  Water  Bay,
Kowloon. The deadline for submitting
solutions is February 28, 1996,

Problem 26. Show that the solutions of
the equation cosnx =1 are all irrational
numbers. (Source: 1974 Putnam Exam.)

Problem 27. Let ABCD be a cyclic
quadrilateral and let [,, &, I, I, be the
incenters of ABCD, AACD, AABD,
AA4BC, respectively. Show that I, 7./ 7,
is a rectangle.

Problem 28. The positive integers are
separated into two subsets with no
common elements. Show that one of
these two subsets must contain a three
term arithmetic progression. '

Problem 29. Suppose P(x) is a
nonconstant polynomial with integer
coefficients and all coefficients are
greater than or equal to —1. If P(2) = 0,
show that P(1) = 0.

Problem 30. For positive integer n> 1,
define f{n) to be 1 plus the sum of all
prime numbers dividing » multiplied by
their exponents, e.g., A40)=H2 x §1) =
1 +(2x3 +5x1}=12. Show thatifn> 6,
the sequence n, ), AR, AR, ...
must eventually be repeating 8, 7, 8, 7,
8,7, ...

Tk kR hkhh ki ki it

Solutions
FhA R hhAA Akt dhw

Problem 21. Show that if a polynomial
P(x) satisfies '

2
PQx% -1 = i;)'—-
it must be constant.

Solution 1: Independent solution by
LIU Wai Kwong (Pui Tak Canossian
College) and YUNG Fai (CUHK).

Construct a sequence u, = l,u,=-1and

u, *—"1"‘”‘—;'-—1- for n 2 3. We have

#,%¥u,, <1 for n 2 2 and P(x,) =
(P(#,¥/2) —1 for n 2 1. Note that
P(u,) = 0 for n= 1 (otherwise P(u,) =0
Would ].'rnply P(uu-l)) P(un\.z), ety P(Ul)

are rational, but P(I)=1£+3)
Differentiating the functional equation
for P, we pet 4xP'(2x*-1) = P(x)P'(x).
Since P(1)# 4, we get P'(x))=P'(1)=0.
This implies 0 = P'(w,) = P'(u,) = ---.
Therefore, P(x} is the zero polynomial
and so P(x) is constant.

Comments: This problem was from the
1991 USSR Math Winter Camp. Below
we will provide a solution without
calculus,

Solution 2: Suppose P(x) = agx” + ax™"
+ =+ + g, is such a polynomial with
degree n> 1. Then

a2 =) 3,2 - 1)" "+ - +a

_(agx" +ax" M+ ..

2

Comparing the coefficients of x, we
find a,2" = a,%/2, s0 @, = 2. Suppose a,,
a, ..., a, are known to be rational.
Comparing the coefficients of x**!, the
left side yields a rational number
involving a,, ..., a,, but the right side
yields a number of the form aya,., plus a
rational number involving g, ..., a,. So
@, is also rational. Hence a,, a,, ..., a,
are all rational. Then P(1) =g, + a, + -+
+ a, is rational. However, P(1) =
(P(1)%2) — 1 forces P()=1%+3, a
contradiction. Therefore P(x) must be
constant.

m

+a,)* -1

Other commended solver: William
CHEUNG Pok Man (S.T.F.A. Leung
Kau Kui College).

Problem 22. An acute-angled triangle
ABC is given in the plane, The circle
with diameter AB intersects altitude CE
and its extension at points M and N, and
the circle with diameter AC intersects
altitude BD and its extension at P and Q.
Prove that the points M, N, P, Q lic on a
common circle. (Source: 1990 USA
Mathematical Olympiad). '

N

Selution: William CHEUNG Pok
Man (ST.FA. Leung Kau Kui
College).

If M, N, P, O are concyclic, then 4 must
be the center because it is the
intersection of the perpendicular
bisectors of PQ and MW, So it suffices to
show AP = AM.

Considering the similar triangles 4DP
and APC, we get AD/AP = APIAC, ie.,
AP* = ADxAC. Similarly, AM =
AExAB. Since ZBEC =/BDC, points B,
C, D, E are concyclic. Therefore,
ADxXAC = AEXAB and s0 AP = AM.

Other commended solvers: HO Wing
Yip (Clementi Secondary School), LIU
Wai Kwong (Pui Tak Canossian
College), Edmond MOK Tze Tao
(Queen's College), WONG Him Ting
(HKU) and YU Chun Ling (Ying Wa
College).

Problem 23. Determine all sequences
{a), @, ...} such that g, = 1 and |a, - a,,|
< 2mnf(m* + #*) for all positive integers
m and n. (Source: Past IMO problem
proposed by Finland).

Solution: Independent solution by
CHAN Wing Sum (HKUST), LIU Wai
Kwong (Pui Tak Canossian College)

and YUNG Fai (CUHK).
For fixed m,
fim|a, - a,| < lim 2”'"2 =0
H—p o =o mt p
(continued on page 4)
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Problem Corner
(continued from page 3)

So for all m,

a, =11ma,,,
H—¥

It follows that all terms are equal (to g,

=1)

Problem 24. In a party, n boys and n
girls are paired. It is observed that in
each pair, the difference in height is less
than 10 cm. Show that the difference in
height of the &-th tallest boy and the 4-th
tallest glrl is also less than 10 em for k=
1,2,. :

Solution: Independent solution by HO
Wing Yip (Clementi Secondary School)
and YUI Chun Ling (Ying Wa College).

Let b, 2 5,2 .-+ 2 b, be the heights of the
boys and g, 2 g, > -+ > g, be those of the
girls. Suppose for some £, |5, — g| > 10.
In the case b,—g2 10, we have b,—g 210
for 1 <i<kand k £j<n Consider the
boys of height 4, (1 < 7 < k) and the girls
~of height g, (k< < n). By the pigeonhole

principle, two of these #+1 must be’

paired originally. However, b, — g; 2 10
contradicts the hypothesis. (The case

— b, 2 10 is handled srmllarly) So
|b,, £ <10 for all k.

Commems: This was a problem from the
1984 Tournament of the Towns, a
competition started in 1980 at Moscow
and Kiev and is now participated by
students in dozens of cities in different
continents.

Other commended solvers: CHAN
Wing  Sum  (HKUST), William
CHEUNG Pok Man (S5.T.F.A. Leung
Kau Kui College, KU Yuk Lun
(HKUST), LIU Wai Kwong (Pui Tak
Canossian . College) and WONG Him
Ting (HKU)

Problem 25. Are there any positive
integers » such that the first four digits
from the left side of »! (in base 10
representation) is 19957

Solutien 1: LIU Wai Kwong (Pui Tak
Canossian College).

Let [x] be the greatest integer not
exceeding x and {x} =x - [x]. Also, let
a=1+jx10%, bo log 10°! and b, =
log 10* + (log @, + -+« + log a)) for j > 0.

(For this solution, log means log,,.)

9000 possible choices. In particular, one
Observe that :

of these is 1995.

1996

() 0 <log a4, < log ay < log 1995

fork=1,2,...,30000;

Olympiad Corner
{continued from page 1)
6000 ' '

@ Ebgaf > 15000(l0gay +10g a30000) > 1 Problem 3. Suppose n persons meet in a
meeting, every one among them is
familiar with exactly 8 other participants
of that meeting. Furthermore suppose
that each pair of two participants who

Note the distance between {logl995}
and {logl1996} is log(1996/1995). Now
by, by, .., bygon 18 increasing and

By — Bo> 1 (by (i), are familiar with each other have 4

but ' acquaintances in common in that
1996 ) meeting, and each pair of two

0<by; - ;< log o5 (by (1)). participants who are not familiar with
each other have only 2 acquaintances in

So there is a &£ < 30000 such that common. What are the possible values

l?
{log1995} < {8, } < {log 1996} of 77

Now khkhkthkhkfhhhdkhhki
Second Day

log10*t+ 3% loga; = log(10° + )-8k Taipei, April 15, 1995
implies _ S
{log1995} <{log(10*+k)!} <{log1996}

Addmg [log1995] = [log1996] = 3, we
have

log1995 < log(10*+k)! — m < log1996
for m = [log (10°+&)!] - 3. Therefore, .

Problem 4. Given n (where n > 2)
distinct integers m,, m,, -, m,. Prove
that there exist a polynomial fx) of
degree n and with integral coefficients
which satisfies the foliowing conditions:

(i) Am)=-1,forall1<i<n
(ii) Ax) cannot be factorized into a

1995%10™ < (10°+K)! < 1996x10™, product of two nonconstant
TR : Y polynomials with integral
Consequently, the number (10°+&)! coofficients. .

begins with 1995,

Probiem 5. Let P be a point on the
circumscribed circle of Ad,4,4,, Let H
be the orthocenter of A4,4,4,. Let B,
(B, B; respectively) be the point of
intersection of the perpendicular from P
to A,4; (4;4,, A4, respectively). It is
known that the three points B, B,, B, are
colinear, Prove that the line B,B,B,
passes through the midpoint of the line

segment PH .

Comments: With 1995 replaced by
1993, this problem appeared in the 1993
German  Mathematical  Olympiad.
Below we will provide the (modified)
official solution.

Solution 2: Let m = 1000100000, If k <
99999 and (m+k)! = abed:-- (in base 10
representation), - then (mtitl)l =
abed-++ x 10001--- = gfgh-+-, where efgh
equals gbed or the first four digits of
abed+1. So, the first four digits of each
of (m+1), (m+2), ..., (m+99999)! must
be the same as or increase by 1
compared with the previous factoral.
Also, because the fifth digit of m+k (£ <
99999 is 1, the fifth digit of (m+£)! will
be added to the first digit of (m+&}! in

Problem 6. Let a, b, ¢, d be integers
such that ad — bc =k >0, (a,6) = 1, and
(c,d) = 1. Prove that there are exactly &
ordered pairs of real numbers (x,.x,)
satisfying 0 < x,, x, < 1 and both ax, +
bx; and ex, + dx, are integers,

computir}g (rrti+1)l. So, in any ten EErrutum: In the articl{, lj;’i‘ HE W in |
consecutive factorials among (m+1), i:hc last issue, FE EE 4 (Chebychev
(m+2)!, ..., (m+99999)!, there must be Theorem) should be LL]FFLL[L\_i as

an increase by 1 in the first four digits. . 12
S0 the first four digits of (m+1)), sm(n) < —
(m+2)!, ..., (m+99999)! must take on all ogn

(when n=2) l
8logn |
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Olympiad Corner

Eighth Asian Pacific Mathematical
Olympiad, March 19, 1996:

Time Allowed: Four hours.

Problem 1. Let A8CD be a quadrilateral
with 4B = BC = CD = DA. Let MN and
PO be two segments perperdicular to
the diagonal BD and snch that the
distance between them is > BD/2, with
Me AD, Ne DC,P e AB,and Q e BC.
Show that the perimeter of the hexagon
AMNCQP does not depend on the
position of M¥ and PQ so long as the
distance  between them  remains
constant.

Problem 2. Let m and # be positive
integers such that » < m. Prove that

(m+ my!

al< <(m’ +m)".

(m—n}!

Problem 3. Let P, P,, P;, P, be four
points on a circle. and let {, be the
incenter of the triangle P,P,P,, I, be the
incenter of the triangle P P;P,, I; be the

{continued on page 2}
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Olympiad Corner:
{continued from page 1)

incenter of the triangle P,P,P,, I, be the
inceater of the triangle P,P,P,. Prove
that /,, f,, I;, I, are the vertices of a
rectangle.

Problem 4. The National Marriage
Council wishes to-invite # couples to
form 17 discussion. groups under the
following conditions:

1) All members of a group must be the
same sex, i.e., they are either all
male or all female,

The difference in the size of any two
groups is either 0 or 1.
3) All groups have at
member,

Each person must belong to one and
only one group.

2)
least one

4)

Find all values of n, » < 1996, for which
this is possible. Justify your answer.

Problem 5, Let g, b, ¢ be the lengths of
the sides of a triangle. Prove that

Jatb—c+/bre-a+Jera-b
<Jardb+le

and determine when equality occurs.

Ro3!
A8 # AR AB if ABO
>t + 5 JB f B<O

/ %E #‘J‘g if 8<o
> tE -

gﬁ)o 48<p

N

Page 2
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Stirling's Inequality

Andy Liu
University of Alberta, Canada

It is wuseful to have a good
approximation for s, the factorial of a
positive integer . This is given by
Stirling's Inequality which states that for
nzl,

n+d

i
n+2 3

<ul< .
A=l
€ e

This can be proved using elementary
calculus.

We first deal with the upper bound.
Consider the area under the curve In x
over the interval [1, #]. We divide it into
s — 1 subintervals of width 1. For 1 £k
< n - 1, we approximate the area of the
k-th strip over [, &+1] by replacing the
curve with the chord joining the left
endpoint (k, In &) to the right endpoint
{k+1, In(k+1)). The area of this trapezoid
is %(lnk +In(k+1)). Since Inx 1is
concave down, it is less than the area of
the strip. It follows that

Ji I xex > %(ln1+21n2+---
+2In{n-1}+Inn).

Using integration by parts, we have
nlnr—n+1> ln(n!)—%lnn

F
or n| — | >y —|.
e n?

The desired upper bound follows from
the fact that In x is increasing.

We now turm our attention to the
lower bound. Consider the area under

the curve In x over the interval [%,r_:].
We divide it into #n — 2 subintervals of
width 1 and a final interval [n—3,n].
For | <& < n - 2, we approximate the
area of the k-th strip over [k +4,4+ 7]
by replacing the curve with its tangent at
the midpoint {+1, In (k+1)). The area of
this trapezoid is In (4+1). Since In x is
concave down, it is greater than the area
of the strip. For the last strip, we replace
the curve with a horizontal line through
the right endpoint {», In #). The area of

this rectangle is +Inz. Sinee In x is

increasing, it is greater than the area of
the strip. It follows that

Eln'xdx <ln2+1In3+..
2
+In(r-D+%Inn
Using integration by parts, we have

nlnn—n+%(l—ln%} < ]_n(n!)—-;j]nn.

We can drop the term 2(1—In3) since

1_>ln%.Hence

»n ) ] )
m[ia} y m["_;) _
e!l ni

The desired lower bound follows from
the fact that In x is increasing.

2 (0)(2y: () (&)

= o= A
LTy LY
ey a5t
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceded by the solvers
name, address, school affiliation and
grade level. Please send submissions to
br. Kin-Yin Li, Dept of Mathematics,
Hong Kong University of Science and
Technology, Clear  Water  Bay,
Kowloon. The deadline for submitting
solutions is April 30, 1996.

Problem 31. Show that for any three
given odd Integers, there is an odd
integer such that the sum of the squares
of these four integers is alsc a square.

Problem 32. Let g, = 1996 and a,., =
aa,+ 1) forn=0,1,2,.... Provethat
[a,] = 1996 —nforn=0,1,2, ..., 999,
where [x] is the greatest integer less than
or equal to x.

Problem 33. Let A4, B, C be noncollinear
points. Prove that there is a unique point
X in the plane of 4BC such that X4° +
XB + AB* = XB* + XC' + BC* = XC* +
XA* + CA% (A problem proposed by
Germany in the last IMQ.)

Problem 34. Let » > 2 be an integer, ¢
be a nonzero real number and z be a
nonreal root of X” + ¢X + 1, Show that

]z[ =

H ﬂ"’]

Problem 35. On a blackboard, nine 0's
and one 1 are written. If any two of the
numbers on the board may both be
replaced by their average in one
operation, what is the least positive
number that can appear on the board
after a finite number of such operations?

Ak d kb Rhhhdhhhd

Solutions
EE T RS TR R P

Problem 26. Show that the solutions of
the equation cosnx =1 are all irrational
numbers. (Source: 1974 Putnam Exam.)

Solution: Official Solution.
Assume x = m/n (where m, i are nonzero

integers and » positive) is a solution of
cos mx = 1/3. Consider o, = cos kmx

——

= cos kmm/n for positive integer . Since
cosine is 2n-periodic,

Oyqy = €OS (kmmiv + 2mn) = a,,

so there are at most 2+ different possible
values of a,. Using cos 28 = 2cos?8 - 1,
we have . ’

¢
7 _1 _ P
Ay S =5, Q4 Tgpy s Gy T e
3
where the numerators
_ 2 2r
g==T7, ., ¢, =20, ¢—3 , ..,

are integers not divisible by 3 via
mathematical induction. So the numbers
a,, a,, o Qg ... are all different, a
contradiction.

Problem 27. Let ABCD be a cyclic
quadrilateral and let /,, fy, I, I, be the
incenters of ABCD, AACD, AABD,
AARC, respectively. Show that [,Jpl.1p
is a rectangle.

Solution:

Independent
CHEUNG Cheuk Lun
Leung Kau Kui College, Form 4) and
Henry NG Ka Man (5.T.F.A. Leung
Kau Kui College, Form 5).

solution by
(8.T.F.A.

Draw segments 4/, Ay, Bl Bl;. Since
LADB = LACHE, we get

ZDAB+ £DBA = LCAB+ LCBA.
Then

ZIAlL, = ZI.AB - £1,AB
1spaB-1 2CaB
+£CBA~ 4 LDBA

LI,BA ~ LI.BA
= ZI-BI,

8o 4, B, I, I are concyclic. Similarly,
A, D, I, I- are concyclic. Now

é]BIC‘!D = 3600 i (L[D](*A + LII)J{-A)
L/CBA+ L 24DC
= 80°.

Page 3

Similarly, the other three angles of
LIy ave right angles.

Comments: Surprisingly, this problem is
the same as Problem 3 of the recently
held APMOQ (c.f. Olympiad Corner on

page 1).

Other commended solver: William
CHEUNG Pok Man (S.TF.A. Leung
Kau Kui Collgge).

Problem 28. The positive integers are
separated into two subsets with no
common clements. Show that one of
these two subsets must contain a three
term arithmetic progression.

Solution: William CHEUNG Pok
Man (S.TFA. Leung Kau Kui
College).

Let x be an integer greater than 6, If x +
2, x + 4, x + 6 are in the same subset,
then we found a three term arithmetic
progression there, Otherwise, x and (at
leastyoneof x+2,x+ 4, x+ 6 {(call itx +
2y) are in the same subset. If this subset
also contains one of x —~ 2y, x + 3, x + 4y,
then again there is a three term
arithmetic progression. If not, then x —
2y, x +y, x + 4y are in the other subset
and they form a three term arithmetic
progression there,

Comments: This problem is a special
case of Van der Waerden's Theorem,
which asserts that for every m > 1 and »
> 2, there is a least integer w{m, s} such
that no matter how the numbers {, 2, 3,
..., W(m, n) are separated into m subsets
with no pairs having any common
element, there will be at least one subset
having an » term arithmetic progression.
Two solvers, Chan Wing Sum and Alan
Leung Wing LEun, independently
pointed out that w(2, 3)=9.

Other commended solvers: CHAN
Wing Sum (HKUST), KU Yuk Lun
{(HKUST), . LEUNG Wing Lun
{5.T.F.A. Leung Kau Kui College, Form
4) and Henry NG Ka Man (S.T.F.A.
Leung Kau Kui College, Form 5) and
POON Wing Chi (La Salle College).

Problem 29. Suppose P(x) is a
nonconstant polynomial with integer
coefficients and all coefficients are

{continued on page ¥)
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Problem Corner
{continued from page 3)

greater than or equal to —1. If P2} =0,
show that P(1) = 0.

Selution: Independent sclution by
William CHEUNG Pok Man (S.T.F.A.
Leung Kau Kui College), Bobby
POON Wai Hoi (5t Paul’s College) and
WONG Him Ting (HKU).

Since P(2) =0, P(x) ={x-2)ax"+

a), where n20,a,#0, a, ..., a, are
integers. We may assume # > Q as the
case n = 0 is easy. Since the coefficients
of P(x) are at least -1, we have 2a;, =
-l,a.,-2a>-1fori=1,..,nanda,>
-1. 8o a < 1/2) is 0 or a negative
integer. Inductively, if a,; < 0, then g
< (g, + 1)2 £ 172 will also be 0 or
negative. Hence, a4y, ..., a,<0. Thena, =
~-land P(1)=~(a,*+... ta)z-qa,=1.

Comments: This is a variation of a
problem on the 1988 Tournament of the
Towns.

Problem 30, For positive integer 2> 1,
define f{r) to be 1 plus the sum of ali
prime numbers dividing # multiplied by
their exponents, e.g., f40) = A2° x 5) =
1+ (2x3 +5%1)=12. Show thatif n> 6,
the sequence 7, An), A, LA, ...
must eventually be repeating 8, 7, 8, 7,
8,7, ...

Solution: Independent solution by
Bobby POON Wai Hoi (St Paul’s
College}) and WONG Him Ting
(HKU).

Considering the factorizations of n, we
see that An) < 6 if and only if n £ 6,
Clearly, {7y =8, A8)=7. Forn>=9 and
not prime, we will first show finy<n-2
by induction.

We have £9) =7, Suppose it is true for ¢
to n— 1. For n > 9 and not prime, there
are positive integers r, s > 1 such that n =
rsand (r— 1)(s — 1) = 4. (This is because
(r—1}s— 1)<3impliesrs<2x4=8)
If2<r<8orrprime, then {r)<r+ 1.
Otherwise, 9 < » <z and r is not prime,
which imply by the induction step that
Ay <r-2<r+ 1. Similarly, fs) <s + L.
From the definition of £, we get

An) =fr)+fs) -1
Lr+D+(s+1)-1

=n+2-(-1)s-1)
<n-2,

which completes the induction.

Now suppose the problem is true for # =
7,8, ...,m—1, i.e, the sequence #, fn),
Jif sy, ARAR))), .. evéntually repeats 8,
7.8,7.8,7,....Forthecase n=m, if m
is not prime, then 7 < fm) < m — 2. By
the induction step, the case f{(m) is true,
50 the case m will also be true. If m is
prime, then f{m) =1 + m is not prime and
s07 <ffim) £fim-2=m— 1. Bythe
induction step, the case (7)) is true, so
the case m will also be true.

T T =Bk
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Olympiad Corner
1996 Canadian Mathematical Olympiad:

Problem 1. If ¢z, B and y are the roots of

x* —x —1=0, compute

+1+ﬁ+
1-g

I+e
l-ex

l+y
-5

Problem 2. Find all real solutions to the
following system of equations:

. 4x2

1+ 4x?

¥

4),?2

1+4y*

=z’

4z*
C1+4z2

Carefully justify your answer.

Problem 3. We denote an arbitrary
permutation of the integers 1,2, ---, n by
ai, a3, -+, a,. Let f{n) be the number of

these permutations such that
(i} a=1;

(continued on page 4)
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Fermat's Little Theorem and Other Stories

T.W. Leung
' Hong Kong Polytechnic University

Pierre ‘de Fermat (1601-1665), a
councilor of the provincial High Court
of Judicature in Toulouse, south of
France, practised mathematics during
his spare time. He discussed his findings
with his friends via letters. As it turned
out, his works significantly influenced
the development of  modern
mathematics. During Fermat's time, the
following “Chinese hypothesm was
around:

- pis aprime if and on_ly if 27 =2 (mod p).

One direction of the hypothesis is not
true. In fact 2**' — 2 is divisible by 341,
yet 341 = 11 x 31 is composite (not
prime}. However the other direction is
indeed valid. From the manuscripts and
letters of Fermat, we conclude that
Fermat knew (and most likely could
prove) the following facts:

(1) If nis not a prime, then2” — 1 isnota
prime.

(2)If n is a prime, then 2" — 2 is a
multiple of 2.

(3)If nis a prime, and p is a prlme
‘divisor of 2" - I, then p — 1 is &
multiple of #.

The first statement can be proved
directly by factoring 2" ~ L. If n = pg
(with p > 1 and ¢ > 1), then

2" 1 =27 -] :
= - DA + D g4 ),

The other two statements are variations
of the more general statement, 1nd1cated
in his other letter:

Given any prime p, and any
geometric progression 1, a, &, -+,
the number p must divide some
rumber g” — 1, for which # divides
p-1; if then N is any multiple of the
smallest number » for which this is
so, p divides also & — 1.

With modem mathematical notation, we

may rewrite Fermat's statement as the
following which will be referred to as
Fermat's Little Theorem:

If p is a prime number and 4 is any
integer, then & = g (mod p). In
particular, if p does not divide «,
then &' = 1 (mod p).

Now we see how Fermat made use of
his little theorem. He was challenged to .
determine if there is any even perfect
number lying between 10°° and 107, (A
positive integer # is called a perfect
number if the sum of all proper factors
(i.e., excluding ») of n is equal to n. For
example, 6=1+2+3and28=1+2+4
+ 7 + 14 are perfect numbers.) This
problem can be reduced (how?) to check
if2*7 - 1 is prime. Suppose the number is
not prime, and p is an odd prime divisor
of that number, then from the third
statement, p — 1 is a multiple of 37, or
p=3Tk+1, observe that p is odd, so &k is
even, or p is of the form 74%' + 1. The
first few candidates are 149, 223,

One then check that
277 -1 =137438953471
=293 x 616318177.

It is more difficult to check that the
second factor is a prime, however
Fermat succeeded in showing that 27 ~ 1
is not prime.

Another side story comes from the
fact that if 2™ + 1 is prime, then m must
be of the form 2", Fermat conjectured
that all these numbers are prime. Now

22’+1—5 22 1 1=17,2% +1=257
and 2 + I = 65537 are mdeed prime
numbers. However,

22 4 1 = 4294967297

is not a prime. In fact, if p is a prime
factor of 22 + 1, then 2™ is the smallest
{continued on page 2)
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Fermat’s Little Theorem ...
(continued from page I)

m satisfying 2" = 1 (mod p), thus 2™
divides p — 1, or p is of the form 2™ +
1, hence to look for prime factors of 2
+1=2%+ |, we should consider primes
of the form 64% + 1. The possible
candidates are 193, 257, 449, 577,
641, ++-. Unfortunately, neither Fermat
fior his. contemporaries had enough
patience to check that 641 indeed
divides 2% + 1. (For readers who are
familiar with the law of quadratic
reciprocity, one can prove that a prime

divisor of 22 + 1 is actually of the form
74 1)

Fermat did not explicitly give any
proof of the Fermat's little theorem, and
it was Euler who first proved by
induction the following fact: if p is a
prime then &’ = @ (mod p). Clearly the
staterment is true if 2 = 1, Now

(a+1y

=q’ +(p]a‘”_l +[p]a"'2+---+1
A1 2

=a+ 1 (mod p),
nl
where [p] = ——E—-— = 0 (mod p) for
i (p—-i}!
1<i<p-1. '

There is also another version of the
theorem, namely, if p is a prime and « is
relatively prime to p, then &' =1
(mod p). Euler also gave the first proof
by noting that the terms of the series 1, 4,
&, -+ (mod p) must repeat. So for some
© r20,and some s 2 0, we must have o™ =
& (mod p), i.e., &’ = 1 (mod p). Let s be
the smallest positive integer such that &'
= | {mod p), then one can arrange the
p—-1 non-zero congruence classes
modulo p into sets {5, ba, - bd""},
where each set consists of ¥ elements and
the sets are disjoint, Thus s must divide
p-1. For example, with p =7 and a = 2,
one obtains s = 3 and the numbers 1 to 6
can be grouped into two disjoint sets {1,
2,4} and {3, 6,5}. Wealso observe that
p-1 = 6 is divisible by s = 3. Euler
generalized this argument to prove the
famous Euler's thecrem:

If a is relatively prime to », then
a*™ =1 (mod n),

where ¢(») is the Euler totient function
that counts the number of integers

between 1 and = that are refatively prime
to n. For example, $(12) = 4 since only
1, 5,7, 11 {among the numbers 1-12) are
relatively prime to 12.

A formal proof of Euler's theorem
goes as follows: Let a be an integer
relatively prime to # and let {a,, a;, ..,
aym; be the set of reduced residues
meodulo # (i.e., the ¢(n) positive integers
less than » that are relatively prime to #).
Then the set {aa,, aa,, ..., agyy} is also
a set of reduced residues modulo n.
Hence, :

ar Ay = a*®g 192" gty {mod #»)

or a"™ =1 (mod n).

There is however another colouring
argument for Fermat's little theorem.
Arrange p boxes in a circle and colour
them with- o colours. There are o
possible colouring pattems. Among all
these possible colourings, « of them are
such. that every box has the same colour.
The remaining &” — a colouring patterns

_can be grouped into sets of p patterns

that are rotations of each other. The p
rotations of any one of these colourings
are alfl distinct and thus p divides o - a.
(Where did we use “p is prime™?) Hence,
in essence, the Fermat's little theorem
can be proved using the pigeonhole
principle,

The following are some applications
of Fermat's little theorem and Euler's
theorem.

Example 1: If » is an integer > 1, then #
does not divide 2" - 1.

Solution: If » is even, then the statement
is ¢ertainly true since 2" — 1 is an odd
integer. For n odd, denote by p the
smallest prime divisor of n. Suppose »
(and thus also p) divides 2" — 1. By the
Fermat's little theorem, p divides 27! ~ 1
too. Consequently, p divides 29 - 1,
where d is the greatest common divisor
of p — 1 and », Since p is the smallest
prime divisor of n, d = 1 which leads to
the contradiction p divides 1.

Example 2: Let » be an odd number not
divisible by 5, then » divides a number
of the form 99---9.

Solution: If » is odd and not divisible by
5, then # is relatively prime to 10. By the

__ Page2

Euler’s theorem, 10 = 1 (mod ), i.e., n
divides 10" — 1, which is a number of
the form 99---9,

Example 3: Let p be an odd pritme
number, Then for any set of 2p — 1
integers, there exists a set of p integers
whose sum is divisible by p.

Sketch of Solut_ion: There are

2p-1
n =[ P ) distinct sets that each
' P
contains p elements. Denote their sums
by sy, 83, ..., 5, Suppose none of them is
divisible by p. Then, by the Fermat's

I ;] .
little theorem, Y. 5,7"' = 3" 1= n, which
© =l i=l
is nonzero modulo p. On the other hand,
one may use the multinomial expansion

n .
to show that 3 57" is, in fact, divisible
=1

by p, and thus lead to a contradiction.

It is interesting to observe that we use
a number theoretic approach to solve a
combinatorial problem while using a
counting argument to prove Fermaf's
little theorem.

We have mentioned that the converse
of Fermat's little theorem is not -true.
That is, there exists composite numbers
n such that » divides &' - 1. For
example, as stated at the beginning of
this article, the composite number 341
divides 2°*° — 1. Composite numbers #
(which must be odd) that divides 2™' — 1
are called pseudoprimes (in base 2).
One may show that there exist infinitely
many such pseudoprimes. In fact, if » is
a pseudoprime, then m = 2" — 1 will be
composite (since » is composite). Also,
m—1=2"-2=pkand thus 2™ - { =2"
— 1is divisible by 2" - 1 =m. Thatis, m
is another pseudoprime (in base 2).

We may of course try another base.
For our example, we find that 341 is no
longer a pseudoprime {in base 3), i.e,
341 does not divide 3**° — 1. Well, we
may then ask: is it possible to find a
composite number # such that for every
a relatively prime to #, @™ = 1 (mod #).
Such a number is called a Carmichael
number. Surprisingly, not only that they
exist (with 561 being the smallest), there
are infinitely many Carmichael numbers,
which, in fact, was proved recently!
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceded by the solver’s
name, address, school affiliation and
grade level. Please send submissions to
Dr. Kin-Yin Li, Dept of Mathematics,

.Hong Kong University of Science and

Technology, Clear  Water  Bay,
Kowloon, The deadline for submlttmg
solutions is July 10, 1996.

The following problems are selected
Jrom the Imternational Mathematics
Tournament of the Towns, held in
April 7, 1996, :

Problem 36. Let a, b and ¢ be positive
numbers such that & + »* — ab =
Prove that (a—c){b-c} £ 0.

Problem: 37. Two non-intérsecting

circles A, and A, have centres O, and Oy

respectively. 4, and A, are points on 4,
and A, respectively, such that 4,4, is an
external common tangent of the circles.
The segment &, intersects 4, and A, at
B and B, respectively. The lines 4,8,
and A,B, intersect at C, and the line
through € perpendicular to BB,
intersects 4,4, at D, Prove that D is the
midpoint of 4,4,,

Problem 38. Prove that from any
sequence of 1996 real numbers, one can
choose a block of consecutive terms
whose sum differs from an mteger by at
most 0.001.

" Problem 39. Eight students took part in

a contest with eight problems.

(a} Each problem was solved by 3
students. Prove that there were two
students who between them solved
alt eight problems.

{b) Prove that this is not necessarily the
case if 5 is replaced by 4. (A
counterexample is enough.)

Problem 40. ABC is an equilateral
triangle. For a positive integer n>2, D is

the point on 4B such that 4D = %AB.

Py, Py, +++, P, are points on BC which
divide it into n equal segments. Prove
ﬂ]at[AP]D+ A_/AP2D+ "‘+ZAP,,,|D
=30°

[Hint: Consider @, such that ADP.Q;isa
parallefogram.]

Page 3
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Problem 31. Show that for any three
given odd integers, there is an odd
integer such that the sum of the squares
of these four integers is also a square.

Solution: Independent solution by
William CHEUNG Pok-man (S.T.F.A.
Leung Kau Kui College, Form 5), Gary
NG Ka Wing (S.T.F.A. Leung Kau Kui
College, Form 3), Henry NG Ka Man
(S.T.F.A. Leung Kau Kui College, Form
5) and PAI Hung Ming Tedward
(8K.H. Tang Shin Kin Secondary
School, Forim 6).

Letx=2a+1,y=2b+1,z=2c+ | be
three given odd integers, then x? + y* + 22
=2w+ 1, wherew=2("+a+b +b+
F+c)y+lisodd Sox*+yP + 2 +w?=
(w+ 1)

Other commended solver: CHAN Wing
Chiu (La Salle College, Form 3),
CHENG Wing Kin (S.K.H. Lam Woo
Secondary School, Form 4), Calvin
CHEUNG Cheuk Lun (3. T.F.A. Leung
Kau Kui College, Form 4}, W. H. FOK
(Homantin Government Secondary
School), Alan LEUNG Wing Lun
(S.T.F.A. Leung Kau Kui College, Form
4), LIU Wai Kwong (Pui Tak
Canossian College), POON Wing Chi
(La Salle College) and YAU Kwan Kiu
{Queen's College, Form 7).

Problem 32. Let a; = 1996 and a,, =
a2 (a,+ 1)} forn=0,1,2, .... Provethat
[a] =1996 ~nforn=20,1,2, ..., 999,

_where [x] is the greatest integer less than

ot equal to x.

Solution: Independent solution by
CHAN Wing Sum (HKUST), W. HL.
FOK {(Homantin Government
Secondary School) and KU Yuk Lun
(HKUST).

Note that a, > 0 implies .. > 0 and
I

a, —a,. | =1- >0,
n i+ an+l
Hence a3 > a) > a, > ---. Now
a, = aﬂ+(al_ao)+°'°+(an“an~1)

]

= 1996 —n+ .1 ot
a,_; +1

ag +1
> 1996 —n.

For1 £rn <999,

1 et 1 n

ay +1 a1 +1 a,  +1
999 999

< < =
dgog +1  1996-998+1

A

So [a,] = 1996 — n.

Comments: With 1996 replaced by
1994, 999 replaced by 998, this was a
problem proposed by USA in the 1994
TMO.

Gther commended solver. William
CHEUNG Pok-man (S.T.F.A. Leung
Kau Kui Cellege, Form 5), Henry NG
Ka Man (S.TF.A. Leung Kau Kui
College, Form 5), POON Wing Chi (La
Salle College) and YAU Kwan Kiu
(Queen's College, Form 7).

Problem 33. Let 4, B, C be noncollinear
points. Prove that there is a unique point
X in the plane of 4BC such that X4* +
XB + AB* = XB® + XC* + BC* = XC* +
XA* + C4% (A problem proposed by
Germany in the last IMO.)

Solution: Henry NG Ka Man
(S.T.F.A. Leung Kau Kui College
Forin 5).

Without loss of generality, we may
assume A, B, C have coordinates (a,0),
(b,0), (0,0), (where a#b and c=0)
respectively, Let X be a point in the
plane of 4BC with coordinates (x,). For
X to satisfy the given conditions, the
equations on x and y are ax ~cy = o* — ¢
—ab, bx—cy=b - —agbandx=a+5h
(after simplification), which has a
unique solution (x,y) = (a+b, c+2ab/c).

Other ~commended solvers: Calvin
CHEUNG Cheuk Lun (5. T.F.A. Leung
Kau Kui Coltege, Form 4), William
CHEUNG Pok-man (S.T.F.A. Leung
Kau Kui College, Form 5), W. H. FOK
(Homantin Government.  Secondary
School), Alan LEUNG Wing Lan
(S.T.F.A. Leung Kau Kui College, Form
4), LIU" Wai Kwong (Pui Tak
Canossian College) and Gary NG Ka
Wing (STFA. Leung Kaun Kui
College, Form 3).

Problem 34, Let n>2 be an integer, ¢ be
a nonzero real tumber and z be a nonreal

(continued on page 4)
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Problem Corner
(continued from page 3)

root of X' + ¢X + 1. Show that

2

2n-1"

Solution 1: W. H, FOK (Homantin
Government Secondary School).

Write z = r{cos@ + isind) with sind = 0,
Taking the real and imaginary parts of
2"+ ¢z + 1 = 0 using De Moivre's
‘theorem, we have

Fleosn@ + crcos8+ 1= 0

and Flsinng + crsin® = Q.

Then

#'sin{n~1)8 = ¥'sinnBcosd ~ r”cosn{-}siné
=crsinfcosd + (ercosd + 1)sind
= gin8.
Since
Isin(k+1)6] = [sinkBcosd + coskBsing]
< |sinkB| + |sind),
induction gives |sinkB| < A|siné| for every
positive integer £ So

2" = ¥ = |sin®/sin{n—1)8] 2 1/(n—1).

Solution 2: LEUNG Hoi-Ming (SKH
Lui Ming Choi Secondary School).

Let7 = |z| and w=z/r. Then |w|=1 and
ww=1. Since W) +crw + 1 =0,

multiplying by , then conjugating, we

get :
P ber v W=0

and P e tw=0.

Subtracting these equétions and solving
for #*, we get

Since » is real and jw| = 1, by the triéngle
inequality,
o 14 - 1

Z twﬂwz "ﬁ’
i=0

n-1

Other commended solvers: William
CHEUNG Pok-man (S5.T.F.A. Leung
Kau Kui College, Form 5).

_ Problem 35. On a blackboard, nine 0's

and one | are written. If any two of the
numbers on the board may both be

" replaced by their average

Page 4
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in one
operation, what is the least positive
number that can appear on the board
after a finite number of such operations?

Solution: POON Wing Chi (La Salle
College). '

Let m be the least positive number on the
board and » be the number of zeros on
the board after an operation. Consider
the number ¢ = m/2". If two positive
numbers are both replaced by their
average, then » does not change, but m
(and ¢) may increase. If a 0 is averaged
with a positive. number », then n
decreases by one and m remains
unchanged or becomes #/2 (2 m/2.) The
new ¢ value will be greater than or equal
to (m/2)2"" = m/2", which is the old ¢
value. In the beginning, ¢ = 1/512, After
a finite number of operations, ¢ = 1/512
and m 2 2”512 = 1/512. To obtain
exactly 1/512, start with 1 and average
with each of the nine 0's. '

Comments: This problem comes from an
article in the March/April 1994 issue of
Quantum, published by Springer Verlag.

- The article dealt with the concept of

monoinvariant, which is an expression
like ¢ in the problem that increases after
sach  operation. Studying such
expression often solves the problein.

Olympiad Corner
{continued from page I)

(ll) ’a; Qi I S2, = 1, ey n-1.
Determine whether £1996) is divisible
by 3.

Problem 4. In A4ABC, AB = AC.
Suppose that the bisector of £B meets
AC at D and that BC = BD + A4D.
Determine £A.

Problem 5. Letr, ry, ..., ¥, be m given
positive rational numbers such that

naE;

}"k =I-

=
I

1
Define the function f by

- fmy=n- g:lernJ

for each positive integer #. Determine
the minimum and maximum values of

S,

e

From the Editors' Desk:

Thanks to our readers for another year
of support, especially the submission of
articles and problem solutions. If you

.would like to receive your personal copy

for the five issues for the 96-97
academic year, send five stamped self-
addressed envelopes to Dr. Kin-Yin Li,
Hong Kong University of Science and
Technology, Department of
Mathematics, Clear- Water Bay,
Kowloon, Hong Kong, :

EET T T F T T T

APMO and IMO: The Eighth APMO
took -place on March 16th. The Hong
Kong students had a very strong {record
settirig) performance. The top 8 scorers
are as follow. (Note the maximum is
7x5=35 points.)

1. BHEYL (Bobby POON Wai Hoi),
St. Paul's College, 35 points (Perfect
score! First time for Hong Kong)

2. ##E% (YU Chun Ling), Ying Wa
College, 33 points

3. {aj#E3E (HO Wing Yip), Clementi
Secondary School, 32 points

4. TR (MOK Tsz Tao), Queen's
College, 31 points

5. #HHBAE (TSE Shan Shan), Tuen
Mun Government Secondary School,
29 points

6. FREESE (LAW Siu Lung), Diocesan
Boy's School, 26 points

7. £i¥EE (YUNG Hon Wai), Heep
Woh College, 26 points

8. LK (CHU Tim Kin), King's
College, 24 points’

The first 6 students are invited to be the
Hong Kong team members to participate
in the 37th International Mathematical
Olympiad to be held in India this
summer. The selection was based on

“their outstanding performance in the

APMO and throughout the Hong Kong
Math Olympiad training program.,

a'"'?ﬁ-/i“-ﬁ'ﬁj ek b
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Olympiad Corner
' Ptolemy’s Theorem
37 Imternational  Mathematical
Olympiad, July 5-17, 1996, Mumbai, Kin-Yin Li
India.
First Day (10 July, 1996) If four points are chosen from a plane, The first corollary follows because

Time: 4% hours
{Each problem is worth 7 points.)

Problem 1. Let ABCD be a rectangular
board with 148! = 20, IBCl = 12, The
board is divided into 20x12 unit squares,
Let r be a given positive integer. A coin
can be moved from one square to
another i and oanly if the distance
between the centres of the two squares is

Jr . The task is to find a sequence of
moves taking the coin from the square
which has A as a vertex to the square
which has B as a vertex.

(a) Show that the task cannot be done
it'r is divisible by 2 or 3.

(b) Prove that the task can be done if
r=173.

(¢) Can the task be done when r = 977

{continued on page 4)
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For individual subscription for the remaining four
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the chance that they are collinear or
concyclic is extremely small. So there
should be some special conditions for
this to happen. Such a condition is given
by the famous theorem of Ptolemy.

Ptolemy’s Theorem. For distinct points -

A, B, C, D on a plane, we have AB-CD +
AD-BC =z AC-BD. Equality happens if
and only if A, B, C, D are collinear or
concyclic with A, C separating B, D.

A simple proof using complex numbers
can be given as follows. Leta, b, ¢, d be
the complex numbers corresponding to
the points A, B, C, D respectively. Since

(b—t)(d—c) + (d-d)(c-b) = (c-a)d-D),
taking absolute values and applying the
triangle mequality, we get

AB-CD + AD-BC
= b—alld—c! + ld—alle—bl
2 lc—alld—bl = AC-BD.

From the triangle inequality, we have
equality if and only if

(b~a)(d—c) = t{d-)(c—b) for some 0,
In such case, (d-a)/(b—a) is a positive
multiple of (d—e)/(c~b). So

arg {{d—a)/(b—a)} = arg {{d—cW{c—-b)},

ie, ZDAB = 180° — ZDCB. This means
A, B, €, D are collinear or concyclic
with 4, C separating B, D.

Next we will give two sunple and usefol
corollaries.

Corollary ), For a cyclic quadrilateral
ABCD with AABC equilateral, we have
BD =AD+ CD.

Corollary 2. For a cyclic quadrilateral
ABCD with £ABC = ZADC = 90°, we
have BD = ACsin/BAD,

AB = BC = CA and thus

ABCD + ADBC = AC-BD
= CACD+AD.CA =AC.BD
= CD+AD =BD.

The second corollary also follows easily
hecause

ACsinZA = ACsin{ /BAC+ ZDAC)
=(BC-AD + AB-CINAC = BD

using the compound angle formula.
(Actually, corollary 2 is true if 4, B, C,
D are just concyclic, not necessarily in
that order, and £LARC = £LADC = 90°,
since by the sine law, BD/sin/BAD
equals the diameter AC of the
circumcircle of ABAD.)

Example 1. (MO 1995) Let ABCDEF
be a convex hexagon with AB=BC=CD,
DE=EF=FA and ZBCD=/EFA=60".
Let G and H be two points inside the
hexagon such that LAGE=/DHE=120",
Show that

AG+ GB+ GH + DH + HE > CF.

Solution. Let X, ¥ be points outside the
hexagon sach that AABX and ADEY are
equilateral. Then ABCDEF 1s congruent
to DBXAEY and CF = XY. Now

LAXB+ZAGE = ZDYE+ZDHE = 180°.

Thus AXBG and DHEY are cyclic
guadrilaterals. By corollary 1, XG =
AG+ GBand HY = DH + HE. So

AG+GB+GH+DH+HE
= XG+GH+HY > XY = CF.

Example 2. (IM0O 1995) Let P be 4 point
inside AABC such that ZAPB ~ ZACB =
LAPC - ZABC. Let D, FE be the
incenters of AAPB, AAPC, respectively.

{continued on page 2)
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Ptolemy’s Theorem
(continued from page 1)

Show that AP, BD and CE meet at a
point.

Solution. Bquivalently we have to show
the angle bisectors BD, CE of ZABP,
ZACP, respeciively, meet at the same
point on AP. Let the feet of the
perpendiculars from P to BC, CA, AB be
X, Y, Z respectively. Then AZPY, BXPZ,
CYPX are cyclic quadrilaterals, Now

ZLAPB~ SACB = LYAP + ZLXBP
= LYZP + ZX7P
= ZYZX,

Similarly ZAPC - £ABC =
XZ = XY. By corollary 2,

BPsingB = XZ= XY = CPsin/C.

Then BPICP = sindClsinZB = AB/AC,
So AB/BP = ACICP. By the angle
bisector theorem, this implies BD and
CE meet at the same point on AP.

LX¥YZ. So

Example 3. (Erdds-Mordell Inequality)
Let P be a point inside AABC and let 4,
dy, d. be the distances from P to BC, CA,
AB respectively. Show that

PA+PB+PCz2(d,+dp +d.)
with equality if and only if AABC is
equilateral and P is the incenter.

Solution. Let X, ¥, Z be the feet of
perpendiculars from P to BC, CA, AB
respectively. By corollary 2 or sine law
and cosine law,

PAsinZA = YZ
=Jd? +d? - 2d,d, cos (180°-24) .

Since 180°—ZA = ZB+ZC, expanding
and regrouping, we get

PASInZA = {(dysinZCad sinsBY
+ {dysinZC+d sins B}
> dysinsC + dsinsB.

Using inequalities like the lasi one and
the fact x + 1/x = 2, we have

PA+PB+ PC
dy s LC+d, singB
P e s
s LA

_zd sinAB+sinAC
T et sinZC

sin /8
>2(d, +d, +d. ).

where the middle equation was obtained
by rearranging terms. Finally, equality
gccurs if and only if Z4 = ZB = £C and
d, = d, = d., i.e, AABC is equilateral
and P is the incenter.

Example 4. (IMO 1951} Let ABC be a
triangle and P an interior point in ABC,
Show that at least one of the angles
ZPAB, £ZPBC, £PCA is less than or
equal to 30°,

Solution. Suppose none of the three
angles is less than or equal to 30°. If one

Page 2

of them is at least 150°, then the other
two will be at most 30°, a contradiction,
S0 we may assume the three angles are
greater than 30° and less than 1507, Let
d, be the distance from P to BC, then

2d, = 2PBsin/PBC

> (2sin30°)PB = PB,

Three such inequalities added togeiher
will yield 2(d, + d, + d.)} > PA + PB +
PC, contradicting the Erdos-Mordell
inequality. So one of the three angles is
at most 30°,

ICEETET

5 5% 9 |
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication  consideration.  Solutions
should be preceded by the solver’s name,
address, school affiliation and grade
level. Please send submissions to Dr.
Kin-Yin Li, Dept of Mathematics, Hong
Kong University of Science and
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions is
Nov 15, 1996.

Problem 4I. Find all nonnegative
integers x, y satisfying (xy — 7> = x* +
¥

Problem 42. What are the possible

values of ¥x® +x+1—+vx>—x+las x
ranges over all real numbers?

Problem 43. How many 3-clement
subsets of the set X = {1, 2, 3, ..., 20} are
there such that the product of the 3
nombers in the subset is divisible by 4?

Problem 44. For an acute triangle ABC,
let H be the foot of the perpendicular
from A to BC. Let M, N be the feet of
the perpendiculars from H to AB, AC,
respectively. Define Ly to be the line
through A perpendicular to MN and
similarly define Lp and Lr. Show that
Li, Ly and Lo pass through a common
point O. (This was an vunused problem
proposed by Iceland in a past IMO.)

Problem 45, Let ¢, b, ¢ > 0 and abe=1.
Show that

ab be ca

+ + =1
o+ +ab B+ +be F+adrea
(This was an unused problem in
IMOY6.)

st sfe ok s e kol oKk ok ke e ook
Solutions
seoksieodest s kiR sk Sk s

Problem 36. Let ¢, & and ¢ be positive
numbers such that at + B — ab = e
Prove that {a—c)}(b—¢) < 0.

Sclution: POON Wing Chi (La Salle
College, Form 6).

Without loss of generality, we may
assume ¢ < b. Sincea, b>0.s0

as\}az +b(b—a)
=¢= Qb?‘ ~ualb—a) < b.

Therefore (g — )b - Y <100,

Other commended solvers: CHAN Ming
Chiu (La Salle College, Form 5), CHAN
Wing Sum (HKUST), CHENG Wing
Kin (S KH Lam Woo Memorial
Secondary School, Form 4), Calvin
CHEUNG Cheuk Lun (S.T.F.A. Leung
Kau Kui College, Form 54), KWOK
Wing Yin (St. Clare’s Girls' School),
LEE Ho Fai Vincent (Queen’s College,
Form 6), Alan LEUNG Wing Lun
{S.T.F.A. Leung Kau Kui College, Form
4), LIU Wai Kwong (Pui Tak
Canossian College), Gary NG Ka Wing
(5.T.F.A. Leung Kau Kui College, Form
3), Henry NG Ka Man (§.T.F.A. Leung
Kau Kui College, Form 35), NG Pui
Keung (St. Paul's Co-educational
College, From 5), PAI Hung Ming
Tedward (SK.H. Tang Shin Kin
Secondary School, Form 6), SZE Hoi
Wing Hobman (St.  Paul's Co-
educational College , Form 5) and YU
Kit Wing (HKUST).

Problem 37. Two non-intersecting
circles A; and A, have centres (4 and O,
respectively. A; and A, are points on 44
and A; respectively, such that A;4, 1s an
external common tangent of the circles.
The segment 010, intersects A; and A
at By and B, respectively. The lines
AqBy and A,B, intersect at C, and the
line through C perpendicular to BB,
intersects A;A; at D. Prove that D is the
midpoint of A;A;.

Solution: Independent solution by
CHAN Ming Chiu {La Salle College,
Form 5), CHENG Wing Kin (SK.H.
Lam Woo Memorial Secondary School,
Form 4), Calvin CHEUNG Cheuk Lun
(8. T.F.A. Leung Kau Kui College, Form
4), LIU Wai Kwong (Pui Tak
Canossian College), Gary NG Ka Wing
(8. TFA. Leung Kau Kui College,
Form 3), Henry NG Ka Man (S.T.F.A,
Leung Kau Kui Cellege, Form 5) and
PAI Hung Ming Tedward (S.K.H.
Tang Shiv Kin Secondary School,
Form 6),

We have ZDAC = 90° — £LOhWAB,
90° - 401812‘11 = 900 - ZCBloz
ZACD, which implies A\D = CD.
Similarly, A.D = CD. S0 A,D=A4,D.

Problem 38. Prove that from any
sequence of 1996 real numbers, one can
choose a block of consecutive terms
whose sum differs from an integer by at
most 0.001.

Solution: LIU Wai Kwong (Pui Tak
Cunossian College).

Let the numbers be x1, x3, ..., X906 and
letss=x1+m+..+xfori=1,2 ..,
1996. Defive {x} = x - [x], where [x] is
the greatest integer less than or equal to
x. Consider the 1995 intervals {0, =),

[555: 755 )s = [Toge s1) and the 1996
numbers {s1}, {52}, -» [51306}. By the

pigeon-hole principle, there is a pair s;,
s;with {8}, {5;} in the same interval. By
cancelling the common terms in s, 55, we
get a block of consecutive terms whose
sum differ from an integer by at most

i
55 < 0.001.

Problem 39. Eight students took part in
a contest with eight problems.

(a) Each problem was solved by 5
students. Prove that there were two
students who between them solved
all eight problems.

Prove that this 15 not necessarily the
case if 5 is replaced by 4. (A
counterexample is enough.)

(b

Solution: Independent solution by Gary
NG Ka Wing (8. T.F.A. Leung Kau Kui
College, Form 3), Henry NG Ka Man
(S.T.F.A. Leung Kau Kui College, Form
3) and POON Wing Chi (La Salic
College, Form 6).

(a) If a pair of students together did not
solve all 8 problems, then there was at
least 1 problem they both missed.
Among § smdents, there arc 28 pairs.
However, for each problem, there were
only 3 students {which give 3 pairs)
missed the probiem. For the 8 problems,
there were at most 24 pairs missing at
least 1 problem. Since 28 > 24, by the
pigeonhole principle, there was a pair
together solved all 8 problems. (In fact,
there were at least 28 — 24 = 4 such
pairs!)

{continued on page 4)
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Problem Corner
(continued from page 3)

(b) Here is a counter example:

students 1, 2 solved problems 1, 2, 3,
students 3, 4 solved problems 3, 4, 5,
students 5, 6 solved problems 1, 6, 7,
students 7, 8 solved problems 2, 5, 7,

[= <IN~ =

Other commended solvers: CHAN
Wing Sum (HKUST) and LIU Wai
Kwong (Pui Tak Canossian College).

Problem 40. ABC is an equilateral
triangle. For a positive integer n = 2, D
is the point on AB such that AD=1A4B.
Py, Py, ..., Py are points on BC which
divide it into n equal segments. Prove
that ZAP1D + £LAP,D +...+ £ APy1D
= 30°

[Hint: Consider Q; such that ADP;Q; is a
parallelogram.]

Solution: CHAN Ming Chiu (La Salle
College, Form 5).

Let Py be B and P, be C. Let Q; be the
point on AB such that QB = 1 AB and

Q;(1=1,2, .., n-1) be such that ADP;Q;
forms a parallelogram. Then ZAP,D =
ZQ;AP;. Now P;(; is parallel to and has
the same length as AD and PyQ, (i = 1,
2, veay n'—‘].}. A.ISO, P;Q.' = P,'P,'.,.l (l = 0, 1.,

weny n—l). These il‘nply AP,'Q,'P"H 18
equilateral (i = 0, 1, ..., n-1). By
symmetry with respect to the

perpendicular bisector of BC, we get
LQAP; = £0,..1AP,;. Thus

(LOAP, + £0,2AP, )

+ (ZQZAP'A + lQnJAPn-Z)
+ oo+ (L0 1AP, + LQoAPY)
= ZBAC
and
ZAP\D + ZAP,D + ... + LAP,\D
= l ZBAC =30°,
2

Other commended solvers: LIU Wai
Kwong (Pui Tak Canossian College),
Gary NG Ka Wing (S.T.F.A. Leung
Kau Kui College, Form 3) and Henry
NG Ka Man (S.T.F.A. Leung Kau Kui
College, Form 5).

— OO~

Olympiad Corner

(continued from page 1)

Problem 2. Let P be a point inside
triangle ABC such that

ZAPB - ZACB = ZAPC - ZABC.

Let D, E be the incentres of triangles
APB, APC respectively. Show that AP,
BD and CE meet at a point.

Problem 3. Let S = {0, 1, 2, 3, ...} be
the set of non-negative integers. Find all
functions f defined on § and taking their
values in § such that

fim + fin)) = ffim)) + fin)

forallm, nin S.

Second Day (11 July, 1996)
Time: 4%2 hours
(Each problem is worth 7 points.)

Problem 4. The positive integers a and
b are such that the numbers 15a+16b
and 16a—15b are both squares of positive

integers. Find the least possible value
that can be taken by the minimum of
these two squares.

Problem 5. Let ABCDEF be a convex
hexagon such that AB is parallel to ED,
BC is parallel to FE and CD is parallel
to AF. Let Ri, Rc, Rgp denote the
circumradii of triangles FAB, BCD, DEF
respectively, and let p denote the
perimeter of the hexagon. Prove that

R,,+RC+R52~§.

Problem 6. Let n, p, g be positive
integers with n> p + g. Let xo, X, ..., X,
be integers satisfying the following
conditions:

@x0o=x,=0;

(b) for each integer i with 1 < i < n,
either Xi—Xiq=porx;,—x., =—¢q.

Show that there exists a pair (i) of
indices with i < j and (iy) # (0,n) such
that x; = X;.

IMO96, Mumbai, India
Facts and Statistics

Number of Participating Teams: 75

Informal Rank for the Hong Kong Team: 25
Medals for the Hong Kong Team: 1 silver and 4 bronze medals.

Below: A photo of the Hong Kong Team taken at the Kai Tak Airport before
departure. From left to right are: Bobby POON Wai Hoi, MOK Tze Tao, HO Wing
Yip, Roger NG Keng Po (observer), TSE Shan Shan, LAM Sze Ho (Deputy Leader)

YU Chun Ling, LAW Siu Lung.
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Mathematical Olympiad:
Part I (Sam-noon, May 2, 1996)

Problem 1. Prove that the average of the
nunbersnsinn® (n=2,4,6, ..., 180) is
cot 1¢

Problem 2. For any nonempty set § of
real numbers, let 6(S) denote the sum of
the elements of §. Given a set A of n
positive integers, consider the collection
of all distinct sums o(5) as § ranges over
the nonempty subsets of A, Prove that
this collection of sums can be partitioned
into n classes so that in each class, the
ratio of the largest sum to the smallest
sum does not exceed 2.

Problem 3. Let ABC be a triangle.
Prove that there is a line { (in the plane
of triangle ABC) such that the
mtersecion of the interior of
triangle ABC and the interior of its
reflection A’B’ € in [ has area more than
2/3 the area of triangle ABC.

(continued on page 4)
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(i)
Fermat Point
On the outside of AABC draw
equilateral triangles BCA’, CAB’
and ABC’. The three lines AA’,

BB’ and CC’ meet at a point called
the Fermat Point.

Error Correcting Codes (Part I)
' Tsz-Mei Ko

Suppose one would like to transmit a
message, say “HELLO...”, from one
computer to another. One possible way
is to use a table to encode the message
into binary digits. Then the receiver
would be able to decode the message
with a similar table. One such table is

the American Standard Code for .

Information Interchange (ASCII) shown
i Figure 1. The letter 'H wounld be
encoded as 1001000, the letter B would
be encoded as 1000101, etc. (Figure 2).

[ 1000007 [ 1010011 = 1100001 |5 L110011
1000010 [T 1010100 [ 1100010 |r 1110100
1000011 7 1010101 §= 1100011 (1 1110101

D 1000200 1 1010110 k. 1100100 fe 1110110

= 1000101 I 1010111 fe 1106101 hr 1110111

= 1000116 {% 1611000 |£ 1100110 b 1111000

3 1000111 ¥ 14011001 7 1100111 f 1111001
1001000 7 1011010 [ 1101000 [z 1111010 |

- 1001001 [0 6110000 i 1101001 | 0103110 |

71001010 [ 0110001 |i 1101010 |, 0101100 |

T 1001011 |2 0110010 [k 1101011 @ 0111111

;1001100 [3 0110011 |t 1101100 || 0102002
1001103 |4 QL0100 m 1101101 |f 1123011
2001110 |5 0110101 [n 101110 |/ 0101113
1001111 |5 0110110 jo 1101113, (s 0I00LL0
1010000 [7 0110111 [p 11160000 |- o101011

2 1010001 |8 0111000 jg 1110001 |- 0101161

2 1010010 {2 0111001 fr 1110010 | 0111101

Figure 1. ASCII code

Figure 2. Two computers talking

The receiver will be able to decode the
message correctly if there is no error
during transmission. However, if there
are transmission errors, the receiver may
decode the message incorrectly. For
example, the letter H (1001000) would
be received as J (1001010) if there is an
error at position 6.

N et e M
I/: 1% Wwe ‘,' * ﬂ Faa :.‘.'J

TS

\ y / L |
N’ { \NJY
g S ——P
; (nn) | —
A T | e
| i
urf{»_._ e

Figure 3. Error at position 6.

One possible way to detect transmission
errors is to add redundant bits, ie.,
append extra bits to the original

message. For an even parity code, a 0 or
1 is appended so that the total number of
1I’s is an even number. The letters H and
B would be represented by 10010000
and 10001011 respectively,. With an
even ‘parity code, the receiver can detect
one transmission error, but unable to
correct it. For example, if 10010000 (for
the letter H) is received as 10010100, the
receiver knows that there is at least one
error  during transmission since the
received bit sequence has an odd parity,
ie., the total number of 1’s is an odd

" number.,

.\"JH

J
=
los jafo o —» Pip
foseies) p E

Figure 4. BEven parity code

R

H: feofoooo
£z tonarer)

Is there an encoding method so that the
receiver would be able to correct
transmission errors? Figare 5 shows one
such method by arranging the bit
sequence (e.g., 1001) into a rectangular
block and add parity bits to both rows
and columns. For the example shown,
1001 would be encoded as 10011111 (by
first appending the row parities and then
the colmnn parities). If there is an error
during transmission, say at position 2,
the receiver can similarly arrange the
teceived sequence 11011111 into a
rectangular block and detect that there is
an error in row 1 and column 2.

5 '|I 0o

Pl x
it v
tefr !

!
el v X
14

Figure 5. A code that can correct 1 error.

The above method can be used to correct
one error but rather costly, For every
four bits, one would need to transmit an
extra four redundant bits. Is there a
better way to do the encoding? In 1950,
Hamming found an ingenious method to

(continued on page 4)
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication  consideration.  Sclutions
should be preceded by the solver’s name,
address, school affiliation and grade
level. Please send submissions to Dr.
Kin-Yin Li, Dept of Mathematics, Hong
Kong University of Science and
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solntions is
Jan 31, 1997,

Problem 46. For what integer a does
x* = x + a divide x** + x + 907

Problem 47. If x, y, z are teal numbers
such that x* + y* + z* = 2, then show that
X+y+z5xyz+ 2, :

Problem 48, Squares ABDE and BCFG
are drawn outside of triangle ABC.
Prove that triangle ABC is isosceles if
DG is parallel 10 AC.

Problem 49. Let wy, u;, us, ... be a
sequence of integers such that u; = 29,
wy=45and iy = Uy —u, forn=1, 2,
3, .... Show that 1996 divides infinitely
many terms of this sequence. (Source:
1986 Canadian Mathematical Olympiad
with modification)

Problem 50. Four integers are marked
on a circle On each step we
simultaneously replace each number by
the difference between this number and
next number on the circle in a given
direction (that is, the nuinbers 4, b, ¢, d
arereplaced bya~ b, b—c,c~ d, d -
a). Is it possible afier 1996 such steps to
have numbers a, b, ¢, d such that the
numbers |bc — adl, lac - bdl, lab -
cd| are primes?  (Source: unused
‘problem in the 1996 IMO.)

Aesksdesteote ool o ook s e ok skok

Solutions
Herk ok e sk ok ksl e R sk ok

Problem 41. Find all nonnegative
integers x, y satisfying (xy — 7)* = x* +

Solution: Gary NG Ka Wing (STFA
Leung Kau Kui College, Form 4). -

Suppose x, y are nonnegauve integers
such that (xy — ?)2 ¥ +y*. Then (xy -
6)* + 13 = (x + y)* by algebra. So

13 = [(e+) + (xy-6)I[(x+3) — (y—6)].

Since 13 is prime, the factors on the
tight side can only be £1 or +13. There
are four possibilities yielding (x,y) =
0.7, (7,0), 3A4), 4,3).

Other commended solvers: CHAN Ming
Chiv (La Salle College, Form 6),
CHENG Wing Kin (S.K.H. Lam Woo
Memorial Secondary School, Form $5),
William CHEUNG Pok-man (S.T.F.A.
Leung Kau Kui College, Form 6), Yves
CHEUNG Yui He (S.T.F.A. Leung Kau
Kuoi College, Form 5), CHING Wai
Hung (5.T.P.A. Leung Kan Kui College,
Form 5), CHUI Yuk Man (Queen
Elizabeth School, Form 7), LIU Wai
Kwong (Pui Tak Canossian College),
POON Wing Chi (La Salle College,
Form 7), TING Kwong Chi & David
GIGGS (SKH Lam Woeo Memorial
Secondary School, Form 5), YU Chun
Ling (HKU) and YUNG Fai (CUHK).

Problem 42. What are the possible

values of v¥x? +x+1-vx2—x+1as x
ranges over all real numbers?

Solutton: William CHEUNG Pok-man
(STFA Lenng Kau Kuoi College, Form 6).

Let A=(x0), B=(-1,8),c=1, %)

The expression v x> +x+1—Jx —xt+1

is just AB — AC. As x ranges- over all
real numbers, A moves along the real
axis and the triangle inequality yields

-1=-BC< AB-AC<BC=1.

All numbers on the iilterga] (-1,1) are
possible.

Other commended solvers: CHAN Ming
Chiu (La Salle College, Form 6),
CHENG Wing Kin (S.K.H. Lam Woo
Memorial Secondary School, Form 5),
LIU Wai Kwong (Pui Tak Canossian
College), POON Wing Chi (La Salie
College, Form- 7), YU Chun Ling
(HKU) and YUNG Fai (CUHK).

Problem 43. How many 3-element
subsets of the set X = {1, 2, 3, ...,
there such that the product of the 3
numbers in the subset is divisible by 4?

20} are

Solution: CHAN Ming Chiu (La Salle
College, Form 6), CHAN Wing Sum
(HKUST), CHENG Wing Kin (SK.H.
Lam Woo Memorial Secondary School,
Form 35), CHEUNG Cheuk Lun
(S.T.F.A. Leung Kau Kui College, Form

-6), William CHEUNG Pok-man

(S.T.F.A. Leong Kau Kui College, Form
6), Yves CHEUNG Yui Ho (S.T.F.A.
Leung Kau Kui College, Form 5), CHUI
Yok Man (Queen Elizabeth School,
Form 7), FUNG Tak Kwan (La Salle
College, Form 7), LEUNG Wing Lun
{(STFA Leong Kau Kui College, Form
6, LIU Wai Kwong (Pui Tak
Canossian College), Henry NG Ka
Man (STFA Leung Kau Kui College,

‘Form 6), Gary NG Ka Wing (STFA

Lesng Kav Kui College, Form 4),
POON Wing Chi (La Salle Coliege,
Form 7), TSANG Sai Wing (Valiorta
College, Form 6), YU Chun Ling
(HKU), YUEN Chu Ming (Kiangsu-
Chekiang College (Shatin), Form 6) and
YUNG Fai (CUHK).

There are C;° =1140 3-clement subsets _

of X. For a 3-element subset whose 3
numbers bave product not divisible by 4,
the nombers are either all odd (there are
C3° =120 such subsets) or two odd and
ong even, but the even one is not
divisible by 4 (there are C1°x5=225

such subsets). So the answer to the
problem is 1140 — 120 — 225 = 795,

Problem 44. For an acute triangle ABC,
let i be the foot of the perpendicular
from A to BC. Let M, N be the feet of
the perpendiculars from H to AB, AC,
respectively. Define L, to be the line
through A perpendicular to MN and
similarly define Lp and L.. Show that
Ly, Lp and Lc pass through a common
point 0. (This was an unused problem
proposed by Iceland in a past IMO.)

Solution: Williamm CHEUNG Pok-man
(STFA Leung Kau Kui College, Form 6).

Let L; intersect the circomcircle of
AABCat A and E. Since ZAMH =90°=
ZANH, A, M, H, N are concyclic. So
LMAH = ZMNH = 90° -~ ZANM =
£ZNAE = ZCBE. Now ZABE = ZCBE
+ LABC = /MAH + ZABC = 90°, So
AE is a diameter of the circumcircle and

(continued on page £)
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Problem Corner
(continued from page 3)

L, passes through the circumc;:ntex o.
Similarly, Lz and Lc will pass
through O.

Other - commended solvers: Calvin
CHEUNG Cheuk Lun (STFA Leung
Kav Kui College, Form 5), LIU Wai
Kwong (Pui Tak Canossian College),
POON Wing Chi (La Salle College,
Form 7) and YU Chun Ling (HKU).

Problem 45. Leta, b, ¢ > 0 and abe=1.
Show that '

ab be ca )
L +o5 s <1
S+ +ab B+ +be & +a’ +ea.

(This was an wunused problem in
IMO96.) ' '

Solution: YUNG Fai (CUHK).
Expanding (a® — b*)(a® — b%) 2 0, we get

& + b 2 a’b*(a+h). So using this and
abc=1, we get

ab . ab % c’
& +b +ab ct
a+b+c

Adding 3 such inequalities, we get the
desired inequality. In fact, equality can
occurifandonlyifa=b=c=1,

Other commended solvers: POON Wing
Chi (La Salle College, Form 7) and YU
Chun Ling (HKU). '

e AT e

Olympiad Corner
(continued from page I}

Part I (Ipm-4pm, May 2, 1996)

Problem 4. An n-term sequence (x), Xz
...y Xp) in which each term is either 0 or
1 is called a binary sequence of length n.
Let g, be the number of binary sequences
of length n containing no three
consecutive terms equal to 0, 1, 0 in that
order. Let b, be the number of binary
sequences of length n that contain no
four consecutive terms equal to 0, 0, 1, 1
or 1, 1, 0, 0 in that order. Prove that
b.s1 = 2a, for all positive integers n.

Problem 5. Triangle ABC has the
following properiy. there is an interior

point P such that ZPAB = 10°, ZPBA =
20°, ZPCA = 30°, ZPAC = 40°. Prove
that triangle ARC is isosceles.

Problem 6. Determine . (with proof)
whether there is a subset X of the
integers with the following property: for
any integer n there is exactly one
solutionof g + 2b=n with g, b € X.

T AT e

Error Correcting Codes (Part I)
(continued from page 2)

add the redundancy. To encode a four-
bit sequence pipypyps (say 1001), one
would first draw - three intersecting
circles 4, B, C and put the information
bits py, po, pa. pa Into the four overlapping
regions ANB, ANC, BNC and AnBNC
(Figure 6}. Then three parity bits ps, ps,
pr are generated so that the total number

of 1’s in each circle is an even number, -

For the example shown, 1001 would be
encoded as 1001001.

Figure 6. Hamming code

If there is one error during transmission,
say 1001001 received as 1011001, the
receiver can check the parities of the
three circles to find that the error is in
circles B and Cbut not in A. This (7 4)
Hamming code (the notation (7,4) means
that every 4 information bits are encoded
as a 7 bit sequence) can be generalized.
For example, one may draw 4
intersecting spheres in  a - three-
dimensional space to obtain a (15,11)
Hamming ccde. Hamming has also
.proved that his coding method 1is
optimum for single error correction.

{... to be continued)
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Pl’ObIEH:l 1. LC[ X1y X2, . .. xlgg'; bC reél
numbers satlsfymg the followmg two
condmons

(1)—J_£x <-f(;_1 2, ..., 1997);

+xp0= —318/3.

Find the maximum value of

@Dx1+x+ -

12, 12 12
XXy et Xger .

Problem2. Let AB,C,\D, be an
arbitrary convex quadrilateral. Tet P be
a point inside the quadrilateral such that
the segments from P to each vertex form
acute angles with the two sides through
the vertex. Recursively define A, By, G,
and D, as the points symmetric to P with
respect to the III'IBS Ab-lBk-—h BHCH,

Cb—le-l and D_@.]A;Hl s [eSPCCtlYely

k=23, :
(continued on page 4)
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication  consideration.  Solutions
should be preceded by the solver’s name,
address, school affiliation and grade
level. Please send submissions to Dr.
Kin-Yin Li, Dept of Mathematics, Hong
Kong University of Science and
Technology, Clear Wuter Bay, Kowloon.
The deadline for submitting solutions is
Apr. 5, 1997,

Problem 51. Is there a positive integer n

such that vn—1++/n+1 is a rational
number?

Problem 52. Let a, b, ¢ be distinct real
numbers such that @° = 3(b*+c®) — 25,
b = 3(P+a®) - 25, & = 3P+ ~ 25.
Find the value of abc.

Problem 53. For AABC, define A’ on
B(C so that AR + BA' = AC + CA’ and
similarly define B on CA and € on AB.
Show that AA’, BB', CC’ are concurrent,
(The point of concurrency is called the
Nagel point of AABC.)

Problem 54. Let R be the set of real
numbers. Find all functions f: R — R
such that

SUx+y)) = Rx+y) + fOAY) — xy

for all x, y € R. (Source: 1995 Byelorussian
Mathematical Olympiad (Final Round))

Problem 55. In the beginning, 65
beetles are placed at different squares of
a 9 x 9 square board. In each move,
every beetle creeps to a horizontal or
vertical adjacent square, If no beetle
makes either two horizontal moves or
two vertical moves in succession, show
that after some moves, there will be at
least two beetles in the same square.
(Source: 1995 Byelorussian Mathematical
Olympiad (Final Round))

oo sk e e il ik

Solutions
s e e 3 e o o e of e e sl ofe ofe e ofe

Problem 46. For what integer a does
x*— x + a divide x* + x + 907 (Source:
1963 Putnam Exam.)

-and

_ Page 3

Solution: CHEUNG  Tak Fai (Valtorta
College, Form 6) and Gary NG Ka
Wing (STFA Leung Kau Kui College,
Form 4). ' -

Suppose .
x13_+ x +_90 =(F-x+ a)g(x),

where g(x) is a polynomial with integer
coefficients. Taking x=-1,0, 1, we get

88 = (2+a)q(-1),
90 = ag(0)
92 = ag(1).

Since a divides 90, 92 and a+2
divides 88, @ can only be 2 or —1. Now
F—x~1 has a positive root, but
x* + x + 90 cannot have a positive root.
So a can only be 2. We can check by
long division that x* — x + 2 divides
x'* + x + 90 or observe that if w is any of
the two roots of x¥* — x + 2, then
H?=w—lw4=~3w+2 W= —3w— 14,
w?=45w - 46 and w’ + w+90 =0,

Other commended solvers: CHAN Ming
Chiu (La Salle College, Form 6), CHAN
Wing Sum (HKUST) and William
CHEUNG Pok-man (S.T.F.A. Leung
Kau Kui College, Form 6).

Problem 47. If x, y, z are real numbers
such that x* + y* + 7% = 2, then show that
X+y+zsxyz+ 2

Solution: CHAN Ming Chiu (La Salle
College, Form 6).

Ifoneofx, vy, zis nonpositive, say z, then
2+xy2—x-y~z7=02-y)-z(1-py) 20
because

x+y< 22 492 <2

<+l

S0 we may assume x, y, z are positive,
sayO<x<y=<gz Ifz<1,then

and

24+xyr—x-y-z
= (1-0)(1-y) + (1-2(1-xy) 2 0.
Ifz>1, then '

(Jc+y)-i-zs1{2((x+y)2 +zz)

= 24+l Sxy+2<xyz+2,

Comments: This was an unused problem
in the 1987 IMO and later appeared as a
problem on the 1991  Polish
Mathematical Olympiad.

Problem 48. Squares ABDE and BCFG
are drawn ountside of triangle ARC.
Prove that triangle ABC is isosceles if
DG 13 parallel to AC.

Solution: Henry NG Ka Man (STFA
Leung Kau Kui College, Form 6), Gary
NG Ka Wing (STFA Leung Kau Kui
College, Form 4) and YUNG Fai
(CUHK).

From B, draw a perpendicular line to AC
(and hence also perpendicular to DG.)
Let it intersect AC at X and DG at ¥,
Since ZABX = 90° — /DBY = ZBDY
and AB = BD, the right triangles ABX
and BDY are congruent and AX = BY.
Similarly, the right triangles CBX and
BGY are congruent and BY = CX. So AX
= CX, which implies AB = CB.

Comments: This was a problem on the
1988 Leningrad Mathematical
Olympiad. Most solvers gave solutions
using pure geoinetry or a bit of
trigonometry. The editor will like to
point out there is also a simple vector
solution.  Set the origin O -at the

- -3
midpoint of AC. LetOC=m, OB=n
and & be the unit vector perpendicular to

- -
the plane. Then AB=n+m,CB=n - m,
- -
BD=—(n+m) xk, BG=(n-m xk

— - -
and DG= BG-BD =2nxk. If DG is
parallel to AC, then n x k is a multiple of

- -
m and so m =0C and n =OR are
perpendicular. Therefore, triangle ARC
is 1sosceles. '

Other commended solvers: CHAN
Wing Chiu (La Salle College, Form 4),
Calvin CHEUNG Cheuk Lun (S.T.F.A.
Leung Kau Kui College, Form 5),
William CHEUNG Pok-man (S.T.F.A.
Leung Kaa Kui College, Form 6), Yves
CHEUNG Yui Ho (S.T.F.A. Leung Kau
Kui College, Form 5), CHING Wai
Hung (S.T.F.A. Leung Kau Kui College,
Form 5), Alan LEUNG Wing Lun
(STFA Leung Kau Kui College, Form
5), .OR Fook Sing & WAN Tsz Kit
(Valtorta College, Form 6), TSANG Sai
Wing (Valtorta- College, Form 6),
WONG Hau Lun (STFA Leung Kau
Kui College, Form 5}, Sam YUEN Man
Long (STFA Leung Kau Kui Collgge,
Form 4),

(continued on page 4)
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(continued from page 3)

Problem 49. Let w0y, up, us, ... be-a
sequence of integers such that u, = 29,
uy =45 and Uny = U —un forn=1, 2,
3, .... -Show that 1996 divides infinitely
many terms of this sequence. * (Scurce:
1986 Canadian Mathematical. Olymplad
with modification)

Solution: William CHEUNG Pok-man
{STFA Leung Kau Kui College, Form 6)
and YUNG Fai (CUHK). :

Let U, be the remainder of u, upon
division by 1996, i.e.,

Uy = 1, (mod 1996).

Consider the sequence of pairs (U, U,.,).
There are at most 1996° distinct pairs.
S0 let (Up,Uput) = (U,,U,) be the first
repetition with p < ¢, pr > 1, then the
recurrence relation implies (U, U} =
(Upr,U) resulting in  an earliér
repetition. So p= 1 and the sequence of
pairs (U,,U,..1) is periodic with period ¢
—~ 1. Since u; = 1996, wehave 0 = U/, =
Ug.,;.,(q_l) and so 1996 d.lVldBS uS-l-k(q—l) fOI
every positive integer . .

Other commended solvers; CHAN Ming
Chiu (La Salle College, Form 6), CHAN
Wing Sum (HKUST) and Gary NG Ka
Wing (STFA Leung Kau Kui College,
Form 4),

Problem 50. Four integers are marked
on a. circle. .On- each' step we
simultaneously replace each number by
.the difference between this number and
next number on the circle in a given
direction (thatis, the numbers g, b, ¢, ¢
arereplaced bya - b, b~ ¢,
a). Is it possible after 1996 such steps to
have numbers a, b, ¢, d such that the
numbers |oc — adl, lac - bdl, lab -
cd|l are primes?  (Source: unused
problem in the 1996 IMO.)

Solution 1: Henry NG Ka Man (STFA
Leung Kan Kui College, Form 6) and
Gary NG Ka Wing (STFA Leung Kan
Kui College, Form 4). '

If the initial numbers are a = w, b = 1,
c—y.d—z,thcnafter4steps the
oumbers will be

a=2w-—2x+ 3y~ 22,
b=2(x—-2y+3z-2w),

c—~d d—

_Page 4

c=2y—=2z+ 3w~ 2x),
d=2z— 2w+ 3y—22).

From that point on, &, b, ¢, 4 will always
be even, so |bc - ad), |ac- bd}, |ab- cd]
will always be divisible by 4.

Solution 2: Official Solution.

After n 2 1 steps, the sum of the integers
willbe 0. Sod=-a—-b - c. Then

be—ad =bc+ala+b+ o)
=(a+ b)a+c).
Similarty,

ac—bd =@+ b+ c)
ab—cd =(a+ )b+ o).

Finally [bc-ad|, |ac—bd|, lab-cdl

cannot all be prime becanse their
product is the squate of (a+b)(a+c)(b+c).

Other commended solvers: Calvin
CHEUNG Cheuk Lun ($.T.F.A. Leung
Kau Kui College, Form 5) and William
CHEUNG Pok-man (STFA Leung . Kan
Kni College, Form:6).

Olympiad Corner
(continued from page 1)

Consxder the -soquence of quaclnlaterals =

ABCD; (=1,2,-

(1_) Determine which of the first 12
quadrilaterals are’ similar t the
1997 quadrilateral.

Q)If the 1997* quadrilateral is cychc,
determine - which of the first 12
quadrilaterals are cyclic.

Problem 3. Prove that there are infinitely
many natural nambers n such that
1,2,---,3n

can be put into an array

a1 da - d,
by by -+ by
€1 €3 * Cp

satisfying the following two conditions:

(1) ﬂl+b1+C1 = dgtbotoy = o = a,,+b,,+c,,
and the sum is a muitiple of 6;

(2) ket - +a,= byt -+, = crbert- e,
and the sum is a multiple of 6.

Part II (8:00-12:30, Ianuary 14, 1997)

Problem 4 Let quadrilateral ABCD be
inscribed in a circle. Suppose lines AB
and DC intersect at P and lines AD and
BC intersect at Q. From (2, construct the
two tangenis OF and OF to the circle
where E and F .are the points of
tangency. Prove that the three pomts P,
E, F are collinear,

Problem 5. Let A = {1, 2, 3, ..., 17}
For a mapping f: A — A, denote

M= rw,

@ = (M) @=1,2,3,

Consider one-to-one mappings f from A
to A satisfying the condition: there exists
a natural number M such that -

(Dform<M, 1<i<16, _ "
- SPIGE+D— £ G) £ 11 (mod 17),-
f["‘](l)— FMA7) £+ (mod 17);
(2)for 1 << 16, .
FHMG 4 — £ =1 0r-1 (mod 17)
FM@- M7 =101 mod 17,

- For all mappings f satisfying the above

condition, determine the largest possibie
value of the corresponding M's. '

Problem 6. Consider a ‘sequence of
nonnegaiive teal numbers o, a4, ...
satisfying the condition

Qram < an+ 4, mne N.

Prove that for any n > m,

-
»! i
AR AR R ;‘? I M m m“rmc;

s Theorem
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Bach question is worth 7 points.

Problem 1. Given

S:1+—L1_ 11 1
I+5 leg+5

¥

+
T+g+g+ "'1993006

where the denominators contain partial
sums of the sequence of reciprocals of
triangular nymbers. Prove that § > 1001.

Problem 2. Find an integer n, with 100

L]

< n < 1997, such that 22
i3

is also an

integer.
Problem 3. Let ABC be a triangle
inscribed in a circle and let

M,
M,

mb l—

] l L]
b Mb Mc

l, =

(continued on page 4)
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Problem Corner

We welcome readers to submit solutions
to the problemms posed below for
publication consideration.  Solutions
should be preceded by the solver’s
name, address, school affiliation and
grade level. Please send submissions to
Dr. Kin-Yin Li, Dept of Mathematics,
Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions is
July 10, 1997.

Problem 56. Find all prime numbers p
such that 2” + p? is also prime.

Problem 57. Prove that for real numbers
Xy, z>0,

x* y? z LXty+z

+ + 2
x+y y+z z+Xx 2

Problem 58. Let ABC be an acute-
angled triangle with BC > CA. Let O be
its circumcenter, H its orthocenter, and
F the foot of its altitnde CH. Let the
perpendicular to OF at F meet the side
CA at P. Prove that £ZFHP = £ZBAC.
(Source: unused problem in the 1996
IMQO.)

Problem 59. Let »n be a positive integer
greater than 2. Find all real number
solutions (x1, xz, ---, X} to the equation

(I=x1) + (=) 4 -

2
+ (xu—l_xn) + xnz =

n+l’

(Source: 1975 DBritish Mathematical

Olympiad)

Problem 60. Find (without calculus) a
fifth degree polynomial p(x) such that
p() + 1 is divisible by (x — 1)’ and
p(x) — 1 s divisible by (x + 1)°,

He ook e e e e ok ek o ook e ol sl e

Solutions
o e e 2 e she 3 s e ok ke she o Seoke ofe e

Problem 51. Is there a positive integer n

such that vn—1++/n+1 is a rational
number?

Solution: Gary NG Ka Wing (STFA
Leung Kau Kui College, Form 4),

Assume there is a positive integer » such
that

dn=1+fn+1=r

is rational. Squaring and simplifying,
we get

,'—"""‘nz_l=r2—-2n

2
is also rational. However, for n > 1, if

vn? —1= a/b for some positive integers
a, b having no common factor greater
than 1, then & = b*(n’-1), which
implies b also divides #. So b must be 1.
Nowforn > 1,

R>nt-1=a > (n-1)y7
is impossibie. Son =1, but then

is irrational. Therefore, no such »
ex1sts.

Other commended soivers: CHAN Ming
Chiu (La Salle College, Form 6), CHAN
Wing Sum (HKUST), William
CHEUNG Pok Man (S.T.F.A. Leung
Kau Xui College, Form 6), CHOI Wing
Shan Winnle (St. Stephen's Girls'
College, Form 6), LEUNG Shun Ming
(La Salle College, Form 4), LITU Wai
Kwong (Pui Tak Canossian College),
TSE Wing Ho (Ho Fung College, Form
5), Sam YUEN Man Long (STFA
Leung Kau Kui College, Form 4) and
YUNG Fai (CUHK).

Problem 52, Let g, b, ¢ be distinct real
numbers such that @° = 3(b%+c?) — 25,
b = 3(c*+a?) - 25, ¢ = 3(a®+bY) — 25.
Find the value of abc.

Solution: CHEUNG Pok Man
(S.T.F.A. Leing Kau Kui College, Form
6), YEUNG Yi Pok (Pui Shing Catholic
Secondary School, Form 7) and YUNG
Fai (CUHK).

Let g, b, ¢ be roots of

P-pl+q-r=0.

Thenp=a+b+c, g=ab+bc+ caand
r=abc. Sincaa2+b2+c2=p2_zq,so

@ =30 + )~ 25 = 3(p*-2¢-a’) - 25.

This is equivalent to @ + 34° + (25 + 6¢
—3p") = 0. Then ais arootof x* + 3x* +
(25 + 6q — 3p") = 0. Similarly, b and ¢
ate roots of this equation. Comparing

coefficients of the two equations, we get
p=-3,g=0and abc=r=—(25 + 6g—
3pH =2

Other commended solvers: LIU Wali
Kwong (Pui Tak Canossian College),
TSE Wing Ho (Ho Fung College, Form
5) and Sam YUEN Man Long (STFA
Leung Kan Kui College, Formn 4) ©

Problem 53. For AABC, define A” on
BC so that AB + BA’ = AC + CA’ and
similarly define B° on CA and " on
AB. Show that AA’, BB', CC' are
concurrent. (The point of concurrency is
called the Nagel point of AABC.)

Solution: CHEUNG Pok Man
(S.T.F.A. Leung Kau Kui College, Form
6), LIU Wai Kwong (Pui Tak

Canossian College) and YEUNG Yi
Pok (Pui Shing Catholic Secondary
School, Form 7)

Leta=BC, b=CA,c=AB and s = (AB
+ BC + CA)Y2. Since AB + BA® =5 =
AC+ CA’, we have BA' = 5 — ¢ and
CA’ = §— b. Similarly, CB’ =5~ a,
AB =5—¢,AC =5s-band BC' =5—a.
Then

(CA'{BAYAB'ICBY BCIAC)=1.

So by the converse of Ceva's theorem,
AA’, B, CC are concurrent.

Other commended solvers: Gary NG
Ka Wing (STFA Leung Kau Kui
College, Form 4) and Sam YUEN Man
Long (STFA Leung Kau Kui College,
Fonn 4).

Problem 54. Let R be the set of real
numbers. Find ali functions f: R — R
such that

SFx+y)) = fe+y) + L) — xy

for all x, y € R. (Source: 1995 Byelorussian
Mathematical Olympiad (Final Round)}

Solution: YUNG Fat (CUHK).

Putting y =0, we get
A2 =1 + A,
Replacing x by x + y, we get

[1+RMIRx+y) = ARx+))
= fi+y) + AR — xy,

which simplifies to
SO xay) = LAY — xy.

(continued on page 4)
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Probiem Corner
(continued from page 3)

Puotting y = 1, we get

JOAx+1) = foA1) — x.

Puuing y = —1 and replacing x by x+1,
we get

SO =+ DA~ +x+ 1.

Eliminating f{x+1)} in the last two
equations, we get

PO-A-DI) = RO-A-D}x + AO).

If £(0) ~ A1)A-1) = O, then Ax) is linear.
If #(0) ~ A1)f(—1) = O, then putting x = 0
in the last equation, we get AQ) = 0. In
this case, the displayed equation above
implies Ax)y) = xy. Then fAx)}(1) = x
for all x € R. So A1) 2 0 and flx) is
linear. )

Finally, substituting fix) = ax + b into
the original equation, since fx) cannot
be constant, we finda=1and b =0, i.e,
fx)=xforallxe R.

Other commended solvers: CHAN
Wing Sum (HKUST) and William
CHEUNG Pok Man (S.T.F.A. Leung
Kau Kui College, Form 6).

Problem 55. In theé beginning, 65
beetles are placed at different squares of
a9 x 9 square board. In each move,
every beetle creeps to a horizontal or
vertical adjacent square. If no beetle
makes either two horizontal moves or
two vertical moves in succession, show
that after some moves, there will be at
least two beetles in the same square.
(Source: 1995 Byclorussian Mathematical
Olympiad (Final Round))

Solution: William CHEUNG Pok Man
(S.T.F.A. Leung Kau Kui College, Form
6) and YUNG Fai (CUHK),

Assign an ordered pair (a,b) to each
square with a, b = 1, 2, ..., 9. Divide
the 81 squares into 3 types. Type A
consists of squares with both a and b
odd, type B consists of squares with both
a and b even and type C consists of the
remaining squares. The numbers of
squares of the types A, B and C are 25,
16 and 40, respectively.

Assume no collision occurs., After two
successive moves, beetles in type A

squares will be in type B squares. So the
number of beetles in type A squares are
at most 16 at any time. Then there are
at most 32 beetles in type A or type B
squares at any time. Also, after one
move, beetles in type C squares will go
to type A or type B squares. So there are
at most 32 beetles in type C squares af
any time. Hence there are at most 64
beetles on the board, a contradiction.

Other commended solvers: Sam YUEN
Man Long (STFA Leung Kau Kui
College, Form 4,

T D T

Olympiad Corner
(continued from page I)

where m,, m;, m, are the lengths of the
angle bisectors (internal to the triangle)
and M,, M;, M, are the lengths of the
angle bisectors extended until they meet

the circle. Prove that
! I 1,
e 2 +——23,
sin“4 sin“B sin” C

and that eguality holds iff ABC is
equilateral,

Problem 4. Triangle AjA;A; has a right
angle at A;, A sequence of points is now
defined by the following iterative
process, where n is a positive integer.
From A, (n 2 3), a perpendicular line is
drawn to meet A,»A,1 at A,

(a) Prove that if this process were
continved indefinitely, then one and
only one point P is interior to every
triangle A, 2A, 1A, n 23,

(b)Let A, and A; be fixed points. By
considering afl possible locations of
A; on tbe plane, find the locus of P,

Problem 5. Suppose that n persons A,
Ay, ..., A, (n 2 3) are seated in circle and
that A; has ¢; objects such that

Mmta+ - +d,=nN

where N is a positive integer. In order
that each person has the same number of
objects, each person 4; is to give or to
receive a certain number of objects to or
from its two neighbouwrs A, and A,
where A,,; means A; and Ay means A,
How should this distribution be
performed so that the total numbers of
objects transferred is minimurm?

e VDT
e B A R B M AE-—

(continued from page I)
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The 38™ International Mathematical
Olympiad, Mar del Plata, Argentina:

First day (July 24, 1997)
Each problem is worth 7 points.
Time Allowed: 41 hours.

Problem 1. In the plane the points with
integer coordinates are the vertices of
unit squares, The squares are coloured
alternately black and white (as on a
chessboard). For any pair of positive
integers m and n, consider a right-angled
triangle whose vertices have integer
coordinates and whose legs, of lengths m
and n, lie along edges of the squares.
Let S be the total area of the black part
of the triangle and S, be the total area of
the white part. Let

fmn) =15, — S,l.

(a) Calculate fim,n) for all positive
integers m and »n which are either
both even or both odd,

(b) Prove that f(m,n)< %max{m,n} for
all m and n.

(c) Show that there is no constant C such
that fim,n) < C for all m and n.

(continued on page 4)
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Error Correcting Codes (Part IT)
Tsz-Mei Ko

In Part I, we introduced the family of is0101101. The first 6 bits form the

Hamming codes. In particular, the (7,4)
Hamming code encodes 4-bit messages

PP into T-Hit codewords ppppppds

by appending three parity bits

Ps=pi+pr+pe (mod 2),
Ps=p1+p3+p, (mod 2),
Pr1=pr+py+ ps (mod 2),

to the original message. Figure 1 shows
the 16 possible codewords for the (7,4)
Hamming code. To convey the message
0100, as an example, the sender would
send 0100101, If thete is a transmission
error in position 4 so that the received
sequence becomes 0101101, the receiver
would still be able to recover the error by
decoding the received sequence as the
closest codeword. (Note that 0100101 is
different from 0101101 in only one
position while all other codewords are
different from 0101101 in more than one
position.} '

Now, if we group the first six bits of a
(7,4) Hamming codeword into two-bit
pairs (p\p2, pws pss) and use an
arithmetic system called a 4-element
field (Figure 2), we observe something
nteresting: the three points (1, pypo),
(2, paps) and (3, psps) form a straight
line! For example, the first 6 bits of the
codeword 0160101 forms the ordered
triple (01, 00, 10) = (1, 0, 2) and (1,1),
(2,0), (3,2) are three consecutive poifits
on the straight line fx) = 2x + 3 since

ﬂ1)=2(1)+3=2+3=1;
A3=23)+3=1+3=2;

by using the addition and multiplication
tables given in Figure 2. This fact is
also true for the other 15 codewords and
their corresponding straight lines f{x) are
listed in Figure 3,

This “straight line” property can be
utilized for decoding. As an example,
assume that the received sequence

ordered triple (01, 01, 10) = (1, 1, 2).
We observe that a straight line passing
through (1,1) and (2,1) should pass
through (3,1). That is (1,1), (2,1) and
(3,2) do not lic on a straight line and
thus there is a transmission error, For
the (7.4) Hamming code which is
capable of correcting ome error, we

message codeword

PAPPDa P\PPLPP P
0000 | 0000000
0001 0001111
0010 0010011
0011 0011100
0100 0100101
0101 0101010
0110 0110110
0111 0111001
1000 1000110
1001 1001001
1010 1010101
1011 1011010
1100 1100011
1101 1101100
1110 1110000
1111 1111111

Figure 1. The (7,4) Hamming Code.

+|]o 1 2 3 x]Jo 1 2 3
ojo 1 2 3 oo 0o o0 0
1/1 0 3 2 1J]0 1 2 3
212301 2]02 31
313210 . 3J03 12

Figure 2. Arithmetic Tables for 2 4-Element Field.

codeward | pys | paps | pap fix)
0000000 0 0 0 0
0001111 0 1 3 2x+2
0010011 0 2 1 3Ix+3
0011100 0 3 2 x+1
0100101 1 0 2 2x+3
0101010 1 1 1 1
0110110 1 2 3 x
0111001 1 3 0 3x+2
1000110 2 0 3 3x+1
1001001 2 1 0 x+3
1010101 2 2 2 2
1011010 2 3 1 2x
1100011 3 0 1 x+2
1101100 3 1 2 3x
1110000 3 2 0 2x+ 1
1111111 3 3 3 3

Figure 3. The {7,4) Hamming Codewords
form Straight Lines f{x).
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assume that only one of the three points
is incorrect.. That is, the original

“straight line” f(x) should pass through

and (3,2) corresponding to fx) = 1; fx)
=2x + 3; or f{x) = 3x respectively. Then
the first 6 bits for the original codeword
shonld be 010101, 010010 or 110110.
Among thesc three possible solutions,
~only 010010 satisfies the equation for the
last parity bit p; = p, + ps + ps (mod 2).
Thus we decode the received sequence
0101101 as (100101 corresponding to
the message 0100.

be quite complicated. However, it can be
generalized to conmstruct (and decode)
multiple-error cotrecting codes by using

codes by using
“polynomials” instead of “straight

lines”. " Suppose we would like to-

transmit a message that contains &
symbols 5,5,---5,. We may use these k
symbols to form a kth degree polynomial
fx)such that A = 5, (1 <4 < k.. To
construct a code that can correct ¢ errors,
we may append 2t symbols fk+ 1),
fE+2), ..., fk+2D o the original
message so that the encoded sequence
contains & + 2¢ symbols corresponding to
k + 2t consecotive points on a kth degree
polynomial (Figure 4). If there are less
than or equal to 7 errors during
transmission, at least £ + ¢ symbols
would be received correctly. Then the
receiver may simply check which % + ¢
symbols lie on a kth degree polynomial
to decode the received sequence.

+

fx)

A

/| i S

information

symbols

My

1234567809 1011
Figure 4. A Polynomial Code,

We use a (21,9) double error correcting
code to illustrate the idea. Assume we
would like to send a 9 bit message, say
101010100. We may first group the
information bits into 3-bit symbols as
(101, 010, 100} = (5, 2, 4). (In general,
we may group the information bits into
m-bit symbols where m cannot be too
small. - Otherwise, we cannot construct
the polynomial f(x). Why? Also m
should not be too large to reduce the

mmber of parity bits.) Then we use the
three message symbols (5, 2, 4) to form a
second degree polynomial f(x) such that
f1)=5,A2)=2and (3)=4. Thatis
fi=3EDE=9) Ax-T)x-3) Ax-1)x-2)
A-21-3 . 2-D2-3) (3-1DE-2)
Note that we have 8 kinds of symbols
{(since we group the bits into 3-bit
symbols) and thus we need an 8-element
field for our arithmetic. (Basically, a
field is an arithmetic system. that allows
us to add, subtract, multiply and divide.)
By using the 8-element field given in

- Figure 5, we can simplify f(x) to obtain
The above decoding procedure seems to

fO=xr*+7r+5.

Note that 1) = 5, A2) = 2 and £3) = 4
as desired.

+01234567 x|012345¢67
6101234567 oloooocoooo
1110325476 1{01234567
2123016745 2002463115
3132107654 3|lo3657412
445670123 4lo4376251
554761032 505142138
6167452301 6l06715324
76543210 7|07521643

Figure 5. Arithmetic Tables for an 8 Element Field.

Now suppose we would like to construct
a code that can correct two errors. We
can append

fA=+7@)+3=6+1+3=4;
f5)=54+75)+3=T+6+3=2:
fB)=6"+7(6)+3=2+4+3=5;
AD=T+7N+3=3+3+3=3;

to the message symbols. That is, we would
transmit a 21 bit sequence (5,2,4,4,2,5,3)
= 101010100100010101011. If there are
transmission errors, say at positions 5
and 15, the received sequence becomes
101000100100011101011 = (5,0,4.4,3,5.3).
(This code is actually capable of
correcting two symbol errors instead of
two bit errors.) Then the receiver would
search for the 5 received symbols that

are not corrupted, Among the(g)=21

- cases, only (1) = 5, A3) = 4, fid) = 4,

A6) =5, A7) = 3, form a second degree
polynomial. So the receiver uses these
five points to reconstruct fx) = ¥* + Tx + 5
and decode the received message as
(A1), A2), f3)) = (5, 2, 4) = 101010100,

The above idea, using polynomials to
construct ¢odes, was first proposed by
Reed and Solomon in i960. It is now
widely wused in  electronics and
communication” systems including our
compact discs,

to 31,

m\_
38th IMO
Kin-Yin Li

For the first time in history, the
International Mathematical Olympiad
(IMO) was held in the southern
hemisphere.  Teams representing a
record 82 countries and regions
participated in the event at Mar del
Plata, Argentina this year from July 18
The site was at a resort area
bordered by the beautiful Atlantic
Ocean.  All through the period, the
weather was nice and cool,

The Hong Kong team, like many
sontheast Asia teams, had to overcome
thirty plus hours of flight time to arrive
Argentina. With two short days of rest,
the team members wrote the exams with
jetlag. This year the team consisted of

Chan Chung Lam (Bishop Hall Jubilee School)
Cheung Pok Man (STFA Leung Kau Kui College)
Lau Lap Ming (St. Paul’ s College)
Leung Wing Chung (Queen Elizabeth School)
Mok Tze Tao ((ueen’ s College)

Yu Ka Chun (Queen’ s College)

brought home 5 bronze medals and came
m one mark behind Canada and one
mark ahead of France. ' The top team
was China with 6 gold, followed by
Hungary, Iran, USA and Russia. As
usual, problem 6 was the most difficult
with 73% of the contestants getting zero,
90% getting less than half of the score
for the problem.

The excursions were good. The
hospitality was superb!!! The team
members had a wild time playing the
indoor games the day before the closing
ceremony. One member of the team
even admitted it was the best he has
participated in three years, There were
many fond memories,

There was a sorprise ending on the way
back. Due to the typhoon weather in
Hong Kong, the team was sttanded in
Los Angeles for a day, Yes, the team
took full advantage to tour the city,
Hollywood, Beverly Hills, Rodeo Drive,
in particular, The next day the team was
stranded again in Taipei. It was
unbelievably fortunate to have a chance
to see these cities. What a bonus for a
year’s hard work!
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication  consideration.  Solutions
should be preceded by the solver’s
name, address, school affiliation and
grade level. Please send submissions to
Dr. Kin-Yin Li, Dept of Mathematics,
Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions is
September 30, 1997,

Problem 61. Find the smallest positive
integer which can be written as the sum
of nine, the sum of ten and the sum of
eleven consecutive positive integers.

Problem 62. Let ABCD be a cyclic
quadrilateral and let P and Q be points
on the sides AB and AD respectively
such that AP = CD and AQ = BC. LetM
be the point of intersection of AC and
PQ. Show that M is the midpoint of PQ.
(Source: 1996 Australian Mathematical
Olympiad.) '

Problem 63, Show that for n > 2, there is
a permutation 4, dy, ..., a, 0f 1,2, ..., n
such thatlay — kl=la; — N2 0 for k=2,
3, ..., nif and only if » is even.

Problem 64. Show that it is impossible
to place 1995 different positive integers
along a circle so that for every two
adjacent numbers, the ratio of the larger
to the smaller one is a prime number,

Problem 65. All sides and diagonals of
aregular 12-gon are painted in 12 colors
(each segment is painted in one color).
Is it possible that for any three colors
there exist three vertices which are
joined with each other by segments of
these colors?

Skt sl shesieole sheole e ek sk sk she sl ke

Solutions
ook ol sl ol et e e e sk ole sk ok 3k

Problem $6. Find all prime numbers p
such that 2° + p? is also prime,

Solution: CHAN Lung Chak (St
Paul’ s Co-ed. College, Form 4), CHAN
Wing Sum (HKUST), LAW Ka Ho
(Queen Elizabeth School, Form 4), Gary
NG Ka Wing (STFA Leung Kao Kui
College, Form 4), POON Man Wai (St.

Panl’s College, Form 4), TAM Siu
Lung (Queen Elizabeth School, Form 4),
WONG Chun Wai (SKH Kei Hau
Secondary School, Form 4), Alan
WONG Tak Wai (University of
Waterloo, Canada), WONG Sui Kam
{Queen Elizabeth School, Form 4) and
Sam YUEN Man Long (STFA Leung
Kau Kui College, Form 4).

For p=2, 2 + p* = 8 is not prime. For
3,2 + p* = 17 is prime. For prime
3n£1>3, we see that

Z+pP=B-1F+(3nt1)

is divisible by 3 (after expansion) and is
greater than 3. So p = 3 is the only such
prime.

r
P

Problem 57. Prove that for real
numbers x, y, z > 0,
J(2 y: z" X+y+z
- + > :
x+y y+z z+x 2

Solution 1: Note that

4 =((x+y)+(x-y)
=@+ +2x+ Y)x—y) + (x—)°
=2+ y)g +2(x + y)(x - y).

Dividing both sides by 4(x + y), we obtain

x” 2_1r+y+:(—-y
xX+y 4 2

In place of x, y, similar inequalities for
¥, z and z, x can be obtained. Adding
these inequalities give the desired
inequality.

Solution 2: Venus CHU Choi Yam (5St.
Panl’s Co-ed. College, Form 6), Gary
NG Ka Wing (STFA Leung Kao Xui
College, Form 4), POON Man Wai (St.
Paul’s College, Form 4), Alan WONG
Tak Wai (University of Waterloo,
Canada),

The Cauchy-Schwarz inequality asserts
that

(a2 +a2+ - +al)b? +b3 + - +b2)
é(ﬁlbl +aghy 4+ - +a,,b,,)2

with equality if and only if a;b; = a#; for
all i, j such that 1 <i < j<k, Taking k=3,

@ =yx+y, ;y=yy+z, 3 =vz+a,

x

Z
h= . b
f 2

T

N
Vr+z

then dividing both sides by 2(x + y + 2),
we get the desired inequality,

Other commended solvers: CHAN
Wing Sum (HKUST), Alex CHUENG
King Chung (Po Lenng Kuk 1983
Board of Director’s College, Form 6),
Yves CHEUNG Yui Ho (STFA Leung
Kau Kui College, Form 5), TAM Siu
Lung (Queen Elizabeth School, Form 4),
and Sam YUEN Man Long (STFA
Leung Kau Kui College, Form 4).

Problem 58. Let ABC be an acute-
angled triangle with BC > CA. Let O be
its circamcenter, H its orthocenter, and
F the foot of its altitude CH. Let the
perpendicular to OF at F meet the side
CA at P. Prove that ZFHP = /BAC.
(Source: unused problem in the 1996
IMO.)

Selution: Official Solution.

Let Y be the midpoint of AC. Since
ZOFP = ZOYP = 90°, points F, P, ¥, O
lie on a circle T', with center at the
midpoint Q of OP. Now the nine point
circle Iy of AABC also passes throngh F
and ¥ and has center at the midpoint N
of OH. So FY is perpendicular to NQ.
Since NQ is parallel 10 HP by the
midpoint theorem, FY is perpendicular
to HP. Then ZFHP = 90° — /YFH =
90° — LYCH = ZBAC.

Problem 59. Let n be a positive integer
greater than 2. Find all real number

solutions (xy, 13, -, X,) to the equation
(1=xp)? + Qo) + -

1
o2 L2
+ (Kpt=Xp) o+ x5 = =

(Source: 1975 British Mathematical

Olympiad)

Solution 1: Official Solution.

Let 1-x, = + 2,
n+1
1
X — Xy = + 25,
n+l
1
Xpep = Xy = + 24
n+1

X = +-

n

n+l

Tasl-

Adding the above n + 1 equations, we
get
D+t =

{continued on page 4)
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Problem Corner
(continued from page 3)
In terms of z, the given equation can
then be simplified to
2 +z3 + - +22,, =0.

So all z; = 0, which implies

_n+l-i

fori=1,2,...,n.

Solution 2: Venus CHU Choi Yam (St.
Paul’s Co-ed. College, Form 6), Gary
NG Ka Wing (STFA Leung Kau Kui
College, Form 4) and POON Man Wai
(St. Paul’s College, Form 4).

We use the Cauchy-Schwarz inequality
as stated in Problem 57 Solution 2.
Taking k=n+ 1,
a=l-x,a=x-x,...,
An = Xp-1— Xpy el = Xy,

bi=by=-

we see that we have equality. So a; = @,
= +++ = g, yielding the unique solution

"=bn+1= 1!

1
=21l eist,2,0n
n+1l

Problem 60. Find (without calculus) a
fifth degree polynomial p(x) such that
p(x) + 1 is divisible by (x — 1)° and
p(x) — 1is divisible by (x + 1)°.

Solution: LAW Ka Ho (Queen
Elizabeth School, Form 4), Gary NG
Ka Wing (STFA Leung Kau Kui
College, Form 4), POON Man Wai (St.
Paul’ s College, Form 4) and TAM Siu
Lung (Queen Elizabeth School, Form 4).

Note that (x ~ 1)* divides p(x) + 1 and
p(=x) = 1; so (x — 1)° divides their sum
p(x) + p(-x). Also (x + 1)’ divides
px) -1 and p(-x) + 1; so (x + 1)°
divides p(x) + p(~x). Then (x - 1)°(x + 1)
divides p(x) + p(—x), which is of degree
at most 5. So p(x) + p(—x) = 0 for all x.
Then the even degree term coefficients
of p(x) are zero. Now

p)+1=(x-1P°@A2+Bx-1).

Comparing the degree 2 and 4
coefficients, we get 3+ 3B — A = 0 and
B — 3A = 0, which implies A = —3/8 and
B =-9/8. This yields

5 15

p(x) =—-:-x5 +%x —?x.

—_— _ Paged
Other commended solvers: CHAN Second day (July 25, 1997)
Wing Sum (HKUST), OR Kin (SKH Each problem is worth 7 points.

Bishop Mok Sau Tseng Secondary
School, Form 3), SIN Ka Fai (STFA
Leung Kau Kui College, Form 4) and
Sam YUEN Man Long (STFA Leung
Kau Kui College, Form 4).

—_—— OO

Olympiad Corner
(continued from page 1)

Problem2. Angle A is the smallest in
the triangle ABC. The points B and C
divide the circumcircle of the triangle
into two arcs. Let U be an interior point
of the arc between B and C which does
not contain A. The perpendicular
bisectors of AB and AC meet the line AU
at V and W, respectively. The lines BV
and CWmeet at 7. Show that

AU=TB+ TC.

Problem3. Let x;, x;, ..., x, be real
numbers satisfying the conditions:

bo 42+ o +x,|=1
and [Iilﬂ%l fori=1,2,...,n.

Show that there exists a permutation
Y15 Y25 -+os Ya Of X1, X2, ..., X, Such that

n+1

|y1 +2y, + o +ny,,|£-

Time Allowed: 41 hours.

Problemd4. An n x n matrix (square
array) whose entries come from the set
S=1{1,2,..,2n~- 1} is called a silver
matrix if, for each i = 1, ..., n, the ith
row and the ith column together contain
all elements of S. Show that

(a) there is no silver matrix for n = 1997;

(b) silver matrices exist for infinitely
many values of .

ProblemS. Find all pairs (a,b) of
integers @ 2 1, b > 1 that satisfy the
equation _ '

abz - bﬂ

Problem 6. For each positive integer n,
let fin) denote the number of ways of
Tepresenting n as a sum of powers of 2
with nonnegative integer exponents.
Representations which differ only in the
ordering of their summands are
considered to be the same. For instance,
fi4) = 4 because the number 4 can be
represented in the following four ways:

4,242;24+1+1;1 414141,

Prove that, for any integer n > 3,

2V < FMy<2m

15 - . 9
2riThy Hunp -~y v

&

Above: A photo of the Hong Kong Team taken in front of the IMO97 score board.
From left to right are: LEUNG Wing Chung, CHEUNG Pok Man, YU Ka Chun,
LAU Lap Ming, CHAN Chung Lam, MOK Tze Tao, LUK Mee Lin (La Salle

College, Deputy Leader), LI Kin Yin (HKUST Math Dept, Team Leader).
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Problem 1. & is a four-digit integer, not
ending in zero, and R(YV) is the four-digit
integer obtained by reversing the digits
of N, for example, R(3275) = 5723.
Determine all such integers N for which
R(Ny=4N+ 3.

Problem 2. For positive integers n, the
SCQUENCE &y, tyy A3, ..y Ly ... 18 defined
by

n+1
ar=1, a; = ;—-—1- (o +ap+ +a,_ 1) n>1.

Determine the value of a997.

Problem 3. The Dwarfs in the Land- .

under-the-Mountain have just adopted a
campletely decimal currency system
based on the Pippin, with gold coins to
the value of 1 Pippin, 10 Pippins, 100
Pippins and 1000 Pippins.

In how many ways is it possible for a
Dwarf to pay, in exact coinage, a bill of
1997 Pippins?

(continued on page 4)
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Inverse Sequences and Complementary Sequences

Yau Kwan Kiu Garry
Form 7, Queen’s College

Editor' s Note: This article is modified
and shortened by the editors.

Consider the sequence
im=0,0,0,1,2,33,456,7,10, ...,

iLe, 1)=0,/12)=0,A3)=0,f4 =1, etc.
‘We can construct another sequence f*(n)
according to the definition

PAny = k, where fik) < n < flke+1).
For our example,
fn)=3,4,57,829,10, 1§11, 11, ...

Note that f*{n) can also be referred as the
“frequency distributton function” of fin)
since f*(n) is the number of terms in the
sequence f that are less than x.

Figure 1 shows the two functions fin)
and f*(n). We nole something
interesting: f* is a mirror image of f. If
we compute the frequency distribution of
S¥(n), we obtain fn) again. That is,
S*(m) = fln). The sequences f{n) and
JS*(n) are called inverse sequences.

E 3

12

11

10 )

9

3

7

6

5 fin)

4

3

2

i N
123456789101112 »

Figure 1. The functions f{n) and f*{n).

Now we construct two other sequences

Fin) = fin) + n and G(n) =f*(n) + n.
For our example,

Fn)=1,2,3,5.7,9,10, 12, 14, .. ;
Gn)=4,6,8,11,13,15,17,19,20, ...

Notice anything? The two sequences
F{n) and G{n) together contain each
natural number exactly once. This fact
and its converse were first discovered
and proved by mathematicians Lambek
and Moser in 1954 (cf American
Mathematical Monthly, vol. 61, p. 454,
1954). The sequences F(n) and G(n) are
called complementary sequences.

Theorem (Lambek and Maser). fn)
and f*(») are inverse sequences if and
only if F(n) = fin) + n and G(n) = f*(n) +
n are complementary sequences {with
the minor conditions that (i} fAn) and
F¥(n) are non-decreasing sequences of
non-negative integers; (ii) F(n) and G(n)
are strictly ‘increasing sequences of
positive integers.)

If a formula for the nth term of a
sequence is known, the theorem of
Lambek and Moser can be used to find a
general formula for the complementary
sequence, The following example
illustrates the idea.

Example. We can separate the natural
numbers into two sequences F(n) and
G(n) that contain squares and non-
squares as follows.

Fn}=1,4,9,16, 25, 36, 49, 64, 81, ...,
G(n)=2,3,56,7,8,10, 11, 12,13, ...

We know that a formula for the nth
square is F{n) = n®. Can we find a
formula for the nth non-square G(n)?

We note that F(n) and G(n} are
complementary and thus the sequences

Amy=Fn)-n=10,2,6, 12, 20, ...,
ﬂ(n)=G(n)_n= l, 1?2’?2”2"2’!3J sy

are inverse sequences. Now
A =Fn)—n=n*-n.
Therefore, f*(n) = k where

fR) < n < flk+1),
E-k<ns@GrY -+ =+ £

Since both & and n are integers,
K—k+d <n<t®+k+l,
-3V <n<k+1y,
k-1 <an <k+%,
1 1
H——<kb<yn+—.
J_ 2 J_ 2
Consequently,
P =k=[Vn+i]
and

G =)+ n=n+ [ +4].



Mathematical Excaliburz Vol. 3, No. 4, Sepi-Nov, 97 nge 3

Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication  consideration.  Solations
should be preceded by the solver's
name, address, school affiliation and
grade level. Please send submissions (o
Dr. Kin-Yin Li, Dept of Mathematics,
Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions is
January 10, 1998.

Problem 66.

(a) Find the first positive integer whose
square ends in three 4's.

() Find all positive integers whose
squares end in three 4.

{c) Show that no perfect square ends
with four 4’s,

(Source: 1995 British Mathematical
Olympiad.)

Problem 67. Let Z and R denote the
integers and real numbers, respectively.
Find all functions f: Z — R sach that

x+y.  f)+f(y)
f( 7 )= 3

for all integers x, ¥ such that x + y is
divisible by 3. (Sowrce: a modified
problem from the 1995 [Iranian
Mathematical Olympiad.)

Problem 68, If the equation
a+(c~bx+(e~d)=0
has real roots greater than 1, show that the
equation
at+ b vl +dcte=0

has at least one real root. {(Source: 1995
Greek Mathematical Olympiad.)

Problem 69. ABCD is a quadrilateral
such that AB = AD and Z8 = 2D = 90°,
Points F and E are chosen on BC and
CD, respectively, so that DF 1 AE.
Prove that AF 1 BE. (Source: 1995
Russian Mathematical Olympiad.)

Problem 70. Lines {, I, -+, [, are on a
plane such that no two are parallel and
no three are concurrent. Show that we

can label the C§ intersection points of
these lines by the numbers 1, 2, -, k-1

s¢ that in each of the lines [, L, -+,

the numbers 1, 2, ---, k-1 appear exactly
once if and gnly if k is even. (Source: a
modified problem from the 1995 Greek
Mathematical Olympiad.)

e He oo o ook ofe e sk e ok o e sk e sfe

Solntions
skokeseskok e o e stk ok s sk ok

Due to the large number of solutions
received by the editors, we will first
acknowledge the solvers by their schools and
grade levels. The numbers following a
solver's name are the number of the problems
which the solver submitted correct solutions.

Bishop Hall Jubilee School: (Form 4)
CHAN Kin Hang (61, 63, 64, 65). Cheung
Chuk Shan College: (Form 5) CHOW King
Fun {61). Heep Woh College: (Form 7} KU
Wah Kwan (61, 63). Ho Fung College:
(Form 6) TSE Wing Ho (61, 64). HK Taoist
Association Ching Chung Secondary
School: (Form 7) LI Fung (61, 62). HKUST:
CHAN Wing Sum (61, 63). La Salle
College: (Form 3y CHAN Ernest Bason (61}
{Form 5) Vincent LUNG (61). N.T. Heung
Yee Kuk Yuen Long District Secondary
School: (Form 7) CHU Kai Mun (61, 63,
64). Queen Elizabeth School: (Form 4) LAI
Chi Fung Brian (61), LAW Ka Ho (61, 62,
63, 64, 65). Saint Louis School: (Form 7)
SHAM Wing Hang (61). St. Paul's Co-
educational College: (Form 5) CHAN Lung
Chak (61, 62), MAK Shiu Ting (61), NGAN
Chung Wai Hubert (61, 62, 63, 64, 65),
SHEK Ka Wai Wilson (62); (Form 7) CHU
Choi Yam Venus (61). St. Stephen's Girls'
College: (Form 6) WAN Ha Wah (61).
SKH Kei Han Secondary School: (Form 4)
WONG Chun Wai (61, 62, 63, 64, 65). Shi
Hui Wen Secondary School: (Form 6)
Jimmy KONG Ka Ho (61, 62, 64, 65).
STFA Leung Kaun Kui College: (Form 5)
CHU Chun Yiu (61, 63), IP Man Wai (61),
Gary NG Ka Wing (61, 62, 63, 64, 65), SIN
Ka Fai (61, 62, 64), YUEN Man Long (61,
62, 63, 64, 65); (Form 6) Yves CHEUNG
Yui Ho (61, 62, 63, 64), CHING Wai Hung
(61, 62, 64), WONG Hau Lun (61, 62, 63,
64, 63); (Form 7) William CHEUNG Pok
Man (62, 63, 64). Valtorta College: (Form
6) CHANG Pui Kwan (61), KO Tsz Wan
(61), Ryan LAI (61), LAM Wai Hung (61),
LIN Kai Shuen (61), NG Lai Ha (61), TAM
Ka Kwong (61), TANG Ka Wai (61),
WONG Shu Fai (61); (Form 7) KWAN Yee
Kin (61), LEUNG Pak Keung (62}, TSANG
Sai Wing (62), WAN Tsz Kit (61, 62, 64).

Problem 61, Find the smallest positive
intecger which can be written as the sum
of nine, the sum of ten and the som of
¢leven consecutive positive integers.

Solution:

Let n be the smallest such positive
integer. Then

n=a+(@tl)+ -+ (@+8) = 9a + 36,
n=b+b+l) + .- + (b+9) = 10b + 45,
n=c+ (c+1}+ - + (c+10) = 11c + 55.

These imply » is divisible by
9x5x11 =495,
So n 2 495. Letting a = 51, b = 45,

¢ =40, we see that 495 is possible, So
n=495,

Problem 62. Let ABCD be a cyclic
quadrilateral and let P and Q be points
on the sides AB and AD respectively
such that AP = CD and AQ = BC. LetM
be the point of intersection of AC and
PQ. Show that M 1s the midpoint of PQO.
(Source. 1996 Australian Mathematical
Olympiad.)

Solution: WONG Chun Wali,
Let {XYZ] denote the area of AXYZ, Then
MP _[PAC] 45{ABC]
= =4
M@ [QAC] ZE[ADC]
_ CD-AD-[ABC]
" AR-BC-[ADC)

_[ADCI[4BCY _,
[ABCI-{ADC)

Problem 63, Show that for # = 2, there is
a permutation a4y, a3, ..., a,0f 1,2, ..., n
such thatla, —kl=la; - N =0 for k = 2,
3, ..., nif and only if » is even,

Solution: LAW Ka Ho.

Suppose for some n, the condition is
possible. Let d = lg; — 1, p be the
number of times a, > k and ¢ be the
number of times ay < k. Thenp +g=n
and

O=(;— 1)+ {2 —2) + -« + (a,— n}
=pd— qd.

So p = g and n is even. If n is even, then
the permutation 2, 1, 4, 3, ..., n, n—-1
satisfies the condition with gy - 11=1.

Comments: This was a problem on the
1996 Australian Mathematical QOlympiad.

Problem 64. Show that it is impossible
to place 1995 different positive integers

{continued on page 4)
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Problem Corner
(continued from page 3)

along a circle so that for every two
adjacent numbers, the ratio of the larger
to the smaller one is a prime number,

Solution: William CHEUNG Pok Man.

Suppose this 1s possible. Let ay, a, ...,
diges be the numbers in the clockwise
direction. Then a, ./ 4, is a prime or the
reciprocal of a prime for k=1, 2, ...,
1995 with ap = dges. Suppose m of these
are primes and 1995 — m of these are
reciprocals of primes. Since

a; Ada 1995

this means the product of m primes will
equal to a product of 1995 — m primes..
Unique primne factorization implies m =
1995 — m, which is impossible as 1995 is
odd,

Comments. This was a problem on the
1995 Russia Mathematical Olympiad.

Problem 65. All sides and diagonals of
aregular 12-gon are painted in 12 colors
{each segment is painted in one colar).
Is it possible that for any three colors
there exist three vertices which are
jomed with each other by segments of
these colors?

Solution: LAW Ka Ho.

There are 12 sides and 54 diagonals.
With 12 colors, there s a color, say X,
which is used to paint at most 5 of these
segiments. For each X colored segment,
10 triangles can be formed having. this
segment as a side (using the remaining
10 vertices). So there are at most 50
triangles with at least one side colored X.
However, if any three colors are the
colors of the sides of a triangle, there

would be C;' = 55 triangles having at
least one side colored X, a contradiction.

Comments: This was also a problem on

the 1995  Russia  Mathematical
Olympiad.

— e TTOROT
Olympiad Corner

{continued from page I)

Problemd. Let ABCD be a convex
quadrilateral. The midpoints of AB, BC,

CD and DA are P, @, R and S,
respectively, Given that the quadrilateral
PORS has area 1, prove that the area of
the quadrilateral ABCD is 2.

Problem 5. Let x, y and z be positive
real numbers.

() Ifx+ y+ z =3, is it necessarily true

that L+L1ilea9
Xy z

(i)If x + y + 2 £ 3, is it necessarily true

that —1-+—1—+~1~23 ?
Xy z

Round 2 (February 27, 1997)
Time Allowed: 31 hours.

Problem 1. Let M and N be two 9-digit
positive integers with the property that if
any one digit of M is replaced by the
digit of & in the corresponding place
{e.g., the ‘tens’ digit of M replaced by
the “tens’ digit of &) then the resulting
integer is a multiple of 7.

Prove that any number obtained by
replacing a digit of N by the
correspending  digit of M is also a
multiple of 7.

Find an integer 4> 9 such that the above
result concerning divisibility by 7
remains true when M and N are two
d-digit positive integers.

Problem 2. In the acute-angled triangle
ABC, CF is an altitode, with F on AB,
and BM is a median, with M on CA.
Given that BM = CF and ZMBC =
ZFCA, prove that the triangle ABC is
equilateral.

Problem3. Find the number of
polynomials of degree 5 with distinct
coefficients from the set {1, 2, 3, 4, 5, 6,
7, 8} that are divisible by x* —x + 1.

Problemd. The set
S={lUr:r=1,2,3,...}

of reciprocals of the positive integers
contains arithmetic progressions of
various lengths, For instance, 1/20, 1/8,
175 is such a progression, of length 3
(and common difference 3/40). Moreover,
this 18 a maximal progression in § of
length 3 since it cannot be extended to
the left or right within S (-1/40 and
11/40 not being members of 5).

(i) find a maximal progression in § of
length 1996.

(ii)Is there a maximal progression in §
of length 19977

Ny fh ek S

RSB (1)
{continued from page 2)
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‘Olympiad Corner EWMAKBEMN ()

International Mathematics Tournament
of the Towns, Spring 1997 A E

Junior A-Level Paper

Problem 1. One side of a triangle is Eﬁﬁ:?‘ {Eﬁgﬁ:ﬁﬁ 2 ABC ﬁﬂ%?ﬁ{f’ﬁﬁﬁ—-ﬁﬁﬁél)%!]i) T E
equal to one third of the sum of the other e —ARV=A] R FQ H E, WITH DE.D'E - {8
two. Prove that the angle opposite the B PP FI DD B 5 B X 20 7] LB UR 1
first side is the smallest angle of the W A€ IE IE £ 1> S % AR Schwarz &
triangle. (3 points) R4 —f DPHARBERE -

_ ‘ o E AEMLE—FBE Z R AB A
Problem2. You are given 235 pieces of : A'B" EMNFEHZSE  MAFSE
cheese of different weights. Is it always BEHMFE TR  Schwarz 15 & i B
possible to cut one of the pieces in two A BEE R B 2 K BB AR F {7
parts and put the 26 pieces in two packets n il —) A"B" :

so that c

(i} each packet contains 13 pieces; KM —40 : BEEEABC e ABRTEBIRW2/BBAB HA K

(ii) the total weights of the two packets AP =H s > W— AN AR K A RB2IABAB: AR H R B
are equal; ErEMERE AR 5 M2ERAE BRMAES

(iii) the two parts of the piece which has ﬁ&ﬁFag\nanoﬁ?ﬁ?EHj ’ %‘tﬁ- ;t?‘fﬁ;ﬁﬁé%AB ° B It AB FI A"B" &)
been cut are in different packets? E % ﬁ Hi g "f,ﬁ i E § ;i; g g ﬁ

3 point: ! — = - 2LB+2LA-2LB-24A=0 "

(5 points) NOEAE - L EHEXSE g

Problem 3. In a chess tournament, each Fagnano 5 f8 - gk B3 » ABIE{TA"B" -

of 2n players plays every other player

once in each of two rounds. A win is smp# K —FHiL #8558 — HPRAD=AD'MAP=AP' > B ik

worth 1 point and a draw is worth (¥ @ 8 % Schwarz {2 5| — @ = FDDPEFTHEE (HME) - #

Vapoint. Prove that if for every player, the gy Z &Mt : B —Fix> =z - APQRB’]HE(_IPP')EF}T

total score in the first round differs from g AABC L& 9 38 B 7 &

that in the second round by at least n ig %ar};}g B B 7 E\‘E 0 @ gg% E:AABC MR =&E+ &

points, then the difference is exactly n @& =g o
points for every player. (5 points)

(continued on page 4)
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A Proof for The Lambek and Moser Theorem

Two sequences fln) and f*(n) are called
inverse sequences if

Sy = k, where k) < n < flk+1).
Two sequences F(n) and G(n) are called
complementary sequences if F(n) and

G(n) together contain each natoral
number exactly once. {c.f. vol. 3 no. 4)

Theorem: firn} and f*(n} are inverse
sequences if and only if F(n) = fin) + n
and G(n) = f*(n) + n are complementary
sequences {with the minor conditions that
(i) fin) and f*(n) are non-decreasing
sequences of non-negative integers; (ii)
F(m)- and G(n) are strictly increasing
sequences of positive integers.)

Proof: We will first prove the converse.
Let F(n} and G(n) be strictly increasing
sequences of positive integers such that
and (¢ are complementary. For example,
r
F(ny=123,
G(n)=

6, B,
45, 17,9,
\ﬂ..,_._J

)

10, 11, -
12, -+

(Note the inserted spaces in the above
illustration so that the natural numbers
are in increasing order from left to right
in relative position.) Let N be a natural
number. Let r and s be the number of
terms in F(n) and G(n) that are € N
respectively. (In the above illustration, ¥
=9, r=5ands=4.)Notethat r + s = N.

Now consider f{n) = F(n) - n and () =
Gin)—n.

F{n)=0,00,
f*n)=

2,3 4,4, -
3s3y 4! -Sa 7v A
— e

*

We observe that
A =GE~s=N-s=r.
That is,

F¥(s) = the number of terms in f appear
on the left hand side (in
position) of the term f*(s).

Likewise,

Ar)= the number of terms in f* appear
on the left hand side (in
position) of the term fr).

Since the term fir) appear on the left hand
side of f*(s), fir). < 5. We may similarly
show that fr+1} = s and thus

AN <s<fir+1).
That is, f*(r1) is the frequency distribution
of fin) and thus f{n) and f¥(n) are inverse
sequences. The fact that £r) < s < f{r+1)
can alse be proved formally as follows.
An=Fr-r<N-r=s
FOr+1) = FOr+ 1)—(r41) » N—(r+1) = 51,
Art) = 5.
We will now show that if fin) is a non-
decreasing sequence of non-negative
integers and f*(n) is the frequency
distribution function of f{n), then F(n) =
fin) + n and G(n) = g(n) + n are
complementary. Given the sequence f(n),
we can first construct the sequence F(n) =
fin) + n. Let H(n) be the complementary
sequence of F(n) and let k(n) = H(n) - n.
From the converse proof, A{n) mnst be
the frequency distribution of fln). Since
the frequency distribution of a given
function is unique, A(r) = f*(n) and thus
Gmy=fn)+n=hin) + n=Hn)
is the complementary sequence of F(x).

Q.E.D.
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication  consideration.  Solutions
should be preceded by the solver’s name,
address, school affiliation and grade
level. Please send submissions to Dr.
Kin-Yin Li, Dept of Mathematics, Hong
Kong University of Science and
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions is
April 15, 1998,

Problem 71. Find all real solutions of the
system

x+10g(x+\l'x2+l)= ¥,
y+l<}g(y+-.,ly2 +1]=z .
z+l0g(z+\/zz +1 )=x.

(Source: 1995 Israel Math Olympiad.)

Problem 72. Is it possible to write the
numbers 1,2, ..., 121 inan 11 x 11 table
so that any two consecutive numbers be
written in cells with a common side and
all perfect squares lie in a single column?
{Source: 1995 Russian Math Olympiad.)

Problem 73. Prove that if ¢ and b are
rational numbers satisfying the equation
a’+b3 =222, then 1 — ab is the
square of a rational number. (Source:
26th British Math Olympiad.)

Problem 74. Points A;, By, €, are the
midpoints of the altitudes AA,, BB,, CC,
of acute triangle ABC, respectively. Find
the sum of £B4,Cy, LC3B\As, Z4,C8s,
(Source: 1995 Russian Math Olympiad.)

Problem 75. Let P(x) be any polynomial
with integer coefficients such that
P(21) = 17, P(32) = =247, P(3T) = 33.
Prove that if P(¥) = N + 31, for some
integer N, then N = 26. (Source: 23rd
British Math Olympiad.)

s dokookokok sk ok dokek

Solutions
s skt e ot s ot sl ok s ool e e

Problem 66.

(a) Find the first positive integer whose
square ends in three 4's,

(b)Find all positive integers
squares end in three 4's.

whose

(c) Show that no perfect square ends with
four 4's,

(Source: 1995 British Mathematical

Olympiad.)

Solution: Andy CHAN Kin Hang
(Bishop Hall Jubilee School, Form 4) and
SHUM Ho Keung (PLK No. 1 W. H.
Cheung Collepe, Form 5).

(a) Since 217 < 444 < 22% and 1444 = 38,
the first such positive integer is 38.

(b) Assume # is such an integer. Then
n’ - 1444 = (n - 38)(n + 38)

is divisible by 1000 = 2°5°. This implies
at least one of 1 — 38, n + 38 is divisible
by 4. Since their difference is 76, hence
both must be divisible by 4. Since 76 is
not divisible by 5, hence one of n — 38,
n + 38 is divisible by 4-5° = 500. Then
n= 500k = 38 for some nonnegative
integer k. Conversely, for such »,

n® = 1000(2504* + 38k) + 1444
always ends in three 4's.

(c) Since 250k + 38% is even, no perfect
square ends with four 4's,

Other commended solvers: KWOK Chi
Hang (Valtorta College, Form 6), LAI
Chi Fung, Brian (Queen Elizabeth
School, Form 5), LAW Ka Ho {Queen
Elizabeth School, Form 3), LI Fung (HK
Tacist  Association Ching  Chung
Secondary School, Form 7), Gary NG
Ka Wing (STFA Leung Kau Kui
College, Form 3) and WONG Shu Fai
(Valtorta College, Form 6).

Problem 67. Let Z and R denote the
integers and real numbers, respectively.
Find all functions f : Z — R such that

x+y)=f(x)+f(y)
3 2

for all integers x, y such that x + y is
divisible by 3. (Source: a modified
problem from the 1995 TIranian
Mathematical Olympiad.)

S

Solution: CHAN Wing Sum (City U)
and TSANG Sai Wing (Valtorta
College, Form 7).

For all integer n,
RO) + f3n) = 2finy = fn) + A2n).

This implies

Page 3

f(@3m)+ f(3n)
2

So fin) =f0) for all integer n. It is also clear
that all constant functions are solutions.

fim=f@n= = f(3n).

Other commended solvers: Andy CHAN
Kin Hang (Bishop Hall Jubilee School,
Form 4), CHING Wai Hung (STFA
Leung Kau Kui College, Form 6), LAW
Ka Ho (Queen Elizabeth School, Form
5), 1.1 Fung (HK Taoist Association
Ching Chung Secondary School, Form
7). Gary NG Ka Wing (STFA Leung
Kau Kui College, Form 5) and WONG
Hau Lun (STFA Leung Kau Kui
College, Form 6).

Problem 68. If the equation
al+(c—bx+(e-d)=0
has real roots greater than 1, show that the
equation
att + b e +dr v e=0

has at least one real root. (Source: 1995
Greek Mathematical Olympiad.)

Solution: CHAN Wing Chiu (La Salle
College, Form 5).

Suppose
pry=at + b + el +dx+ e
has no real root. Let y > 1 be a root of ay’

+{c—-by+{(e—d =0 and z:J;.
Since

px) = ax*+(c-byH(e—d)+Hx-1)(b32+d),

we get
p(z)= (2= )b + d)
and
pl=2) = (2~ (BT + d).

Now z > 1| implies one of p(z), p(-z) is
positive, while the other is negative.
Therefore, p(x) has a root between z and
-z, a contradiction.

Problem 69. ABCD is a quadrilateral
such that AB = AD and ZB = £D = 90°,
Points £ and E are chosen on BC and
CD, respectively, so that DF L AE. Prove
that AF 1 BE. (Source: 1995 Russian
Mathematical Olympiad.)

Solution 1: WONG Hau Lun (STFA
Leung Kau Kui Coliege, Form 6).

Let E' be the mirror image of E with

(continued on page 4)
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Problem Corner
(continued from page 3)

respect to AC. Let X be the intersection
of DF and AE. Let Y be the intersection
of AF and BE. Since LADE = 90°
LAXD, we have LADF = ZDEA =
LBE'A = 180° ~ ZAE'F. So A, D, F, E'
are concyclic. Then LAFD = LAE'D =
LAEB. So X, E, F, Y are concyclic.
Therefore Z/EYF = ZEXF = 90°.

I

Solution 2: CHING Wai Hung (STFA
Leung Kavw Kui College, Form 6).

Since DF 1 AE and DA L DE, so
0=DF - AE
=(EJ;+H}.)-I§
= DA-(AD +DE)+ AF - AE
which simplifies to
AF AE=IADI?,

Since BF 1. BA, so

—_— . — o ——

AF . BE = AF - (BA+ AE)
= (AB+ BF)- BA+ AF - AE

—2  —2
=—|AB| +|AD
=0

which implies AF | BE.

Other commended solver: TSANG Kam
Wing (Valtorta College, Form 5).

Problem 70. Lines /,, L, -, Lareona
plane such that no two are parallel and no
three are concurrent, Show that we can

label the CF intersection points of these

lines by the numbers 1, 2, -+, k-1 5o that
in each of the lines [, &, ---, [ the
pumbers 1, 2, -, k=1 appear exactly
once if and only if & is even. (Source: a
modified problem from the 1995 Greek
Mathematical Olympiad,)

Solution: Gary NG Ka Wing (STFA
Leung Kau Kui College, Form 5).

If such labeling exists for an integer k,
then the label 1 must cccur once on each
line and each point labeled 1 lies on
exactly 2 lines. Hence there are &/2 1's,
Le. kis even.

Conversely, if £ is even, then the
following labeling works: for 1 € i< j <
k- 1, give the intersection of lines I; and

[y the label i + f ~ 1 when [ + j <k, the
label i + j — k when { + j > k. For the
intersection of lines L and §; =1, 2, ...,
k — 1), give the label 2{ — 1 when 2{ < k
the label 2i — k when 2/ > k.

Comments; The official solution made
use of the special symmetry of an odd
number sided regular polygon to
construct the labeling as follow: for %
even, consider the k — 1 sided regular
polygon with the vertices labeled 1, 2,
s k=1, For 1 £f{«<j=<k-1, the
perpendicular bisector of the segment
joining vertices i and j passes through a
unique vertex, give the intersection of
lines {; and J; the label of that vertex. For
the intersection of lines L and [, (i =1, 2,
.. k~ 1), give the label /.

Other commended solver. LAW Ka Ho
(Queen Elizabeth School, Form 5).

e T AT

Olympiad Corner
(continued from page I)

Problem4. AC'BA'CR' is a convex
hexagon such that AB' = AC", BC' = BA’
and CA' = CB'. Moreover, ZA + ZB +
LC = LA'+ ZB' + £, Prove that the
area of triangle ABC is half of the area of
the hexagon. (6 points)

Problem 5. Prove that the number
(a) 97°"; (4 points)
(b) 1997" (4 points)

is not representable as a sum of cubes of
several consecutive integers.

Problem 6. Let P be a point inside the
iriangle ABC with AB = BC, ZABC =
80°, LPAC = 40° and ZACP = 30°
Find £BPC. (7 points)

Problem7. You are given a balance and
one copy of each ten weights of 1, 2, 4, §,
16, 32, 64, 128, 256 and 512 grams. An
object weighing M grams, where M is a
positive integer, may be balanced in
different ways by placing various
combinations of the given weights on
either pans of the balance.
(a) Prove that no object may be
balanced in more than 89 ways.
{5 points)
(b} Find a value of M such that an object
weighing M grams can be balanced
in 89 ways. (4 points}

Senior A-Level Paper

Problem 1. same as Junior A-Level Paper
Problem 2. (4 points)

Problem 2. D is the point on BC and E
is the point on CA such that AD and BE
are the bisectors of ZA and £ZB of
triangle ABC. If DE is the bisector of
ZADC, find ZA. (5 points)

Problem 3. You are given 20 positive
weights such that any object of integer
weight m, 1 < m <1997, can be balanced
by placing in it one pan of a balance and
a subset of the weights on the other pan,
What is the minimal value of the largest
of the 20 weights if the weights are

(a) all integers; (3 points}
(b} not necessarily integers? (3 points)

Problem4. A convex polygon G is
placed inside a convex polygon F so that
their boundaries have no common points.
A segment s containing two points on the
boundary of F is called a support chord
for G if s contains a side or only a vertex
of G. Prove that

(a) there exists a support chord for G
whose midpoint lies on the boundary
of G; (6 points}

{b) there exist at least two such chords.
(2 points)
Problem 5. Prove that

1 | 1
l1+a+b l4+b+c l4c+a

- I

where a, b and ¢ are positive numbers
such that abe = 1. {8 points)

Problem 6. Prove that if F(x) and G{x)
are polynomials with coefficients 0 and 1
such that

FOGE =1+x+x+ ...+ X

holds for some » > 1, then one of them is
representable in the form

(1+x+x2+ ... +2HTR

for some & > 1 and some polynomial T(x)
with coefficients 0 and 1. (8 points)

Problem 7. Several strips and a circle of
radius 1 are drawn on the plane. The sum
of the widths of the strips is 100. Prove
that one can translate each strip parallel
to itself so that together they cover the
circle. (8 points)
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Each question is worth 7 points.

Problem 1. Let F be the set of all
n-tuples (4, A»,..., A,) where each 4;, i =
1, 2, ..., n is a subset of {1,2,...,1998}.
Let |4| denote the number of elements of
the set 4. Find the number

> 4udu.4,).
(4,45 ,...,4,)

Problem 2. Show that for any positive
integers a and b, (36a+b) (a+36b) cannot
be a power of 2.

Problem 3. Let a, b, c be positive real
numbers. Prove that

1+ 14 214850 14 404
b c a Yabc

Problem 4. Let ABC be a triangle and D
the foot of the altitude from 4. Let £ and
F be on a line passing through D such
that AE is perpendicular to BE, AF is
perpendicular to CF, and E and F are
different from D. Let M and N be the
midpoints of the line segments BC and
EF, respectively. Prove that AN is
perpendicular to NM.

(continued on page 4)
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A Taste of Topology

Wing-Sum Chan
Beauty is the first test: there is no permanent place in the world for ugly mathematics.

In topology, there are many abstractions of
geometrical ideas, such as continuity and
closeness. ‘Topology’ is derived from the
Greek words tomoc, a place and Aoyoo,
a discourse. It was introduced in 1847 by
Johann Benedict Listing (1808-1882),
who was a student of Carl Friedrich Gauss
(1777-1855). In the early days, people
called it analysis situs, that is, analysis of
position. Rubber-sheet geometry is a
rather descritpive term to say what it is.
(Just think of properties of objects drawn
on a sheet of rubber which are not changed
when the sheet is being distorted.) Hence,
topologists could not distinguish a triangle
from a rectangle and they may even
consider a basketball as a ping-pong ball.

Topologists consider two objects to be the
same (homeomorphic) if one can be
continuously deformed to look like the
other. Continuous deformations include
bending, stretching and squashing without
gluing or tearing points.

Example 1. The following are
homeomorphic: (See Figure 1.)
7 (2
Figt
Example 2. The following are

non-homeomorphic: (See Figure 2.)

(G. H. Hardy )

In practise, continuous deformations may
not be easy to carry out. In fact, there is a
simple method to see two objects are
their
Poincaré-Euler characteristics, (in short,

non-homeomorphic, by seeking
Euler numbers). In order to see what the
Euler number is, we need to introduce the
concept of subdivision on an n-manifold
(here n <2 throughout). (An n-manifold
is roughly an n dimensional object in
which each point has a neighborhood
homeomorphic to an open interval (if n = 1)
or an open disk (if » = 2). For example, a
circle is a I-manifold and a sphere is a
2-manifold.)

Basically, we start with an » manifold and
subdividing it into a finite number of
vertices, edges and faces. A vertex is a
point. An edge is a curve with endpoints
that are vertices. A face is a region with
boundary that are edges.

Here are typical pictures of vertex, edge
and face, (see Figure 3.)

The Euler number (y) of a compact
(loosely speaking, bounded) 1-manifold is
defined to be the number of vertices(v)
minus the number of edges(e), and for a
compact 2-manifold (surface), it is defined
to be the number of vertices(v) minus the
number of edges (e) plus the number of
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faces (f) (see Figure 4.) The following
theorem is a test to distinguish
non-homeomorphic objects.

Theorem 1. [f two n-manifolds are
homeomorphic, then they have the same

Euler number.

So figure 4 and theorem 1 imply the sphere
and the torus are not homeomorphic, i.e.
the sphere cannot be continuously
deformed to look like the torus and vice
versa.

Here are two terms we need before we can
state the next theorem. A connected
manifold is one where any two points on
the manifold can be connected by a curve
on the manifold. The manifold is
orientable if it has 2 sides, an inside and an
outside.

Theorem 2. Two connected orientable
n-manifolds (n<2) with the
number of boundary components are
homeomorphic if and only if they have the
same Euler number.

same

Here are some important results that tell us
the general pictures of one and two
manifolds.

Classification 1. Any connected compact
one-manifold is either homeomorphic to

an open interval or a circle.

Classification II. Any connected,
orientable and compact two-manifolds is
homeomorphic to one of the followings:

(see Figure 5.)

Finally, we mention a famous open
problem (the Poincaré conjecture), which
is to show that every compact, simply
connected three-manifold is homeomorphic
to a three-sphere, where simply connected
means any circle on the manifold can be

“theiT bassbng <

shrunk to a point on the manifold.
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceeded by the solver’s

name, home address and school
affiliation. Please send submissions to
Dr. Kin Y. Li, Department of

Mathematics, Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon. The deadline for
submitting solutions is Dec 31, 1998.

Problem 76. Find all positive integers N
such that in base 10, the digits of 9N is
the reverse of the digits of N and N has at
most one digit equal 0. (Source: 1977
unused IMO problem proposed by
Romania)
Problem 77. Show that if A ABC
satisfies

sin? A+sin® B+sin’ C B

>

cos’ A+cos® B+cos® C

then it must be a right triangle. (Source:
1967 unused IMO problem proposed by
Poland)

Problem 78. If ¢, cy,..., ¢, (n 22) are
real numbers such that

(n=1)(ci +c +..+¢)

=(¢c; + ¢y oty
show that either all of them are
nonnegative or all of them are

nonpositive. (Source: 1977 unused IMO
problem proposed by Czechoslovakia)

Problem 79. Which regular polygons
can be obtained (and how) by cutting a
cube with a plane? (Source: 1967
unused IMO problem proposed by Italy)

Problem 80. Is it possible to cover a
plane with (infinitely many) circles in
such a way that exactly 1998 circles pass

through each point? (Source: Spring
1988 Tournament of the Towns
Problem)

sk sk sk sk sk sk sk s sk ok s skeosk sk skok sk

Solutions
skook ook sk ok ok sk ok kok sk ok kok ok

Problem 71.
the system

x+log(x+\]x2 +1)=1y,
y+log(y++/y? +1) =1z,

z+log(z+Vz2 +1)=x.

(Source: 1995 Israel Math Olympiad)

Find all real solutions of

Solution: CHOI Fun Ieng (Pooi To
Middle School (Macau), Form 5).

If x <0, then 0<x+vx>+1<1. So

log(x + Vx> +1) <0, which implies y < x
<0. Similarly, we getz<y<Oandx<z<
0, yielding the contradiction x <z <y <x.

If x > 0, then x+vVx>+1>1. So

log(x +Vx? +1) >0, which implies y > x
> (. Similarly, we getz>y>0andx>z>
0, yielding the contradiction x >z >y > x.
If x =0, then x =y = z = 0 is the only
solution.

Other commended solvers: AU Cheuk
Yin (Ming Kei College, Form 5).
CHEUNG Kwok Koon (HKUST),
CHING Wai Hung (STFA Leung Kau
Kui College, Form 6), HO Chung Yu
(Ming Kei College, Form 6), KEE Wing
Tao Wilton (PLK Centenary Li Shiu
Chung Memorial College, Form 6), KU
Wah Kwan (Heep Woh College, Form 7),
KWOK Chi Hang (Valtorta College,
Form 6), LAM Yee (Valtorta College,
Form 6), LAW Ka Ho (Queen Elizabeth
School, Form 5), Gary NG Ka Wing
(STFA Leung Kau Kui College, Form 5),
TAM Siu Lung (Queen Elizabeth School,
Form 5), WONG Chi Man (Valtoria
College, Form 3) and WONG Hau Lun
(STFA Leung Kau Kui College, Form 6).

Problem 72. Is it possible to write the
numbers 1,2,...,121 in an 11x11 table so
that any two consecutive numbers be
written in cells with a common side and
all perfect squares lie in a single column?
(Source: 1995 Russian Math Olympiad)

Solution: Gary NG Ka Wing (STFA
Leung Kau Kui College, Form 5).

Suppose such a table exists. The table
would be divided into 2 parts by the
single column of perfect squares, with
one side 11n (0<n<5) cells and the
other side 110 - 11n cells. Note that
numbers between 2 successive perfect
squares, say a’, (a+1)2, lie on one side
since they cannot cross over the perfect

square column, and those between

(a+1)2, (a+2)2 lie on opposite side.
Now the number of integers (strictly)
between 1, 4,9, 16, ..., 100, 121 is 2, 4,
6, 8, ..., 20, respectively. So one side
has 2 + 6 + 10 + 14 + 18 = 50 numbers
while the other sidehas4+8 + 12+ 16 +
20 = 60 numbers. Both 50 and 60 are not
multiple of 11, a contradiction.

Other commended solvers: CHEUNG
Kwok Koon (HKUST), HO Chung Yu
(Ming Kei College, Form 6), LAI Chi
Fung Brian (Queen Elizabeth School,
Form 4), LAW Ka Ho (Queen Elizabeth
School, Form 5), TAM Siu Lung
(Queen Elizabeth School, Form 5),
WONG Hau Lun (STFA Leung Kau
Kui College, Form 6) and WONG Shu
Fai (Valtorta College, Form 6).

Problem 73. Prove that if a and b are
rational numbers satisfying the equation
a’+b>=2a’h* , then 1-ab is the
square of a rational number. (Source:
26th British Math Olympiad)

Solution: CHAN Wing Sum (City U).

If =0, then 1-ab=17. If b#0, then
a®+ab® =2a’b* . So a®-24°b% +b*
=b* —ab® = b*(1-ab) . Therefore, 1—ab
:(a6—2a3b2+b4)/b4 is the square of
the rational number (a3 —bz)/b2 .

Other recommended solvers: CHING
Wai Hung (STFA Leung Kau Kui
College, Form 6), CHOI Fun Ieng (Pooi
To Middle School (Macau), Form 5), KU
Wah Kwan (Heep Woh College, Form 7)
and Gary NG Ka Wing (STFA Leung
Kau Kui College, Form 5).

Problem 74. Points 4,, B,, C, are the
midpoints of the altitudes A4, BB, CC; of
acute triangle ABC, respectively. Find the
sum of Z£B,AC, , ZC,B/A4, and
ZA,C\B, . (Source: 1995 Russian Math
Olympiad)

Solution: LAM Po Leung (Ming Kei
College, Form 5)

Let 4;, By, C;be the midpoints of BC,
CA, AB, respectively, and H be the
orthocenter of AABC . Since C;4; is
parallel to AC, so ZHB,A;=90°
= £LHA 45, which implies H, B,, 43, A,
are concyclic. So £B,AH =4B,A;H .
Since B;A4; is parallel to AB, so
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ZHC, 43 =90°= LZHA Ay which
implies H, C,, A3, A, are concyclic. So
LCyAH = £CyA;H . Then /B, A4,C,
= /B, AH + £LCy A H = LB, A,H + ZCy A H

= /LC3A43B; = ZBAC (because
AA3B;C; is  similar to AABC ).
Similarly, £B,C;4, =/BCA and

ZA4,B,C, = ZABC . Therefore, the sum
of Z/B,AC,, £C,B4, , LA4,B,C, is
180°.

Other commended solvers: HO Chung
Yu (Ming Kei College, Form 6).

Problem 75. Let P(x) be any
polynomial with integer coefficients
such that P(21) = 17, P(32) = -247,
P(37)=33. Prove that if P(N) =N+ 51
for some integer N, then N = 26.
(Source: 23rd British Math Olympiad)

Solutions: HO Chung Yu (Ming Kei
College, Form 6).

If P(N) = N + 51 for some integer N,
then P(x) —x— 51 = (x - N)Q(x) for some
polynomial Q(x) by the factor theorem.
Note Q(x) has integer coefficients
because P(x) — x — 51 = P(x) — P(N) —
(x — N) is a sum of ai(xi—Ni) terms
(with @;’s integer). Since Q(21) and
0(37) are integers, P(21) — 21 — 51 =
-55 is divisible by 21 — N and P(3) —
37-51=-551sdivisible by 37— Nis 16,
we must have N =26 or 32. However, if
N =32, then we get -247 = P(32) =32 +
51, a contradiction. Therefore N = 26.

Other commended solvers: CHEUNG
Kwok Koon (HKUST), KU Wah Kwan
(Heep Who College, Form 7), TAM Siu
Lung (Queen Elizabeth School, Form 5)
and WONG Shu Fai (Valtorta College,
Form 6).

OO~

Olympiad Corner
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Problem 5. Determine the largest of all
integers n with the property that n is
divisible by all positive integers that are
less than {/; .
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(Hong Kong team to IMO 98: (from left to right) Lau Wai Tong (Deputy
Leader), Law Ka Ho, Chan Kin Hang, Choi Ming Cheung, Lau Lap Ming,
Cheung Pok Man, Leung Wing Chung, Liu Kam Moon (Leader).)
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Olympiad, July 1998:
Each problem is worth 7 points.

Problem 1. In the convex quadrilateral
ABCD, the diagonals AC and BD are
perpendicular and the opposite sides AB
and DC are not parallel. Suppose that the
point P, where the perpendicular
bisectors of AB and DC meet, is inside
ABCD. Prove that ABCD is a cyclic
quadrilateral if and only if the triangles
ABP and CDP have equal areas.

Problem 2. In a competition, there are a
contestants and b judges, where b 2 3 is
an odd integer. Each judge rates each
contestant as either "pass" or "fail".
Suppose k is a number such that, for any
two judges, their ratings coincide for at
most k contestants. Prove that

kbt

a 2b

Problem 3. For any positive integer n,
let d(n) denote the number of positive
divisions of n (including 1 and n itself).

(continued on page 4)
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Rearrangement Inequality
Kin-Yin Li

The rearrangement inequality (or the
permutation inequality) is an elementary
inequality and at the same time a
Its statement is as

-<a,

powerful inequality.
follow. Suppose a; <a, < and
b <b,<---<bh,

A= albl +a2b2 +---+anbn

. Let us call

the ordered sum of the numbers and
B=ab, +azb,_| +---+a,b

the reverse sum of the numbers. If

(or

X1,X9,000 Xy, 1S

s X a rearrangement

permutation) of the numbers by,b,,...,b,
and if we form the mixed sum

X =ayxy+arxy +---+a,x,,
then the rearrangement inequality asserts
that A = X > B. In the case the qg;'s are
strictly increasing, then equality holds if
and only if the b;'s are all equal.

We will look at A > X first. The proof is
by mathematical induction. The case n =
1 is clear. Suppose the case n = k is true.
Then k + 1, let
byy1 =x; and xpy =b;. Observe that
(@41 = a;)(bg —bj)20. We get

aibj +ap by 2 by +agbj .

for the case n =

So in X, we may switch x; and x;,; to
get a possibly larger sum. After switching,
we can apply the case n = k to the first k
terms to conclude that A > X. The
2> B follows from A = X
using —b,, <-b, | <--
by <by<---<b,.

inequality X
< -b; in place of

Now we will give some examples.

Example 1. (Chebysev's Inequality) Let
A and B be as in the rearrangement
inequality, then

(ay+-+a, oy +-+b,)

A2 > B.

n

Proof. Cyclically rotating the b; 's, we get
n mixed sums

ayby +ayby ++--+ a,b,,

aiby +azbz +---+a,b,

ceey

albn +a2b1 +--- +anbn_1

By the re-arrangement inequality, each of
these is between A and B, so their
average is also between A and B. This
average is just the expression given in the
middle of Chebysev's inequality.

Example 2. (RMS-AM-GM-HM
In-equality) Let cq,cy,...,c,, 20. The
root mean square (RMS) of these

numbers is [(Cl +- 4y, )/n] 2 the

(AM) is
(cy+cy+---+c,)/n and the geometric
mean (GM) is (cjco ¢, )/ . We have
RMS > AM > GM. If the numbers are
positive, then the harmonic mean (HM) is
n/l(1/¢))+-+(/c,)]. Wehave GM >
HM.

arithmetic mean

Proof. Setting a; = b; = ¢; inthe left half
of Chebysev's inequality, we easily get
RMS = AM. Next we will show AM 2
GM. The case GM = 0 is clear. So
suppose GM > 0. Let ay=c¢;/GM,

azzclczlGM2 , e Oy =CICyCy
/GM™ =1 and b; =1/a,_;,; for i = 1,
2, ... n. (Note the a; 's may not be

increasing, but the b; 's will be in the
reverse order as the a;'s). So the mixed
sum
ayby +ayb, +---+a,by =
c/GM +cy /IGM +---+c, /I GM

is greater than or equal to the reverse sum
aib, +---+a,b; =n. The AM-GM
inequality follows easily. Finally GM >
HM follows by applying AM = GM to the

numbers 1/cy,...,1/¢c,
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Example 3. (1974 USA Math Olympiad)
If a, b, ¢ > 0, then prove that
a®bbcC > (abe)@Hb+O3
Solution. By symmetry, we may assume
a<b<c, then na<lnb<Inc. By
Chebysev's inequality,
alna+blnb+clnc

S (a+b+c)(Ina+Inb+Inc)
> 3 .
desired inequality follows

The

exponentiation.

from

Example 4. (1978 IMO) Let c|, c;, ...,
¢, be distinct positive integers.
that

Prove

c c 1 1
Ol 2t
17y 2 2 n

Solution. Let ay, a,, ..., a, be the ¢;'s
arranged in increasing order. Since a;'s
are distinct positive integers, a; =i .
1>1/4>..>1/n> , by the

re-arrangement inequality,

Since

& C
c +_2+...+_n
1 4 nz

Gn

n2

> 42
>a; +—=+-+

21+l+--~+l.
2 n

Example 5. (1995 IMO) Leta, b, c >0
and abc = 1. Prove that

1 1 1 3
3 +— +— >=.
a’(b+c) b’(c+a) c’(a+b) 2
Solution. (HO Wing Yip, Hong Kong

Team Member) Letx=bc=1/a,y=ca =
1/b, z = ab = 1/c. The required inequality

is equivalent to

x2 y2

2
+ 53
z+y x+z y+x 2
By symmetry, we may assume x <y<gz,
then x> < y2 <z% and Uiz+y) < U(ix+
z) £ 1/(y + x). The left side of the
required inequality is just the ordered
sum A of the numbers. By the
rearrangement inequality,

2 2 2
4

X
A2 +2 4 ,
y+x z+y x+z

2 2 2

X 4
A2 2 .
xX+z y+x z+Yy

(continued on page 4)

Power of Points Respect to Circles

Kin-Yin Li

Intersecting Chords Theorem. Let two
lines through a point P not on a circle
intersect the inside of the circle at chords
AA' and BB', then PA X PA' = PB X
PB'. (When P is outside the circle, the
limiting case A = A’ refers to PA tangent
to the circle.)

This theorem follows from the
observation that triangles ABP and A'B'P
are similar and the corresponding sides
are in the same ratio. In the case P is
inside the circle, the product PA x PA'
can be determined by taking the case the
chord AA' passes through P and the
center O. This gives PA X PA' =
P2 —d? , where r is the radius of the
circle and d = OP. In the case P is
outside the circle, the product PA X PA'
can be determined by taking the limiting
case PA is tangent to the circle. Then PA
X PA' = d* —r%.

The power of a point P with respect to a

circle is the number d’-r> as
mentioned above. (In case P is on the
circle, we may define the power to be 0 for
convenience.) For two circles C; and
C, with different centers O; and O, ,

the points whose power with respect to
C, and C, are equal form a line
(This can

be shown by setting coordinates with line
01 O, as the x-axis.) This line is called

perpendicular to line O O, .

the radical axis of the two circles. In the
case of the three circles C;, C,, Cj3

with noncollinear centers Oy, O, , O3,

the three radical axes of the three pairs of
circles intersect at a point called the
radical center of the three circles. (This
is because the intersection point of any
two of these radical axes has equal power
with respect to all three circles, hence it is
on the third radical axis too.)

If two circles C; and C, intersect, their
radical axis is the line through the
intersection point(s) perpendicular to the
line of the centers. (This is because the
intersection point(s) have 0 power with
respect to both circles, hence they are on
the radical axis.) If the two circles do not
intersect, their radical axis can be found
by taking a third circle Cj intersecting

both C; and C,. Let the radical axis of
C,, Cj5 intersect the radical axis of C,,
C3 at P. Then the radical axis of Cy, C,
is the line through P perpendicular to the
line of centers of Cy, C,.

We will illustrate the usefulness of the
intersecting chords theorem, the concepts
of power of a point, radical axis and
radical center in the following examples.

Example 1. (1996 St. Petersburg City
Math Olympiad) Let BD be the angle
bisector of angle B in triangle ABC with D
on side AC. The circumcircle of triangle
BDC meets AB at E, while the
circumcircle of triangle ABD meets BC at
F. Prove that AE = CF.

Solution. By the intersecting chords
theorem, AE X AB = AD X AC and CF
x CB = CD x CA, so AE/CF
(AD/CD)(BC/AB). However, AB/CB =
AD/CD by the angle bisector theorem. So
AE = CF.

Example 2. (1997 USA Math Olympiad)
Let ABC be a triangle, and draw isosceles
triangles BCD, CAE, ABF externally to
ABC, with BC, CA, AB as their respective
bases. Prove the lines through A, B, C,
perpendicular to the lines EF, FD, DE,
respectively, are concurrent.

Solution. Let C; be the circle with center
D and radius BD, C, be the circle with
center £ and radius CE, and Cj be the
circle with center F and radius AF. The
line through A perpendicular to EF is the
radical axis of C;, Cj, the line through B
perpendicular to FD is the radical axis of
C; , C; and the line through C
perpendicular to DE is the radical axis of
C,, C,. These three lines concur at the
radical center of the three circles.

Example 3. (1985 IMO) A circle with
center O passes through vertices A and C
of triangle ABC and intersects side AB at
K and side BC at N. Let the
circumcircles of triangles ABC and KBN
intersect at B and M. Prove that OM is
perpendicular to BM.

(continued on page 4)
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceeded by the solver’s

name, home address and school
affiliation. Please send submissions to
Dr. Kin Y. Li, Department of

Mathematics, Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon. The deadline for
submitting solutions is April 30, 1999.

Problem 81. Show, with proof, how to
dissect a square into at most five pieces
in such a way that the pieces can be
reassembled to form three squares no two
of which have the same area. (Source:
1996 Irish Mathematical Olympiad)

Problem 82.

integer greater than 1, then nt 4"
cannot be a prime number. (Source:
1977 Jozsef Kurschak Competition in
Hungary)

Show that if #n is an

Problem 83. Given an alphabet with
three letters a, b, c¢, find the number of
words of n letters which contain an even
number of a's. (Source: 1996 Italian
Mathematical Olympiad)

Problem 84. Let M and N be the
midpoints of sides AB and AC of
AABC, respectively. Draw an arbitrary
line through A. Let QO and R be the feet
of the perpendiculars from B and C to
this line, respectively. Find the locus of
the intersection P of the lines QM and RN
as the line rotates about A.

Problem 85. Starting at (1, 1), a stone is

moved in the coordinate plane according

to the following rules:

(a) From any point (a, ), the stone can
be moved to (2a, b) or (a, 2b).

(b) From any point (a, b), the stone can
be moved to (a - b, b) if a > b, or to
(a, b-a)ifa<b.

For which positive integers x, y, can the

stone be moved to (x, ¥)? (Source:

1996 German Mathematical Olympiad)

kst ste st skoskoskoskoskokoskokoskoskoskoskosk

Solutions
skskoskoskoskosk skoskosko sk sk skokosk sk skok

Problem 76. Find all positive integers
N such that in base 10, the digits of ON
is the reverse of the digits of N and N
has at most one digit equal 0. (Source:

1977 unused IMO problem proposed by
Romania)

Solution. LAW Ka Ho (Queen
Elizabeth School, Form 6) and Gary NG
Ka Wing (STFA Leung Kau Kui
College, Form 6).

Let [aya5 ...a,] denote N in base 10 with
ay #0. Since 9N has the same number of
digits as N, we get ;=1 and g, = 9.
Since 9 x19#91, n > 2. Now 9Ja, ...
a,_11+8=1a,_; .. ap]. Again from
the number of digits of both sides, we get
ay < 1. The case ay, = 1 implies 9a,,_;
+8endsin a, andso a,_; =7, which is
not possible because 9[1 ... 7] + 8§ > [7 ...
Indeed,
1089 is a solution by direct checking. For
n >4, we now get 9[as...a,_,] + 8 =
Then a3 2 8.

1. So ay =0 and a,_; = 8.

[8a, 5 ..a3] Since
9a,_, +8endsin ajz, a; = 8 will imply
a,_» =0, causing another 0 digit. So a3
Indeed, 10989 and

109989 are solutions by direct checking.
Forn> 6, we again get 9[ay ...a,_3] +8

=9and a, , = 9.

=[8a, 3..a4]. Soay=..=a, 3=09.

Finally direct checking shows these

numbers are solutions.

Other recommended solvers: CHAN Siu
Man (Ming Kei College, Form 6),
CHING Wai Hung (STFA Leung Kau
Kui College, Form 7), FANG Wai Tong
Louis (St. Mark's School, Form 6), KEE
Wing Tao Wilton (PLK Centenary Li
Shiu Chung Memorial College, Form 7),
KWOK Chi Hang (Valtorta College,
Form 7), TAM Siu Lung (Queen
Elizabeth School, Form 6), WONG Chi
Man (Valtorta College, Form 4),
WONG Hau Lun (STFA Leung Kau Kui
College, Form 7) and WONG Shu Fai
(Valtorta College, Form 7).

Problem 77.
satisfies

Show that if A ABC

sin® A+sin® B +sin” C -

cos2 A+ 0032 B+ cos2 C

then it must be a right triangle. (Source:
1967 unused IMO problem proposed by
Poland)

Solution. (All solutions received are
essentially the same.)

Using sin? x = (1—-cos2x)/2 and

2

cos” x = (1 + cos 2x)/2, the equation is

equivalent to

cos2A+cos2B+cos2C+1=0.
This yields cos(A + B) cos(A - B) + cos’
C=0. Since cos(A + B) = -cosC, we get
cosC (cos(A - B) + cos(A + B)) =0. This
simplifies to cosC cosA cosB =0. So one
of the angles A, B, C'is 90°,

Solvers: CHAN Lai Yin, CHAN Man
Wai, CHAN Siu Man, CHAN Suen
On, CHEUNG Kin Ho, CHING Wai
Hung, CHOI Ching Yu, CHOI Fun
Ieng, CHOI Yuet Kei, FANG Wai
Tong Louis, FUNG Siu Piu, HUNG
Kit, KEE Wing Tao Wilton, KO Tsz
Wan, KWOK Chi Hang, LAM Tung
Man, LAM Wai Hung, LAM Yee,
LAW Ka Ho, LI Ka Ho, LING Hoi
Sheung, LOK Chan Fai, LUNG Chun
Yan, MAK Wing Hang, MARK Kai
Pan, Gary NG Ka Wing, OR Kin,
TAM Kwok Cheong, TAM Siu Lung,
TSANG Kam Wing, TSANG Pui Man,
TSANG Wing Kei, WONG Chi Man,
WONG Hau Lun, YIM Ka Wing and
YU Tin Wai.

Problem 78. If c¢|,cy,...,c,(n22) are
real numbers such that
(n=1)(c? +c3 +-+c2)=
(c1+cp +~~+cn)2 ,

show that either all of them are non-
negative or all of them are non-positive.
(Source: 1977 unused IMO problem
proposed by Czechoslovakia)

Solution. CHOY Ting Pong (Ming Kei
College, Form 6).

Then

there are at lease one negative and one

Assume the conclusion is false.

positive numbers, say ¢; <S¢y <+ < ¢y
S0<cpy <-<c, with 1 < k < n,
satisfying the condition. Let w = ¢|+ ...
+Cp, X =Cpytote,,y= 612 +-- 4+
c,? and z = c;%H +---+c3. Expanding
w? and x* and applying the inequality
a’+b? > 2ab, we get ky 2 w2 and (n-
k)z > x2. So
w0 =(n=D(y+2)2ky+
(n—k)sz2 +x2.

Simiplifying,

contradicting w < 0 < x.

we get wx 2 0,
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Other commended solvers: CHAN Siu
Man (Ming Kei College, Form 6),
FANG Wai Tong Louis (St. Mark's
School, Form 6), KEE Wing Tao
Wilton (PLK Centenary Li Shiu Chung
Memorial College, Form 7), Gary NG
Ka Wing (STFA Leung Kau Kui
College, Form 6), TAM Siu Lung
(Queen Elizabeth School, Form 6),
WONG Hau Lun (STFA Leung Kau
Kui College, Form 7) and YEUNG Kam
Wah (Valtorta College, Form 7).

Problem 79. Which regular polygons
can be obtained (and how) by cutting a
cube with a plane? (Source: 1967 unused
IMO problem proposed by Italy)

Solution. FANG Wai Tong Louis (St.
Mark's school, Form 6), KEE Wing Tao
(PLK Centenary Li Shiu Chung
Memorial School, Form 7), TAM Siu
Lung (Queen Elizabeth School, Form 6)
and YEUNG Kam Wah (Valtorta
College, Form 7).

Observe that if two sides of a polygon is
on a face of the cube, then the whole
polygon lies on the face. Since a cube
has 6 faces, only regular polygon with 3,
4, 5 or 6 sides are possible. Let the
vertices of the bottom face of the cube be
A, B, C, D and the vertices on the top face
be A', B', C', D' with A’ on top of A, B’ on
top of B and so on. Then the plane
through A, B', D' cuts an equilateral
triangle. The perpendicular bisecting
plane to edge AA’ cuts a square. The
plane through the mid-points of edges
AB, BC, CC', C'D', D'A’, A’A cuts a
regular hexagon. Finally, a regular
pentagon is impossible, otherwise the
five sides will be on five faces of the cube
implying two of the sides are on parallel
planes, but no two sides of a regular
pentagon are parallel.

Problem 80. Is it possible to cover a
plane with (infinitely many) circles in
such a way that exactly 1998 circles
pass through each point?  (Source:
Spring 1988 Tournament of the Towns
Problem)

Solution. Since no solution is received,
we will present the modified solution of
Professor Andy Liu (University of
Alberta, Canada) to the problem.

First we solve the simpler problem
where 1998 is replaced by 2. Consider
the lines y = k, where k is an integer, on
the coordinate plane. Consider every

circle of diameter 1 tangent to a pair of
these lines. Every point (x, y) lies on
exactly two of these circles. (If y is an
integer, then (x, y) lies on one circle on
top of it and one below it. If y is not an
integer, then (x, y) lies on the right half
of one circle and on the left half of
another.) Now for the case 1998, repeat
the argument above 998 times (using
lines of the form y = k + (j /999) in the
J-thtime,j=1,2,..,998.)

Olympiad Corner

(continued from page 1)

Determine all positive integers k such
that

2
dn?) _,
d(n)
for some n.

Problem 4. Determine all pairs (a, b) of
positive integers such that ab*+ b + 7
divides a’b+a+b.

Problem 5. Let / be the incentre of
triangle ABC. Let the incircle of ABC
touch the sides BC, CA and AB at K, L
and M, respectively. The line through B
parallel to MK meets the lines LM and LK
at R and S, respectively. Prove that
ZRIS is acute.

Problem 6. Consider all functions f from
the set N of all positive integers into itself
satisfying

A f(s) =s(f0)*,
for all s and ¢ in N. Determine the least
possible value of f(1998).

OO T~

Rearrangement Inequality
(continued from page 2)

So
2 2 2 2 2 2
A> l yo+x + o +y + x“+z
20 y+x z+y x+z
Applying the RMS-AM inequality

> +52 2 (r+5)% /2, the right side is at

least (x+ y+z)/2, which is at least
3(xyz2)3/2=3/2 by the AM-GM

inequality.

OO T~

Power of Points Respect to Circles

(continued from page 2)

Solution. For the three circles
mentioned, the radical axes of the three
pairs are lines AC, KN and BM. (The
centers are noncollinear because two of
them are on the perpendicular bisector
of AC, but not the third.) So the axes
will concur at the radical center P.
Since £ PMN = £ BKN = £ NCA, it
follows that P, M, N, C are concyclic.
By power of a point, BM X BP = BN X

BC = BO*>—+? and PM x PB = PN X
PK = PO? -2 , where r is the radius
of the circle through A, C, N, K. Then
PO? -BO? =BP(PM -BM)=PM?* -
BM?. This implies OM is perpendicular
to BM. (See remarks below.)

Remarks. By coordinate geometry, it
can be shown that the locus of points X

such that PO*-BO? = PX?*-BX? is
the line through O perpendicular to line
BP. This is a useful fact.

Example 4. (1997 Chinese Math
Olympiad) Let quadrilateral ABCD be
inscribed in a circle. Suppose lines AB
and DC intersect at P and lines AD and
BC intersect at Q. From Q, construct the
tangents QF and QF to the circle, where
E and F are the points of tangency. Prove
that P, E, F are collinear.

Solution. Let M be a point on PQ such
that Z/CMP = ZADC. Then D,C,M,Q

are concyclic and also, B,C,M,P are
concyclic. Let 7 be the radius of the
circumcircle C; of ABCD and O, be the

center of C;. By power of a point, P012
~1f =PCxPD=PM xPQ and QOf -
it =QCxQB=0M xPQ. Then PO}
~QOf =(PM -OM)PQ = PM* -OM?,
which implies O;M1PQ.
C, with QO as passes
through M,E,F and intersects C; at

E,F. If p is the radius of C, and O,
is  the

The circle

diameter

center of C, , then

PO{ -1 =PM xPQ=PO3-ri. So
P lies on the radical axis of Cy, C,,

which is the line EF.
OO T~
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Olympiad, March 1999:

Time allowed: 4 Hours
Each problem is worth 7 points.

Mathematical

Problem 1. Find the smallest positive
integer n with the following property:
There does not exist an arithmetic
progression of 1999 terms of real
numbers containing exactly n integers.

Problem 2. Let a;,a,, ... be a sequence

of real numbers satisfying
ai+j Sai-i-aj for all i,j= 1, 2, e .
Prove that
a, a a
agF2F g
2 3 n

for each positive integer n.

Problem 3. Let I7 and I, be two
circles interecting at P and Q. The
common tangent, closer to P, of I} and
I, touches I at A and I, at B. The
tangent of I at P meets I, at C, which
is different from P and the extension of
AP meets BC at R. Prove that the
circumcircle of triangle POR is tangent
to BP and BR.

(continued on page 4)
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceeded by the solver’s

name, home address and school
affiliation. Please send submissions to
Dr. Kin Y. Li, Department of

Mathematics, Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon. The deadline for
submitting solutions is October 1, 1999.

Problem 86.
equations:

«E(Hxiy):z
ﬂ(u ]=4\/§.

(Source: 1996 Vietnamese Math Olympiad)

Solve the system of

1
x+y

Problem 87. Two players play a game
on an infinite board that consists of 1x1
squares. Player I chooses a square and
marks it with an O. Then, player II
chooses another square and marks it with
X. They play until one of the players
marks a row or a column of 5 consecutive
squares, and this player wins the game. If
no player can achieve this, the game is a
tie. Show that player II can prevent
player I from winning. (Source: 1995
Israeli Math Olympiad)

Problem 88. Find all positive integers n
such that 3"7' +5"7! divides 3" +5".
(Source: 1996 St. Petersburg City Math
Olympiad)

Problem 89. Let O and G be the
circumcenter and centroid of triangle
ABC, respectively. If R is the
circumradius and r is the inradius of ABC,

then show that OG < R(R-2r).

(Source: 1996 Balkan Math Olympiad)

Problem 90. There are n parking spaces
(numbered 1 to n) along a one-way road
down which n drivers dy,d,,...,d,, in

that order are traveling. Each driver has
a favorite parking space and parks there
if it is free; otherwise, he parks at the
nearest free place down the road. (Two
drivers may have the same favorite
space.) If there is no free space after his
favorite, he drives away. How many lists
ay,a,,...,a, of favorite parking spaces

are there which permit all of the drivers

to park? Here a; is the favorite parking
space number of d;. (Source: 1996 St.
Petersburg City Math Olympiad)

st st ste stttk skosk sk sk skeskosk

Solutions
skeskoskoskoskeosk skskoskosk skskoskskosk skock

Problem 81. Show, with proof, how to
dissect a square into at most five pieces
in such a way that the pieces can be
reassembled to form three squares no two
of which have the same area. (Source:
1996 Irish Math Olympiad)

Solution. SHAM Wang Kei (St. Paul's
College, Form 4).

In the following diagram, A and B can be
reassembled to form a 2020 square and
E and F can be reassembled to form a
12x12 square.

!

w

1 = #

- 4 D a
i A
[ =+ > _— =
| ; '
i 1+ £
. * %
- $ 4 5
b - i
i 4 y e
T F ;
! b
23x23
Other recommended solvers: CHAN

Man Wai (St. Stephen's Girls' College,
Form 4).

Problem 82. Show that if  is an integer
greater than 1, then n* +4" cannot be a
1977  Jozsef
Kurschak Competition in Hungary).

Solution. Gary NG Ka Wing (STFA
Leung Kau Kui College, Form 6) and NG

Lai Ting (True Light Girls' College,
Form 6).

For even n, n* +4" is an even integer
greater than 2, so it is not a prime. For
odd n>1, write n=2k—-1 for a

positive integer k >1. Then nt 44" =

n? +2" +2%n) .

prime number. (Source:

Since the smaller

factor
22k—2

n?+2" —2Kkp=m-2KH2 4

>1,n* +4" cannot be prime.

Other recommended solvers: FAN Wai
Tong (St. Mark's School, Form 6), LAW

Ka Ho (Queen Elizabeth School, Form 6),
SHAM Wang Kei (St. Paul's College,
Form 4), SIU Tsz Hang (STFA Leung
Kau Kui College, Form 4) and TAM Siu
Lung (Queen Elizabeth School, Form 6).

Problem 83. Given an alphabet with
three letters a, b, ¢, find the number of
words of n letters which contain an even
number of a's. (Source: 1996 Iialian Math
Olympiad).

Solution I. CHAO Khek Lun Harold
(St. Paul's College, Form 4) and Gary
NG Ka Wing (STFA Leung Kau Kui
College, Form 6).

For a nonnegative even integer 2k <n,
the number of n letter words with 2k a's
is C5. 2"k | The answer is the sum of
these numbers, which can be simplified
to Q+D"+2-D"/2
binomial expansion.

Solution II. TAM Siu Lung (Queen

Elizabeth School, Form 6).
Let S, be the number of n letter words

using

with even number of a's and 7,, be the
number of n letter words with odd
Then S, + 7T, = 3".

Among the §, words, there are T, ;

number of a's.

words ended in a and 2S,_; words
ended in b or c.
T,_1+28, .
2T,y .  Subtracting these, we get
S, - T,=8,4-T,4 So
S,-T,=81-T=2 -1=1. Therefore,
S, =@G"+D/2.

So we get S, =
Similarly 7, =S, +

Problem 84. ILet M and N be the
midpoints of sides AB and AC of AABC,
respectively. Draw an arbitrary line
through A. Let Q and R be the feet of the
perpendiculars from B and C to this line,
respectively.  Find the locus of the
intersection P of the lines QM and RN as
the line rotates about A.

Solution. CHAO Khek Lun Harold
(St. Paul's College, Form 4).

Let S be the midpoint of side BC. From
midpoint theorem, it follows ZMSN =
ZBAC. Since M is the midpoint of the
hypotenuse of right triangle AQM, we
get Z/BAQ = ZAQM. Similarly, ZCAR
= ZARN.

If the line intersects side BC, then either
ZMPN = ZQPR or ZMPN + ZQPR =

180°. In the former case, ZMPN =180°
_/POR—-/PRQ = 180° —ZAQM -
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ZARN =180° —ZBAC . So ZMPN +

ZMSN =180° . Then, M, N, S, P are
concyclic. In the later case, ZMPN =
ZPOR+ ZPRQ = ZAQM + ZARN =
ZBAC = ZMSN . So again M, N, S, P
are concyclic. Similarly, if the line does
not intersect side BC, there are 2 cases
both lead to M, N, S, P concyclic. So the
locus is on the circumcircle of M, N, S.
Conversely, for every point P on this
circle, draw line MP and locate Q on line
MP so that QM = AM. The line AQ is the
desired line and QM, RN will intersect at
P.

Comments: The circle through M, N, S is
the nine point circle of AABC. As there
are 4 cases to deal with, it may be better
to use coordinate geometry.

Other commended solvers: FAN Wai
Tong (St. Mark's School, Form 6) and
TAM Siu Lung (Queen Elizabeth
School, Form 6).

Problem 85. Starting at (1,1), a stone is

moved in the coordinate plane according

to the following rules:

(a) Form any point (a, b), the stone can
be moved to (2a, b) or (a, 2b).

(b) From any point (a, b), the stone can
be moved to (a—b,b) if a > b, or

to (a,b—a) ifa <b.

For which positive integers x, y, can the
stone be moved to (x, y)? (Source: 1996
German Math Olympiad)

Solution. Let gcd(x, y) be the greatest
common divisor (or highest common
factor) of x and y. After rule (a), the gcd
either remained the same or doubled.
After rule (b), the gcd remain the same.
So if (x, ¥) can be reached from (a, b),
then ged (x, y) = 2" gcd(a, b) for a
nonnegative integer n. If a =b =1, then
ged(x, y) = 2".

Conversely, suppose ged(x, y) = 2" . Of
those points (a, b) from which (x, y) can
be reached, choose one that minimizes
the suma + b. If a or b is even, then (x, y)
can be reached from (a/2, b) or (a, b/2)
with a smaller sum. So a and b are odd.
If a > b (or a < b), then (x, y) can be
reached from ((a + b)/2, b) (or (a, (a +
b)/2)) with a smaller sum. So a = b.

Since 2" = ged(x, y) is divisible by a =
gcd(a, b) and aisodd,soa =b=1. Then
(x, ¥) can be reached from (1, 1).

Olympiad Corner

(continued from page 1)

Problem 4. Determine all pairs (a, b) of
integers with the property that the

numbers a2 +4b and b% +4a are both
perfect squares.

Problem 5. Let S be a set of 2n+1
points in the plane such that no three are
collinear and no four concyclic. A circle
will be called good if it has 3 points of S
on its circumference, n—1 points in its
interior and n—1 in its exterior. Prove
that the number of good circles has the
same parity as n.

Equation x4 y4 =74

Recall the following theorem, see

Mathematical Excalibur, Vol. 1, No. 2, pp.

2, 4 available at the web site

www.math.ust.hk/mathematical_excalibur/

Theorem. If u, v are relatively prime
positive (i.e. u#, v have no common prime
divisor), u > v and one is odd, the other

even, then 2_,2 , b=2uv,

C:MZ

a=u
+v? give a primitive solution of

a+p%=¢2 (i.e. a solution where a, b, ¢
are relatively prime). Conversely, every
primitive solution is of this form, with a
possible permutation of a and b.

Using this theorem, Fermat was able to
show x4+y4 =z* has no positive

integral solutions. We will give the
details below.

It is enough to show the equation

x? +y4 =w? has no positive integral

2

solutions.  Suppose x4+ y4 =w” has

positive integral solutions. Let x =a,

y=b, w=c be a positive integral
solution with ¢ taken to be the least among
all such solution. Now a, b, ¢ are
relatively prime for otherwise we can
factor a common prime divisor and reduce
c to get contradiction. Since

(az)2 +(l)2)2 =c? , by the theorem,
there are relatively prime positive integers
u, v (one is odd, the other even) such that
a’=u?-v? R b? =2uv s c=u’+v2.
Here u is odd and v is even for otherwise

a’=-1 (mod 4), which is impossible.

Now a2+v2:u2 and a, u, v are

relatively prime. By the theorem again,
there are relatively prime positive integers

s, t such that a:s2—t2, v = 2st,
u=s+12. Now b2 =2uy =
4st(s2+t2). Since sz,tz,s2+t2 are

relatively prime, we must have s = ez,
t= f2,s2 +12 = g2 for some positive
integers e, f, g. Then et + f4 = g2 with

2442 2 This

gSg2 =s"+t"=u<u” <c
contradicts the choice ¢ being least.
Therefore, Xt y4 = w2 has no positive
integral solutions.

m
IMO1999

This year the International Mathematical
Olympiad will be held in Romania. Based
on their performances in qualifying
examinations, the following students are
selected to be Hong Kong team members:

Chan Ho Leung (Diocesan Boys’ School,
Form 7)

Chan Kin Hang (Bishop Hall Jubilee
School, Form 5)

Chan Tsz Hong (Diocesan Boys’ School,
Form 7)

Law Ka Ho (Queen Elizabeth School,
Form 6)

Ng Ka Wing (STFA Leung Kau Kui
College, Form 6)

Wong Chun Wai (Choi Hung Estate
Catholic Secondary School, Form 6)

Both Chan Kin Hang and Law Ka Ho
were Hong Kong team members last year.
This year the team leader is Dr. Tam Ping
Kwan (Chinese University of Hong Kong)
and the deputy leader will be Miss Luk
Mee Lin (La Salle College).

OO T~

Corrections

In the last issue of the Mathematical
Excalibur, the definition of power
given in the article Power of Points
Respect to Circles should state "The
power of a point P with respect to a

circle is the number d 2—r2 as

mentioned above." In particular, the
power is positive when the point is
outside the circle. The power is 0 when
the point is on the circle. The power is
negative when the point is inside the
circle.
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Olympiad, July 1999:

Time allowed: 4.5 Hours
Each problem is worth 7 points.

Problem 1. Determine all finite sets S of
at least three points in the plane which
satisfy the following condition: for any
two distinct points A and B in S, the
perpendicular bisector of the line
segment AB is an axis of symmetry for S.

Problem 2. Let n be a fixed integer, with

nx?2.

(a) Determine the least constant C such
that the inequality

4
> xlx](xiz—i-x?)s C[ inj
1<i<n

I<i<j<n
holds for all real numbers x;, x,,
s X, 20.

(b) For this constant C, determine when
equality holds.

Problem 3. Consider an nX n square
board, where n is a fixed even positive
integer. The board is divided into n?
unit squares. We say that two different
squares on the board are adjacent if they
have a common side.

(continued on page 4)

;3
’%
?“
LOE: A&
Artist: § %

CHEUNG Pak-Hong), Munsang College, HK
KO Tsz-Mei)

LEUNG Tat-Wing), Appl. Math Dept, HKPU
LI Kin-Yin), Math Dept, HKUST

NG Keng-Po Roger), ITC, HKPU

YEUNG Sau-Ying Camille), MFA, CU

I
3
@
i

4o

i

Acknowledgment: Thanks to Elina Chiu, MATH Dept,
HKUST for general assistance.

On-line: http://www.math.ust.hk/mathematical_excalibur/

The editors welcome contributions from all teachers and
students. With your submission, please include your name,
address, school, email, telephone and fax numbers (if
available). Electronic submissions, especially in MS Word,
are encouraged. The deadline for receiving material for the
next issue is December 15, 1999.

For individual subscription for the next five issues for the
99-00 academic year, send us five stamped self-addressed
envelopes. Send all correspondence to:
Dr. Kin-Yin Li
Department of Mathematics
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Fax: 2358-1643
Email: makyli@ust.hk

é«_rﬂi’éﬁ;J ﬁ”fﬂi‘fi"l ,~)§_
P AT e S AL
4 | (Elliptic Curve) y2 = x> +ax? + bx

+c (& page2 "iféx ) °

<k

I i a R TR i P
RS M £ - & T@lA
G oot TR s A6 gry
T R EEr T IEX ]
B ik o

BE TR &R, X 2T A
#BIEL - JIHFRE, -

¥
¥

Gl

1954 #
ER - -
AL 8 ( Yutaka Taniyama,
1958) » 2 {8 ’fr‘aﬁ?»“«ﬁé”l =

o & —

253
(Henry Poincaré, 1854-1912) ¥+ T A
=l T g o ) Th o= Slic
TR E T Sk R 0 A
THA ) R T OIR R L A4 T G
FE Tk Sl o

A
°

ﬂ?éﬁ’%ﬁé%ﬁé‘;hum{ﬁi,
M- B TR
SUGEPE L) R S = R
ilg,A,FaTL,f Zj‘t,vréu—,u
ﬂ?ﬂ .’LJ °

AN S S S AN
BRHE LG 5 EDF Bk

» & 41 1 2K (Goro Shimura)
pong
1927 -
CH T
25 3% | (modular form) %= N M
AR 2 R R e

AN)(x +BY) o

N

ok

g %\:‘%
iy mypv T dade o
ITO70EN > TEL - BH
Bl Ak s > 43 niRE
TEL - BRFE ) AR RT

@676 P AT
1984 # # > 4t W #F 7 i

(Gerhand Frey) > f— =X #¥ ¢ 3%
SR T gk

R B
3 Ao W
Cir N> &8 A+ B =" o >+ 2.1
q’rli’lkbg’:'?’f? EHFR o R 0y =x(x-
AR H R IE ‘-‘511)% f*
Ly Rl o Fu3 2w
HEstiEe- B TN 1 #a
Fwo AHRG ek TR EERE
I R ’?Kﬁbr;@m—,@ﬁ
Wl s Aapen | i ii ko o 4
UEL - RHFRE, 22 A
- & 3
AL B ECEIRE T G
BB ts I hRTES T \Efj&{—i
#P Pl - BHFRE, )

EEE VSN

b T

Vol enE > A 0f B 1984 & Rt
TR AR SHEET S SRY -

7 i 0 F W#F 72 P #F (Kenneth

% A 4

Ribet ) » (i 5 =0 B 3815 | 4
1986 4 - 1 F B e1R° AE
CEEE 2 N N

o IRAKE REP r B -E
R T N o 3B IGTER



Mathematical Excalibur, Vol. 4, No. 5, Oct 99 - Dec 99

Andrew Wiles

Yutaka Taniyama

Goro Shimura

AFENI ko SHFELA S =L
EOER o BE RS BEP 0T
RF 5 AR o2 0 AT
H R TR FRRB AR A

¥IE h1 (T o

B E 27 (Andrew Wiles) » 14
953 E 10Kk 2B EHEP T Y
BEis®IL | 21975 & > B4x itk
i AN (i
o THERSL ) ABREE LS
218 > ﬁkﬁﬁi F Wy iRdrdp + &
Y SRR Ve S P I
el =) ub R PRI R e I
P ket TR L -
R FEM ood 3 A B A
B B AT RRGEEFNL
a1 iF o

b

_‘:_.'_1 1 -

ERCN ERIERN |
B e e BE O TEL - 2
FR X A 1993 & 6% 239
L A Uk Wk SRR =
A58~ R AR e X AT
Mo FA e H AL - R
BoEEG (Tl 5858 €32 )
SRR o f poayEEEY AT R
B Bofs IR mo BEmA ehi A
e i B oo

i FRE AL RES
Pl o mE rRF R 4
B P NIIBF o A4 RE BT
MERE ARV BB EF S
ﬁ,fziﬁ?)ﬁﬁiﬁ’f |1 1993 & thiE
B oo B ORILE ATER IR AL

—ﬁ%@ﬂ?ﬂ%o

| 1994 #0198 o R BT
R PP R A R
2 - IBAKEY R HE
"EABfERIT ) 1995 # 57
RS p > & hjeis (E
EF) 2% o FlT 1997 & 6 1 27
PoOMEMLEEYET §EAm

Mg Agriep b, »FMT W
i EF R r R iEBE
358 & TP & F e

ek HRlY &

THER W A EE B ARy =x axd
+bhx+ceBEATE A I R H P g
by c =7 Mt x3+ax2+bx+cj§
e o il M- B oLE
O° FEFEP > 5§ LRTEA B
Mg IRELA BiS 0 RE AL T
BAREAPIH Z B R Co
i Cfe 0 L1@- 8D 4T B -
AT LR MY ey 28R A+ B
DA RAFE- B (o) -
g BT o kR E s
1AM AR AT e TS s
*EBEFAY - BEE - R
BRI O
AR B RGP G o

3% 0
(7 B te 23L)
f’r—%z : ;’FFF’“ >
Ak L R BPE S A
(7 88t 23m)
(-} ‘: Tl
dURAd L pERR R
(7 BFE)

f’r—%z I
AR AE { '37; VAR AR

TRT

http://www.ams.org/new-in-math/fermat.html

http://www-history.mcs.st-and.ac.uk/~history/
HistTopics/Fermat's_last_theorem.html

http://www.ams.org/notices/199710/barner.pdf



Mathematical Excalibur, Vol. 4, No. 5, Oct 99 - Dec 99

Page 3

Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceeded by the solver’s

name, home address and school
affiliation. Please send submissions to
Dr. Kin Y. Li, Department of

Mathematics, Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon. The deadline for
submitting solutions is December 4,
1999.

Problem 91.
equations:

\/ﬁ(nxiy]:z
\/ﬁ(l—rly]ﬂﬁ.

(This is the corrected version of problem 86.)

Solve the system of

Problem 92. Let ay,a,,....a, (n>3) be

real numbers such that a; + ap + ... +

2 2
+ a,2n".

a, =n and a12 + a%+
that max (ap,a,,....a,)22

(Source: 1999 USA Math Olympiad)

Prove

Problem 93. Two circles of radii R and
are tangent to line L at points A and B
respectively and intersect each other at C
and D. Prove that the radius of the
circumcircle of triangle ABC does not
depend on the length of segment AB.
(Source: 1995 Russian Math Olympiad)

Problem 94. Determine all pairs (m, n)

of positive integers for which 2™ +3" is
a square.

Problem 95. Pieces are placed on an
nxn board. Each piece “attacks” all
squares that belong to its row, column,
and the northwest-southeast diagonal
which contains it. Determine the least
number of pieces which are necessary to
attack all the squares of the board.

(Source: 1995  Iberoamerican ~ Math
Olympiad)
sk ook sk sk koo ook
Solutions
sk ook sk koo ok

Problem 86.
equations:

@(H ! ]=2
x+y

Solve the system of

\/ﬂ(H?ly]:NE.

(Source: 1996 Vietnamese Math Olympiad)

Solution. CHAO Khek Lun Harold (St.
Paul's College, Form 5), FAN Wai Tong
Louis (St. Marks’ School, Form 7), NG
Ka Wing Gary (STFA Leung Kau Kui
College, Form 7) and NG Lai Ting (True
Light Girls’ College, Form 7).

Clearly, x and y are nonzero. Dividing the
second equation by the first equation, we
then simplify to get y = 24x/7. Sox +y =
31x/7. Substituting this into the first
equation, we then simplifying, we get x —

@2/3)\x + 7/31 = 0. Applying the
quadratic formula to find \/; , then
squaring, we get x=(41i2m)/93.
Then y = 24x/7 = (328 £16+/310)/217,

respectively. By direct checking, we see
that both pairs (x, y) are solutions.

Other recommended solvers: CHAN Hiu
Fai Philip (STFA Leung Kau Kui College,
Form 6), CHAN Kwan Chuen (HKSYC
& IA Wong Tai Shan Memorial School,
Form 4), CHUI Man Kei (STFA Leung
Kau Kui College, Form 5), HO Chung
Yu (HKU), LAW Siju Lun Jack (Ming
Kei College, Form 5), LEUNG Yiu Ka
(STFA Leung Kau Kui College, Form 4),
KU Hong Tung (Carmel Divine Grace
Foundation Secondary School, Form 6),
SUEN Yat Chung (Carmel Divine Grace
Foundation Secondary School, Form 6),
TANG Sheung Kon (STFA Leung Kau
Kui College, Form 5), WONG Chi Man
(Valtorta College, Form 5), WONG
Chun Ho Terry (STFA Leung Kau Kui
College, Form 5), WONG Chung Yin
(STFA Leung Kau Kui College), WONG
Tak Wai Alan (University of Waterloo,
Canada), WU Man Kin Kenny (STFA
Leung Kau Kui College) and YUEN Pak
Ho (Queen Elizabeth School, Form 6).

Problem 87. Two players play a game on
an infinite board that consists of 1x1
squares. Player I chooses a square and
marks it with an O. Then, player II
chooses another square and marks it with
X. They play until one of the players
marks a row or a column of 5 consecutive
squares, and this player wins the game. If

no player can achieve this, the game is a

tie. Show that player II can prevent player
I from winning. (Source: 1995 Israeli Math
Olympiad).

Solution. CHAO Khek Lun Harold
(St. Paul's College, Form 5).

|
O]O X
X
X

X

O X
O
X

O
O

Divide the board into 2x2 blocks.
Then bisect each 2x2 block into two
1x2 tiles so that for every pair of blocks
sharing a common edge, the bisecting
segment in one will be horizontal and the
other vertical. Since every five
consecutive squares on the board contain
a tile, after player I choose a square,
player II could prevent player I from
winning by choosing the other square in
the tile.

Problem 88. Find all positive integers n
such that 3"7'+5"7! divides 3" +5" .
(Source: 1996 St. Petersburg City Math
Olympiad).

Solution. CHAO Khek Lun Harold
(St. Paul's College, Form 5), HO Chung
Yu (HKU), NG Ka Wing Gary (STFA
Leung Kau Kui College, Form 7), NG
Lai Ting (True Light Girls’ College,
Form 7), SHUM Ho Keung (PLK No.1
W.H. Cheung College, Form 6) and TSE
Ho Pak (SKH Bishop Mok Sau Tseng
Secondary School, Form 5).

For such an n, since

33" 45" <37 45" <5345,
so 3" +5" =4(3"! +5"71). Cancelling,

we get 5771 = 3"71. This forces n = 1.
Since 2 divides 8, n = 1 is the only
solution.

Other recommended solvers: CHAN
Hiu Fai Philip (STFA Leung Kau Kui
College, Form 6), CHAN Kwan Chuen
(HKSYC & IA Wong Tai Shan
Memorial School, Form 4), CHAN Man
Wai (St. Stephen’s Girls’ College, Form
5), FAN Wai Tong Louis (St. Mark's
School, Form 7), HON Chin Wing (Pui
Ching Middle School, Form 5), LAW
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Siu Lun Jack (Ming Kei College, Form
5), LEUNG Yiu Ka (STFA Leung Kau
Kui College, Form 4), NG Ka Chun
(Queen Elizabeth School), NG Tin Chi
(TWGH Chang Ming Thien College,
Form 7), TAI Kwok Fung (Carmel
Divine Grace Foundation Secondary
School, Form 6), TANG Sheung Kon
(STFA Leung Kau Kui College, Form 5),
TSUI Ka Ho Willie (Hoi Ping Chamber
of Commerce Secondary School, Form
6), WONG Chi Man (Valtorta College,
Form 5), WONG Chun Ho Terry
(STFA Leung Kau Kui College, Form 5),
WONG Tak Wai Alan (University of
Waterloo, Canada), YU Ka Lok (Carmel
Divine Grace Foundation Secondary
School, Form 6) and YUEN Pak Ho
(Queen Elizabeth School, Form 6).

Problem 84. Let O and G be the
circumcenter and centroid of triangle
ABC, respectively. If R is the
circumradius and r is the inradius of

ABC, then show that OG < /R(R-2r) .
(Source: 1996 Balkan Math Olympiad)

Solution I. CHAO Khek Lun Harold
(St. Paul's College, Form 5), FAN Wai
Tong Louis (St. Mark's School, Form 7),
NG Lai Ting (True Light Girls” College,
Form 7) and YUEN Pak Ho (Queen
Elizabeth School, Form 6)

Let line AG intersect side BC at A' and
the circumcircle again at A" . Since
cos BA'A+cosCA'A =0, we can use the

cosine law to get
A'A% = (2% +2¢2 —a?) /4,
where a, b, c are the usual side lengths of

the triangle. By the inter-secting chord
theorem,

AAXA'A"= ABXA'C=a’/4.
Consider the chord through O and G

interecting AA" at G. By the
intersecting chord theorem,

(R+OG)(R—-0G)=GAXGA"
=(2A'A/3)(A'A/3+A'A")
=(a® +b*+c?)/9.
Then
0G =R* —(a® +b* +c2)/19 .
By the AM-GM inequality,

(a+b+c)a* +b*+c?)>

(33fabe Y 3 a?b2c? ) = 9abe.
Now the area of the triangle is (ab sin
C)/2 = abc/(4R) (by the extended sine
law) on one hand and (a + b + ¢)r/2 on
the other hand. So, a + b + ¢ =
abc/(2rR). Using this, we simplify the

inequality to get ( a’+b% +c? )9 =
2rR. Then

VRZ 2R 2\/R2 —@*+b%>+c*)19
=0G.

Solution II. NG Lai Ting (True Light
Girls’ College, Form 7)

Put the origin at the circumcenter. Let
21,2p,23 be the complex numbers
corresponding to A, B, C, respectively on
Then OG? =

|(Z1 +25 +Z3)/3|2 . Using |a)|2 0w ,

the complex plane.

we can check the right side equals (3 |Zl|2
+3 |zz|2 +3 |z3|2 —|zl - 22|2 —|Z2 - Z3|2 -
|Z3 —Zl|2 )/9. Since |zl| = |zz| = |Z3| =
R and |Zl_22|=C , |22—Z3|=a ,
|Z3 - zl| = b, we get

0G? =(OR*—a’>-b> - ¢%)/9.
The rest is as in solution 1.

Problem 90. There are n parking spaces
(numbered 1 to n) along a one-way road
down which n drivers d;,d,,...,d,, in
that order are traveling. Each driver has
a favorite parking space and parks there
if it is free; otherwise, he parks at the
nearest free place down the road. (Two
drivers may have the same favorite
space.) If there is no free space after his
favorite, he drives away. How many lists
ay,ay,...,a, of favorite parking spaces
are there which permit all of the drivers
to park? Here a; is the favorite parking

space number of d;. (Source: 1996 St.

Petersburg City Math Olympiad).

Solution: Call a list of favorite parking
spaces ap,d,,....,a, which permits all
drivers to park a good list. To each good
list, associate the list b,,...,b,, where
b; is the difference (mod n + 1) between
the number a; and the number of the
space driver d; | took. Note from a;
and b,,....b, ,
ay,....a,. It follows that different good

veer Oy
lists give rise to different lists of b;'s .

we can reconstruct

Since there are n + 1 possible choices for
each b; , there are (n+ 1)"_l possible
lists of b, ..
of the b;'s, imagine the n parking spaces

., b, . For each of these lists

are arranged in a circle with an extra

parking space put at the end. Let d;
park anywhere temporarily and put
d;(i >1) in the first available space after
the space b; away from the space taken
by d;_;. By shifting the position of d,
we can ensure the extra parking space is
This the
corresponding list of ay,a,,...,q, is

not taken. implies
good. So the number of good lists is
n+1)"1

Comments: To begin the problem, one
could first count the number of good lists

in the cases n = 2 and n = 3. This will
lead to the answer (n+1)”_1. From the

n+1 factor, it becomes natural to
consider an extra parking space. The
difficulty is to come up with the
one-to-one correspondence between the

good lists and the b; lists. For this

problem, only one incomplete solution
with correct answer and right ideas was
sent in by CHAO Khek Lun Harold (St.
Paul's College, Form 5)

Olympiad Corner

(continued from page 1)

Problem 3. (cont’d) N unit squares on
the board are marked in such a way that
every square (marked or unmarked) on
the board is adjacent to at least one
marked square.

Determine the smallest possible value of
N.

Problem 4. Determine all pairs (n, p) of
positive integers such that p is a prime,
n<2p,and (p—1)"+ 1 is divisible by
nPt,

Problem 5. Two circles I} and I, are
contained inside the circle I', and are
tangent to I' at the distinct points M and
N, respectively. I passes through the
centre of I';. The line passing through
the two points of intersection of I and
I, meets I' at A and B, respectively.
The lines MA and MB meet I at C and
D, respectively.

Prove that CD is tangent to I’

Problem 6. Determine all functions f: R

— Rsuchthat f(x—f(y)=f(f(y)+
xf(y)+ f(x)—1forallx, y € R.
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Problem 1. Determine all solutions (x, y,
z) of positive integers such that

x+D)? r1=(x+2)¥*.

Problem 2. Let aj,a;,..,a1999 be a
sequence of nonnegative integers such
that for any integers i, j, with i + j
<1999,
aj+aj<a

ivjSaiptaj+l.

Prove that there exists a real number x
such that a, =[nx] foreachn=1,2, ...,
1999, where [nx] denotes the largest
integer less than or equal to nx.

Problem 3. There are 1999
participating in an exhibition.
any 50 people do not know each other.
Prove that there are at least 41 people,
and each of them knows at most 1958
people.

people
Two of

(continued on page 4)
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The Road to a Solution
KinY. Li

Due to family situation, I missed the trip to the
1999 IMO at Romania last summer.
Fortunately, our Hong Kong team members
were able to send me the problems by email.
Of course, once I got the problems, I began to
work on them. The first problem is the
following.

Determine all finite sets S of at least three
points in the plane which satisfy the following
condition: for any two distinct points A and B
in S, the perpendicular bisector of the line
segment AB is an axis of symmetry of S.

This was a nice problem. I spent sometime on
it and got a solution. However, later when the
team came back and I had a chance to look at
the official solution, I found it a little beyond
my expectation. Below I will present my
solution and the official solution for
comparison.

Here is the road I took to get a solution. To
start the problem, I looked at the case of three

points, say P,P,,P; , satisfying the
condition. Clearly, the three points cannot be
collinear  (otherwise  considering the

perpendicular bisector of the segment joining
two consecutive points on the line will yield a
contradiction). Now by the condition, it
follows that P, must be on the perpendicular
bisector of segment P; P;. Hence, P P, =
P, Ps.
on the perpendicular bisector of P, P; and
so P, Py = P3 P;. Thus, P, P, P; are
the vertices of an equliateral triangle.

By switching indices, P; should be

Next the case of four points required more
observations. Again no three points are
collinear. Also, from the condition, none of
the point can be inside the triangle having the
other three points as vertices. So the four
points are the vertices of a convex
quadrilateral. Then the sides have equal
length as in the case of three points.

Considering the perpendicular bisector of any
side, by symmetry, the angles at the other two
vertices must be the same. Hence all four
angles are the same. Therefore, the four
points are the vertices of a square.

After the cases of three and four points, it is
quite natural to guess such sets are the vertices
of regular polygons. The proof of the general
case now follows from the reasonings of the
two cases we looked at. First, no three points
are collinear. Next, the smallest convex set
enclosing the points must be a polygonal
region with all sides having the same length
and all angles the same. So the boundary of
the region is a regular polygon. Finally, one
last detail is required. In the case of four
points, no point is inside the triangle formed
by the other three points by inspection.
for large number of points,
inspection is not good enough. To see that
none of the points is inside the polygonal
region takes a little bit more work.

However,

Again going back to the case of four points, it
is natural to look at the situation when one of
the point, say P, is inside the triangle formed
by the other three points. Considering the
perpendicular bisectors of three segments
joining P to the other three points, we see that

we can always get a contradiction.

Putting all these observations together, here is
the solution I got:

Clearly, no three points of such a set is
the
perpendicular bisector of the two furthest

collinear  (otherwise  considering
points of S on that line, we will get a
contradiction). Let H be the convex hull of
such a set, which is the smallest convex set
containing S. Since S is finite, the boundary of
H is a polygon with the vertices P; ,
Py, ..., P, belonging to S. Let P, = P; if
i=j(modn). Fori=1,2,...,n, the
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condition on the set implies P is on the

perpendicular bisector of P_; P.,y. So
b B =F P

; Considering the

perpendicular bisector of P._; P ,, we
see that ZF,_ P By = LB Py By
So the boundary of H is a regular polygon.

Next, there cannot be any point P of S
inside the regular polygon. (To see this,
assume such a P exists. Place it at the
origin and the furthest point Q of S from P
on the positive real axis. Since the origin
P is in the interior of the convex polygon,
not all the vertices can lie on or to the right
of the y-axis. So there exists a vertex P; to

the left of the y-axis. Since the perpendicular
bisector of PQ is an axis of symmetry, the
mirror image of P; will be a point in S further
than Q from P, a contradiction.) So Sis the set
of vertices of some regular polygon.
Conversely, such a set clearly has the required
property.

Next we look at the official solution, which is
shorter and goes as follows: Suppose S =
{ Xy, ..
barycenter of S, which is the point G such that

., X, } is such a set. Consider the

- -
0_>G= OX+---+0X, .
n

Note the barycenter does not depend on the
origin. To see this, suppose we get a point G'

_)
using another origin O', ie. O'G' is the
%

averageof O'X; fori=1,...,n. Subtracting
- -

the two averages, we get OG -O'G' =0—(>)' .
- - -

Adding O'G' to both sides, OG =0G", so
G=G".

By the condition on S, after reflection
with respect to the perpendicular bisector
of every segment X;X ;, the points of S
are permuted only. So G is unchanged,
which implies G is on every such
perpendicular bisector. Hence, G is
equidistant from all X;’s. Therefore, the
X, ’s are concyclic. For three con-
secutive points of S, say Xl-,Xj,Xk , on
the circle, considering the perpendicular
bisector of segment X;X, , we have
X;X ;= X ;X . Itfollows that the points
of § are the vertices of a regular polygon

and the converse is clear.

Cavalieri’s Principle
KinY. Li

Have you ever wondered why the

volume of a sphere of radius r is given

by the formula %n’ r? The r> factor

can be easily accepted because volume
is a three dimensional measurement.
The 7 factor is probably because the

sphere is round. Why then is there 4 in

3
the formula?

In school, most people told you it came
from calculus. Then, how did people get
calculus  was

the formula Dbefore

invented? In particular, how did the
early Egyptian or Greek geometers get it

thousands of years ago?

Those who studied the history of
mathematics will be able to tell us more
of the discovery. Below we will look at
one way of getting the formula, which
may not be historically the first way, but
it has another interesting application as
we will see. First, let us introduce

Cavalieri’s Principle:
having the same height and the same
cross sectional area at each level must
have the same volume.

Two objects

To understand this, imagine the two
objects are very large, like pyramids
that are built by piling bricks one level
on top of another. By definition, the
volume of the objects are the numbers of
Ix1x1 bricks used to build the objects.
If at each level of the construction, the
number of bricks used (which equals the
cross sectional area numerically) is the
same for the two objects, then the
volume (which equals the total number
of bricks used) would be the same for
both objects.

To get the volume of a sphere, let us
apply Cavalieri’s principle to a solid
sphere S of radius r and an object T
made out from a solid right circular
cylinder with height 2r and base radius r
removing a pair of right circular cones
with height r and base radius r having
the center of the cylinder as the apex of
each cone.

Both S and T have the same height 2r.
Now consider the cross sectional area of
each at a level x units from the
equatorial plane of S and 7. The cross
section for S is a circular disk of radius

2 2

r“—x“ by Pythagoras’ theorem,

which has area 7z'(r2 —xz). The cross

section for T is an annular ring of outer
radius r and inner radius x, which has

zrr-zx? . By

Cavalieri’s principle, S and T have the
same volume. Since the volume of T is

7zr2(2r)—2><%7rr2r=%7rr3, so the

volume of § is the same.

the same area

Cavalieri’s principle is not only useful in
getting the volume of special solids, but
it can also be used to get the area of
special regions in a plane! Consider the
region A bounded by the graph of y =
x2 , the x-axis and the line x = ¢ in the
first quadrant.

A
(C,C%

v

The area of this region is less than the
area of the triangle with vertices at (0, 0),

(c,0), (¢, ¢®), whichis L¢ . Tf you ask

a little kid to guess the answer, you may

get %c3 since he knows %<% For

those who know calculus, the answer is
easily seen to be correct. How can one
explain this without calculus?

(continued on page 4)
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration. Solutions
should be preceeded by the solver’s name,
home address and school affiliation.
Please send submissions to Dr. Kin Y. Li,
Department of Mathematics, Hong Kong
University of Science and Technology,
Clear Water Bay, Kowloon. The deadline
for submitting solutions is March 4, 2000.

Problem 96. If every point in a plane is
colored red or blue, show that there
exists a rectangle all of its vertices are of
the same color.

Problem 97. A group of boys and girls
went to a restaurant where only big pizzas
cutinto 12 pieces were served. Every boy
could eat 6 or 7 pieces and every girl 2 or
3 pieces. It turned out that 4 pizzas were
not enough and that 5 pizzas were too
many. How many boys and how many
girls were there? (Source: 1999 National
Math Olympiad in Slovenia)

Problem 98. Let ABC be a triangle with
BC > CA > AB. Select points D on BC
and E on the extension of AB such that
BD = BE = AC. The circumcircle of
BED intersects AC at point P and BP
meets the circumcircle of ABC at point
Q. Show that AQ + CQ = BP. (Source:
1998-99 Iranian Math Olympiad)

Problem 99. At Port Aventura there are
16 secret agents. Each agent is watching
one or more other agents, but no two
agents are both watching each other.
Moreover, any 10 agents can be ordered
so that the first is watching the second,
the second is watching the third, etc., and
the last is watching the first. Show that
any 11 agents can also be so ordered.
(Source: 1996 Spanish Math Olympiad)

Problem 100. The arithmetic mean of a
number of pairwise distinct prime
numbers equals 27. Determine the
biggest prime that can occur among
them. (Source: 1999 Czech and Slovak
Math Olympiad)

skskoskoskosk sk skoskoskosk skoskokosk sk skok
Solutions

skeske st st skeoskoskoskoskokoskokokoskoskoskosk

Problem 91.
equations:

Solve the system of

(This is the corrected version of problem 86.)

Solution. (CHENG Kei Tsi, LEE Kar
Wai, TANG Yat Fai) (La Salle College,
Form 5), CHEUNG Yui Ho Yves
(University of Toronto), HON Chin
Wing (Pui Ching Middle School, Form 5)
KU Hong Tung (Carmel Divine Grace
Foundation Secondary School, Form 6),
LAU Chung Ming Vincent (STFA
Leung Kau Kui College, Form 5), LAW
Siu Lun Jack (Ming Kei College, Form
5), Kevin LEE (La Salle College, Form
4), LEUNG Wai Ying (Queen Elizabeth
School, Form 5), MAK Hoi Kwan
Calvin (Form 4), NG Chok Ming Lewis
(STFA Leung Kau Kui College, Form 6),
NG Ka Wing Gary (STFA Leung Kau
Kui College, Form 7), NGAN Chung
Wai Hubert (St. Paul’s Co-educational
College, Form 7), SIU Tsz Hang (STFA
Leung Kau Kui College, Form 4), TANG
King Fun (Valtorta College, Form 5),
WONG Chi Man (Valtorta College,
Form 5) and WONG Chun Ho Terry
(STFA Leung Kau Kui College, Form 5).
(All solutions received were essentially
the same.) Clearly, if (x, y) is a solution,
then x, y > 0 and

1+1—L

x+y f3x

1 42

Cxty ﬁ

Taking the difference of the squares of

both equations, we get
4 4 32

1

xX+y - 3x Ty’
Simplifying this, we get 0 = 7y? - 38xy -
24x%= (7y +4x)(y — 6x). Sincex, y>0,y
= 6x. Substituting this into the first given

equation, we get \/3_x(1+7ij: 2,
X

which simplifies to 7+/3x —14vx + +/3 =
0. By the quadratic formula,

Jx=(T+2d7)/(73). Then x=(11+
47) 21 and y = 6x = (22 £87 /7.
Direct checking shows these are solutions.

Comments: An alternative way to get the
answers is to substitute u = \/; , V= \/_ R

Z = u + iv, then the given equations
become the real and imaginary parts of the

. 1
complex equation z+—=c, where ¢ =
z

2,4
NER
apply the quadratic formula to get u + iv,
then squaring u, v, we can get x, y.

Multiplying by z, we can

Problem 92. Let a;,a,,....,a,(n>3) be
real numbers such that a;+a,+---+
a,=n and a12+a%+m+ a,% >n?

Prove that

(Source: 1999 USA Math Olympiad).

max (aj,ap,....a,)=2

Solution. FAN Wai Tong Louis (St.
Mark's School, Form 7).

Suppose max (ay,as,....a,)<2 . By
relabeling the indices, we may assume 2
> ay2ay2---2a,. Letjbe the largest
index such that a;20. For i > j, let
b; =—a; >0. Then

2j—n>(a+---+aj)—n2bj +---+b,.

So (2j=m)?*> bj, +--+by. Then

4j+(2j—n)2 > a12+---+a,2, >n?,

which implies j > n — 1. Therefore, j = n
and all 4; 20 This yields

4n>a12 +~~+a,2l >n? . which gives the

contradiction that 3>n.

Other recommended solvers: LEUNG Wai
Ying (Queen Elizabeth School, Form 5),
NG Ka Wing Gary (STFA Leung Kau Kui
College, Form 7), NGAN Chung Wai
Hubert (St. Paul’s Co-educational College,
Form 7) and WONG Wing Hong (La Salle
College, Form 2).

Problem 93. Two circles of radii R and
are tangent to line L at points A and B
respectively and intersect each other at C
and D. Prove that the radius of the
circumcircle of triangle ABC does not
depend on the length of segment AB.
(Source: 1995 Russian Math Olympiad).

Solution. CHAO Khek Lun (St. Paul's
College, Form 5).

Let O, O' be the centers of the circles of
radius R, r, respectively. Let & = ZCAB
=/ZAOC/2and f=ZCBA=/BO'C/2.
Then AC = 2R sina and BC = 2r sin 3.
The distance from Cto ABis AC sina =
BC'sin £, which implies sine /sin f =

Jr/R . The circumradius of triangle
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ABC'is
AC _ Rsina _ \/E,
2sin 8 sinf
which does not depend on the length of
AB.

Other recommended solvers: CHAN Chi
Fung (Carmel Divine Grace Foundation
Secondary School, Form 6), FAN Wai
Tong Louis (St. Mark’s School, Form 7),
LEUNG Wai Ying (Queen Elizabeth
School, Form 5), NG Ka Chun
Bartholomew (Queen Elizabeth School),
NGAN Chung Wai Hubert (St. Paul’s
Co-educational College, Form 7) and SIU
Tsz Hang (STFA Leung Kau Kui
College, Form 4).

Problem 94. Determine all pairs (m, n)
of positive integers for which 2™ +3" is
a square.

Solution. NGAN Chung Wai Hubert
(St. Paul’s Co-educational College, Form
7) and YEUNG Kai Sing (La Salle
College, Form 3).

Let 2™ +3" =q®. Then a is odd and
a®>=2"+3"=(=1)™ (mod 3). Since
squares are 0 or 1 (mod 3), m is even.
Next (-1)"=2"+3"=4?>=1 (mod 4)
implies n is even, say n = 2k, k> 1. Then
2" =(a+3*)a-3%). So a+3k=2",
a—3F=2% for integers r>s>0 with r
+s=m. Then 2-3F =2" —2% implies s

=1, s0 2" -1=3% .
implies r is odd. So

(z(r—l)/2+1) (z(r—l)/Z_l): 3k

Now r+l=m

Since the difference of the factors is 2,
not both are divisible by 3. Then the
factor 207D/2_1=1 . Therefore,
r=3, k=1, (m,n) = (4,2), which is
easily checked to be a solution.

Other recommended solvers: CHAO
Khek Lun (St. Paul’s College, Form 5),
CHENG Kei Tsi (La Salle College, Form
5), FAN Wai Tong Louis (St. Mark’s
School, Form 7), KU Hong Tung
(Carmel Divine Grace Foundation
Secondary School, Form 6), LAW Siu
Lun Jack (Ming Kei College, Form 5),
LEUNG Wai Ying (Queen Elizabeth
School, Form 5), NG Ka Chun
Batholomew (Queen Elizabeth School),
NG Ka Wing Gary (STFA Leung Kau
Kui College, Form 7), NG Ting Chi
(TWGH Chang Ming Thien College,
Form 7) and SIU Tsz Hang (STFA

Leung Kau Kui College, Form 4).

Problem 95. Pieces are placed on an
nxn board. Each piece “attacks” all
squares that belong to its row, column,
and the northwest-southeast diagonal
which contains it. Determine the least
number of pieces which are necessary to
attack all the squares of the board.
(Source: 1995 Iberoamerican Olympiad).

Solution. LEUNG Wai Ying (Queen
Elizabeth School, Form 5).

Assign coordinates to the squares so (x,
y) represents the square on the x-th
column from the west and y-th row from
the south. Suppose k pieces are enough
to attack all squares. Then at least n — k
columns, say columns xi,...,x,_j, and n
—krows, say yi,..., ¥, » do not contain
any of the k pieces. Consider the 2(n - k)
— 1 squares (x,y;), (x1,¥2), ..., (%,
Yn—i)» X2, y) s (X3, 1) ooos (s
y1) . As they are on different diagonals
and must be attacked diagonally by the k
pieces, we have k >2(n—k)—1. Solving
for k, we getk = (2n—1)/3.Now let k be
the least integer such that k > (2n—1)/3.
We will show k is the answer. The case n
= 1 is clear. Nextif n =3a + 2 for a
nonnegative integer a, then place k = 2a
+ 1 pieces at (1, n), 2, n-2), 3, n—4),
wo@+1,n-2a),@+2,n-1),(a+3,
n-3),(a+4,n-5),....,Qa+1,n-2a+
1). So squares with x< 2a+lory 2 n
— 2a are under attacked horizontally or
vertically. The other squares, with 2a + 2
<x<nand 1 <y <n-2a-1, have
2a+3 < x+y <2n-2a-1. Now the
sums x + y of the k pieces range from n —
a+1=2a+3ton+a+1=2n-2a-1.
So the k pieces also attack the other
squares diagonally.

Next, if n =3a + 3, then k=2a + 2 and we
can use the 2a + 1 pieces above and add a
piece at the southeast corner to attack all
squares. Finally, if n = 3a + 4, then k =
2a + 3 and again use the 2a + 2 pieces in
the last case and add another piece at the
southeast corner.

Other recommended solvers: (LEE Kar
Wai Alvin, CHENG Kei Tsi Daniel, LI
Chi Pang Bill, TANG Yat Fai Roger)
(La Salle College, Form 5), NGAN
Chung Wai Hubert (St. Paul’s
Co-educational College, Form 7).

Olympiad Corner
(continued from page 1)

Problem 4. Let P~ denote all the odd
primes less than 10000. Determine all
possible primes pe P* such that for
each subset S of P, say S = { p;,
P2
p & S, there must be some g in r , but

..., Pr }» with k& = 2, whenever

not in S, such that g + 1 is a divisor of
(pr+D (po+D) ... (pg+D).

Problem 5. The altitudes through the
vertices A, B, C of an acute-angled
triangle ABC meet the opposite sides at
D, E, F, respectively, and AB > AC. The
line EF meets BC at P, and the line
through D parallel to EF meets the lines
AC and AB at Q and R, respectively. Nis
a point on the side BC such that ZNQP
+ ZNRP <180°. Prove that BN > CN.

Problem 6. There are 8 different
symbols designed on n different T-shirts,
where n > 2. It is known that each shirt
contains at least one symbol, and for any
two shirts, the symbols on them are not
all the same. Suppose that for any k
symbols, 1 < k < 7, the number of shirts
containing at least one of the k£ symbols is
even. Find the value on n.

Cavalieri
(continued from page 2)

To get the answer, we will apply
Cavalieri’s principle. Consider a solid
right cylinder with height 1 and base
region A. Numerically, the volume of
this solid equals the area of the region A.

Now rotate the solid so that the 1xc?

rectangular face becomes the base. As
1.3

3¢
compare this rotated solid with a solid
right pyramid with height ¢ and square

base of side c.

we expect the answer to be we

Both solids have height c. At a level x
units below the top, the cross section of

the rotated solid is a 1xx> rectangle.

The cross section of the right pyramid is

a square of side x. So both solids have

the same cross sectional areas at all

levels. Therefore, the area of A equals

numerically to the volume of the
3

pyramid, which is %c .
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Problem 1. Some checkers placed on an
nxn checkerboard satisfy the following
conditions:

(a) every square that does not contain a
checker shares a side with one that
does;

given any pair of squares that contain
checkers, there is a sequence of
squares containing checkers, starting
and ending with the given squares,
such that every two consecutive
squares of the sequence share a side.

—2)/3 checkers

have been placed on the board.

(b)

Prove that at least (n2

Problem 2. Let ABCD be a cyclic
quadrilateral. Prove that

|AB—-CDI|+1AD-BCI|22|1AC—-BD].

Problem 3. Let p > 2 be aprime and let

a, b, ¢, d be integers not divisible by p,
such that
{ra/p}+{rb/p}+{rc/p}+{rd/p} =2

(continued on page 4)

Editors: 5& B (CHEUNG Pak-Hong), Munsang College, HK
/o (KO Tsz-Mei)

% (LEUNG Tat-Wing), Appl. Math Dept, HKPU
- (LI Kin-Yin), Math Dept, HKUST
P8

(
4% 4 (NG Keng-Po Roger), ITC, HKPU
% # (YEUNG Sau-Ying Camille), MFA, CU

I
3
@
i

gk S

Artist: 1§

Acknowledgment: Thanks to Elina Chiu, MATH Dept,
HKUST for general assistance.

On-line: http://www.math.ust.hk/mathematical_excalibur/

The editors welcome contributions from all teachers and
students. With your submission, please include your name,
address, school, email, telephone and fax numbers (if
available). Electronic submissions, especially in MS Word,
are encouraged. The deadline for receiving material for the
next issue is May 20, 2000.

For individual subscription for the next five issues for the
00-01 academic year, send us five stamped self-addressed
envelopes. Send all correspondence to:
Dr. Kin-Yin Li
Department of Mathematics
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Fax: 2358-1643
Email: makyli@ust.hk

A R g Enad g

R S R W= gl S e S
L p e g RIS T
Yo, o T b APt LR TH -
HiehdieF Al & 38k, o 64023
57 FE T}u{?ﬁﬁz4689
K i&{rﬁﬁiow z}\f =l[$z+gzk_m
T KRV ,_ﬁ»gﬁ,fi—iﬂ ,I;fy,
T s 257 0@ ﬂ\??ﬁj
o FEc M o

FAARE A a\ﬁl_évﬁﬁﬂﬂ wﬁ
e FRFHFERALY 2 F

> M

’i\/‘

wsgz

&M?ﬁﬂ’%@%if “ﬁ

< E FF S 2 F (Buclid) 1
EALZEA o Am 3308

SRR T Eop B S N AL

L
54

)gzjq),g; T 5 25%{;\914&];45
o EILE oz

nE &% g b eh- AAEFE o

(Bwh+) 23 £42+2%>
- £ &G 465 BRI F P E S
M4 K A BT
X’f‘]"~£’§"¥ LT | o %4 Lk
20 feprde Moo v B T
ENE ‘\‘ﬁj\£“ B ﬁ;ﬁﬁ’i’ﬂ']
22 L S

HATER P E AL

Rer® PLAGEE B P AR

Rl

)

=

v

2% L
13
F

Hho BhrasbrcokE- B
#ic o PRAE-abc - k+ 1 & i{ﬁ;ﬁ B &
%1{o&r%?{fﬁ?$¢»?ﬂﬁzi&4c,,ln
- BATOF o dok v 2 A e PR
feﬂ&ﬁ’q&“ﬁ - BEFFF podck pEar
brco kB - Bl d wv L

abc -k ¥ E_T i&l;é ?ﬁ‘,f 1o ieiz® %

AR
43

2,

7

é

T FL LR A g o 7]
p piﬁ%’; FATOF BB E A B
Frim s AP R - AT e &

L

oo g

FAE20 8 0 - B ke
EoATTUAGRGEEAETE o
BT R0 R R LEP O
T EB B

TR R 2 RS R

# (Mersenne) (1588 —1648) #
CaaE S & SRR LR

" F

Fi ' —1=(— D"+ 4+
x+ D)o #rrided ¥ -1 2 ko x -1
R EEN Lod piFx=20 F ¢ B
den=ab¥®® a<b* £ x=2 P
2'—1=2%=x"-1=(x-DE"" +x"7
SRR T DERS IR o VAR IR A
PRE-x—1 % ®x & £ 1od g8 2=
20 Fa=1>n% THFHk-

e o

PFE AN v Y1, 2
P S dce bl4c: 2°-1=3-2"-1=7>

2-1=31%% o B, EehD 40 H 3t
EFEpra g iR X2 A - B
Mo e TR AR R FRT
B 20— 13 ke k o A - TE
Fiico bl4e 2" —1=2047=23x89 >

PN
|‘

4

PR AP H o T BN
H kel B F RS H PR
BodvuagvE3ir - B
ﬁ;:o

ERE A AL ER L L S
EEEE oA DEfeRE S SR
LS R FAEBEL X
E SRR AT AN TR
BRI Bt s (Ben i



Mathematical Excalibur, Vol. 5, No. 2, Mar 00 — Apr 00

Page 2

www.utm.edw/research/primes/largesthtml ) »
ENEE IR 26912593 _ 1, &
Fd =2 #wERrH199EF6% 1p %
Weo

B F 4 J) % 3 5 (Fermat)
(1601-1665) 7 4% 1 — i & 02 7 #c
A

Kn=abi® bE- BHHe 4 x
=27 P 2"+ 1= +1=x"+1=(x+
D =24 —x+ 1) e 23 A% F
LR SoRNEE R N
241 E A B et ek 24 ]
g\?ﬁgz,m)’?n FF o
T LA 2R F oo ER FE
m?ﬁﬁi‘w‘r ) 22 +1e

3k 22 +1=302% +1=
5028 41=17+ 2% +1=257- 2% +1
= 65537 0 v P 2 A de o WAL
EESPEN TR S & SRR
IPRFRs gl Srk: R 1}4—,;}#@_3&11\
K d fRE R BERRATT

Bohw E bR ATSA o AL A
¥ %3y 4 #H Fd (Buler) (1707 —
1783) = ®fd 23— B 7 K Fbe
17 e EEMALE > - 4 50 o

S I

B HRUERED AP A
T v E P E A EE F B

Py 27 bl B A

4o T

g

wa=2fcb=5 7B a-b" =3
A l+ab—b*=1+@-b)b=1+3b=
24 o wiry

224 1=Qa)' +1
=2%"+1=(1+ab-b"a*+1
= (1 +ab)a* + (1 - a'p"
= (1+ab)(a*+ (1 —ab)(1 +a’b?)) >

T 1+ab=6417 Kk 224152241
bR AE
9

DFT 4R E Y - 30

G e ,*;ﬁfj.&;? wary 127 41 =
4294967297 = 641 x 6700417 - e pFF >

BT aatE o §nx3t 42154
FHONFE N kaikF LG FR
F—%%?&WIZE’ﬂWF%ﬁ
G- BEE ?’rﬂz)f
}@;'ﬁ ff’ F‘r’v l[}ﬁﬁ:—}'— °

;’«}&F]’J 3

b 2 4 1 E A s
B AR E A @ ey 2 X
oo AMEIT 1796 £ o éi%mﬁi%
FREF AT B AFTRRE R AT
Bex - LA e

% 27 (Gauss) (1777 - 1855) - 4k
BA - B#Exq 3k o dp 1R
MR i o 22k uw o v g
BREEPT S RBEL A FEEOERF T
Tood AR R [ A LR G

"EF313 ) o

BT 19K EHER > - B
?ﬁ’ﬁi%; S z#ﬁj’rﬁ]ﬁv:ﬁ;/}«fr
& B ;.,z R 375 A e T8 -
i ﬁ%ﬁ’ﬁﬁiiﬁ
2 (“’FJ__—_ &*1 )~ 7 3§’1

#as i 257 s§4/'fm_ 633571%*‘/"«'1
R TD ko B g TS A
JT%Z LG e (nféb;‘\n’r“.iffiﬁ,y— [

IV

PEFEe) BARMLENT - B
3?]%_&4;;%1] 1§g TR E - % H

E% BT k& S AT 1‘#1?_\_;

F P o EG M T AT
7’#§£r f@wﬁﬁj%ﬁJ'i °

£ 4. © # (Goldbach) #_grf Fipf

#

Lo 1TA2 E BT M B B
;}FI&E"H}Z J%“6m|%§3: Jrrg—-vu
E ‘nﬁlﬁ"ﬁ"r&\’fr’mézr:g_3+

520=7+13-~100=17 +83 -+ % -
&wﬁ}&ﬁ:‘i %tf—lg'g\?"‘
Rk

B - i eh

B igse Al - BEF
oy T d - »[;43;19 o B A

@IFL‘?\F MZ%"TEEJ °

% .

K

ISR AP o R ¥ U
LB ﬁl[}—'—iﬁ“m,i,@:mgzim
REFEWR o LT 1920 F 5 ¥R K
E3F P Brun) FF - BT LB
S BT 2 oo H P E - [ = AE S
5#%?9?]&’??}&0 15 ] - B
EAR N R D s i

=l

1948 & » @ 9 |z & (Renyi) #.
Pi- Bisice 27 G- Bk
e - B LB FIF AT E Al S
Beo 1962 & o P B AFED T -
R SRS RN S S

Bd S5BFFrredads Sfce (5%
$ARERETE (1450

1963 & » ¢ Fend & feif ik A
ST (1+4) - 1965 & o g
FHdiE £ (Vinogradov) #F 7 (1 +
3)o 1966 & > *# E&erﬁﬁ,ﬁ?i}&ﬂ@ (1

R e P
:&s i ;ﬁp’j mﬁ’s X ..:f. o
BAP (1933-1996) - dgit §

AN A e A A f}”‘ m?’\z&_’ d 3R
Rtk B 44?[&1__,,# Ly kB
TEY - 1957 ERERA R

35‘-)“*'“’*j'l§}‘m@£§ F?l ﬁ,_r@fL
AEE Lt EY S BB

e 2R hFg o @ @ hl (Ffri
Byt d o 1980 > W 5L
RAFRFINLR - 1984 F5F &4
Tk ESE, 0 23 1996 & 37 19

B B3R 53 4 o

2 F “f”iﬂ’%r%?@“’ﬁﬂ*‘fhﬁ?
ECA ?‘ﬁ& o BT - B
i‘ufr‘ i%ré? (U I A g
;?(;;Jco BF Y R Y AP YR
RGOS B R v PRty

T viFEANG 20 blde 134055
Fe 7~ 11 ‘fr' 13 --- 10016957 H-
10016959 --- % % - 73} T & 4 7
et ’1%4\@\5:145"& ?‘%ﬂigﬂ-ﬂi%)’
Hom ¢1973i’Fﬁ§,F}TF£fA-Fﬁ
e ilﬁ%’rﬂtp’lélap+211i&
W B e

RN TS VRN TN
SRS R € d e
lI}‘sE““’”F&?ﬁ‘-’int""‘@" I
TR -oLEFHOPMFEG EFHA
RF G EAm LR .

L

5% 0

(g o Fehec®)
FE 3 HE IR R AE
(=4 z3%)

ARk AR AR
(R AHE)

AN LE SIS A RS S
(% )

L RS S R



Mathematical Excalibur, Vol. 5, No. 2, Mar 00 — Apr 00

Page 3

Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceeded by the solver’s

name, home address and school
affiliation. Please send submissions to
Dr. Kin Y. Li, Department of

Mathematics, Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon. The deadline for
submitting solutions is May 20, 2000.

Problem 101. A triple of numbers
(a1,a5,a3) = (3, 4, 12) is given. We
now perform the following operation:
choose two numbers a; and aj, i+)),
and exchange them by 0.6 ¢; - 0.8 a; and
0.8a; + 0.6a;. Is it possible to obtain

after several steps the (unordered) triple
(2, 8, 10)? (Source: 1999 National Math
Competition in Croatia)

Problem 102. Let a be a positive real
number and (x,),>; be a sequence of

real numbers such that x; =a and
n—l1
Xpp1 2 (n+2)x, — Y kx; , forall n>1.
k=1

Show that there exists a positive integer n
such that x, > 1999! (Source: 1999

Romanian Third Selection Examination)

Problem 103. Two circles intersect in
points A and B. A line / that contains the
point A intersects the circles again in the
points C, D, respectively. Let M, N be
the midpoints of the arcs BC and BD,
which do not contain the point A, and let
K be the midpoint of the segment CD.

Show that ZMKN =90°. (Source: 1999

Romanian Fourth Selection Examination)

Problem 104. Find all positive integers
n such that 2" -1 is a multiple of 3 and

(2"-1)/3 is a divisor of 4m?* + 1 for some
integer m. 1999 Korean
Mathematical Olympiad)

(Source:

Problem 105. A rectangular
parallelopiped (box) is given, such that
its intersection with a plane is a regular
hexagon. Prove that the rectangular
parallelopiped is a cube. (Source: 1999
National Math Olympiad in Slovenia)

sfe st steste stttk sk sk sk sk sk skosk

Solutions
skeskoskoskoskeosk skskoskosk skskoskskosk skock

Problem 96. If every point in a plane is
colored red or blue, show that there
exists a rectangle all of its vertices are of
the same color.

Solution. NG Ka Wing Gary (STFA
Leung Kau Kui College, Form 7).
Consider the points (x, y) on the co-
ordinate plane, where x=1,2, ..., 7and y
=1,2,3. Inrow 1, at least 4 of the 7
points are of the same color, say color A.
In each of row 2 or 3, if 2 or more of the
points directly above the A-colored points
in row 1 are also A-colored, then there
will be a rectangle with A-colored
vertices. Otherwise, at least 3 of the
points in each of row 2 and 3 are B-
colored and they are directly above four
A-colored points in row 1. Then there will
be a rectangle with B-colored vertices.

Other recommended solvers: CHENG Kei
Tsi Daniel (La Salle College, Form 5),
CHEUNG Chi Leung (Carmel Divine Grace
Foundation Secondary School, Form 6), FAN
Wai Tong (St. Mark’s School, Form 7), LAM
Shek Ming Sherman (La Salle College),
LEE Kar Wai Alvin, LI Chi Pang Bill,
TANG Yat Fai Roger (La Salle College,
Form 5), LEE Kevin (La Salle College, Form
4), LEUNG Wai Ying, NG Ka Chun
Bartholomew (Queen Elizabeth School, Form
5), NG Wing Ip (Carmel Divine Grace
Foundation Secondary School, Form 6),
WONG Chun Wai (Choi Hung Estate
Catholic Secondary School, Form 7), WONG
Wing Hong (La Salle College, Form 2) and
YEUNG Kai Sing Kelvin (La Salle College,
Form 3).

Problem 97. A group of boys and girls
went to a restaurant where only big
pizzas cut into 12 pieces were served.
Every boy could eat up to 6 or 7 pieces
and every girl 2 or 3 pieces. It turned out
that 4 pizzas were not enough and that 5
pizzas were too many. How many boys
and how many girls were there? (Source:
1999 National Math Olympaid in Slovenia).

Solution. TSE Ho Pak (SKH Bishop Mok
Sau Tseng Secondary School, Form 6).

Let the number of boys and girls be x and
y, respectively. Then 7x + 3y < 59 and
6x + 2y = 49. Subtracting these, we get
x +y < 10. Then 6x + 2(10 - x) = 49
implies x = 8. Also, 7x + 3y < 59
implies x < 8. So x = 8. To satisfy the
inequalities then y must be 1.

Other recommended solvers: AU Cheuk
Yin Eddy (Ming Kei College, Form 7),
CHAN Chin Fei (STFA Leung Kau Kui
College,), CHAN Hiu Fai (STFA Leung Kau
Kui College, Form 6), CHAN Man Wai (St.
Stephen’s Girls’ College, Form 5), CHENG
Kei Tsi Daniel (La Salle College, Form 5),
CHUNG Ngai Yan (Carmel Divine Grace

Foundation Secondary School, Form 6),
CHUNG Wun Tung Jasper (Ming Kei
College, Form 6), FAN Wai Tong (St. Mark’s
School, Form 7), HONG Chin Wing (Pui
Ching Middle School, Form 5), LAM Shek
Ming Sherman (La Salle College), LEE Kar
Wai Alvin, LI Chin Pang Bill, TANG Yat
Fai Roger (La Salle College, Form 5), LEE
Kevin (La Salle College, Form 4), LEUNG
Wai Ying (Queen Elizabeth School, Form 5),
LEUNG Yiu Ka (STFA Leung Kau Kui
College, Form 5), LYN Kwong To (Wah Yan
College, Form 6), MOK Ming Fai (Carmel
Divine Grace Foundation Secondary School,
Form 6), NG Chok Ming Lewis (STFA
Leung Kau Kui College, Form 6), NG Ka
Chun Bartholomew (Queen Elizabeth
School, Form 5), NG Ka Wing Gary (STFA
Leung Kau Kui College, Form 7), POON
Wing Sze Jessica (STFA Leung Kau Kui
College), SIU Tsz Hang (STFA Leung Kau
Kui College, Form 4), WONG Chi Man
(Valtorta College, Form 5), WONG Chun Ho
(STFA Leung Kau Kui College), WONG
Chun Wai (Choi Hung Estate Catholic
Secondary School, Form 7), WONG So Ting
(Carmel Divine Grace Foundation Secondary
School, Form 6), WONG Wing Hong (La
Salle College, Form 2) and YEUNG Kai Sing
Kelvin (La Salle College, Form 3).

Problem 98. Let ABC be a triangle with
BC > CA > AB. Select points D on BC
and E on the extension of AB such that BD
= BE = AC. The circumcircle of BED
intersects AC at point P and BP meets the
circumcircle of ABC at point Q. Show
that AQ + CQ = BP. (Source: 1998-99
Iranian Math Olympiad)

Solution. LEUNG Wai Ying (Queen
Elizabeth School, Form 5), NG Ka Wing
Gary (STFA Leung Kau Kui College, Form
7) and WONG Chun Wai (Choi Hung
Estate Catholic Secondary School, Form 7).

ZLCAQ =ZCBQ=ZDEP

ZAQC=180° —ZABD=/EPD , so
AAQC ~AEPD. By Ptolemy’s theorem,
BPXED = BDXEP + BEXDP. So

Since and

BP=BDxLE 4 Ex DL _
ED ED
Acx 3L L acx 2 — 40+ co.
AC AC

Other recommended solvers: AU Cheuk
Yin Eddy (Ming Kei College, Form 7),
CHENG Kei Tsi Daniel (La Salle
College, Form 5), FAN Wai Tong Louis
(St. Mark’s School, Form 7), LAM Shek
Ming Sherman (La Salle College), LEE
Kevin (La Salle College, Form 4), SIU
Tsz Hang (STFA Leung Kau Kui
College, Form 4) and YEUNG Kai Sing
Kelvin (La Salle College, Form 3).

Problem 99. At Port Aventura there are
16 secret agents. Each agent is watching
one or more other agents, but no two
agents are both watching each other.
Moreover, any 10 agents can be ordered



Mathematical Excalibur, Vol. 5, No. 2, Mar 00 — Apr 00

Page 4

so that the first is watching the second, the
second is watching the third, etc., and the
last is watching the first. Show that any 11
agents can also be so ordered. (Source:
1996 Spanish Math Olympiad)

Solution. CHENG Kei Tsi Daniel (La
Salle College, Form 5), LEUNG Wai
Ying (Queen Elizabeth School, Form 5),
NG Ka Chun Bartholomew (Queen
Elizabeth School, Form 5) and WONG
Chun Wai (Choi Hung Estate Catholic
Secondary School, Form 7).
If some agent watches less than 7 other
agents, then he will miss at least 9 agents.
The agent himself and these 9 agents will
form a group violating the cycle
condition. So every agent watches at
least 7 other agents. Similarly, every
agent is watched by at least 7 agents.
(Then each agent can watch at most 15 -7
= 8§ agents and is watched by at most 8
agents)
Define two agents to be “connected” if
one watches the other. From above, we
know that each agent is connected with at
least 14 other agents. So each is
“disconnected” to at most 1 agent. Since
disconnectedness comes in pairs, among
11 agents, at least one, say X, will not
disconnected to any other agents.
Removing X among the 11 agents, the
other 10 will form a cycle, say
Xl’XZ"“’XIO’Xll :Xl‘
Going around the cycle, there must be 2
agents X;,X,,; in the cycle such that

X, also watches X and X;,; is watched

by X. Then X can be inserted to the cycle
between these 2 agents.

Other commended solvers: CHAN Hiu
Fai Philip, NG Chok Ming Lewis (STFA
Leung Kau Kui College, Form 6) and NG

Ka Wing Gary (STFA Leung Kau Kui
College, Form 7).

Problem 100. The arithmetic mean of a
number of pairwise distinct prime
numbers equals 27. Determine the
biggest prime that can occur among
them. (Source: 1999 Czech and Slovak
Math Olympiad)

Solution. FAN Wai Tong (St. Mark’s
School, Form 7) and WONG Chun Wai

(Choi Hung Estate Catholic Secondary
School, Form 7)

Let p; < pp <---< p, be distinct primes
suchthat p; + py +---+ p,, =27n. Now
py #2 (for otherwise p;+ py+---+p,

- 27n will be odd no matter n is even or
odd). Since the primes less than 27 are 2,
3,5,7,11,13,17, 19, 23, so p,=27n -

(pr+-+ppy) =27+ Q27- pp) +---+
27 - p,_1) £ 27+(27-2)+(27-3) +---+
(27 -23) = 145. Since p,, is prime, p,
< 139. Since the arithmetic mean of 2,

3,5,7,11,13, 17, 19, 23, 29, 31, 139 is
27. The answer to the problem is 139.

Other recommended solvers: CHENG
Kei Tsi Daniel (La Salle College, Form 5),
CHEUNG Ka Chung, LAM Shek Ming
Sherman, LEE Kar Wai Alvin, TANG
Yat Fai Roger, WONG Wing Hong,
YEUNG Kai Sing Kelvin (La Salle
College), LEUNG Wai Ying (Queen
Elizabeth School, Form 5), and NG Ka
Wing Gary (STFA Leung Kau Kui
College, Form 7).

Olympiad Corner

(continued from page 1)

Problem 3. (cont’d)

for any integer r not divisible by p.
Prove that at least two of the numbers
a+b, a+c, a+d, b+c, b+d, c+d are
divisible by p. (Note: {x} = x - [x]
denotes the fractional part of x.)

Problem 4. Let g;,a,,...,
real numbers such that

a,(n>3) be

ajta,+--+a,2n
and

a12+a%+~~+a,% an.

Prove that max (a;, ay,..., a,) > 2.

Problem 5. The Y2K Game is played on
a 1x2000 grid as follows. Two players
in turn write either an S or an O in an
empty square. The first player who
produces three consecutive boxes that
spell SOS wins. If all boxes are filled
without producing SOS then the game is
a draw. Prove that the second player has
a winning strategy.

Problem 6. Let ABCD be an isosceles
trapezoid with ABIICD . The inscribed
circle & of triangle BCD meets CD at E.
Let F be a point on the (internal) angle
bisector of ZDAC such that EF1CD .
Let the circumscribed circle of triangle
ACF meet line CD at C and G. Prove that
the triangle AFG is isosceles.

OO T~
Interesting Theorems About Primes

Below we will list some interesting
theorem concerning prime numbers.

Theorem (due to Fermat in about 1640)
A prime number is the sum of two perfect
squares if and only if it is 2 or of the form
4n + 1. A positive integer is the sum of
two perfect squares if and only if in the
prime factorization of the integer, primes
of the form 4n + 3 have even exponents.

Dirichlet’s Theorem on Primes in
Progressions (1837) For every pair of
relatively prime integers a and d, there
are infinitely many prime numbers in the
arithmetic progression a, a+d , a+2d,
a+3d , ... (In particular, there are

infinitely many prime numbers of the form
4n + 1, of the form 6n + 5, etc.)

Theorem There is a constant C such that

if p,» pa, ..., p, are all the prime
numbers less than x, then
1 1 1
Inlnx)-1<—+—+---+—
P1 P2 Pn

<In(In x) + C In(In(In x)).
In particular, if py, ps, p3, ... are all the

prime numbers, then

1 1 1
— 4+ —+— =00,
P P2 P3
(The second statement was obtained by
Euler in about 1735. The first statement

was proved by Chebysev in 1851.)
Chebysev’s Theorem (1852) If x>1,

then there exists at least one prime
number between x and 2x. (This was
known as Bertrand’s postulate because J.
Bertrand verified this for x less than six
million in 1845.)

Prime Number Theorem (due to J.
Hadamard and Ch. de la Vallée Poussin
independently in 1896) Let w(x) be the

number of prime numbers not exceeding x,
then

lim 25—
x—eo x/Inx
If p,, is the n-th prime number, then

lim 221,
x—e nlnn
(This was conjectured by Gauss in 1793

when he was about 15 years old.)

1.

Brun’s Theorem on Twin Primes (1919)
The series of reciprocals of the twin
primes either is a finite sum or forms a
convergent infinite series, i.e.

1 1 1 1 1 1
—t+— |+ o= [+ =+ = [+ <o
35 5 7 11 13

As a general reference to these results, we
recommend the book Fundamentals of
Number Theory by William J. Le Veque,
published by Dover.
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Problem 1. Compute the sum

101 3 .
X l
S — —’2 'xi = —
4 1-3x, +3x; 101
Problem 2. Given the following

triangular arrangement of circles:

Each of the numbers 1,2,...,9 is to be
written into one of these circles, so that
each circle contains exactly one of these
numbers and
(i) the sums of the four numbers on each
side of the triangle are equal;
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Coordinate Geometry
Kin Y. Li

When we do a geometry problem, we
should first look at the given facts and the
conclusion. If all these involve
intersection points, midpoints, feet of
perpendiculars, parallel lines, then there
is a good chance we can solve the
problem by coordinate geometry.
However, if they involve two or more
circles, angle bisectors and areas of
triangles, then sometimes it is still
possible to solve the problem by
choosing a good place to put the origin
and the x-axis. Below we will give some
examples. [t is important to stay away
from messy computations !

Example 1. (1995 IMO) Let A, B, C
and D be four distinct points on a line, in
that order. The circles with diameters AC
and BD intersect at the points X and Y.
The line XY meets BC at the point Z. Let P
be a point on the line XY different from Z.
The line CP intersects the circle with
diameter AC at the points C and M, and
the line BP intersects the circle with
diameter BD at the points B and N. Prove
that the lines AM, DN, and XY are
concurrent.

(Remarks. Quite obvious we should
set the origin at Z. Although the figure is
not symmetric with respect to line XY,
there are pairs such as M, N and A, D and
B, C that are symmetric in roles! So we
work on the left half of the figure, the
computations will be similar for the right
half.)

Solution. (Due to Mok Tze Tao,
1995 Hong Kong Team Member) Set the
origin at Z and the x-axis on line AD. Let
the coordinates of the circumcenters of
triangles AMC and BND be (x;, 0) and (x,,
0), and the circumradii be r; and 7,
respectively. Then the coordinates of A
and C are (x;—r;, 0) and (x;+ r; 0),
respectively. Let the coordinates of P be
(0, yo). Since AM L CP and the slope of
CP is —yy/(x;+ r;), the equation of AM
works out to be (x;+ r;)x—ygy= xf % . Let
Q be the intersection of AM with XY, then
0 has coordinates (0, (rlz — xlz)/ Vo) -

Similarly, let Q' be the intersection
of DN with XY, then Q' has coordinates
0,(r, =x3)/y,)- Since > —x! =7X?*

=r -x;,500=0 -

Example 2. (1998 APMO) Let ABC
be a triangle and D the foot of the altitude
from A. Let E and F be on a line passing
through D such that AE is perpendicular
to BE, AF is perpendicular to CF, and E
and F are different from D. Let M and N
be the midpoints of the line segments BC
and EF, respectively. Prove that AN is
perpendicular to NM.

(Remarks. We can set the origin at D
and the x-axis on line BC. Then
computing the coordinates of E and F will
be a bit messy. A better choice is to set the
line  through D,E.F  horizontal.)
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Solution. (Due to Cheung Pok Man,
1998 Hong Kong Team Member) Set the
origin at A and the x-axis parallel to line
EF. Let the coordinates of D, E, Fbe (d, b),
(e, b), (f, b), respectively. The case b=0
leads to D=E, which is not allowed. So we
may assume b#0. Since BE | AE and the
slope of AE is b/e, so the equation of line
BE works out to be ex+by=e’+b°.
Similarly, the equations of lines CF and
BC are fx+by=f+b’ and dx+by=d’+b’,
respectively. Solving the equations for BE
and BC, we find B has coordinates (d+e,
b-(de/b)). Similarly, C has coordinates
(d+f, b—(df/b)). Then M has coordinates
(d+(e+f)/2, b—(de+df)/(2b)) and N has
coordinates ((e+f)/2, b). So the slope of
AN is 2b/(e+f) and the slope of MN is
—(e+f)/(2b). Therefore, AN L MN.

Example 3. (2000 IMO) Two circles 7;
and 7 intersect at M and N. Let / be the
common tangent to /; and /3 so that M is
closer to ¢ than N is. Let ¢ touch 7;at A
and 75 at B. Let the line through M parallel
to ¢ meet the circle /; again at C and the
circle 7; again at D. Lines CA and DB
meet at E; lines AN and CD meet at P;
lines BN and CD meet at Q. Show that
EP=EQ.

(Remarks. Here if we set the x-axis on
the line through the centers of the circles,
then the equation of the line AB will be
complicated. So it is better to have line AB
on the x-axis.)

Solution. Set the origin at A and the
x-axis on line AB. Let B, M have
coordinates (b,0), (s,t), respectively. Let
the centers O, O,of I}, I>be at (0, r;), (b,
r;), respectively. Then C, D have
coordinates (s, t), (2b—s,t), respectively.
Since AB, CD are parallel, CD=2b=2AB
implies A, B are midpoints of CE, DE,
respectively. So E is at (s, —t). We see EM
1 CD.

To get EP=EQ, it is now left to show M
is the midpoint of segment PQ. Since O,
O, L MN and the slope of O; O, is

(r,— r;)/b, the equation of line MN is
bx+(ry—r;)y=bs+(r;—r;)t.  (This line
should pass through the midpoint of
segment AB.) Since O,M=r; and O;M=r,
we get

b=s)+(r,—-t) =1

sP+(n -0 =1,

and

Subtracting these equations, we get
b*/2=bs+(r,— r))t, which implies (b/2, 0)
is on line MN. Since PQ, AB are parallel
and line MN intersects AB at its midpoint,
then M must be the midpoint of segment
PQ. Together with EM L PQ, we get
EP=EQ.

Example 4. (2000 APMO) Let ABC be
a triangle. Let M and N be the points in
which the median and the angle bisector,
respectively, at A meet the side BC. Let O
and P be the points in which the
perpendicular at N to NA meets MA and
BA, respectively, and O the point in which
the perpendicular at P to BA meets AN
produced. Prove that QO is perpendicular
to BC.

(Remarks. Here the equation of the angle
bisector is a bit tricky to obtain unless it is
the x-axis. In that case, the two sides of the
angle is symmetric with respect to the
X-axis.)

Solution. (Due to Wong Chun Wai,
2000 Hong Kong Team Member) Set the
origin at N and the x-axis on line NO. Let
the equation of line AB be y=ax+b, then
the equation of lines AC and PO are
y=—ax—b and y=(—1/a)x+b, respectively.
Let the equation of BC be y=cx. Then B
has coordinates (b/(c—a), bc/(c—a)), C has
coordinates (—b/(c+a), —bc(c+ag), has
coordinates (ab/(c*-d’), abc/(c*-d®)), A
has coordinates (-b/a, 0), O has
coordinates (ab, 0) and Q has coordinates
(0, ab/c). Then BC has slope ¢ and QO
has slope —I/c. Therefore, QO 1 BC.

Example 5. (1998 IMO) In the convex
quadrilateral ABCD, the diagonals AC and
BD are perpendicular and the opposite
sides AB and DC are not parallel. Suppose
that the point P, where the perpendicular

bisectors of AB and DC meet, is inside
ABCD. Prove that ABCD is a cyclic
quadrilateral if and only if the triangles
ABP and CDP have equal areas.

B

D

(Remarks. The area of a triangle can be
computed by taking the half length of the
cross product. A natural candidate for the
origin is P and having the diagonals
parallel to the axes will be helpful.)

Solution. (Due to Leung Wing Chung,
1998 Hong Kong Team Member) Set the
origin at P and the x-axis parallel to line
AC. Then the equations of lines AC and
BD are y=p and x=q, respectively. Let
AP=BP=r and CP=DP=s. Then the
coordinates of A, B, C, D are

(—r*=p*.p)s (g’ =4*)> (s> = p*.p)>

(g—/s> —q°), respectively. Using the
determinant formula for finding the area
of a triangle, we see that the areas of
triangles ABP and CDP are equal if and
only if

P =P = —pa=—s = p’s =¢’ = pa
Since fix) = — 2,2 J2-g2-pg is

strictly decreasing when x = Ipl and lql,
equality of areas hold if and only if r=s,
which is equivalent to A, B, C, D concyclic
(since P being on the perpendicular
bisectors of AB, CD is the only possible

place for the center).

After seeing these examples, we would
like to remind the readers that there are
pure geometric proofs to each of the
problems. For examples (1) and (3), there
are proofs that only take a few lines. We
encourage the readers to discover these
simple proofs.

Although in the opinions of many
people, a pure geometric proof is better
and more beautiful than a coordinate
geometric proof, we should point out that
sometimes the coordinate geometric
proofs may be preferred when there are
many cases. For example (2), the different
possible orderings of the points D, E, F on
the line can all happen as some pictures
will show. The coordinate geometric
proofs above cover all cases.
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We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceded by the solver’s name,
home address and school affiliation.
Please send submissions to Dr. Kin Y. Li,
Department of Mathematics, Hong Kong
University of Science and Technology,
Clear Water Bay, Kowloon. The
deadline for submitting solutions is
October 10, 2000.

Problem 106. Find all positive integer
ordered pairs (a,b) such that

gcd(a,b)+Ilcm(a,b)=a+b+6,

where gcd stands for greastest common
divisor (or highest common factor) and
Icm stands for least common multiple.

Problem 107. Fora, b, ¢ > 0, if abc=1,
then show that

b+c c+a a+b
+ + >va +4b ++c +3.
\/Z JZ J; ¢ ‘

Problem 108. Circles C; and C, with
centers O and O, (respectively) meet at
points A, B. The radii O;B and O,B
intersect C; and C, at F and E. The line
parallel to EF through B meets C; and C;
at M and N, respectively. Prove that
MN=AE+AF. (Source: 17th Iranian
Mathematical Olympiad)

Problem 109. Show that there exists an
increasing sequence aj; d; dz ... of
positive integers such that for every
nonnegative integer k,the sequence k+a,,
k+ay, k+aj ... contains only finitely many

prime numbers. (Source: 1997 Math
Olympiad of Czech and Slovak
Republics)

Problem 110. In a park, 10000 trees
have been placed in a square lattice.
Determine the maximum number of trees
that can be cut down so that from any
stump, you cannot see any other stump.
(Assume the trees have negligible radius
compared to the distance between
adjacent trees.) (Source: 1997 German
Mathematical Olympiad)

Comments. You may think of the trees
being placed at (x,y), where x, y = 0, 1, 2,
.y 99.

skeskeste sk skeoskoskoskoskokoskokokoskoskoskosk

Solutions
skskoskoskosk sk skoskosko sk sk skokosk sk skok

Problem 101. A triple of numbers (a;,
a; az;)=(3, 4, 12) is given. We now
perform the following operation: choose
two numbers a; and a;, (i # j), and
exchange them by 0.6a~0.8a; and
0.8a;+0.64;. Is it possible to obtain after
several steps the (unordered) triple (2, 8,
10) ? (Source: 1999 National Math
Competition in Croatia)

Solution. FAN Wai Tong (St. Mark's
School, Form 7), KO Man Ho (Wah Yan
College, Kowloon, Form 6) and LAW
Hiu Fai (Wah Yan College, Kowloon,
Form 6).

Since (0.64,~0.84)> + (0.84,+0.6a;)’

= af +a7, the sum of the squares of the

triple of numbers before and after an
operation stays the same. Since 3%+ 4 +
12%% 2%+ 8%+ 107, so (2,8,10) cannot be
obtained.

Problem 102. Let a be a positive real
number and (x,),>; be a sequence of real
numbers such that x;=a and

n-1

X 2 (n+2)x,— Y kx, foralln>1.
k=1

Show that there exists a positive integer n
such that x, > 1999! (Source: 1999
Romanian Third Selection Examination)

Solution. FAN Wai Tong (St. Mark's
School, Form 7).

We will prove by induction that x;, = 3x; for
every positive integer j. The case j=1 is true
by the given inequality. Assume the cases j
=1, ..., n—1 are true. Then x,,> 3x,_; = 9x,»
>...and

X

n

n—1

X kx

il > (n+2)— 2 k.
k=1 X,

n=l

2(n+2)—z”_1

—k
o 3"

Page 4
Z(n+2)—(n—l)(l+l+...)
39
_n+5
2
>3.

So the case j = n is also true.

Since a > 0, we can take

n > 1+ logs (1999'/a).
Then x, > 3" "'x,= 3""'a >1999!.

Problem 103. Two circles intersect in
points A and B. A line [/ that contains the
point A intersects again the circles in the
points C, D, respectively. Let M, N be the
midpoints of the arcs BC and BD, which
do not contain the point A, and let K be the
midpoint of the segment CD. Show that
< MKN=90°. (Source: 1999 Romanian
Fourth Selection Examination)

Solution. FAN Wai Tong (St. Mark's
School, Form 7)

Let M’ and N' be the midpoints of chords BC
and BD respectively. From the midpoint
theorem, we see that BM'KN' is a
parallelogram. Now

ZKN'N = ZKN'B +90°
= ZKM B +90°
=ZKMM.

Let = £ NDB =NAB. Then

1
KN’ MB 2

NN NDtana %BDtana

BC

Now

£ZMCB = ZMCB = % ZCAB

=%(180° — Z/DAB)

=90" - ZNAB
=90 -«.
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So

1
MM’ CMeota 5P

MK BN’

lBD
2

Then KN’/ N'N =MM’/MK . So triangles
MM K, KN'N are similar. Then /M KM

= /N'NK and

ZMKN = LM KN'— ZM’KM — ZN'’KN
=/ZKN'D—-(4LN'NK + ZN'KN)
=90°

Other commended solvers: WONG

Chun Wai (Choi Hung Estate Catholic

Secondary School, Form 7).

Problem 104. Find all positive integers
n such that 2"-1 is a multizple of 3 and
(2"-1)/3 is a divisor of 4m”+1 for some
integer m. (Source: 1999 Korean
Mathematical Olympiad)

Solution. (Official Solution)

(Some checkings should suggest n is a
power of 2.) Now 2"-1 is a multiple of 3
if and only if (—1)"=2"=(mod 3), that is n
is even. Suppose for some even n,
(2"=1)/3 is a divisor of 4m”+1 for some
m. Assume n has an odd prime divisor d.
Now 2?~1=3 (mod 4) implies one of its
prime divisor p is of the form 4k+3. Then
p divides 2°-1, which divides 2"-1,
which divides 4m’+1. Then p and 2m are
relatively prime and so

1=CmY ™ '=(4m***'=—1 (mod p),

a contradiction. So n cannot have any
odd prime divisor. Hence n=2’ for some
positive integer j.

Conversely, suppose n =2". Let F=2 + 1.
Using the factorization 2”’—1= (2°—1)x
(2°+1) repeatedly on the numerator, we
get
2" -1
3

Since F; divides F;—2 for i < j, the F;’s
are pairwise relatively prime. By the
Chinese remainder theorem, there is a
positive integer x satisfying the
simultaneous equations x = 0 (mod 2) and

x=2%" (mod F) for i=1, 2, ..., j—1.
Then x=2m for some positive integer m
and 4m’+1= x’+1= 0 (mod F)) for i=1,
2,..j—1. So 4m’+1 is divisible by
F]FQ...Fj_]Z(Zn—l)B.

=FF,---F,,-

J-1

Problem 105. A rectangular
parallelepiped (box) is given, such that
its intersection with a plane is a regular
hexagon. Prove that the rectangular
parallelepiped is a cube. (Source: 1999
National Math Olympiad in Slovenia)

Solution. (Official Solution)

As in the figure, an equilateral triangle
XYZ is formed by extending three
alternate sides of the regular hexagon.

The right triangles XBZ and YBZ are
congruent as they have a common side
BZ and the hypotenuses have equal
length. So BX=BY and similarly BX=BZ.
As the pyramids XBYZ and OB ’NZ are

similar and op :lxy, it follows B'Z
3

:lgz. Thus we have pp /ZEBZ and
3 3

similarly AB:EBX and CB:EBY .
3 3

Since BX=BY=BZ, we get AB=BC=BB’.

Other commended solvers: FAN Wai
Tong (St. Mark’s School, Form 7).

Olympiad Corner

(continued from page 1)
(ii) the sums of the squares of the four
numbers on each side of the triangle are
equal.
Find all ways in which this can be done.

Problem 3. Let ABC be a triangle. Let
M and N be the points in which the
median and the angle bisector,
respectively, at A meet the side BC. Let
Q and P be the points in which the
perpendicular at N to NA meets MA and
BA, respectively, and O the point in
which the perpendicular at P to BA meets
AN produced. Proved that QO is
perpendicular to BC.

Problem 4. Let n, k be given positive
integers with n > k. Prove that
1 n" n! n"

R N LT S L S STC R ST LT 5

Problem 5. Given a permutation (ao, a,
..., a,) of the sequence 0,1,..., n. A
transposition of a; with g; is called legal
if i>0,a,=0anda,_ +1=a;. The

permutation (ay, ai, ..., a,) is called
regular if after a number of legal
transpositions it becomes (1,2, ...,n,0).
For which numbers »n is the permutation
(1, n,n-1, ..., 3, 2, 0) regular ?

m
2000 APMO and IMO

In April this year, Hong Kong IMO
trainees participated in the XII Asia
Pacific Mathematical Olympiad. The
winners were

Gold Award

Fan Wai Tong (Form 7, St Mark’s
School)

Silver Award

Wong Chun Wai (Form 7, Choi Hung
Estate Catholic Secondary School)
Chao Khek Lun (Form 5, St. Paul’s
College)

Bronze Award

Law Ka Ho (Form 7, Queen Elizabeth
School)

Ng Ka Chun (Form 5, Queen Elizabeth
School)

Yu Hok Pun (Form 4, SKH Bishop Baker
Secondary School)

Chan Kin Hang (Form 6, Bishop Hall
Jubilee School)

Honorable Mention

Ng Ka Wing (Form 7, STFA Leung Kau
Kui College)

Chau Suk Ling (Form 5, Queen Elizabeth
School)

Choy Ting Pong (Form 7, Ming Kei
College)

Based on the APMO and previous test
results, the following trainees were
selected to be the Hong Kong team
members to the 2000 International
Mathematical Olympiad, which was held
in July in South Korea.

Wong Chun Wai (Form 7, Choi Hung
Estate Catholic Secondary School)

Ng Ka Wing (Form 7, STFA Leung Kau
Kui College)

Law Ka Ho (Form 7, Queen Elizabeth
School)

Chan Kin Hang (Form 6, Bishop Hall
Jubilee School)

Yu Hok Pun (Form 4, SKH Bishop Baker
Secondary School)

Fan Wai Tong (Form 7, St. Mark’s
School)
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Time allowed: 4 hours 30 minutes
Each problem is worth 7 points.

Problem 1. Two circles ] and I,

intersect at M and N. Let ( be the
common tangent to [} and [, so that M

iscloserto ¢ than Nis. Let ¢/ touches I
at 4 and [, at B. Let the line through M
parallel to / meets the circle I} again at
C and the circle I, at D. Lines C4 and
DB meet at E; lines AN and CD meet at P;
lines BN and CD meet at Q. Show that EP
=EQ.

Problem 2. Let a, b, ¢ be positive real
numbers such that abc = 1. Prove that
(a =1 +1/b)(b -1 +1/c)c—1+1/a)<1

Problem 3. Let n=2 be a positive
integer. Initially, there are n fleas on a
horizontal line, not all at the same point.
For a positive real number A, define a
move as follows:
Choose any two fleas, at points 4 and B,
with 4 to the left of B; let the flea at 4
jump to the point C on the line to the line
to the right of B with BC/AB = A .
(continued on page 4)
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Jensen’s Inequality
Kin Y. Li

In comparing two similar expressions,
often they involve a common function.
To see which expression is greater, the
shape of the graph of the function on an
interval is every important. A function f
is said to be convex on an interval [ if for
any two points (x;, f{lx;)) and (x,,

f(x,)) on the graph, the segment joining

these two points lie on or above the graph
of the function over [ x;, x,]. Thatis,

SA=0)x +1xy) <(1=1) fx)) + 1 (x2)

for every ¢in [0, 1]. If fis continuous on /,
then it is equivalent to have

fBXl tx H SO ()
O 2 0O 2

for every x;, x, inl. If furthermore f'is

differentiable, then it is equivalent to have
a nondecreasing derivative. Also, f is
strictly convex on I if fis convex on [ and
equality holds in the inequalities above
only when x; = x,. We say a function g

is concave on an interval [ if the
function —g is convex on /. Similarly, g is
strictly concave on [ if —g is strictly
convex on /.

The following are examples of strictly
convex functions on intervals:

x? on [0, o) forp>1,
x? on (0, «) forp <0,
a® on(-w, o) fora>1,
/s
tan x on [0, E) .
The following are examples of strictly
concave functions on intervals:
xP on[0, w)for0O<p<1,
log, x on (0, o) fora>1,
cosxon[—711/2, TT/2],

sinx on [0, 7T].

The most important inequalities
con-cerning these functions are the
following.

Jensen’s Inequality. Iffis convex on an
interval I and xy,x,,...,x, arein I, then

Ha *txp +--x,
fD n a
< SO C) +e b X))

n
For strictly convex functions, equality
holds if and only if x| =x5 =---=x,,.

Generalized Jensen’s Inequality. Let f
be continuous and convex on an interval I.
If x1,....,x, areinland 0<ty,t,,...,t, <
1 with t; +ty +---+t, =1, then

S(txy +ipxy oot 1,x,)

s f(x) +ip f(xp) +o+ 1, f ()
(with the same equality condition for
strictly convex functions).

Jensen’s inequality is proved by doing a
forward induction to get the cases n = 2k ,
then a backward induction to get case n —
1 from case n by taking x, to be the

arithmetic mean of x;, x,, ..., x,—. For
the generalized Jensen’s inequality, the
case all ¢; ’s are rational is proved by
taking common denominator and the other
cases are obtained by using continuity of
the function and the density of rational
numbers.

There are similar inequalities for concave
and strictly concave functions by
reversing the inequality signs.

Example 1. For atriangle ABC, show that

343

sin 4 + sinB+sinCST and

determine when equality holds.
Solution. Since f(x) = sin x is strictly
concave on [0, 7T], so

sin 4 +sin B+ sin C

= fD+fB)+ f(O)
<3 AT BHCH
O 3 O
=35inw5

O 3 O
_33

2
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Equality holds if and only if A =B =C =
11/3,1.e. AABC is equilateral.
Example 2. 1fa, b, c> 0 and

at+tb+tc=1,
then find the minimum of

0 0 0
oLl Bl BolE
O a0 O bO 0O cO

Solution. Note 0 <a, b, c<1. Let f(x)

0
= B\' +1H on /= (0, 1), then fis strictly
o x0O

convex on I because its second derivative
oo+ LB Eﬂ@ﬂ@ 2

is positive on /. By Jensen’s inequality,

10" _3fBa+b+cH

39
Sf(a)+f(b)+f(0)
0 0 0
G lB BB B LR
0 a( O b0 O cO

So the minimum is 10'/3° , attained
whena =b =c=1/3.

Example 3. Prove that AM-GM
in-equality, which states that if q; ,

. a, 20, then

..+an
= Yayay---a, .

Solution. If one of the a; ’s is 0, then the
right side is 0 and the inequality is clear.
If a;, a5, ..., a, >0 ,thensince f(x) =

log x is strictly concave on (0, o), by
Jensen’s inequality,

log Jb—l tap ¥ tay E
0 n 0

> loga; +loga, +

ajy, ..
ay +a2 +
n

--+loga,

n
= log(”1/a1a2 eay, )
Exponentiating both sides, we get the
AM-GM inequality.
Remarks. 1If we use the generalized
Jensen’s inequality instead, we can get the
weighted AM-GM inequality. It states
thatif a;, ..., a, >0 and 0 < ¢, ..., ¢,
< 1 satisfying tl +-+ ¢,= 1, then {1 ¢4

t

+tt,a,2a 1 --a,’ with equality if

and only if all g; ’s are equal.
Example 4. Prove the power mean
inequality, which states that for q; ,

, a, >0 and s <t¢,if

/r
+a;H
H 5

ajy, ...

P(llr +al) +
Sr=H -

then S, <S,.
if aj=ap,=---=a,

Remarks. Sy is the arithmetic mean (AM)
and S_; is the harmonic mean (HM) and

Equality holds if and only

S, is the root-mean-square (RMS) of a;,
a,, ---,a,. Taking limits, it can be shown
that S;o 1s the maximum (MAX), S, is
the geometric mean (GM) and S_,, is the
minimum (MIN) of ay, a;, ---,a,.

Solution. Inthe cases0<s<tors<0<t¢,
we can apply Jensen’s inequality to f{x) =
x''S . In the case s < 1< 0, we let b; =
1/a; and apply the case 0 < -t < -s. The

other cases can be obtained by taking limit
of the cases proved.
Example 5. Show that forx, y, z>0,

x+y+z

/ +y51}y +Z
Solution. Leta= \/;,b: \/;,c= \/;,

then the inequality becomes

13, .13, 13
+b° +
0, pl0, 10 4 b7 +c

abc
By the power mean inequality,

3 +b13 +C13 :3S13
= 3S S13 >3S SO
= (a +p10 +clo)abc.
Example 6. Prove Holder’s inequality,

which states that if p, g > 1 satisfy 1 + 1

P q
=1land «, ..., a,, by, ..., b, are real
(or complex) numbers, then

1

Slanls Sl B"sz o

(Thecasep=g=2is the Cauchy-Schwarz
inequality.)
Solution. Let
A =|a1|p +--- +|an|p.
<Jn]” -+l
If 4 or B is 0, then either all a;’
b; ’s are 0, which will make both sides of

the inequality 0.
So we need only consider the case 4 # 0
and B # 0. Let 4 = 1/p and ¢, = 1/g,

then 0 < tl’ 12 <1 and tl + 1‘2 =1. Let

s or all

= |al-|p/A and y;= |bl-|q/B,then

x1+...+xn:1’ y1+..+yn=1'

Since f(x) = "
(—o , ), by the generalized Jensen’s
inequality,

1/ 1/qg _
x;' Pyt

is strictly convex on

=f(hInx; +1;Iny;)

<t f(Inx;) +1p f(Iny;) =L+ 2L
P q

Adding these fori=1, ..., n, we get

2 laillbil _Z 1/p /g
Z 1/ p l/q_zxi i
i=14 B =1
LSx+ts
S—>Yx;+—>Yy; =
Pi=l l qi=1 l
Therefore,

z|a I1b;|< 4" 7B

i=1

Example 7. 1fa, b, ¢, d> 0 and
2 +d? =@ +b?),
then show that
@ b
Z o+ >,
c d

Solution 1. Let

=Val/c, x,=vVb’/d,
yl:\/%’ yZZW'

By the Cauchy-Schwarz inequality,
3 3

EL+b—Eac +bd)
Hc d

— (.2 2 2 2

—(xl +x2)(rV1 +J/2)

> (g +3202)°

:\/(az +52)(c? +d?)

2ac+bd .

Cancelling ac + bd on both sides, we get
the desired inequality.

Solution 2. Let

By the p = 3, ¢ = 3/2 case of Hdlder’s
inequality,

a’ +b?

=¥ +@¥y

S(C2 +d2)1/3(x3/2 +y3/2)2/3
Cancelling a? +b% =(c2 +d*)!/3
both sides, we get 1<x3/2 4,32

P32 =
(@/c)+(1d).

on
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Problem Corner

We welcome readers to submit solutions
to the problems posed below for
publication consideration.  Solutions
should be preceeded by the solver’s
name, home address and school
affiliation. Please send submissions to
Dr. Kin Y. Li of

Mathematics, Hong Kong University of

Department

Science & Technology, Clear Water Bay,
Kowloon. The deadline for submitting
solutions is December 10, 2000.

Problem 111. Is it possible to place 100
solid balls in space so that no two of them
have a common interior point, and each
of them touches at least one-third of the
others? 1997  Czech-Slovak

Match)

(Source:

Problem 112. Find all positive integers
(x, n) such that x” +2" +1 is divisor of
PAALE LS B (Source: 1998 Romanian
Math Olympiad)

Problem 113. Leta, b, ¢ > 0 and abc <
1. Prove that
a b c

—+—+—=a+b+ec.
c a

(Hint: Consider the case abc = 1 first.)

Problem 114.

Aassila,

(Proposed by Mohammed
Louis Pasteur,
An
chessboard is given, with n black squares
Let the
collection of black squares be denoted by
G,.
simultaneous change of colour takes

Universite

Strasbourg,  France) infinite

and the remainder white.
At each moment r = 1,2, 3, ..., a

place throughout the board according to
the following rule: every square gets the
colour that dominates in the three square
configuration consisting of the square
itself, the square above and the square to
the right.
squares G, G,, Gj, ...
Prove that G, is empty.

New collections of black
are so formed.

Problem 115.

Aassila,

(Proposed by Mohammed

Universite Louis Pasteur,
Strasbourg, France) Find the locus of the
points P in the plane of an equilateral
triangle ABC for which the triangle
formed with lengths PA, PB and PC has

constant area.

s sk sk st sk sk sk skeosk sk sk skosk sk skosko ok

Solutions
s sk sk sk sk sk sk skoske sk sk skeskoskske sk sk

Problem 106. Find all positive integer
ordered pairs (a, b) such that

ged(a, b) +lem(a,b) =a+b+6,
where ged stands for greatest common
divisor (or highest common factor) and
lcm stands for least common multiple.

Solution. CHAN An Jack and LAW Siu
Lun Jack (Mei Kei College, Form 6),
CHAN Chin Fei (STFA Leung Kau Kui
College), CHAO Khek Lun Harold (St.
Paul’s College, Form 6), CHAU Suk Ling
(Queen Elizabeth School, Form 6),
CHENG Man Chuen (Tsuen Wan
Government Secondary School, Form 7),
FUNG Wing Kiu Ricky (La Salle College),
HUNG Chung Hei (Pui Ching Middle
School, Form 5), KO Man Ho (Wah Yan
College, Kowloon, Form 7), LAM Shek
Ming Sherman (La Salle College, Form 5),
LAW Ka Ho (HKU, Year 1), LEE Kevin
(La Salle College), LEUNG Wai Ying
(Queen Elizabeth School, Form 6), MAK
Hoi Kwan Calvin (La Salle College), OR
Kin (SKH Bishop Mok Sau Tseng
Secondary School), POON Wing Sze
Jessica (STFA Leung Kau Kui College,
Form 7), TANG Sheung Kon (STFA
Leung Kau Kui College, Form 6), TONG
Chin Fung (SKH Lam Woo Memorial
Secondary School, Form 6), WONG Wing
Hong (La Salle College, Form 3) and
YEUNG Kai Shing (La Salle College,
Form 4).

Let m = ged(a, b), then a =mx and b = my
with ged(x, ) = 1. Inthat case, lem(a, ) =
mxy. So the equation becomes m + mxy =
mx + my + 6. This is equivalent to m(x —
1)(y — 1) = 6. Taking all possible positive
integer factorizations of 6 and requiring
ged(x, y) =1, we have (m, x, y) = (1, 2, 7),
1,7,2),(1,3,4),(1,4,3),(3,2,3)and (3,
3,2). Then (a, b)=(2,7),(7,2),(3,4), (4,
3),(6,9) and (9, 6). Each ofthese is easily
checked to be a solution.

Other recommended solvers: CHAN Kin
Hang Andy (Bishop Hall Jubilee School,

Form 7) and CHENG Kei Tsi Daniel (La
Salle College, Form 6).

Problem 107. Fora, b, ¢ >0, if abc =1,

then show that

b+c Lcta at b
Va b e

Solution 1. CHAN Hiu Fai Philip

(STFA Leung Kau Kui College, Form 7),

LAW Ka Ho (HKU, Year 1) and TSUI

Ka Ho Willie (Hoi Ping Chamber of
Commerce Secondary School, Form 7).

>Ja +/b +4/c +3.

By the AM-GM inequality and the fact

abc =1, we get
b+c c+a a+b

RPN SN i
ot
R
E‘/%+%Ezz(\/;+\/3+\/z)2

Ja +Jb +Je +3¢abe =va +b +c +3.

Solution 2. CHAN Kin Hang Andy
(Bishop Hall Jubliee School, Form 7),
CHAO Khek Lun Harold (St. Paul’s
College, Form 6), CHAU Suk Ling
(Queen Elizabeth School, Form 6),
CHENG Kei Tsi (La Salle College, Form
6), CHENG Man Chuen (Tsuen Wan
Government Secondary School, Form 7),
LAW Ka Ho (HKU, Year 1) and
LEUNG Wai Ying (Queen Elizabeth
School, Form 6).

Without loss of generality,
a2bzc. Then 1/va<1/vb<1/e.
By the rearrangement inequality,
b b i
Also, by the AM-GM inequality,
NN
Va b Ve
Adding these two inequalities, we get the
desired inequality.

assume

Generalization: Professor Murray S.
Klamkin (University of Alberta, Canada)
sent in a solution, which proved a
stronger inequality and later generalized
it to n variables. He made the
sub-stitutions  x; = Ja Xy = N
X3 = \/Z to get rid of square roots and let
Sn= x{" +x3 +x3' so that the inequality

became
2 2 2 2 2 2
+ + +
XTX BTN X TXD > 5, +3.
| X2 X3
By the AM-GM inequality, S,, =

3R/x"xPx = 3. Since S, /32(S;/3)

= S;/3 by the power mean inequality,

we would get a stronger inequality by
replacing S, + 3 by 2S,. Rearranging
terms, this stronger inequality could be
rewritten as S>(S.; — 3) = §; — S,. Now
the left side is nonnegative, but the right
side is nonpositive. So the stronger
inequality is true. If we replace 3 by n
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and assume xj---x, =1, then as above,
we will get S,,(S1-,, —n) =25, -5, by
the AM-GM and power mean
inequalities. Expanding and regrouping
terms, we get the stronger inequality in #
variables, namely

% Sy —x"

=R
Other recommended solvers: CHAN
Chin Fei (STFA Leung Kau Kui College),
LAM Shek Ming Sherman (La Salle
College, Form 5), LAW Hiu Fai (Wah Yan
College, Kowloon, Form 7), LEE Kevin
(La Salle College, Form 5), MAK Hoi
Kwan Calvin (La Salle College), OR Kin
(SKH Bishop Mok Sau Tseng Secondary
School) and YEUNG Kai Shing (La Salle
College, Form 4).

>(n-1)s,,

Problem 108. Circles C; and C, with
centers O; and O, (respectively) meet at
points A, B. The radii O;B and O,B
intersect C; and C, at F and E. The line
parallel to EF through B meets C; and C,
at M and N, respectively. Prove that MN =
AE + AF. (Source:
Mathematical Olympiad)

17" Iranian

Solution. YEUNG Kai Shing (La Salle
College, Form 4).

As the case F = E = B would make the
problem nonsensible, the radius O;B of C;
can only intersect C,, say at /. Then the
radius O,B of C; intersect C; at E. Since
A EO,B and A FO,B are isosceles,
OEOF = 180> 20FBE = OEO,F .
Thus, E, O,, O,, F are concyclic. Then
0 AEB= (360= UAOB)/2 = 180°
-0 0,0 F O O,EF= UEBM. So
arcAMB = arcMAE. Subtracting minor
arcAM from both sides, we get minor
arcMB = minor arcAE. So MB = AE.
Similarly, NB = AF. Then MN = MB +
NB = AE + AF.

Other recommended solvers: Chan Kin
Hang Andy (Bishop Hall Jubilee School,
Form 7), CHAU Suk Ling (Queen

Elizabeth School, Form 6) and LEUNG
Wai Ying (Queen Elizabeth School, Form
6).

Problem 109. Show that there exists an
increasing sequence a; d, as ... of
positive integers such that for every
nonnegative integer k, the sequence k + a;,
k+ay,k+a; ...
many prime numbers. (Source: 1997
Math Olympiad of Czech and Slovak
Republics)

contains only finitely

Solution. CHAU Suk Ling (Queen
Elizabeth School, Form 6), CHENG Kei
Tsi (La Salle College, Form 6), CHENG
Man Chuen (Tsuen Wan Government
Secondary School, Form 7), LAM Shek
Ming Sherman (La Salle College, Form
5), LAW Hiu Fai (Wah Yan College,
Kowloon, Form 7), LAW Ka Ho (HKU,
Year 1) and YEUNG Kai Shing (La Salle
College, Form 4).

Let a, = n! + 2.
non-negative integer &, if n = k+ 2, then &

Then for every

+ a, is divisible by k£ + 2 and is greater than
k + 2, hence not prime.

Other commended solvers: CHAN Kin
Hang Andy (Bishop Hall Jubliee School,
Form 7), KO Man Ho (Wah Yan College,
Form 7), LEE Kevin (La Salle College,
Form 5) and LEUNG Wai Ying (Queen
Elizabeth School, Form 6).

Problem 110. In a park, 1000 trees have

been placed in a square lattice.

Determine the maximum number of trees
that can be cut down so that from any
stump, you cannot see any other stump.
(Assume the trees have negligible radius

compared to the distance between

adjacent trees.) (Source: 1997 German
Mathematical Olympiad)

Solution. ~CHAN Kin Hang Andy
(Bishop Hall Jubliee School, Form 7),
CHAO Khek Lun Harold (St. Paul’s
College, Form 6), Chau Suk Ling (Queen
Elizabeth School, Form 6), CHENG Kei
Tsi (La Salle College, Form 6), CHENG
Man Chuen (Tsuen Wan Government
Secondary School, Form 7), FUNG Wing
Kiu Ricky (La Salle College), LAM
Shek Ming Sherman (La Salle College,
Form 5), LAW Ka Ho (HKU, Year 1),
LEE Kevin (La Salle College, Form 5),
LEUNG Wai Ying (Queen Elizabeth
School, Form 6), LYN Kwong To and
KO Man Ho (Wah Yan College,
Kowloon, Form 7), POON Wing Sze
Jessica (STFA Leung Kau Kui College,
Form 7) and YEUNG Kai Shing (La
Salle College, Form 4).

In every 2x2 subsquare, only one tree
can be cut. So a maximum of 2500 trees

can be cut down. Now let the trees be at
(x, ¥), where x, y=0, 1, 2, ..., 99. If we
cut down the 2500 trees at (x, y) with
both x and y even, then the condition will
be satisfied. To see this, consider the
stumps at (xy, y;) and (xp, y,) with xy, yy,
X», y» even. The cases x; = x, or y; =y,
are clear. Otherwise, write (v, — y1)/(x, —
x1) = m/n in lowest term. Then either m
or n is odd and so the tree at (x; +m, y; +
n) will be between (x;, y;) and (x,, 1»).

Other recommended solvers: NG Chok

Ming Lewis (STFA Leung Kau Kui
College, Form 7).

OO T~
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(continued from page 1)

Problem 3. (cont’d)

Determine all values of A such that, for
any point M on the line and any initial
position of the n fleas, there is a finite
sequence of moves that will take all the
fleas to positions to the right of M.
Problem 4. A magician has one hundred
cards numbered 1 to 100. He puts them
into three boxes, a red one, a white one a
blue one, so that each contains at least
one card.

A member of the audience selects two of
the three boxes, chooses one card from
each and announces the sum of the
numbers on the chosen cards. Given this
sum, the magician identifies the box from
which no card has been chosen.

How many ways are there to put all the
cards into the boxes so that this trick
always works? (Two ways are considered
different if at least one card is put into a
different box.)

Problem 5. Determine whether or not
there exists a positive integer n such that
n is divisible by exactly 2000 different
prime numbers, and 2"+ 1 is divisible by
n.

Problem 6. Let AH;, BH,, CHj;, be the
altitudes of an acute-angled triangle ABC.
The incircle of the triangle ABC touches
the sides BC, CA, AB at T,, T,, T;,
respectively. Let the lines ¢1,7,,¢5 be
the reflections of the lines H,Hs;, H;H;,
H,H, in the lines T,T; TsT;, T;T,,
respectively.

that / 15 / 25 €3

triangle whose vertices lie on the incircle
of the triangle ABC.

Prove determine a
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Problem 1. Two intersecting circles C,;
and C, have a common tangent which
touches C; at P and C, at Q. The two
circles intersect at M and N, where N is
nearer to PQ than M is. The line PN
meets the circle C, again at R. Prove that
MQ bisects angle PMR.

Problem 2. Show that for every positive
integer n,

121" = 25" +1900"
is divisible by 2000.

Problem 3. Triangle ABC has a right
angle at A. Among all points P on the
perimeter of the triangle, find the
position of P such that

AP + BP + CP
is minimized.

~ (4"

Problem 4. For each positive integer &,
define the sequence {an} by

ap=1 and a,=kn+ (=" a,,

foreach n > 1.
(continued on page 4)
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Maijorization Inequality

KinY. Li

The majorization inequality is a
generalization of Jensen's inequality.
While Jensen's inequality provides one
extremum (either maximum or minimum)
to a convex (or concave) expression, the
majorization inequality can provide both
in some cases as the examples below will
show. In order to state this inequality, we
first introduce the concept of majorization
for ordered set of numbers. If

X|2X) 22X,

VIZY22 2 Yy,
x12y1, X1+X22y1+y2, ey
Xyt Xy 2yt Y,
and
X+t x, =yt Yy,
then we say (xp,Xp,...,X,) majorizes
(315 ¥25---»y,) and write

(X715 X050 X)) = (V15 Y2005 V) -

Now we are ready to state the inequality.

Majorization Inequality. If the function f
is convex on the interval I = [a, b] and
(X1, X0, 00 X)) = (V1> Y25 o0 Y1)

for x;,y; €I, then
SO+ fxp)+-+ f(x,)
2 D+ f(y)++ f(yy).

For strictly convex functions, equality
holds ifand only if x; =y; fori=1,2, ...,
n. The statements for concave functions
can be obtained by reversing inequality
signs.

Next we will show that the majorization
inequality implies Jensen's inequality.
This follows from the observation that if
x| 2 Xy 2+ 2 x,, then (X1, Xp,...,Xx,) >
(x, x, ..., x), where x is the arithmetic mean
of x, x5, ..., x,. (Thus, applying the
majorization inequality, we get Jensen's
inequality.) Fork=1,2,...,n-1, we have
to show x; +---+x; 2 kx. Since
(n=k)(xg +--+xp)
2 (n—k)kx, =2k(n—k)x;
2k(Xpqq+x,).

Adding k(x+---+x;) to the two
extremes, we get

n(xp++x,) 2 k(x +--+x,) = knx.

Therefore, x;+---+x; = kx.

Example 1.
show that

For acute triangle ABC,

1< cosA+cosB+cosCS%
and determine when equality holds.

Solution. Without loss of generality,

assume A=2B2>C. Then A>27x/3 and

C<rz/3. Since #/22A=2x/3 and
T2A+B(=n-C)22x/3,

we have (7/2,7/2,0)> (A, B, C) ~

(z/3,7/3,7/3). Since f(x) = cos x is

strictly concave on I = [0, /2], by the

majorization inequality,

1= f@ + f[%] +£(0)

< flA) + fiB) + f(C)

=cosA +cos B+ cos C

5553

For the first inequality, equality cannot
hold (as two of the angles cannot both be
right angles). For the second inequality,
equality holds if and only if the triangle is
equilateral.

Remarks. This example illustrates the
equilateral triangles and the degenerate
case of two right angles are extreme cases
for convex (or concave) sums.

Example 2. Prove thatif a, b = 0, then

Yar¥la + Yo+ <Yar¥lb +Yp+¥a.

Nov. 1995,
Problem 36 of Problem Section, proposed
by E.M. Kaye)

(Source: Math Horizons,

Solution. Without loss of generality, we

may assume b=a= 0. Among the
numbers
X =b+%, Xy =b+%,

X3 =a+%, Xy =a+%,
x; is the maximum and x4 is the
minimum. Since X+ x4 = X +x3, we
get (x1, x4)>(xp, x3) or (x3, xp)
(depends on which of x, or xj is larger).
Since f{x) = %/; is concave on the interval
[0, =), so by the majorization inequality,
FG+ ) S fl)+ fx),

which is the desired inequality.

Example 3. Find the maximum of a?+

p2+c'?if 1< a b c <1 anda+b+c
=-1/2.

Solution. Note the continuous function
fix) = x'2 is convex on [-1, 1] since
£l =132x">00n(=1,1). If1 2 a
2b2c2-1and

a+b+c=—l,
2

then we get (1,—-1/2,—1) > (a, b, ¢). This
is because 1 > a and

l=1—12—c—l=a+b.
2 2 2
So by the majorization inequality,
a12+b12+612
=fla) + fla) + f(c)
1
Sf(1)+f(—5j+f(—1)
1
=2+ ﬁ .

212

The maximum value 2 + (1/ ) is

attained whena=1,b=-1/2 and c = -1.

Remarks.  The example above is a

simplification of a problem in the 1997
Chinese Mathematical Olympiad.

Example 4. (1999 IMO) Let n be a fixed
integer, withn > 2.

(a) Determine the least constant C such

4
inj

1<i<n

that the inequality
2 2
Z xixj(xi +XJ)SC[
1<i< j<n

holds for all real numbers x;, x,, ...,
X, = 0.

(b) For this constant C, determine when
equality holds.

Solution. Consider the case n = 2 first.
Let xy=m + hand x,=m — h, then m =

(xl + xz)/2,h=(x1 - XZ)/Q, and
xlxz(x12+x%)=2(m4—h4)
<2m* =%(x1+x2)4

with equality if and only if 2 = 0, i.e. x;

= Xp.

(continued on page 4)
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Problem Corner

We welcome readers to submit their
solutions to the problems posed below
for publication consideration. Solutions
should be preceeded by the solver’s
name, home (or email) address and
school affiliation. Please send
submissions to Dr. Kin Y. Li, Department
of Mathematics, Hong Kong University
of Science & Technology, Clear Water
Bay, The deadline for

submitting solutions is February 4, 2001.

Kowloon.

Problem 116. Show that the interior of a
convex quadrilateral with area A and
perimeter P contains a circle of radius
A/P.

Problem 117. The lengths of the sides of
a quadrilateral are positive integers. The
length of each side divides the sum of the
other three lengths. Prove that two of the
sides have the same length.

Problem 118. Let R be the real numbers.
Find all functions f: R — R such that for

all real numbers x and y,

FOf @) +x) =xy+ f(x).

Problem 119. A circle with center O is
internally tangent to two circles inside it
at points S and 7. Suppose the two
circles inside intersect at M and N with N
closer to ST. Show that OM 1 MN if and
only if S, N, T are collinear. (Source:
1997  Chinese High Math
Competitiion)

Senior

Problem 120. Twenty-eight integers are
chosen from the interval [104, 208].
Show that there exist two of them having
a common prime divisor.

sfeste st st stetesieoskeoskoskosko sk sk sk skoskosk

Solutions

stk sk ste sk s sfeoskesk skeokoskoskotokoskok

Problem 111. Is it possible to place 100
solid balls in space so that no two of them
have a common interior point, and each
of them touches at least one-third of the
others?  (Source: 1997 Czech-Slovak
Match)

Solution 1. LEE Kai Seng (HKUST).

Take a smallest ball B with center at O and

radius . Any other ball touching B at x
contains a smaller ball of radius » also
touching B at x. Since these smaller balls
are contained in the ball with center O and
radius 37, which has a volume 27 times the
volume of B, there are at most 26 of these
other balls touching B.

Solution 2. LEUNG Wai Ying (Queen
Elizabeth School, Form 6).

Consider a smallest ball S with center O
and radius r. Let §; and §; (with

centers 0; and O; and radii 7; and r;,

respectively) be two other balls touching S
at b and P;, respectively. Since r;, r;

2r,wehave 0; O; 21+ 2r+71; =

J
0 0; and similarly O; O; 2 00;. So
0; O; is the longest side of AOO; O;.

Hence £P,0OP; = £0;00; 260°.

For ball S;, consider the solid cone with
vertex at O obtained by rotating a 30°
angle about OP. as axis. Let A; be the
part of this cone on the surface of S. Since
ZP,OP; 260° , the interiors of A; and
A; do not intersect. Since the surface

area of each A; is than

7(rsin30°)> = 7% /4, which is 1/16 of

the surface area of S, S can touch at most
15 other balls. So the answer to the
question is no.

greater

Other recommended solvers: CHENG
Kei Tsi (La Salle College, Form 6).

Problem 112. Find all positive integers (x,
n) such that x" + 2" + 1 is a divisor of
PUALI L 1998
Romanian Math Olympiad)

Solution. CHENG Kei Tsi (La Salle
College, Form 6), LEE Kevin (La Salle

College, Form 5) and LEUNG Wai Ying
(Queen Elizabeth School, Form 6).

(Source:

For x = 1, 2(1" + 2" + 1) > 1" 4+
2 1> 1"+ 2" 4+ 1
202" + 2" + 1) > 2M Lot
2" + 2" +1. Forx=3,3(3" + 2" +1)

> 3ol s 203 4 2 4 ).
So there are no solutions with x =1, 2, 3.

For x = 2,

For x>4 , if n>2 , then we get
x(x"+2"+ 1) > 42" 11 Now

xn+l+2n+1+ 1

= (= D(x"+2"+ 1)
+x" 2"+ DHx+3-2"+2

>x—-D(x"+2"+1)

because for n = 2, x" — (2" + D)x +
2" = x2 _5x+8>0and forn > 3,
(2" Dx = x4 22" — 1y >o0.
Hence only n =1 and x > 4 are possible.
In that case, x" + 2"+ 1 =x+ 3 isa
divisorof "M 42" 4 1= x2+5=(x—
3)x +3) + 14 if and only if x + 3 is a
divisor of 14. Sincex+3 > 7,x=4 or
11. So the solutions are (x, y) = (4, 1) and
(11, 1).

Problem 113. Leta, b, c>0and abc < 1.

Prove that
£+£+£2 atb+c.
c a
Solution. LEUNG Wai Ying (Queen

Elizabeth School, Form 6).

Since abc < 1, we get 1/(bc) 2 a, 1/(ac)
> b and 1/(ab) = c. By the AM-GM
inequality,

2
ﬁ+£=£+£+£23%/a—23a.
c b ¢ ¢ b bc

Similarly, 2b/a + a/c = 3b and 2¢/b + b/a
2> 3c. Adding these and dividing by 3,
we get the desired inequality.

Alternatively, let x = 9\/a4b/c2 , Yy =

9x/c4a/b2 and z = 3 b*c/a® . We have

a= xzy, b=z%x c= yzz and xyz =

Jabe < 1. Using this and the
re-arrangement inequality, we get
2 2 2
a b ¢ x° z y
=
c a b yz xy z=x
2 2 2
X"z
2 Xyz LT A +y3 +7°
Yz xy =

2x2y+yzz+zzx=a+b+c.

Problem 114. (Proposed by Mohammed
Aassila, Louis
An
chessboard is given, with n black squares
Let the
collection of black squares be denoted by
Gy .
simultaneous change of colour takes place

Universite Pasteur,

Strasbourg, France) infinite

and the remainder white.
At each moment =1, 2, 3, ..., a
throughout the board according to the

following rule: every square gets the
colour that dominates in the three square
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configuration consisting of the square
itself, the square above and the square to
the right.
squares Gy, Gy, G3, ...

New collections of black
are so formed.
Prove that G,, is empty.

Solution. LEE Kai Seng (HKUST).

Call a rectangle (made up of squares on
the chess board) desirable if with respect
to its left-lower vertex as origin, every
square in the first quadrant outside the
rectangle is white. The most crucial fact is
that knowing only the colouring of the
squares in a desirable rectangle, we can
determine their colourings at all later
moments. Note that the smallest rectangle
enclosing all black squares is a desirable
rectangle. We will prove by induction that
all squares of a desirable rectangle with at
most n black squares will become white
byt =n. The case n =1 is clear. Suppose
Let R be a
desirable rectangle with N black squares.

the cases n < N are true.

Let Ry be the smallest rectangle in R
containing all N black squares, then Ry is
the
leftmost column and the bottom row of

also desirable.  Being smallest,
Ry must contain some black squares.
Now the rectangle obtained by deleting
the left column of R; and the rectangle
obtained by deleting the bottom row of
Ry are desirable and contain at most n - 1
black squares. So by t = n - 1, all their
Finally the

left bottom corner square of R, will be

squares will become white.

white by ¢ = n.

Comments: This solution is essentially

the same as the proposer's solution.

Other commended solvers: LEUNG Wai
Ying (Queen Elizabeth School, Form 6).

Problem 115. (Proposed by Mohammed
Aassila, Universite Louis Pasteur, Stras-
bourg, France) Find the locus of the points
P in the plane of an equilateral triangle ABC
for which the triangle formed with PA, PB
and PC has constant area.

Solution. LEUNG Wai Ying (Queen
Elizabeth School, Form 6).

Without loss of generality, assume PA >
PB, PC. Consider P outside the
circumcircle of A ABC first. If PA is
between PB and PC, then rotate A PAC

about A by 60° so that C goes to B and P
goes to P'. Then AAPP’ is equilateral
and the sides of A PBP' have length PA,
PB, PC.

Let O be the circumcenter of AABC, R
be the circumradius and x = AB = AC =
\/EAO = \/ER. The area of APBP'is

the sum of the areas of A PAP', A PAB,
A P'AB (or A PAC), which is

NG

TPA2 +%PA'xsin /PAB

+%PA-xsinPAC.

Now
sin ZPAB + sin ZPAC

2 s5in150° cos( ZPAB—150")
—cos(ZPAB+30°%)
PO? — PA% —R?

2PA-R
Using these and simplifying, we get the
area of APBP' is \[3(PO% —R?)/4.
If PC is between PA and PB, then rotate
APAC about C by 60° so that A goes to
B and P goes to P'. Similarly, the sides of
APBP' have length PA, PB, PC and the

area is the same. The case PB is between
PA and PC is also similar.

=—-cosZPAO =

For the case P is inside the circumcircle
of AABC, the area of the triangle with
sidelengths PA, PB, PC can similarly

computed to be \/g(RZ—POZ)M .

Therefore, the locus of P is the circle(s)

with center O and radius \/R2 t4c/ \/5 s

where c is the constant area.

Comments: The proposer's solution only
differed from the above solution in the
details of computing areas.

m
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(continued from page 1)

Problem 4. (cont’d)

Determine all values of k for which 2000
is a term of the sequence.

Problem 5. The seven dwarfs decide to
form four teams to compete in the
Millennium Quiz. Of course, the sizes of
the teams will not all be equal. For
instance, one team might consist of Doc
alone, one of Dopey alone, one of
Sleepy, Happy and Grumpy as a trio, and
one of Bashful and Sneezy as a pair. In

how many ways can the four teams be
made up? (The order of the teams or of
the dwarfs within the teams does not
matter, but each dwarf must be in exactly
one of the teams.)

Suppose Snow White agreed to take part
as well. In how many ways could the four
teams then be formed?

m
Majorization Inequality
(continued from page 2)

For the case n > 2, let a; = x; /(x; +---+

x,) fori=1,...,n,then a;+---+a, =1.
In terms of q;'s, the inequality to be
proved becomes

> a,-aj(a,-2+a§)sc.
1<i< j<n

The left side can be expanded and
regrouped to give
< 3
Yai(ay+-+a; g +a, +a,)
i=1
=a13(1—a1)+---+a3(1—an).

4

Now f(x) = x3(1—x)=x3—x = is

. 1
strictly convex on [O,E} because the

e " 1
second derivative is positive on (0, Ej

Since the inequality is symmetric in the
a;'s, we may assume a; =a, =---2a,,.

If g S% , then since

11
[E,E,O,...,O]>— (al,az,...,an),

by the majorization inequality,

Flap+ fay)+-+ fa,)
1 1 1
sf(5j+f(5]+f<0>+--~+f<0>—g.

1 .
If g >E,then 1-ay,a,,...,a, arein |0,

l]. Since
2
(1-a;,0,...,0) = (ay,...,a,) ,

by the majorization inequality and case n
=2, we have

flap) + flay) + -+ f(a,)
< flap+ f=a)+fO)+:---+£(0)

=f(a1)+f(1—a1)sé-

Equality holds if and only if two of the
variables are equal and the other n—2
variables all equal 0.



Mathematical Excalibur

Volume 6, Number 1

January 2001 — March 2001

Olympiad Corner

17" Balkan Mathematical Olympiad, 3-9
May 2000:

Time allowed: 4 hours 30 minutes

Problem 1. Find all the functions f :
R — R with the property:

SO+ () =(f(x)* +,

for any real numbers x and y.

Problem 2. Let ABC be a nonisosceles
acute triangle and £ be an interior point
of the median 4D, D [0 (BC). The point
F is the orthogonal projection of the
point £ on the straight line BC. Let M be
an interior point of the segment EF, N
and P be the orthogonal projections of
the point M on the straight lines AC and
AB, respectively. Prove that the two
straight lines containing the bisectrices
of the angles PMN and PEN have no
common point.

Problem 3. Find the maximum number
of rectangles of the dimensions 1% 1042 ,
which is possible to cut off from a
rectangle of the dimensions 50 %90, by
using cuts parallel to the edges of the

initial rectangle.
(continued on page 2)
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Concyclic Problems
Kin Y. Li

Near Christmas last year, I came across
two beautiful geometry problems. 1 was
informed of the first problem by a reporter,
who was covering President Jiang
Zemin’s visit to Macau. While talking to
students and teachers, the President posed
the following problem.

For any pentagram ABCDE obtained by
extending the sides of a pentagon FGHIJ,
prove that neighboring pairs of the
circumcircles of AAJF , BFG, CGH, DHI,
ElJ intersect at 5 concyclic points K, L, M,
N, O as in the figure.

The second problem came a week later. 1
read it in the Problems Section of the
November the
Mathematical Monthly. 1t was proposed
by Floor van Lamoen, Goes, The
Netherlands. Here is the problem.

issue of American

A triangle is divided by its three medians
into 6 smaller triangles. Show that the
circumcenters of these smaller triangles
lie on a circle.

To get the readers appreciating these
problems, here I will say, stop reading, try
to work out these problems and come
back to compare your solutions with those
given below!

Here is a guided tour of the solutions. The
first step in enjoying geometry problems
is to draw accurate pictures with compass
and ruler!

Now we look at ways of getting solutions
to these problems. Both are concyclic
problems with more than 4 points.
Generally, to do this, we show the points
are concyclic four at a time. For example,
in the first problem, if we can show K, L,
M, N are concyclic, then by similar
reasons, L, M, N, O will also be concyclic
so that all five points lie on the circle
passing through L, M, N.

There are two common ways of showing 4
points are concyclic. One way is to show
the sum of two opposite angles of the
quadrilateral with the 4 points as vertices
is 180° . Another way is to use the
converse of the intersecting chord
theorem, which asserts that if lines WX
and YZ intersect at P and PW [PX =
PY[PZ, then W, X, Y, Z are concyclic.
(The equation implies APWY , PZX are
similar. Then OPWY = OPZX and the
conclusion follows.)

For the first problem, as the points K, L, M,
N, O are on the circumcirles, checking the
sum of opposite angles equal 180° is
likely to be easier as we can use the
theorem about angles on the same segment
to move the angles. To show K, L, M, N
are concyclic, we consider showing
OLMN + UOLKN =180°. Since the
sides of LILMN are in two circumcircles,
it may be wise to break it into two angles
LMG and GMN. Then the strategy is to
change these to other angles closer to
OLKN .

Nowd LME 186" O LFG= OLFA =
LLKA. (So far, we are on track. We
bounced JLMG to ULKA ,which shares
a side with JLKN .) Next, HGMN =
UGCN = [UACN .  Putting these

together, we have
O LMN OLKN

= U0 LKA 0O ACM UOLKN
= O AKM UACN .
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Now if we can only show 4, K, N, C are
concyclic, then we will get 180° for the
displayed equations above and we will
finish. However, life is not that easy. This
turned out to be the hard part. If you draw
the circle through 4, C, N, then you see it
goes through K as expected and
surprisingly, it also goes through another
point, . With this discovery, there is new
hope. Consider the arc through B, I, O.
On the two sides of this arc, you can see
there are corresponding point pairs (4, C),
(K, N), (J, H), (F, G). Soto show 4, K, N,
C are concyclic, we can first try to show N
is on the circle through 4, C, [, then in that
argument, if we interchange 4 with C, K|
with N and so on, we should also get X is
on the circle through C, 4, I. Then 4, K, N,
C (and /) will be concyclic and we will
finish.

Wishful thinking like this sometimes
works! Here are the details:

O ACN= OGCN= 180= OGHN
= 0O NHD= ONID= 180= OAIN .

So N is the circle 4, C I
Interchanging letters, we get similarly K
isoncircle C, 4, I. So A4, K, N, C (and 1)
are concyclic. Therefore, K, L, M, N, O
are indeed concyclic.

(History. My friend C.J. Lam did a search
on the electronic database JSTOR and
came across an article titled A Chain of
Circles Associated with the 5-Line by J.W.
Clawson published in the American
Mathematical Monthly, volume 61,
number 3 (March 1954), pages 161-166.
There the problem was attributed to the
nineteenth century geometer Miquel, who
published the result in Liouville’s Journal
de Mathematiques, volume 3 (1838),
pages 485-487. In that paper, Miquel
proved his famous theorem that for four
pairwise intersecting lines, taking three of
the lines at a time and forming the circles
through the three intersecting points, the
four circles will always meet at a common
point, which nowadays are referred to as
the Miquel point. The first problem was
then deduced as a corollary of this Miquel
theorem.)

on

For the second problem, as the 6
circumcenters of the smaller triangles are
not on any circles that we can see
immediately, so we may try to use the

converse of the intersecting chord

theorem. For a triangle ABC, let G, D, E,
F Dbe the centroid, the midpoints of sides
BC, CA, AB, respectively. Let O,, O,,
05, O4, Os, Og4 be the circumcenters of
triangles DBG, BFG, FAG, AEG, ECG,
CDG, respectively.

Well, should we draw the 6 circumcircles?
It would make the picture complicated.

this point, you can see the angles of
AKO,O; equal the three angles with
vertices at G on the left side of segment
AD.

Now we try to put these three angles
together in another way to form another
triangle. Let M be the point on line AG
such that MC is parallel to BG. Since
OMCG = UOBGF , OMGC = 0OFGA
(and OGMC = [UOBGD, ) we
AKO,O5 , MCG are similar.

S€C

The sides of AMCG are easy to compute
in term of AD, BE, CF. As AD and BE
occurred in the ratio of KO, and KO, ,
this is just what we need! Observe that
AMCD , GBD are congruent since

The circles do not seem to be helpful at [ ascp= OGBD (by MC parallel to GB),

this early stage. We give up on drawing
the circles, but the circumcenters are
important. So at least we should locate
them.
AFAG , for example, which two sides do
we draw perpendicular bisectors? Sides
AG and FG are the choices because they
are also the sides of the other small
triangles, so we can save some work later.
Trying this out,
perpendicular bisectors produce many
parallel lines and parallelograms!

To locate the circumcenter of

we discover these

Since circumcenters are on perpendicular
bisectors of chords, lines O; O, , O O,

are perpendicular bisectors of AG, GD,
respectively. So they are perpendicular to

line AD and are 4 AD units apart.
Similarly, the two lines O; O, , O4 Os
are perpendicular to line BE and are % BE
units apart. Aiming in showing O,, O, ,
05, O, are concyclic by the converse of
the intersecting chord theorem, let K be
the intersection of lines O; O, , O; O,
and L be the intersection of the lines
0, Os, O4 Oy.
parallelogram KO, L O, is

%AD X0, = %BE X0,

Since the area of the

we get KO,/KO, = AD/BE.

Now that we get ratio of KO, and KO, ,
we should examine KO, and KO; .
Trying to understand AKO,O;, we first
find its angles. Since KO, U BG,
0,05 UFG and KO; UAG, we see that
0KO0,0; = OBGF and 0OKO;0,

OFGA. Then 0O,KO; = UDGB. At

CD = BD andd MDC= OGDB. So
MG =2GD = %AD,

MC=GB= %BE

(and CG = 2 CF. Incidentally, this means

the three medians of a triangle can be put
together to form a triangle! Actually, this
is well-known and was the reason we

considered AMCG ) We have
KO,/KO, = MG/MC = AD/BE =
KO, /KO, .

So KO, [KO, KO, KO, , which

implies O,, O, , O3, O, are concyclic.
Similarly, we see that O, , O;, O,, Os
concyclic (using the parallelogram formed
by the lines 0,0,, 0,05, 0,05, Os0;
instead) and O3, O, , Os, O¢ are

concyclic.

OO T~
Olympiad Corner

(continued from page 1)

Problem 4. We say that a positive
integer r is a power, if it has the form r =
t* where ¢ and s are integers, =2,
s 22 . Show that for any positive integer
n there exists a set 4 of positive integers,
which satisfies the conditions:

1. A has n elements;

2. any element of 4 is a power;

» n(2<k<n)
rl +}/~2 +...+}/~k

k

3. forany n, n, ..
from 4 the number

is a power.
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Problem Corner

We welcome readers to submit their
solutions to the problems posed below
for publication consideration. Solutions
should be preceded by the solver’s name,
home (or email) address and school
affiliation. Please send submissions to
Dr. Kin Y. Li of
Mathematics, Hong Kong University of

Department

Science & Technology, Clear Water Bay,
Kowloon. The deadline for submitting
solutions is April 15, 2001.

Problem 121. Prove that any integer
greater than or equal to 7 can be written
as a sum of two relatively prime integers,
both greater than 1.

(Two integers are relative prime if they
share no common positive divisor other
than 1. For example, 22 and 15 are
relatively prime, and thus 37 = 22 + 15
represents the number 37 in the desired
way.) (Source: Second Bay Area
Mathematical Olympaid)

Problem 122. Prove that the product of
the lengths of the three angle bisectors of
a triangle is less than the product of the
lengths of the three sides. (Source: 1957
Shanghai Junior High School Math
Competition)

Problem 123. Show that every convex
quadrilateral with area 1 can be covered
by some triangle of area at most 2.
(Source: 1989 Wuhu City Math
Competition)

Problem 124. Find the least integer n
such that among every n distinct numbers
., a,, chosen from [1, 1000],
there always exist a;,a; such that

0<a; —a; <1+33}a;a; .

(Source: 1990 Chinese Team Training
Test)

a, dp, ..

Problem 125. Prove that
tan®1° +tan” 3° +tan> 5° +---+tan> 89°
is an integer.

sk sfe st sk sk sk sk skosk sk sk sk sk skoskoskosk

Solutions

sk sfe sk st sk sk sk skeosk sk skoskoskoskoskosko ok

Problem 116. Show that the interior of a
convex quadrilateral with area 4 and
perimeter P contains a circle of radius

A/P.

Solution 1. CHAO Khek Lun (St. Paul’s
College, Form 6).

Draw four rectangles on the sides of the
quadrilateral and each has height 4/P
pointing inward. The sum of the areas of
the rectangles is 4. Since at least one
interior angle of the quadrilateral is less
than 180°, at least two of the rectangles
will overlap. So the union of the four
rectangular regions does not cover the
interior of the quadrilateral. For any point
in the interior of the quadrilateral not
covered by the rectangles, the distance
between the point and any side of the
quadrilateral is greater than 4/P. So we
can draw a desired circle with that point as
center.

Solution 2. CHUNG Tat Chi (Queen
Elizabeth School, Form 4) and LEUNG
Wai Ying (Queen Elizabeth School, Form
6).

Let BCDE be a quadrilateral with area 4
and perimeter P. One of the diagonal, say
BD is inside the quadrilateral. Then either
ABCD or ABED will have an area
greater than or equal to 4/2. Suppose this
is ABCD . Then BCDE contains the
incircle of ABCD , which has a radius of

2[BCD]

BC +CD + DB
2[BCD]

BC +CD +DE + EB

A
2_3
P

where the brackets denote area. Hence, it
contains a circle of radius A/P.

Comment: Both solutions do not need the
convexity assumption.

Problem 117. The lengths of the sides of
a quadrilateral are positive integers. The
length of each side divides the sum of the
other three lengths. Prove that two of the
sides have the same length.

Solution. CHAO Khek Lun (St. Paul’s

College, Form 6) and LEUNG Wai Ying
(Queen Elizabeth School, Form 6).

Suppose the sides are a, b, ¢, d witha < b
<c<d. Sinced<a+b+c<3dandd

dividesa + b +c,wehavea + b +c = 2d.

Now each of @, b, c dividesa +b +c +d
=3d. Letx =3d/a, y = 3d/b and z = 3d/c.
Thena <b <c <dimpliesx >y >z>3.
Soz=24,y=25,x26. Then

0,30 ,30 o,

2d =a +b +¢c £<—
6 4

a contradiction. Therefore, two of the

sides are equal.

Problem 118. Let R be the real numbers.
Find all functionsf: R — R such that for
all real numbers x and y,

SOf) +x)=xy +f(x).

Solution 1. LEUNG Wai Ying (Queen
Elizabeth School, Form 6).

Puttingx =1,y =-1—f(1) and letting a =

f)+ 1, we get

S@=f(f»+H=y+f(1)=-1.
Putting y = a and letting b = £(0), we get
b=ff(a)+x)=ax+[f(x),
so f(x) = -ax + b. Putting this into the

equation, we have
azxy —abx —ax +b =xy —ax +b.
Equating coefficients, we get a = =1 and
b=0,s0f(x) =xorf(x) =-x. Wecan
easily check both are solutions.
Solution 2. LEE Kai Seng (HKUST).
Setting x = 1, we get
SUG)+D) =y + fD.
For every real number a, lety = a — f(1),
then f(f (v) + 1) = a and fis surjective. In
particular, there is b such that f () = -1.
Also, iff(c) = f(d), then
ctrfM=/(f(e)+])
=f(f(d)+])
=d+ f(1).
So ¢ =d and fis injective. Takingx=1,y
=0, we getf(f(0) +1) =f(1). Since f'is
injective, we get /(0) = 0.
For x #0, let y =—f(x)/x, then

SO () +x) =0=1(0).
By injectivity, we get xf(y) + x = 0. Then

f(=f(x)/x) =f(y) ==1= f(b)
and so —f (x)/x = b for every x #0. That
is, f'(x) = -bx. Putting this into the given
equation, we find /' (x) = x or f (x) = -x,
which are checked to be solutions.
Other commended solvers: CHAO Khek
Lun (St. Paul’s College, Form 6) and NG

Ka Chun Bartholomew (Queen
Elizabeth School, Form 6).

Problem 119. A circle with center O is
internally tangent to two circles inside it
at points S and 7. Suppose the two
circles inside intersect at M and N with N
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closer to ST. Show that OM [0 MN if and Agj"ll’l”"on 11-: CHA6()) K(l?lg(AIi}mS(SI(. Pil.ll’s b-c fla)+ c-a ()

. . . ollege, Form 0), u Ing = Jla . >
only if &, N T are co.lhnear.- (Source. (Queen Elizabeth School, Form 6) and b-a b-a
1997 Chinese  Senior High Math CHUNG Tat Chi (Queen Elizabeth which is what we will get if we solve for

Competition)

Solution. LEUNG Wai Ying (Queen
Elizabeth School, Form 6).

Consider the tangent lines at S and at 7.
(Suppose they are parallel, then S, O, T
will be collinear so that M and N will be
equidistant from S7, contradicting N is
closer to ST.) Let the tangent lines meet at
K, then OSK= 90= [OOTK implies O,
S, K, T lie on a circle with diameter OK.
Also, KS* =KT*? implies K is on the
radical axis MN of the two inside circles.
So M, N, K are collinear.

If S, N, T are collinear, then OSMT =
0 SMMW OTMN =0 NSK+ OKTN =

180= OSKT . So M, S, K T, O are
concyclic. Then OOMN = OOMK =
OJOSK = 90°.

Conversely, if OM O MN , then OMK
= 90= OOSK implies M, S, K, T, O are
concyclic. Then

OSKT = 180= OSMT
=186 O SMNV OTMN
=186¢° O NSK- OKTN.

Thus 7TNS 366° O NSk~ OSKT -
OKTN =180°. Therefore, S, N, T are
collinear.

Comments: For the meaning of radical
axis, we refer the readers to pages 2 and 4
of Math Excalibur, vol. 4, no. 3 and the
corrections on page 4 of Math Excalibur,
vol. 4, no. 4.

Other commended solvers: CHAO Khek
Lun (St. Paul’s College, Form 6).

Problem 120. Twenty-eight integers are
chosen from the interval [104, 208].
Show that there exist two of them having
a common prime divisor.

School, Form 4).

Applying the
principle, we see there are 82 integers on
[104, 208] that are divisible by 2, 3, 5 or
7. There remain 23 other integers on the
interval. If 28 integers are chosen from
the interval, at least 28 — 23 = 5 are
among the 82 integers that are divisible
by 2, 3, 5 or 7. So there will exist two
that are both divisible by 2, 3, 5 or 7.

Solution 2. CHAN Yun Hung (Carmel
Divine Grace Foundation Secondary
School, Form 4), KWOK Sze Ming
(Queen Elizabeth School, Form 5), LAM
Shek Ming (La Salle College, Form 5),
LEUNG Wai Ying (Queen Elizabeth
School, Form 6), WONG Tak Wai Alan
(University of Toronto) and WONG
Wing Hong (La Salle College, Form 3).

inclusion-exclusion

There are 19 prime numbers on the
interval. The remaining 86 integers on
the interval are all divisible by at least
one of the prime numbers 2, 3, 5, 7, 11
and 13 since 13 is the largest prime less
than or equal to V208 . So every number
on the interval is a multiple of one of
these 25 primes. Hence, among any 26
integers on the interval at least two will
have a common prime divisor.

TS0 ~

A Proof of the Majorization Inequality
Kin Y. Li

Quite a few readers would like to see a
proof of the majorization inequality,
which was discussed in the last issue of
the Mathematical Excalibur. Below we
will present a proof. We will first make
one observation.
Lemma. Leta < c < b and f be convex
on an interval / with a, b, c on I. Then the
following are true:

f-fla) . f(B) = f(a)
b-a

c—a
and
f®)=f(e) _ f(B)=f(a)

b-c b-a
Proof. Sincea <c <b,wehavec=(1-
f)a + tb for some ¢ I(0, 1). Solving for ¢,
we get t = (¢ — a)/(b — a). Since fis
convex on /,

f©) = (d-0f(a)+1f(b)

f(c) in the two inequalities in the
statement of the lemma.

In brief the lemma asserts that the slopes
of chords are increasing as the chords are
moving to the right. Now we are ready to
proof the majorization inequality.
Suppose

(x19x29"'9xn)>(y19y23"'3yn)‘

Since x; 2 x;,; and y; 2 y;y; for i =1,

2, ..., n—1, it follows from the lemma
that the slopes
X =i

satisfy m; 2m;, for 1 i < n — 1.
(For example, if y,, <y, <x4 <,
then applying the lemma twice, we get

M = S(x) = (Vi)
it Xisl T Vsl
LG = 1)
Xivl = Vi
S0
X =Y

and similarly for the other ways »,,,, ;.

i

X;41, X; are distributed.)
Fork=1,2, ...,n,let
X, =x +x, +-4x;
and
Y =yp+yy +t
Since X, =27, fork=1,2,...,n—1and

X,=7Y,, we get

kZI(Xk —Y ) (my —myy) 20,

where we set m,,; =0 for convenience.

Expanding the sum, grouping the terms
involving the same my; ’s and letting

Xy=0=Y,, we get
(X — Xy ~Y Y my 20,
=

which is the same as

n

Z(xk = ym; 20.
k=1

(cp =yimy = f(x) = (),

Since
we get

U= fGm 20

Transferring the f(y,) terms to the

right, we get the majorization inequality.
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Problem 1. At 12:00 noon, Anne, Beth
and Carmen begin running laps around a
circular track of length three hundred
meters, all starting from the same point
on the track. Each jogger maintains a
constant speed in one of the two possible

directions for an indefinite period of time.

Show that if Anne’s speed is different
from the other two speeds, then at some
later time Anne will be at least one
hundred meters from each of the other
runners. (Here, distance is measured
along the shorter of the two arcs

separating two runners).

Problem 2. A permutation of the
integers 1901, 1902, ..., 2000 is a
sequence a;, dp, ..., djgp in which
each of those integers appears exactly
once. Given such a permutation, we form
the sequence of partial sums

sp=ap, sp =aytay,

S§3 =4 +a, +d3,...,S100 =ay tay +"'+d100.

(continued on page 4)
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Base n Representations
KinY. Li

When we write down a number, it is
understood that the number is written in
base 10. We learn many interesting facts
at a very young age. Some of these can
be easily explained in terms of base 10
representation of a number. Here is an
example.

Example 1. Show that a number is
divisible by 9 if and only if the sum of its
digits is divisible by 9. How about

divisibility by 11?

Solution. Let M =d, 10" +---+d;10
+dy, where d; =0, 1, 2, ..., 9. The
binomial theorem tells us 10% =09 +1)k
:9Nk +1. So

M =d, (N, +1)+--+d;(9+])+d,
:9(dmNm +ee +d1) +(d tee +dl +d0)'

m

Therefore, M is a multiple of 9 if and
onlyif d,, +---+dy +d is a multiple of
9.

Similarly, we have 10% = 1IN}, +(—1)k.
So M is divisible by 11 if and only if
(-»"d,, +---—d; +d, is divisible by
11.

Remarks. In fact, we can also see that the
remainder when M is divided by 9 is the
same as the remainder when the sum of
the digits of M is divided by 9. Recall the
notation @ =b (mod ¢) means a and b
have the same remainder when divided
byc. Sowehave M =d,, +---+d; +d,
(mod 9).

The following is an IMO problem that
can be solved using the above remarks.

Example 2. (1975 IMO) Let A be the sum
of the decimal digits of 44444444, and B
be the sum of the decimal digits of 4. Find
the sum of the decimal digits of B.

Solution. Since 4444%% <(10°)%# =

1022220 50 A4 <22220%9 =199980.

Then B <1+9%5=46 and the sum of
the decimal digits of B is at most 3+9=12.
Now 4444=7 (mod 9) and 7° =343

=1 (mod 9) imply 4444> =1 (mod 9).
Then 4444%4% =(44443)14814444 =7

(mod 9). By the remarks above, 4, B and
the sum of the decimal digits of B also
have remainder 7 when divided by 9. So
the sum of the decimal digits of B being
at most 12 must be 7.

Although base 10 representations are
common, numbers expressed in other
bases are sometimes useful in solving
problems, for example, base 2 is common.
Here are a few examples using other
bases.

Example 3. (A Magic Trick) A magician
asks you to look at four cards. On the first
card are the numbers 1, 3,5, 7,9, 11, 13,
15; on the second card are the numbers 2,
3,6,7,10, 11, 14, 15; on the third card are
the numbers 4, 5, 6, 7, 12, 13, 14, 15; on
the fourth card are the numbers 8, 9, 10,
11, 12, 13, 14, 15. He then asks you to
pick a number you saw in one of these
cards and hand him all the cards that have
that number on them. Instantly he knows
the number. Why?

Solution. Forn=1, 2, 3, 4, the numbers
on the n-th card have the common feature
that their n-th digits from the end in base 2
representation are equal to 1. So you are
handing the base 2 representation of your
number to the magician. As the numbers
are less than 24, he gets your number
easily.

Remarks. A variation of this problem is
the following. A positive integer less than
2% s picked at random. What is the least
number of yes-no questions you can ask
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that always allow you to know the number?
Four questions are enough as you can ask
if each of the four digits of the number in
base 2 is 1 or not. Three questions are not
enough as there are 15 numbers and three
2% =3

questions can only provide

different yes-no combinations.

Example 4. (Bachet’s Weight Problem)
Give a set of distinct integral weights that
allowed you to measure any object having
weight n=1,2,3,...,40 on a balance.
Can you do it with a set of no more than
four distinct integral weights?

Solution. Since the numbers 1 to 40 in
base 2 have at most 6 digits, we can do it
with the set 1, 2, 4, 8, 16, 32. To get a set
with fewer weights, we observe that we
can put weights from this set on both sides
of the balance! Consider the set of
weights 1, 3, 9, 27.

determine an object with weight 2, we can

For example to

put it with a weight of 1 on one side to
balance a weight of 3 on the other side.
Note the sum of 1, 3, 9, 27 is 40. For any
integer n between 1 and 40, we can write it
in base 3. If the digit 2 appears, change it
to 3—1 so that n can be written as a
unique sum and difference of 1, 3, 9, 27.
For example,22=209 +3+1=(3-1)9
+3+1=27-9+3 + 1 suggests we put
the weights of 22 with 9 on one side and
the weights of 27, 3, 1 on the other side.

Example 5. (1983 IMO) Can you choose
1983
integers less than 10° such that no three

pairwise distinct nonnegative

are in arithmetic progression?

Solution. Start with 0, 1 and at each step
add the smallest integer which is not in
arithmetic progression with any two
preceding terms. We get 0, 1, 3, 4,9, 10,
12, 13, 27, 18, ... . In base 3, this
sequence is

0,1,10,11,100,101,110,111,1000,1001, ...

(Note this sequence is the nonnegative
integers in base 2.) Since 1982 in base 2 is
11110111110, so switching this from base
3 to base 10, we get the 1983™ term of the
sequence is 87843 <10°.
sequence works, suppose x, y, z with x <y

To see this

< z are three terms of the sequence in

arithmetic progression.  Consider the

rightmost digit in base 3 where x differs
from y, then that digit for z is a 2, a
contradiction.

Example 6. Let [r] be the greatest
integer less than or equal to 7. Solve the
equation

[x] +[2x] +[4x] +[8x]

H16x] +[32x] =12345.
Solution. 1If x is a solution, then since
r—1<[r]<r, we have 63x — 6 < 12345
<63x. It follows that 195 <x <196.
Now write the number x in base 2 as
1100001 1.abcde. .., the
a,b,c.d,e,... Substituting

where digits
are 0 or 1.
this into the equation, we will get 12285 +
3la+ 15b + 7c + 3d + e = 12345. Then
3la + 15b + 7¢ + 3d + e = 60, which is
impossible as the left side is at most 31 +
15+ 7 + 3 + 1 = 57. Therefore, the

equation has no solution.

Example 7. (Proposed by Romania for
1985 IMO) Show that the sequence {a,,}
defined by a,, = [n\E] forn=1,2,3, ...
(where the brackets denote the greatest
integer function) contains an infinite
number of integral powers of 2.

Write \/5 in base 2 as
by.bbybs ..., where each b, =0 or 1.

Since V2 is irrational, there are infinitely

Solution.

many by =1. If by =1, then in base 2,
2k_1\/5=b0~~-bk_1.bk~~- . Let m
[257'42], then

ML a1 <2F 21 =m <2"‘1\/_—%.

Multiplying by V2 and adding \E, we

V2

get 2F <(m +1W2 <2F + Then

[(m +1)v2]=2F.

Example 8. (American Mathematical
Monthly, Problem 2486) Let p be an odd
prime number. For any positive integer &,
show that there exists a positive integer m
such that the rightmost & digits of mz,
when expressed in the base p, are all 1's.

Solution. We prove by induction on £.
For k=1, take m =1.
m2

Next, suppose
in base p, ends in £ 1's, i.e.

m2 :1 +p +...+pk_1 +(apk +...).

This implies m is not divisible by p. Let
gcd stand for greatest common divisor (or
highest common factor). Then ged(m, p)
=1. Now

(m +cp™)2 =m? +2mep + 2 p?k

k-1 +(a +2mc)pk +eee

=l +p +--+p
Since ged(2m, p) =1, there is a positive
integer ¢ such that (2m)c =1—-a (mod p).
This implies a+2mc is of the form
1+ Np and so (m + cpk)2 will end in at
least (k +1) 1's as required.

Example 9. Determine which binomial

coefficients C;) =————— are odd.
ri(n—r)!

Solution.  We remark that modulo

arithmetic may be extended to

polynomials with integer coefficients. For
example, (1 +)c)2 =1+2x +x2 = 1+x?
(mod 2). If n =a,, +---+a;, where the
a; ’s are distinct powers of 2. We have
(1+x)2 =1+x2 (mod 2) by induction
on k and so

(1 +x)" =1 +x%)-(1+x) (mod 2).
The binomial coefficient C, is odd if
and only if the coefficient of X' in
A+ x%m ). (1+x™) 1, which

equivalent to r being 0 or a sum of one or

is is
more of the a; ’s. For example, if
n =21=16+4+1, then C, is odd for r
=0,1,4,5,16,17, 20, 21 only.

Example 10. (1996 USAMO) Determine
(with proof) whether there is a subset X of
the integers with the following property:
for any integer n there is exactly one
solution of a +2b =n with a,bJX.

This is a difficult problem. Here we will
try to lead the reader to a solution. For a
problem that we cannot solve, we can try
to change it to an easier problem. How
about changing the problem to positive
integers, instead of integers? At least we
do not have to worry about negative
integers. That is still not too obvious how
to proceed. So can we change it to an even
simpler problem? How about changing 2
to 10?

(continued on page 4)
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Problem Corner

We welcome readers to submit their
solutions to the problems posed below
for publication consideration. Solutions
should be preceded by the solver’s name,
home (or email) address and school
affiliation. Please send submissions to
Dr. Kin Y. L of
Mathematics, Hong Kong University of

Department

Science & Technology, Clear Water Bay,
Kowloon. The deadline for submitting
solutions is June 30, 2001.

Problem 126. Prove that every integer
can be the
2

x +y2 -522 , Where x, y, z are integers.

expressed in form

Problem 127. For positive real numbers
a, b, c with a + b + ¢ = abc, show that

[ SR N
Viea? V1ep2 a2 2

and determine when equality occurs.
1998 South Korean Math

(Source:
Olympiad)

Problem 128. Let M be a point on
segment AB. Let AMCD, BEHM be
squares on the same side of AB. Let the
circumcircles of these squares intersect
at M and N. Show that B, N, C are
collinear and H is the orthocenter of
AABC. (Source: 1979 Henan Province
Math Competition)

Problem 129. If f{x) is a polynomial of
degree 2m+1 with integral coefficients
for which there are 2m+1 integers
ky,ky,..., k41 such that f(k;)=1 for
i=1,2,---,2m+1, prove that f{x) is not
the
polynomials with integral coefficients.

product of two nonconstant

Problem 130.
positive integer n, there exists a circle in

Prove that for each

the xy-plane which contains exactly n
lattice points in its interior, where a
lattice point is a point with integral
coordinates.  (Source: H. Steinhaus,
Zadanie 498, Matematyka 10 (1957), p.
58)

sk sfe st sk sk sk sk sk skeosk sk sk sk skoskoskesk

Solutions

sk sk sk st sk sk sk skoskskosk skoskoskoskosk ok

Problem 121.
greater than or equal to 7 can be written

Prove that any integer

as a sum of two relatively prime integers,
both greater than 1.

(Two integers are relative prime if they
share no common positive divisor other
than 1.
relatively prime, and thus 37 = 22 + 15

For example, 22 and 15 are

represents the number 37 in the desired

way.)
Mathematical Olympaid)

Solution. CHAO Khek Lun Harold (St.
Paul’s College, Form 6), CHIU Yik Yin
(St. Joseph’s Anglo-Chinese School,
Form 5), CHONG Fan Fei (Queen’s
College, Form 4), CHUNG Tat Chi
(Queen Elizabeth School, Form 4), LAW
Siu Lun (Ming Kei College, Form 6), NG
Cheuk Chi (Tsuen Wan Public Ho Chuen
Yiu Memorial College), WONG Wing
Hong (La Salle College, Form 3) &
YEUNG Kai Sing (La Salle College,
Form 4).

(Source: Second Bay Area

For an integer n =7, n is either of the
form2j + 1 (j>2) or 4k(k> 1) or 4k + 2(k
>1). Ifn=2j+1,thenjandj + 1 are
relatively primeandn =j + (j+ 1). Ifn =
4k, then 2k - 1 (>1) and 2k + I are
relatively prime and n = (2k- 1) + 2k + 1).
If n = 4k + 2, then 2k - 1 and 2k + 3 are
relatively prime and n = 2k - 1) + 2k +
1).

Other commended solvers: HON Chin
Wing (Pui Ching Middle School, Form 6),
LEUNG Wai Ying (Queen Elizabeth
School, Form 6), NG Ka Chun
Bartholomew (Queen Elizabeth School,

Form 6) & WONG Tak Wai Alan
(University of Toronto).

Problem 122. Prove that the product of
the lengths of the three angle bisectors of a

triangle is less than the product of the
lengths of the three sides. (Source: 1957
Shanghai  Junior High School Math
Competition).

Solution. YEUNG Kai Sing (La Salle
College, Form 4).

Let AD, BE and CF be the angle bisectors
of AABC , where D is on BC, E is on CA4
and Fis on AB. Since 0ADC = UABD
+ UBAD > OABD, there is a point K on
CA such that0 ADK= [ABD. Then
AABD is similar to AADK . So AB/AD
= AD/AK. Then AD?> = ABMK <
ABICA. Similarly, BE> < BC [4B and
CF* <CATBC.
in-equalities and taking square roots, we
get AD [BE [CF < AB[BC[CA4.

Other commended solvers: CHAO
Khek Lun Harold (St. Paul’s College,
Form 6), CHIU Yik Yin (St. Joseph’s
Anglo-Chinese School, Form 5), HON
Chin Wing (Pui Ching Middle School,

Form 6) & LEUNG Wai Ying (Queen
Elizabeth School, Form 6).

Multiplying these

Problem 123. Show that every convex
quadrilateral with area 1 can be covered
by some triangle of area at most 2.
1989 Wuhu City Math
Competition)

Solution. CHAO Khek Lun Harold (St.
Paul’s College, Form 6), CHUNG Tat
Chi (Queen Elizabeth School, Form 4) &

LEUNG Wai Ying (Queen Elizabeth
School, Form 6).

(Source:

Let ABCD be a convex quadrilateral with
Let AC meet BD at E. Without
loss of generality, suppose AE = EC.
Construct AAFG, where lines AB and
AD meet the line parallel to BD through
C at F and G respectively. Then A4ABE
is similar to AAFC. Now AE =2 EC
implies AB=BF. Let[XY---Z] denote
the area of polygon XY ---Z, then [ABC]
2 [FBCJ. Similarly, [ADC] = [GDC].
Since [ABC] + [ADC] = [ABCD] = 1,
so [AFG] = [ABCD] + [FBC] + [GDC]
< 2[ABCD] = 2 and AAFG covers
ABCD.

area 1.

Problem 124. Find the least integer n
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such that among every » distinct numbers
chosen from [1,1000],
there always exist a;,a; such that

0 <ai _aj<1+331’al'aj.

(Source: 1990 Chinese Team Training
Test)

Solution. CHAO Khek Lun Harold (St.
Paul’s College, Form 6), CHUNG Tat
Chi (Queen Elizabeth School, Form 4) &
LEUNG Wai Ying (Queen Elizabeth
School, Form 6).

ap,an,...,a,,

For n<10, let a; =i® (i=12,-,n).
Then the inequality cannot hold since
0<i’ —j3 implies i—j=1 and so

P =2 = =)+ - ) 2143
Forn =11, divide [1,1000] into intervals
[k3 +1,(k +1)°] for k=0, 1, ..., 9. By
pigeonhole principle, among any 11
distinct numbers ay,a,,---,ay7 in [1,

1000], there always exist a;,a;, say

a;>a; , in the same interval. Let

x=%/a_l- and y=3a;  then0<x-y<I

and 0 < a;~a; = x’ =y = (x=y)° +

Ixp(x—y) <1+3xy=1+ 33,/a,-aj.

Other commended solvers: NG Cheuk
Chi (Tsuen Wan Public Ho Chuen Yiu
Memorial College), NG Ka Chun
Bartholomew (Queen Elizabeth School,
Form 6), WONG Wing Hong (La Salle
College, Form 3) & YEUNG Kai Sing
(La Salle College, Form 4).

Problem 125. Prove that
tan” 1° +tan? 3° +tan? 5° +---+tan> 89°

is an integer.
Solution. CHAO Khek Lun (St. Paul’s
College, Form 6).
For 8 =1°,3°,5°,...,89°, we have cos@
#0 and c0s900 =0 .
theorem, co0s908 +isin900 = (cos6 +
isin0)” . Taking the real part of both

sides, we get

By de Moivre’s

45
0= S (-1)FC3P cos®** osin** 6 .
k=0
Dividing by cos”’6 on both sides and
letting x = tan” 6 , we get

45

k ~90 k

0=y (-DFcaxk .
k=0

So tan’1°,tan”3,tan’5°,...,tan> 89°
are the 45 roots of this equation.
Therefore, their sum is ng =4005.

m

Olympiad Corner
(continued from page 1)

How many of these permutations will
have no terms of the sequence sy, ...,
s100 divisible by three?

Problem 3. Let A = (a;,a,,-,a50) be
a sequence of integers each lying in the
interval [-1000, 1000]. Suppose that the
entries in 4 sum to 1. Show that some
nonempty subsequence of 4 sums to

Zero.
Problem 4. Let ABCD be a convex
quadrilateral with

O CBDx 204DB,
UABD = 20CDB
and AB = CB.

Prove that AD = CD.

Problem 5.
numbers ay,a;,--,ajgy satisfy

Suppose that the real

a) 2612 2"'2&11002 0,
a +a2 <100

and as +a4 +~~-+a1005100.

Determine the maximum possible value
of a12 +a§ +--'+a1200 , and find all
possible sequences aj,a,,---,ajqo Which

achieve this maximum.

TS0  ~

Base n Representations
(continued from page 2)

Now try an example, say n = 12345. We
can write n in more than one ways in the
form a +10b. Remember we want a, b
to be unique in the set X. Now for b in X,
105 will shift the digits of b to the left
one space and fill the last digit with a 0.
Now we can try writing n = 12345 =
10305 + 10(204). So if we take X to be
the positive integers whose even position
digits from the end are 0, then the
problem will be solved for n = a + 10b.
How about n =a+2b? If the reader
examines the reasoning in the case
a+10b, it is easy to see the success

comes from separating the digits and
observing that multiplying by 10 is a
shifting operation in base 10. So for
a+2b, we take X to be the set of
positive integers whose base 2 even
position digits from the end are 0, then
the problem is solved for positive
integers.

How about the original problem with
integers? It is tempting to let X be the set
of positive or negative integers whose
base 2 even position digits from the end
are 0. It does not work as the example 1
+ 20 =3=5+2(-1) shows uniqueness
fails. Now what other ways can we
describe the set X we used in the last
paragraph? Note it is also the set of
positive  integers base 4
representations have only digits 0 or 1.
How can we take care of uniqueness and
negative integers at the same time? One
idea that comes close is the Bachet
weights.

The brilliant idea in the official solution
of the 1996 USAMO is do things in base

(—4). That is, show every integer has a

whose

k .
unique representation as Zc,-(—4)’,
i=0

where each ¢; =0, 1,2 or 3 and ¢, #0.
Then let X be the set of integers whose

base (—4) representations have only

¢; =0 or 1 will solve the problem.

To show that an integer n has a base (—4)
representation, find an integer m such that
4% +42 +...+4%™ > 5 and express

n43 (4443 +ok a2y
2m A
in base 4 as y b;4' . Now set cp; = by;

i=0

and Coi-1 =3_b2i—1' Then

2m ;
n=7%c(-4).
i=0

To show the uniqueness of base (—4)
representation of n, suppose n has two
distinct representations with digits c¢; 's
and d;'s. Letj be the smallest integer
such that ¢; #d ;. Then

k .
0=n-n=73(c—d;)(-4)
i=j
would have a nonzero remainder when
divided by 4/*!, a contradiction.
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Problem 1. Let ABC be an acute-angled
triangle with circumcentre O. Let P on
BC be the foot of the altitude from A.
Suppose that ZBCA>/ABC+ 30° .
Prove that LCAB+ ZCOP < 90°.

Problem 2. Prove that
a b c

+ +
\/az +8bc \/b2 +8ca \/02 +8ab

for all positive real numbers a, b and c.

>1

Problem 3. Twenty-one girls and
twenty-one boys took part in a
mathematical contest.

e Each contestant solved at most six
problems.

e For each girl and each boy, at least
one problem was solved by both of
them.

Prove that there was a problem that was
solved by at least three girls and at least
three boys.

(continued on page 4)
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Pell’s Equation (I)

KinY Li

Let d be a positive integer that is not a
—dy? =1 with
variables x,y over integers is called

square. The equation x>
Pell’s equation. 1t was Euler who
attributed the equation to John Pell
(1611-1685), although Brahmagupta (7"
century), Bhaskara (12" century) and
Fermat had studied the equation in

details earlier.

A solution (x, y) of Pell’s equation is
called positive if both x and y are positive
integers.  Hence, positive solutions
correspond to the lattice points in the first
quadrant that lie on the hyperbola
x2—dy? =1.

(x;,y,) is called the least positive

A positive solution
solution (or fundamental solution) if it
satisfies x; <x and y, < y for every
(As the
strictly

other positive solution (x, y).
hyperbola x? —afy2 =1 is
increasing in the first quadrant, the
conditions for being least are the same as

requiring x; + ylx/g <X+ y\/g.)
—dy* =1

has infinitely many positive solutions. If

Theorem. Pell’s equation x?

(x1,y,) is the least positive solution,

1
Vi —ag+—
a +———
a) +—
where a, :[\/E] and a;,a,,.. is a
periodic positive integer sequence. The
continued fraction will be denoted by

(ao,al,az, > The k-th convergent of

<a0,a1,a2,...> is the number £k =
9k
<a0,a1,a2,...,ak>with Di»4q; relatively

prime. Let a;,a,,...,a, be the period

for \/E . The least positive solution of
Pell’s equation turns out to be

if miseven
if misodd

(pmfl s dm-1 )
(P2m-1>92m-1)

For example, \/g =<1, 1,2,1, 2,...> and so
2
L

(xls)ﬁ):{

m = 2, then <1,1>= We check

22-3.12=1 and clearly, (2,1) is the

least positive solution of x2-3 y =1.
Next, \/5: (1, 2, 2,...) and so m=1,

3

then <1, 2) = 2 We check 32 -2.22 =

1 and again clearly (3,2) is the least

#
“% om o oL
T ERAT

+[

Atist: YEUNG Sau-Ying Camille), MFA, CU positive solution of x2-2 y2 =1.

then for n =1,2,3, ..., define

Xn +yn\/2:(xl +y1\/g)n~
The pairs (x,,y,) are all the positive
The
x,’s and y,’s are strictly increasing to
infinity and satisfy

Acknowledgment: Thanks to Elina Chiu, Math. Dept., HKUST

for general assistance. Next, if there is a positive solution (x, y)

such that x, +yn\/2< x+y\/g<xn+1
+yn+1\/3, then consider u+v\/_:
(x+yx/3)/(xn +yn\/3). We will get u
+ v d<x1+y1\/g and u—vx/_z
(x=yJd)(x, - y,Nd) so that u® —
A = u-wdYu+wd) = 1,

con-tradicting (x;, ;) being the least
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solutions of the Pells equation.

the recurrence
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(x) +Y1\/§)2 =X +dy} +2x1yl\/z
=2x12 —1+2x1y1\/3

=2x,(x +y1x/g)—l.
So
Xn+2 +yn+2\/2

=(x +y1\/2)2(x] "‘J’l\/g)n
=2x;(x; +J’l\/g)"+1 =+ \/E)n

= 21X, = X, + QX1 Y501 = Yy )\/Z

The related equation x? —aly2 =-1
may not have a solution, for example,
x>~ 3y =-1 cannot hold as
x? —3’y2 = x’ +y2 #—1 (mod 4).
However, if d is a prime and d =1
(mod 4), then a theorem of Lagrange
asserts that it will have a solution. In

2 =1 has a least

general, if x> —dy
positive solution (x;,y;), then all its
positive solutions are pairs (x, »),
where x + y\/g = (x4 +yl\/g)2"_l
for some positive integer #.

In passing, we remark that some -th
convergent numbers are special. If the
length m of the period for Ja is even,
then x*-dy*=1 has (x,,y,)=
(Ppm—t1>9um—1) as all its positive
solutions, but x* —dy? =—1 has no
integer solution. If m is odd, then
x* —dy* =1 has (P jm-15Y jm—) with
j even as all its positive solutions and
x*—dy* ==1 has  (pjpisqjmi)
with j odd as all its positive solutions.

Example 1. Prove that there are
infinitely many triples of consecutive
integers each of which is a sum of two
squares.

Solution. The first such triple is 8 = 27
+2%,9=3>+0%,10=3"+1%, which
suggests we  consider triples
x2 -1, x%, x? +1. Since
x*-2 y2 =1 has infinitely many
positive solutions (x, y), we see that
2=x*+ 0% and

x> +1 satisfy the requirement and

e B AR

there are infinitely many such triples.
Example 2. Find all triangles whose
sides are consecutive integers and
areas are also integers.

Solution. Letthesidesbez—1,z,z+ 1.

Then the semiperimeter s :372 and

the area is A=

2_
—2“3(24 4). If 4 is an

integer, then z cannot be odd, say z = 2x,
and 22 —4=3w’. So 4x’-4=30",
which implies @ is even, say o =2y.
Then x? —3y* =1, which has (x,y)=
(2, 1) as the least positive solution. So all
positive solutions are (x,,y, ), where x,
+yn\/§:(2+\/§)n‘ Now x, —yn\/_z
2- ﬁ)” . Hence,

L) A"
2

n

and

I CARNE il AR EV
n 2\/3 .

The sides of the triangles are 2x, —1,
2x,,2x,+1 and the areas are 4 =
3x,5,-
Example 3. Find all positive integers &, m
such that £ <m and
1+2+-+k=Fk+D)+k+2)+--+m.
Solution. Adding 1+2+---+k to both
sides, we get 2k(k +1) = m(m +1), which
can be rewritten as (2m +1)? — 2(2k +1)°
= —1. Now the equation x? —2y* =1
has (1,1) as its least positive solution. So

its  positive  solutions are  pairs
X, +y,v2 =(1+~2)*"". Then

N _(1+ﬁ)2n—1+(1_ﬁ)2n—1
" 2

and

_ (1+\/5)2n—1 _(1_\/5)271—1
Yn 2\/5 .

Since x* —2y* = —1 implies x is odd, so x
is of the form 2m +1. Then y* =2m?* +

m+1 implies y is odd, so y is of the form
yo—1 x,-1
2k +1. Then (k,m) = -

withn =2, 3,4, ... are all the solutions.
Example 4. Prove that there are infinitely
many positive integers n such that n” +1
divides n!.

Solution. The equation x* —5y? =—1
has (2,1) as the least positive solution.
So it has infinitely many positive
solutions. Consider those solutions with
y>5. Then 5<y<2y<x as 4y*<

592 —1=x% So 2(x*+1)=5-y-2y
divides x!, which is more than we want.
Example 5.

[ﬂnz +(n+1)? } prove that there are

s

infinitely many #»’s such that

=1.

For the sequence a, =

a,—a,,; > land a,,,—a

n n

Solution. First consider the case n” +
(n+1)? = y*, which can be rewritten
as (2n+1)*-2y*=-1.  As in
example 3 above, x> —2y* =—1 has
infinitely many positive solutions and
each x is odd, say x =2n+1 for some

n. For these n’s, a, =y and a,_, =

[\/(”—1)2 +n2} = [\/yz —4n] The

equation y* =n? +(n+1)* implies n

>2and g, < \/y2—4n <y-l=a,

-1. So a,, — a,_, >1 for these n’s.

Also, for these n’s, a,.; =

{\/(n+1)2+(n+2)2}={\/y2+4n+4]

Asn<y<2n+1,weeasily gety+1<

m<y+2. So a,,,—a, =

y+1)—-y=1.

Example 6. (American Math Monthly
E2606, proposed by R.S. Luthar) Show
that there are infinitely many integers n
such that 2n + 1 and 3n + 1 are perfect
squares, and that such » must be multiples
of 40.

Solution. Consider 2n + 1 = u? and
3n+1:v2.0n0nehand, w? +vr =2

(mod 5) implies u*, v = 1 (mod 5),
which means # is a multiple of 5.

On the other hand, we have 3u?* —2v?
=1. Settingu=x+2yandv=x+ 3y,
the equation becomes x? —6y? =1.
It has infinitely many positive
solutions. Since 3u® —2v? =1, u is
odd, say u=2k+ 1. Thenn= 2k*+2k
is even. Since3n+1= v?,s0visodd,
say v=4m+ 1. Then3n= 16m> + 8m,
which implies # is also a multiple of 8.

(continued on page 4)
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Problem Corner

We welcome readers to submit their
solutions to the problems posed below
for publication consideration.
Solutions should be preceded by the
solver’s name, home (or email)
address and school affiliation. Please
send submissions to Dr Kin Y. Li
Department of Mathematics, Hong
Kong  University of Science &
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions
is November 10, 2001.

Problem 131.
common divisor (or highest common

Find the greatest

factor) of the numbers n" —n forn=3,
5,7, ....

Problem 132. Points D, E, F are
chosen on sides AB, BC, CA of AABC ,
respectively, so that DE = BE and FE =
CE. Prove that the center of the
circumcircle of AADF lies on the
angle bisector of ZDEF . (Source:
1989 USSR Math Olympiad)

Problem 133. (a) Are there real
numbers a and b such that a+b is
rational and a" +b" is irrational for
every integer n>2? (b) Are there
real numbers a and b such that a + b is
irrational and a" +b" is rational for
every integer n>27? (Source: 1989
USSR Math Olympiad)

Problem 134. Ivan and Peter
alternatively write down 0 or 1 from
left to right until each of them has
written 2001 digits. Peter is a winner if
the number, interpreted as in base 2, is
not the sum of two perfect squares.
Prove that Peter has a winning strategy.
(Source: 2001 Bulgarian Winter Math
Competition)

Problem 135. Show that for n > 2, if
a,a,,...,a, >0, then
(@i +1)(a3 +1)---(a] +1) >
(alzaz + 1)(a§a3 + 1)---(a,2,a1 +1).
(Source: 7" Czech-Slovak-Polish Match)
s st sk s ot stk sk ok stk ok sk ok

Solutions
skskskoskoskskskskoskoskskskskosksksksk

Problem 126. Prove that every integer
can be expressed in the form x? + y? —

522, where x, y, z are integers.

Solution. CHAN Kin Hang (CUHK,
Math Major, Year 1), CHENG Kei Tsi
Daniel (La Salle College, Form 7),
CHENG Man Chuen (CUHK, Math
Major, Year 1), CHUNG Tat Chi (Queen
Elizabeth School, Form 5), FOK Chi
Kwong (Yuen Long  Merchants
Association Secondary School, Form 5%,
IP Ivan (St. Joseph’s College, Form 6),
KOO Koopa (Boston College,
Sophomore), LAM Shek Ming Sherman
gLa Salle College, Form 6), LAU Wai

hun (Tsuen Wan Public Ho Chuen Yiu
Memorial College, Form 6), LEE Kevin
(La Salle College, Form 6), LEUNG Wai
Ying (Queen Elizabeth School, Form 7),
MAN Chi Wai (HKSYC IA Wong Tai
Shan Memorial College), NG Ka Chun
(Queen Elizabeth School, Form 7), SIU
Tsz Hang (STFA Leung Kau Kui College,
Form 6), YEUNG Kai Sing (La Salle
College, Form 5) and YUNG Po Lam
(CUHK, Math Major, Year 2).

For n odd, say n = 2k + 1, we have
(2k)* +(k+1)* =5k*=2k+1=n. Forn
even, say n = 2k, we have (2k —1)> +
(k=2)* =5k -1)* =2k =n.

Problem 127. For positive real numbers
a, b, cwitha + b + ¢ = abc, show that

1 N 1 N 1.3
\/1+a2 \/1+b2 \/1+c2 2’

and determine when equality occurs.
(Source: 1998 South Korean Math

Olympiad)

Solution. CHAN Kin Hang (CUHK,
Math Major, Year 1), CHENG Kei Tsi
Daniel (La Salle College, Form 7), KOO
Koopa (Boston College, Sophomore),
LEE Kevin (La Salle College, Form 6)
and NG Ka Chun (Queen Elizabeth
School, Form 7).

LetA=tan 'a, B=tan"'b, C= tan"' c.
Since @, b, ¢ >0, we have 0 < 4, B, C < %
Now a + b + ¢=abc is the same as tan 4 +

tan B +tan C =tan 4 tan B tan C. Then

_ —(tan4 + tan B)
1—tan Atan B

tan C =tan(7z—A - B)

which implies 4 + B+ C= 7. Interms of
A, B, Cthe inequality to be proved is cos 4
+cos B+ cos C < %, which follows by
applying Jensen’s inequality to f{x) = cos x

V4
on (0,—).
( 2)

Other commended solvers: CHENG
Man Chuen (CUHK, Math Major,
Year 1), IP Ivan (St. Joseph’s College,
Form 6), LAM Shek Ming Sherman
(La Salle College, Form 6), LEUNG
Wai Ying (Queen Elizabeth School,
Form 7), MAN Chi Wai (HKSYC&IA
Won% Tai Shan Memorial College),
TSUI Ka Ho (Hoi Ping Chamber of
Commerce Secondary School, Form 7),
WONG Wing Hong %a Salle College,
Form 4) and YEUNG Kai Sing (La
Salle College, Form 5).

Problem 128. Let M be a point on
segment AB. Let AMCD, BEHM be
squares on the same side of 4B. Let the
circumcircles of these squares intersect
at M and N. Show that B, N, C are
collinear and H is the orthocenter of
AABC. (Source: 1979 Henan

Province Math Competition)

Solution. LEUNG Wai Ying (Queen
Elizabeth School, Form 7), MAN Chi
Wai (HKSYC&IA Wong Tai Shan
Memorial College) and YUNG Po
Lam (CUHK, Math Major, Year 2).

Since ZBNM = /BHM = 45° =
ZCDM = Z/CDM , it follows B, N, C
are collinear. Next, CH 1 AB . Also,
BH L ME and ME|AC imply BH L

AC. So H is the orthocenter of A4BC.
Other commended solvers: CHAN
Kin Hang (CUHK, Math Major, Year
1), CHENG Kei Tsi Daniel (La Salle
College, Form 7), CHENG Man
Chuen (CUHK, Math Major, Year 1),
CHUNG Tat Chi (Queen Elizabeth
School, Form 5), IP Ivan (St. Joseph’s
College, Form 6), KWOK Sze Ming
(Queen Elizabeth School, Form 6),
LAM Shek Ming Sherman (La Salle
College, Form 6), Lee Kevin (La Salle
College, Form 6), NG Ka Chun
(Queen Elizabeth School, Form 7),
SIU Tsz Hang (STFA Leung Kau Kui
College, Form 6), WONG Wing Hong
(La Salle College, Form 4) and
YEUNG Kai Sing (La Salle College,
Form 5).

Problem 129. If f{x) is a polynomial
of degree 2m + 1 with integral
coefficients for which there are 2m + 1
integers ky,k,,...,ky,,; such that
flkHy=1fori=1,2, .., 2m+ 1,
prove that f{x) is not the product of two
nonconstant polynomials with integral

coefficients.

Solution. CHAN Kin Hang (CUHK,
Math Major, Year 1), CHENG Kei Tsi
Daniel (La Salle College, Form 7),
CHENG Man Chuen (CUHK, Math
Major, Year 1), IP Ivan (St. Joseph’s
College, Form 6), KOO Koopa
(Boston College, Sophomore), LAM
Shek Ming Sherman (La Salle
College, Form 6), LEE Kevin (La
Salle College, Form 6), LEUNG Wai
Ying (Queen Elizabeth School, Form
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7), MAN Chi Wai (HKSYC&IA
Wong Tai Shan Memorial College),
YEUNG Kai Sing (La Salle College,
Form 5) and YUNG Po Lam (CUHK,
Math Major, Year 2).

Suppose f is the product of two
non-constant polynomials with integral
co-efficients, say f = PQ. Since
1= f(k)= P(k;)Q(k;)  and
P(k;), O(k;) are integers, so either
both are 1 or both are —1. As there are
2m + 1k;’s, either P(k;)=0(k;)=1
for at least m + 1 k; ’s or
P(k;)=0(k;)=-1 for at least m +
1 k;’s. Since degf=2m+ 1, one of deg
P or deg Q is at most m. This forces P
or O to be a constant polynomial, a

contradiction.

Other commended solvers: NG Cheuk
Chi (Tsuen Wan Public Ho Chuen Yiu
Memorial College) and NG Ka Chun
(Queen Elizabeth School, Form 7).

Problem 130. Prove that for each

positive integer 7, there exists a circle in
the xy-plane which contains exactly n
lattice points in its interior, where a
lattice point is a point with integral
coordinates. (Sowrce: H. Steinhaus,

Zadanie 498, Matematyka 10 (1957), p. 58)

Solution. CHENG Man Chuen
(CUHK, Math Major, Year 1) and IP
Ivan (St. Joseph’s College, Form 6).

Let P = (ﬁ, %) . Suppose lattice

points (xy, ¥o),(x;,»;) are the same

distance from P. Then

(xo—\/z)er(Jfo—%)z =

12
(xl—x/z)z+(y1—§j . Moving the x

terms to the left, the y terms to the right

and factoring, we get

(xo — xl)(xo +x - 2&)

= (¥ _)’1)()’0 + _gj

As the right side is rational and V2 s
irrational, we must have x,=x,.
Then the left side is 0, which forces
Y1 =y, since y; +y, is integer. So
the lattice points are the same.

Now consider the circle with center at

P and radius . As r increases from 0 to
infinity, the number of lattice points inside
the circle increase from O to infinity. As
the last paragraph shows, the increase
cannot jump by 2 or more. So the

statement is true.

Other commended solvers: CHENG Kei
Tsi Daniel (La Salle College, Form 7),
KOO Koopa (Boston  College,
Sophomore), LEUNG Wai Ying (Queen
Elizabeth School, Form 7), MAN Chi
Wai (HKSYC&IA Wong Tai Shan
Memorial College), NG Ka Chun (Queen
Elizabeth School, Form 7) and YEUNG
Kai Sing (La Salle College, Form 4).

OO Y~

Olympiad Corner

(continued from page 1)

Problem 4. Let n be an odd integer
greater than 1, let k|, k,,....,k, be given
integers. For each of the n! permutations

a=(ay,a,,...,a,) of 1,2, ...,n let
S(a)=Sk.a,.
i=l

Prove that there are two permutations b
and ¢, b # ¢, such that n! is a divisor of
S(b) - S(c).

Problem 5. In a triangle ABC, let AP
bisect ZBAC , with P on BC, and let BQ
bisect ZABC , with Q on CA. It is known
that ZBAC =60° and that AB + BP = AQ
+ OB.

What are the possible angles of triangle
ABC?

Problem 6. Let a, b, c, d be integers with
a>b>c>d>0. Suppose that
actbd=(b+d+a—c)(b+d—a+c).
Prove that ab + cd is not prime.

O~
Pell’s Equation (I)

(continued from page 2)

Example 7. Prove that the only positive
integral solution of 5* =3% =2 isa=b=1.
Solution. Clearly, if a or b is 1, then the
other one is 1, too. Suppose (a, b) is a
solution with both @, » > 1. Considering
(mod 4), we have 1 — (=1)? =2 (mod 4),
which implies b is odd. Considering (mod
3), we have (-1)* =2 (mod 3), which

implies « is odd.

Setting x = 341 and y=30""2

5007072 " we get 15y =357 =3°(3° +

2)=(3"+1)*-1=x*-1. So(x,y)isa
positive solution of x> —15y? =1. The
least positive solution is (4,1). Then (x, y)
= (x,,y,) for some positive integer n,
where x, + yn\/gz(4+\/g)”. After
examining the first few y, ’s, we observe
that y;, are the only terms that are
divisible by 3. However, they also seem
to be divisible by 7, hence cannot be of
the form 3°5¢ .

To confirm this, we use the recurrence
relations on y,. Since y; =1, y, =8
and y,., =8y, — v, taking y, (mod
3), we get the sequence 1, 2,0, 1, 2, 0...
and taking y, (mod 7), we get 1, 1, 0, -1,
-1,0,1,1,0,-1,-1,0, ....

Therefore, no y = y, is of the form 3°5¢
and a, b>1 cannot be solution to
54-3"=2.

Example 8. Show that the equation a’
+b° = ¢* has infinitely many solutions.

Solution. We will use the identity

2
I+ 23+---+n3=(n(n+l)j >

2
which 1s a standard exercise of

mathematical induction. From the

(n —zl)njz +n3 _

identity, we get (

n(n+1) :
(Tj for n>1. All we need to do

now is to show there are infinitely many
positive integers n such that n(n + 1)/2 =

k?* for some positive integers k. Then (a,
b, ¢) = (n — Dn/2, n, k) solves the
problem.

Now n(n + 1)/2 = k? can be rewritten as
2n+1)* —=2(2k)* =1. We know x* —
2y? =1 has infinitely many positive
solutions. For any such (x, y), clearly x
is odd, say x =2m+1. They y* =2m?*
+2m implies y is even. So any such (x, )
is of the form (2n+1, 2k). Therefore,

there are infinitely many such .
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Problem1. Let =
integer. Show that if @ and b are integers
greater then 1 such that 2" —1=ab, then
the number ab — (@ — b) — 1 is of the form
k2% | where k is odd and m is a

positive integer.

be a positive

Problem 2.
pentagon

Prove that if a convex
satisfies the following
conditions:

(1) all interior angles are congruent; and
(2) the lengths of all sides are rational
numbers,

then it is a regular pentagon.

Problem 3. Leta, b, c be positive real
numbers such that a+b+c=abc
Prove that

a? b+ > \/gabc.

Problem 4.
3x3x3 is divided into 27 congruent

A cube of dimensions

unit cubical cells.

(continued on page 4)
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Remarks by Professor Andy Liu
(University of Alberta, Canada)

Polyhedra with Six Vertices is the work of
Richard Travis Ng, currently a Grade 12
student at Archbishop MacDonald High
School in Edmonton, Canada. The result
is equivalent to that in John McClellan’s
The Hexahedra Problem (Recreational
Mathematics Magazine, 4, 1961, 34-40),
which counts the number of polyhedra
with six faces. The problem is also
featured in Martin Gardner’s “New
Mathematical Dviersions” (Mathematical
Association of America, 1995, 224-225
and 233). However, the proof in this
article is much simpler.

The 2001 Hong Kong IMO team with Professor Andrew Wiles at Washington, DC taken on July 13, 2001. From left to right,
Leung Wai Ying, Yu Hok Pun, Ko Man Ho, Professor Wiles, Cheng Kei Tsi, Chan Kin Hang, Chao Khek Lun.
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Problem Corner

We welcome readers to submit their
solutions to the problems posed below
for publication
Solutions should be preceded by the
solver’s name, home (or email)
address and school affiliation. Please
send submissions to Dr Kin Y. Li
Department of Mathematics, Hong
Kong  University of Science &
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions
is 15 January 2001.

consideration.

Problem 136.  For a triangle ABC,
if sin A4, sin B, sin C are rational, prove
that cos A4, cos B, cos C must also be
rational.

If cos 4, cos B, cos C are rational, must
at least one of sin A4, sin B, sin C be
rational?

Problem 137.
positive integer n,

(\/E_‘_\/E)l/n +(\/§_\/5)l/n

is irrational.

Prove that for every

Problem 138.
Luis Diaz-Barrero,

(Proposed by José
Universitat
Politécnica de Catalunya, Barcelona,
Spain) If a+b and a-b are
relatively prime integers, find the
greatest common divisor (or the
highest common factor) of
2a +(1 +2a)(a2 —bz) and 2a(a2 +
2a =b*)(a* -b?).

Problem 139.
pair of concentric circles at points 4, B,
C, D in that order. Let E be on the outer
circle and F be on the inner circle such
that chords AE and BF are parallel. Let
G and H be points on chords BF and
AE that are the feet of perpendiculars
from C to BF and from D to AE,
respectively. Prove that EH = FG.
(Source: 1958 Shanghai City Math
Competition)

Let a line intersect a

Problem 140.
has five equal sides. Prove that the

A convex pentagon

interior of the five circles with the five
sides as diameters do not cover the
interior of the pentagon.

sk sk ste sk sk sk sk sk sk sk sk sk sk skosk skosk

Solutions
skokskoskskoskskskskskskskskskskskk

Problem 131.  Find  the
common divisor (or highest common

greatest

factor) of the numbers n” —n forn=3,5,
T,

Solution. CHAN Wai Hong (STFA Leung
Kau Kui College, Form 6), CHUNG Tat
Chi (Queen Elizabeth School, Form 5),
Jack LAU Wai Shun (Tsuen Wan Public
Ho Chuen Yiu Memorial College, Form 6),
LEE Tsun Man Clement (St. Paul’s
College, Form 3), SIU Tsz Hang (STFA
Leung Kau Kui College, Form 6), Boris
YIM Shing Yik (Wah Yan College,
Kowloon) and YUEN Ka Wai (Carmel
Divine Grace Foundation Secondary School,
Form 6).

Since the smallest number is

33-3=24, the

divisor is at most 24. For n =2k +1,

n" -n= n((nz)k —1)

greatest common

=(n =Dn(n +1)(n* 72+ +1),

Now one of n —1, n, n+1is divisible by
3. Also, (n-1)(n+1)=4k(k+1) is
divisible by 8. So n" —n is divisible by
24. Therefore, the greatest common

divisor is 24.

Other commended solvers: CHAQO Khek
Lun Harold (St. Paul’s College, Form 7),
CHAU Suk Ling (Queen Elizabeth School,
Form 7), CHIU Yik Yin (St. Joseph’s
Anglo-Chinese School, Form 6), CHU Tsz
Ying (St. Joseph’s Anglo-Chinese School),
KWOK Sze Ming (Queen Elizabeth School,
Form 6), LAW Siu Lun (CCC Ming Kei
College, Form 7), Antonio LEI Iat Fong
and Alvin LEE Kar Wai (Colchester Royal
Grammar School, England), LEUNG Wai
Ying (Queen Elizabeth School, Form 7),
Campion LOONG (STFA Leung Kau Kui
College, Form 6), NG Ka Chun (Queen
Elizabeth School, Form 7), SIU Ho Chung
(Queen’s College, Form 3), TANG Sheung
Kon (STFA Leung Kau Kui College, Form
7), TSOI Hung Ming (SKH Lam Woo
Memorial Secondary School, Form 7),
WONG Chun Ho (STFA Leung Kau Kui
College, Form 7), Tak Wai Alan WONG
(University of Toronto, Canada), WONG
Tsz Wai (Hong Kong Chinese Women’s
Club College, Form 6), WONG Wing
Hong (La Salle College, Form 4) and
YUEN Chi Hung (SKH Chan Young
Secondary School, Form 4).

Problem 132. Points D, E, F are
chosen on sides AB, BC, CA of AABC ,

respectively, so that DE = BE and FE =
CE. Prove that the center of the
circumcircle of A4ADF lies on the
angle bisector of UDEF . (Source:
1989 USSR Math Olympiad)

Solution. CHAN Wai Hong (STFA
Leung Kau Kui College, Form 6),
CHAO Khek Lun Harold (St. Paul’s
College, Form 7), CHAU Suk Ling
(Queen Elizabeth School, Form 7),
CHIU Yik Yin (St. Joseph’s
Anglo-Chinese School, Form 6), CHU
Tsz Ying (St. Joseph’s Anglo-Chinese
School), CHUNG Tat Chi (Queen
Elizabeth School, Form 5), FOK Chi
Kwong (Yuen Long Merchants
Association Secondary School, Form 5),
KWOK Sze Ming (Queen Elizabeth
School, Form 6), KWONG Tin Yan
(True Light Girls’ College, Form 6),
Antonio LEI Iat Fong and Alvin LEE
Kar Wai (Colchester Royal Grammar
School, England), LEUNG Wai Ying
(Queen Elizabeth School, Form 7), SIU
Ho Chung (Queen’s College, Form 3),
WONG Tsz Wai (Hong Kong Chinese
Women’s Club College, Form 6) and
WONG Wing Hong (La Salle College,
Form 4).

Let O be the circumcenter of
AADF and a, B,y be the measures of
angles 4, B, C of AABC . Then
ODOF =2a and 180= [ODEF =
0 BEDx OCEF =360°-2pB-2y=
20= ODOF. So ODEF is a cyclic
quadrilateral. Since OD = OF, ODEO
= OFEO . So O is on the angle
bisector of LIDEF .

Other commended solvers: NG Ka
Chun (Queen Elizabeth School, Form 7),
SIU Tsz Hang (STFA Leung Kau Kui
College, Form 6), TSOI Hung Ming
(SKH Lam Woo Memorial Secondary
School, Form 7) and YUEN Chi Hung
(SKH Chan Young Secondary School,
Form 4).

Problem 133.
numbers a and b such that a+b is

(a) Are there real

rational and a” +5" is irrational for
every integer n22? (b) Are there
real numbers a and b such that a +b is
irrational and a" +b" is rational for
every integer n=2? (Source: 1989
USSR Math Olympiad)

Solution. CHAO Khek Lun Harold
(St. Paul’s College, Form 7), LEUNG
Wai Ying (Queen Elizabeth School,
Form 7) and YUEN Chi Hung (SKH
Chan Young Secondary School, Form 4).
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(a) Leta= J2+1 and b = —+2.
Then a+b =1 is rational. For an
integer n=2, from the binomial
theorem, since binomial coefficients

are positive integers, we get
W2 +1)" =rN2+s,,

where 7

" »S, are positive integers.

For every positive integer k, we have
a** + p* = er\/E + 5y + 2% and
a2k+1 + b2k+1 — (”2k+1 _21{)\/5 +

Soper+ Slnce
k 2+ k-1 o Ak
I’2k+1 22 +C2 2 >2 5

a” +b" is irrational for n = 2.

(b)  Suppose such a and b exist.
Then neither of them can be zero from
cases n =2 and 3. Now

(@ +b*) =(a* +b*) + 242>
implies a’b* is rational, but then

=(a® +b°) +a’b*(a +b)

will imply a + b is rational, which is a
contradiction.
Other commended solvers: NG Ka
Chun (Queen Elizabeth School, Form 7),
SIU Tsz Hang (STFA Leung Kau Kui
College, Form 6) and TSUI Chun Wa

(Carmel Divine Grace Foundation
Secondary School, Form 6).

Problem 134. Ivan and  Peter
alternatively write down O or 1 from
left to right until each of them has
written 2001 digits. Peter is a winner if
the number, interpreted as in base 2, is
not the sum of two perfect squares.
Prove that Peter has a winning strategy.
(Source: 2001 Bulgarian Winter Math
Competition)

Solution. (Official Solution)

Peter may use the following strategy:
he plans to write three 1’s and 1998 0’s,
until Ivan begins to write a 1. Once
Ivan writes his first 1, then Peter will
switch to follow Ivan exactly from that
point to the end.

If Peter succeeded to write three 1’s
and 1998 0’s, then Ivan wrote only 0’s
and the number formed would be
21x4"% | This is not the sum of two
perfect squares since 21 is not the sum

of two perfect squares.

If Ivan wrote a 1 at some point, then
Peter’s strategy would cause the number
to have an even number of 0’s on the right
preceded by two 1’s. Hence, the number
would be of the form (4n +3)4™. This
kind of numbers are also not the sums of
two perfect squares, otherwise we have

integers x, y such that

xP +y? =(4n+3)4",
which implies x, y are both even if m is a
positive integer. Keep on canceling 2
from both x and y. Then at the end, we
will get 4n + 3 as a sum of two perfect

squares, which is impossible by checking

the sum of odd and even perfect squares.

Other commended solvers: LEUNG Wai
Ying (Queen Elizabeth School, Form 7) and
NG Ka Chun (Queen Elizabeth School,
Form 7).

Problem 135.  Show that for n=>2, if
a,ay,...,a, >0, then

(@i +1)(a3 +1)--(a, +1)2
(afay +1)(azas +1)--(aza; +1).
(Source: 7" Czech-Slovak-Polish Match)

Solution 1. CHIU Yik Yin (St. Joseph’s
Anglo-Chinese School, Form 6), CHU Tsz
Ying (St. Joseph’s Anglo-Chinese School),
FOK Chi Kwong (Yuen Long Merchants
Association Secondary School, Form 5) and
WONG Tsz Wai (Hong Kong Chinese
Women’s Club College, Form 6).

First we shall prove that

(a13 +1)Z(a; +1)2 (alzaz +1)3.

By expansion, this is the same as

6 3 33, 3, 6 3
aya, t2aja; +a; +a; +2a; +1

= afag +3a14a§ +3a12a2 +1.

This follows by regrouping and factoring to
get
ai(a, —a, ) (a) +2a,)
+ (@ ~a, ) 2a, +a,) 20
or from

/3
ag +2a13 = 3(a§’a13a13)| = 3a12a2,

33, 6 12 63 _5 4 2
2aia; +a 23(a1 aZ) =3a,a;,

by the AM-GM inequality. Similarly, we
get

(“f +1)2(“i3+1 +1)2 ("iz“m +1)3

for i = 2,3, ..., n with q,,, = q,.
Multiplying these inequalities and taking
cube root, we get the desired inequality.

Solution 2. Murray KLAMKIN
(University of Alberta, Canada) and NG
Ka Chun (Queen Elizabeth School,
Form 7).

Let a,,, =a,. Fori=1,2, ..., n, by
Hélder’s inequality, we have

(a7 +1)*7(aj +1)'"7

312/3, 3 \1/3
2(a; )" (a;y) "+

Multiplying these n inequalities, we get
the desired inequality.

Comments: For the statement and
proof of Hélder’s inequality, we refer
the readers to vol. 5, no. 4, page 2 of
Math Excalibur.

Other commended solvers: ~CHAQO
Khek Lun Harold (St. Paul’s College,
Form 7), Antonio LEI Iat Fong and
Alvin LEE Kar Wai (Colchester Royal
Grammar School, England), LEUNG
Wai Ying (Queen Elizabeth School,
Form 7), SIU Tsz Hang (STFA Leung
Kau Kui College, Form 6), TSOI Hung
Ming (SKH Lam Woo Memorial
Secondary School, Form 7), WONG
Chun Ho (STFA Leung Kau Kui
College, Form 7), and YUEN Chi Hung
(SKH Chan Young Secondary School,
Form 4).

O~
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One of these cells is empty and the
others are filled with unit cubes
labeled in an arbitrary manner with
numbers 1, 2, ..., 26. An admissible
move is the moving of a unit cube into
an adjacent empty cell. Is there a
finite sequence of admissible moves
after which the unit cube labeled with
k and the unit cube labeled with 27 — k&
are interchanged, foreachk=1,2, ...,
13? (Two cells are said to be adjacent

if they share a common face.)
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Problem 1. Determine all integers a
and b which satisfy that

a13 +b90 — b2001 )

Problem 2. Let <an> be sequence of real
numbers satisfying the recurrence relation
a, =k, a,y :l.\/za,,], n=12,...
where [x] denotes the largest number
which is less or equal than x. Find all
positive integers £ for which three exist
three consecutive terms a;_,qa;,a;4,

satisfy 2a; =a,_| +a;4;.

Problem 3. A real number 7 is said to
be attainable if there is a triple of
positive real numbers (a, b, ¢) such that
a, b, c are not the lengths of any triangle
and satisfy the inequality

rabe >a’b +b*c + .

. 7 .
(a) Determine whether or not 5 is

attainable.

(b) Find all positive integer n such that n
is attainable.

(continued on page 4)

Editors: 5k B B (CHEUNG Pak-Hong), Munsang College, HK
= F B (KO Tsz-Mei)
P iZ %8 (LEUNG Tat-Wing), Applied Math. Dept., HKPU
2 2 B (LI Kin-Yin), Math. Dept., HKUST
R % B (NG Keng-Po Roger), ITC HKPU

Artist:  #5 35 Z (YEUNG Sau-Ying Camille), MFA, CU

Acknowledgment: Thanks to Elina Chiu, Math. Dept., HKUST
for general assistance.

On-line: http://www.math.ust.hk/mathematical_excalibur/

The editors welcome contributions from all teachers and
students. With your submission, please include your name,
address, school, email, telephone and fax numbers (if available).
Electronic submissions, especially in MS Word, are encouraged.
The deadline for receiving material for the next issue is March
23, 2002.

For individual subscription for the next five issues for the 01-02
academic year, send us five stamped self-addressed envelopes.
Send all correspondence to:

Dr. Kin-Yin LI
Department of Mathematics
The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Fax: (852) 2358 1643
Email: makyli@ust.hk

Vector Geometry

KinY. Li

A vector XY is an object having a
length XY) and a
direction (from X to Y). Vectors are very

magnitude (the
useful in solving certain types of
geometry problems.  First, we will
mention some basic concepts related to
vectors. Two vectors are considered the
same if and only if they have the same

magnitudes and directions. A vector

OX from the origin O to a point X is

called a position vector. For

—_—

convenience, often a position vector OX
will simply be denoted by X, when the
position of the origin is understood, so

that the vector XY = E’—O—/\; will
simply be ¥ — X. The length of the

position vector OX = X will be denoted

by |X | . We have the triangle inequality
|X +Y| S|X| +|Y| , with equality if and
only if X =¢Y forsome ¢t = 0. Also, |cX|

= |¢|X| for number c.

For a point P on the line X7, in
terms of position vectors, P = tX + (1 —
7)Y for some real number ¢. If P is on the
segment X7, then ¢t = PY/XY O [0, 1].

Next, we will present some
examples showing how vectors can be

used to solve geometry problems.

Example 1. (1980 Leningrad High
School Math Olympiad) Call a segment
in a convex quadrilateral a midline if it
joins the midpoints of opposite sides.
Show that if the sum of the midlines of a
quadrilateral is  equal to its
semiperimeter, then the quadrilateral is a

parallelogram.

Solution. Let ABCD be such a convex

quadrilateral. Set the origin at 4. The
sum of the lengths of the midlines is
|B +C -D| +|D +C - B|

2
and the semiperimeter is

|| +|C ~D| +|D] +|Cc - 8]
; :

So
|B +C =D|+|D +C - B|
= |B| +|C -D| +|D| +|C - B]

By triangle inequality, |B| +|C - D| >

|B+C~D|, with equality if and only if
B=1(C-D) (or AB|CD). Similarly,
|D| +|C - B| = |D +C- B| , with equality
if and only if AD"BC . For the equation
to be true, both triangle inequalities must
be equalities. In that case, ABCD is a

parallelogram.

Example 2. (Crux Problem 2333) D
and FE are points on sides AC and 4B of
triangle ABC, respectively. Also, DE is
not parallel to CB. Suppose F and G are
points of BC and ED, respectively, such
that BF: FC = EG:GD = BE:CD .
Show that GF is parallel to the angle

bisector of OBAC .

Solution. Set the origin at 4. Then E =
pB and D = ¢gC for some p, ¢ O (0, 1).

+
€+B and G =

Lettzﬂ,thenF:
FC

iID+E _ tqC+ pB
t+1 (+1

Since BE = tCD, so (1 — p)|B] = #(1 —
q)|C|. Thus,

F-g=1"Dc,17Pp

t+1 t+1
_-plBl(C, B
t+1  \|C| |B]
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This is parallel to i +i, which is
|IC| [B]

in the direction of the angle bisector of
0BAC.

EE I L S R A R A R R

The dot product of two vectors X
and Y is the number X[V = |X]|Y]
cos 8, where @ is the angle between
the vectors. Dot product has the
following properties:

) XO=rxX,(x+nzx=xwz

+ Y and (cX) T =c(XO0).
@ |x[=xor, |xo|s|x|y| and

OX 0OY ifand only if X ¥ =0.

(1975 USAMO) Let A4,
B, C, D denote four points in space and
AB the distance between 4 and B, and
so on. Show that

AC? +BD? + AD? + BC? = AB* + CD?.

Example 3.

Set the origin at 4. The
inequality to be proved is
CIC+(B-D)UB-D)
+D D +(B-C)UB-C)
2B B +(C-D)LQC-D).
After expansion and regrouping, this is
the same as (B —C -D){B-C-D)
=0, with equality if and only if B— C
=D =D — A, ie. is BCAD is a

parallelogram.

Solution.

EE I R S A R A

For a triangle ABC, the position
vectors of its centroid is
_A+B+C
—s

G

If we take the circumcenter O as the
origin, then the position of the
orthocenter is H = A4 + B + C as OH
= 3& . Now for the incenter /, let a,
b, ¢ be the side lengths and Al
intersect BC at D. Since BD:CD =c:b

and DI:Al = ca wc=a:b+c,soD=
b+c
bB +cC ad +bB +cC
and /= .
b+c a+b+c

Example 4. (2"  Balkan  Math
Olympiad) Let O be the center of the

circle through the points 4, B, C, and let D
be the midpoint of AB. Let E be the
centroid of triangle ACD. Prove that the
line CD is perpendicular to line OF if and
only if AB=AC.

Solution.  Set the origin at O. Then
+
D:A B’
2
E:A+C+D:3A+B+2C
3 6 '
+ -
p-c=ArBoC

Hence CD OOE if and only if (4 + B —
2C)[(B4+B+2C)=0. Since AU =
B[B = CLC, this is equivalent to 4(B
—C) =A B - ALC =0, which is the same
as OAUOBC, i.e. AB =AC.

Example 5. (1990 IMO Usused Problem,
Proposed by France) Given AABC with
no side equal to another side, let G / and H
be its centroid, incenter and orthocenter,
respectively. Prove that OGIH > 90°.

Solution.  Set the origin at the

circumcenter. Then

H=A+B+C, G= %,
_ ad+bB+cC
a+b+c

We need to show (G-1)WH-I)=
GIM+I0-10G+H)<0. Now AH
= BB=CIC=R* and 2BC = BB
+CC—-(B-C)B-C)=2R*-d*,....
Hence,
(A+B+C)[{4+B+C)

3

GLH =

—3R2 _a2 +b% +c?
3 9
_(ad +bB +cC) [ad +bB + cC)

1= 3
(atb+c)

—7
atb+c

—R2 abc

4(ad +bB +cC) [{A+B +C)

TG +H)= 3a+b+c)

2[a?(b +¢) +b*(c +a) +c*(a +b)]
3a+b+e) '

=4R? -

Thus, it is equivalent to proving (a + b
+o)a® +b* +c*)+3abe>2[a* (b +
c) + b* (c +a)+ 2 (a + b)], which
after expansion and regrouping will
become a(a—b)(a—c)+b(b—c)(b—a)
+ ¢(c — a)(c — b) > 0. To obtain this
inequality, without loss of generality,
assume a=b=c. Then a(a —b)(a-
¢) 2b(a —b)(b—c) so that the sum of
the first two terms is nonnegative. As
the third term is also nonnegative, the
above inequality is true.

L R A I R A A R R

The cross product of two vectors X
and Y is a vector X XY having
magnitude |X]|Y] sin @, where 8 is the
angle between the vectors, and direction
perpendicular to the plane of X and Y
satisfying the right hand rule. Cross
product has the following properties:

(1) XxY=-YxX, (X+Y)xZ=
XXZ+ YXZ and (cX) XY =
(X x7).
| XxY|

@

is the area of triangle

XOY. When X, Y #0, XxY =0
if and only if X, O, Y are collinear.

Example 6. (1984 Annual Greek
High School Competition) Let
A A, A3 A, As Ag be a convex
hexagon having its opposite sides
parallel. Prove that triangles 4, A; A4s
and 4, A, A4; have equal areas.

Solution.  Set the origin at any point.
As the opposite sides are parallel, (4,
—Ay) X(Ay = A5) =0, (4 = 4y)*(4s
—4g) = 0 and (4; —4y) *(4s — 4) =
0. Expanding these equations and
adding them, we get 4 XA; + A4; X 45
Hs XAy =4y XAy + Ay X Ag + Ag X 4.
Now
1= | (4, _A3);((A| —45)|

[ Al A3 AS

_ | A x4y + A3 + A5 + 45 % 4 \_
2

(continued on page 4)
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Problem Corner

We welcome readers to submit their
solutions to the problems posed below
for publication consideration.
Solutions should be preceded by the
solver’s name, home (or email)
address and school affiliation. Please
send submissions to Dr Kin Y. Li
Department of Mathematics, The Hong
Kong  University of Science &
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions
is March 23, 2002.

Problem 141.

are given on a circle. Maria and José

Ninety-eight points

take turns drawing a segment between
two of the points which have not yet
been joined by a segment. The game
ends when each point has been used as
the endpoint of a segment at least once.
The winner is the player who draws the
last segment. If José goes first, who
has a winning strategy? (Source: 1998
Iberoamerican Math Olympiad)

Problem 142. ABCD is a
quadrilateral with AB||CD. P and Q
are on sides AD and BC respectively
such that O4PB = UOCPD and
UAQB = OCQOD. Prove that Pand O
are equal distance from the intersection
point of the diagonals of the
quadrilateral. (Source: 1994 Russian
Math Olympiad, Final Round)

Problem 143.
COS COS COS €OS X = sin sin sin sin x.
(Source: 1994 Russian Math Olympiad,
4™ Round)

Solve the equation

Problem 144. (Proposed by José
Luis Diaz-Barrero, Universitat
Politecnica de Catalunya, Barcelona,
Spain) Find all (non-degenerate)
triangles ABC with consecutive integer

sides a, b, ¢ and such that C = 24.

Problem 145. Determine all natural
numbers k£ >1 such that, for some
distinct natural numbers m and n, the
numbers k™ +1 and k" +1 can be
obtained from each other by reversing
the order of the digits in their decimal
representations. (Source: 1992 CIS
Math Olympiad)

sk 3k sk sk sk sk ok ok ok ok ke sk skoskosk

Solutions
skokoskoskskskskskskskskosk sk sk sksk ok

Problem 136.  For a triangle ABC, if
sind, sinB, sinC are rational, prove that
cosA, cosB, cosC must also be rational.
If cosA, cosB, cosC are rational, must at
least one of sinA4, sinB, sinC be rational?

Solution. CHAN Wai Hong (STFA
Leung Kau Kui College, Form 6), CHAO
Khek Lun Harold (St. Paul’s College, Form
7), CHIU Yik Yin (St. Joseph’s
Anglo-Chinese School, Form 6), LEUNG
Wai Ying (Queen Elizabeth School, Form
7), LO Chi Fai (STFA Leung Kau Kui
College, Form 6), WONG Tak Wai Alan
(University of Toronto), WONG Tsz Wai
(Hong Kong Chinese Women’s Club
College, Form 6) and WONG Wing Hong
(La Salle College, Form 4).

If sind, sinB, sinC are rational, then by
cosine law and sine law,

P+ =a*> 1(b ¢ aa
cosd=———=—| —+————
2bc 28¢c b bec

2

1(sinB + sinC _ sin A4 sin A
sinC  sinB sinB sinC

is rational. Similarly, cosB and cosC

are rational. In the case of an equilateral

triangle, cos4 = cosB = cosC = cos 60°=

% is rational, but sind = sinB = sinC =

e 3. .
sin 60 :7 is irrational.

Other commended solvers: LEE Tsun Man
Clement (St. Paul’s College, Form 3),
LOONG King Pan Campion (STFA
Leung Kau Kui College, Form 6), SIU Tsz
Hang (STFA Leung Kau Kui College, Form
6) and TANG Chun Pong (La Salle
College, Form 4).

Problem 137. Prove that for every
positive integer #,

(\/§+_\/5)1/n +(J§_ﬁ)l/rl
is irrational.

Solution. CHAO Khek Lun Harold (St.
Paul’s College, Form 7) and LEUNG Wai
Ying (Queen Elizabeth School, Form 7).

Let x:(\/§+\/5)””. Since (\/§+\/5)
(3-v2) = 1. a7 =B -2y 1t

! is rational, then x> +x2 =(x+

x+x
x™")? —2 s also rational. Since
6D = gk 427

_ (xk -1y x—(k—l)),

by math induction, x" +x7" = 243
would be rational, a contradiction.

Therefore, x + x ! is irrational.

Other commended solvers: CHAN Wai
Hong (STFA Leung Kau Kui College,
Form 6), SIU Tsz Hang (STFA Leung
Kau Kui College, Form 6) and WONG
Wing Hong (La Salle College, Form 4).

Problem 138.

Luis Diaz-Barrero,

(Proposed by José
Universitat
Politecnica de Catalunya, Barcelona,
Spain) If a + b and a — b are relatively
prime integers, find the greatest common
divisor (or the highest common factor) of
2a+(1+2a)a® - b*)and 2a(a*+2a -
b ) a® -b*).
Solution. CHAO Khek Lun Harold
(St. Paul’s College, Form 7) and LEUNG
Wai Ying (Queen Elizabeth School,
Form 7).
Let (1, s) denote the greatest common
divisor (or highest common factor) of »
and s. If ( s) = 1, then for any prime p
dividing 7s , either p divides r or p
divides s, but not both. In particular p
does notdivide r +s. So (r +s, rs)=1.
Letx=a+bandy =a—b. Then
2a+ (1 +2a)(a* =b%)

=x+y+(I+x+yny

=@ty +u)+ oy
and

2a(a*+2a— b*)(a* - b*)

=(x )y +x +y)y.
Now (x, y) = 1 implies (x + y, xy) = 1.
Repeating this twice, we get

(Hy+ay, (x+y)ow)=1
and
((c+y +xpy+ e+ y)y,
(+y+ap)l +yy) = 1.

So the answer to the problem is 1.

Other commended solvers: LEE Tsun
Man Clement (St. Paul’s College, Form
3), POON Yiu Keung (HKUST, Math
Major, Year 1), SIU Tsz Hang (STFA
Leung Kau Kui College, Form 6), TANG
Chun Pong (La Salle College, Form 4),
WONG Chun Ho (STFA Leung Kau
Kui College, Form 7) and WONG Wing
Hong (La Salle College, Form 4).

Problem 139. Let a line intersect a
pair of concentric circles at points 4, B,
C, D in that order. Let E be on the outer
circle and F be on the inner circle such
that chords AE and BF are parallel. Let
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G and H be points on chords BF and AE
that are the feet of perpendiculars from
C'to BF and from D to AE, respectively.
Prove that EH = FG. (Source: 1958
Shanghai City Math Competition)
Solution. WONG Tsz Wai (Hong Kong
Chinese Women’s Club College, Form 6).
Let M be the midpoint of BC (and 4D).
Sinéé DHA 90°[] ADH= UDHM .
Since BF ||AE, 0 BAE= OFEA by
symmetry with respect to the diameter
perpendicular to BF and 4AE. Now
0 FEA 0O BAFE= 90> UADH =90’
-0 DHM= 0OAHG . So EF||HG.
Since EH ||FG also, EFGH is a
parallelogram. Therefore, EH = FG.

Other commended solvers: CHAO
Khek Lun Harold (St. Paul’s College,
Form 7), CHUNG Tat Chi (Queen
Elizabeth School, Form 5), LEUNG Wai
Ying (Queen Elizabeth School, Form 7),
SIU Tsz Hang (STFA Leung Kau Kui
College, Form 6) and WONG Chun Ho
(STFA Leung Kau Kui College, Form 7).

Problem 140.
has five equal sides. Prove that the
interior of the five circles with the five

A convex pentagon

sides as diameters do not cover the
interior of the pentagon.

Solution.. LEUNG Wai Ying
(Queen Elizabeth School, Form 7).

Let the pentagon be A4, A4,A;A,A4s and
2r be the common length of the sides.
Let M be the midpoint of 4,4; and
C; be the circle with diameter 4;4;,,
fori =1, 2, 3,4, 5 (with 45 = 4)).
Since 540-3[60=2080 and 04, <
180°, there are at least 3 interior
angles (in particular, two adjacent angles)
greater than 60°. So we may suppose
O 4,,04, >60°. Since A4y4, = AsA,,
we get AyM;s U A3A5. Then M is
on C;,C, and the points on the ray
from A, to M;s lying beyond M;;
is outside C3,C, .
Next, since (04, >60°and 4,4, = 4, 4s,
A, Ay is the longest side of A4, A, As.
By the midpoint theorem, M,;M;5 =

5 r so that M 55 is outside

C, . Similarly, M5 is outside Cs. If

M5 is not outside C;, then A,Ms;s
<A44, =44, and O4M;s4, = 90°.
Since A;M 5 < A3A, = Ay Ay also, A, A4,
must be the longest side of A4, A4;M 5.
Then [0A4,M554; >60".
04, M 3545 > 60°.
04, M 454, <60°, a contradiction.  So

Similarly,

Then, we have

M 5 is outside C , too.

Fori=1,2,5letd; =M;3sM, ;,, —r>0.
Let d be the distance from M;s to the
intersection point of the pentagon with the
ray from A4, to M;s lying beyond M5 .
Choose a point X beyond M ;5 on the ray
from A, to M55 with XMy5<d,d,,d,
and ds. Then X is inside the pentagon
and is outside C;,C,. Also,fori=1,2,5,
XM > MM, 4y — XM 55
=r+d, - XMss>r

so that X is outside C;, C,, Cs.

Comments: The point M5 is enough for
the solution as it is not in the interior of the
5 circles. The point X is better as it is not

even on any of the circles.

O T~
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Problem4. Let O be the center of
excircle of A4BC touching the side BC
internally. Let M be the midpoint of AC, P
the intersection point of MO and BC.
Prove that AB = BP, if 1BAC =2UACB.

Problem 5.
pentagons P, P, ..., P, are such that
for any k0O {1, 2, 3, ..., 20}, all the
vertices of P, are the midpoints of the
sides of P, . Let S be the set of the
vertices of B, B,...., B, .
largest positive integer n for which there

Given that 21 regular

Determine the

always exist four points 4, B, C, D from §
such that they are the vertices of an
isosceles trapezoid and with the same
color if we use n kinds of different colors

to paint the element of S.

OO T~

Vector Geometry
(continued from page 2)
Similarly,
| Ay XAy + Ay XAg + A X 4 |

(44,451 = 2 .

So[ 4 4s As]=[4, 4y 4]

Example 7. (1996 Balkan Math
Olympiad) Let ABCDE be a convex
pentagon and let M, N, P O, R be the
midpoints of sides 4B, BC, CD, DE, EA,
respectively. If the segments AP, BQO, CR,
DM have a common point, show that this
point also lies on EN.

Solution. Set the origin at the commom
point. Since, 4, P and the origin are

collinear,

0=AxP:Ax(C+Dj:AXC+A><D'
2

So AXC = DxA4. Similarly, BxD =

ExXB,CXE = AxC, DxA = BXD.

Then EXB = CXE. So EXN = Ex

(B+C

2

j =0, which implies £, N and

the origin are collinear.

Example 8. (16" Austrian Math Olympiad)
A line interesects the sides (or sides
produced) BC, CA, AB of triangle ABC
in the points 4, B,, C,, respectively.
The points 4, , B,, C, are symmetric
to 4, B, C; with respect to the
midpoints of BC, CA, AB, respectively.
Prove that 4,, B,, C, are collinear.
Solution. Set the origin at a vertex,
say C. Then 4, =¢,B,B; =c,4,C; =4
+c;(B — A) for some constants ¢, ¢,,
cy. Since 4;, By, C,, are collinear,
0= (B, —4)*x(C,— 4)

= (¢; —¢ic; —cc3 Heye3)AXB.

Since
A, =B -4, =(1-¢|)B,
By,=A4 -B =(1-c,)4
and
G=A+B)- C=c;4+(1-¢;)B,
so 4,,B,,C,, are collinear if and only if
0= (B, —4)*(C, —4)
= (¢ —¢jc; —cjc3 T pe3)AX B,

which is true.
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Problem 1. Prove that ERAFE T ABREMER & 4 "
X -1 X S 28 % 2k
Lo g o 2 SRS RE gz g ¢t OUT X MeRENT
25k=058 182 RERZABE > EARMFEE  ADEHEZ) Fﬁy/\&ffﬂfﬁﬁfi)ﬂ T
is an integer. ([x] denotes the largest Mok B EE - R R R R E G ARERMEET
integer less than or equal to x.) BRAATHERBEE LR ? & P S
T IOV In(l +x) =x ——+=—=—+---(|x|<I)
Problem 2. Determine all triples of o BELEY WA S TR ) HhiE 2 3 4
positive real numbers x, y and z such ~ Frik> K%‘ftﬁfr%: ) 4"’73‘%1?1}?}1’1‘?* ° M2 on BYRBIRAE T VLR KA AT

that bothx + y + z=6 and l+l+l:
X y z
2- 4 hold,
xyz

Problem 3. We are given a triangle
ABC and its circumcircle with mid-point
U and radius . The tangent ¢' of the
circle with mid-point U and radius 2r is

determined such that C lies between ¢ =

T @R G — BB R &
ko BR m%)‘ﬂ - Ry iﬁs
/\:}ii’i ) ZRAE F9 R A AR H R B

B AR

’57’{':75 G o n(xy)=Inx+Iny, BT
AR R ERZIAEE p 9B
T VA oy gk 5T AR Al IR B B ah H B
o In(1 + 0) 694518 J o AT SR
HAXAETH

HHyHAE o FBEX T x Rkx Kk
He R AR R T AT R T @ ey

I H1n(1 +x) —In(1 - x)
Ol-xQ
E O

x3 xS
=2 + -+ +...
3 5

TewzzassA =L g
p+l

AB and ¢', and o' and b' are defined
C . 1+ . . .

analogously, yielding . the. .trlangle iln(l )= 1 EREPRANE R 1_x =p B> ([) ~ X 3 A A S
A'B'C'. Prove that the lines joining the dt 1+¢

L . . o 29-1
mid-points of corresponding sides of e (oD (-D"t Hlnpo fl4efR p=29> 8] x = =
AABC and AA'B'C' pass through a 1+¢ 29+1
common point. 4 -

b ERMASRREE (FOMI MR =, ERBEEIET 100 HE

(continued on page 4)
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Pell’s Equation (II)
Kin Y. Li

For a fixed nonzero integer N, as the case

N = -1 shows, the generalized
equation x? —dy2 =N may not have a
solution. If it has a least positive solution
x*=dy* =N  has

infinitely many positive solutons given by

(x;,») , then

(x,,y,), where

x, +y,d =0+ pd)a+bdd )
and (a, b) is the least positive solution of
x* —dy* =1. However, in general these
do not give all positive solutions of
x? —dy2 =N as the following example

will show.

Example 9. Consider the equation x* —
23y2 =-7. Ithas (x;,y;)=(4, 1) as the
least positive solution. The next two
solutions are (19, 4) and (211, 44). Now
the least positive solution of x? —23y*=
1is (a b) = (24, 5). Since (4 ++/23 )(24 +
54/23) =211 + 44 /23 , the solution (19,

4) is skipped by the formula above.

In case x° —dy2 =N has positive
solutions, how do we get them all? A
solution (x, y) of x? —dy2 =N is called
primitive if x and y (and N) are relatively
prime. For 0 < s < |N|, we say the
solution belong to class C, if x = sy
(mod |N | ). As x, y are relatively prime to
N, so is s. Hence, there are at most @ ( |N |)
classes of primitive solutions, where @ (k)
is Euler’s @ -function denoting the
number of positive integers m < k that are
relatively prime to k. Also, for such s,
(s? —af)y2 =x’ - dy2 =0 (mod |N| )
and y, N relatively prime imply
s* =d (mod |N|).

Theorem. Let (aj,b;) be a C, primitive
solutions of x? —dy2 =N. A pair (a,,

b,) is also a C, primitive solution of
x? —dy2 =N ifandonly if a, +b2\/_ =
(ay =byNd) ((a; ~by\d) .
these two equations, we get u? —dv? =
N/N=1.

Multiplying

To see u, v are integers, note a,a, —dbb,
= (s =d)bb, = 0 (mod|N|), which

implies u is an integer. Since a;b, —
bya, =sbby = bysb, =0 (mod|N|), v is

also an integer.

For the converse, multiplying the
equation with its conjugate shows
(a,,b,) solves x*—dy* =N . From
a, =ua, +dvb, and b, =ub, +va, ,
dvb, and

Hence,

we get  a, Tua, —

b, =ub, —va, . common
divisors of a,,b, are also common
divisors

a, b So a,,b, are

relatively prime. Finally, a, —sb, =
(usb; +dvb)) —s(ub; +vsb)) =(d —sz)vbl

=0 (mod |N | ) concludes the proof.

Thus, all primitive solutions of x* -
dy2 = N can be obtained by finding a
solution (if any) in each class, then
multiply them by solutions of x* -
ad? = 1.

solutions, we can factor the common

For the nonprimitive

divisors of a and b to reduce N.

Example 10. (1995 IMO proposal by
USA leader T. Andreescu) Find the
smallest positive integer n such that
197 + 1 and 95n + 1 are both integer
squares.

Solution. Let95n+1=x* and 197+ 1

= y2 , then x2 —5y2= -4. Now ¢@(4)
=2 and (1, 1), (11, 5) are C}, C;

primitive solutions, respectively. As (9,
4) is the least positive solution of
x2=5y2=1and 9 +4/5=(2 ++/5)%,
so the primitive positive solutions are
pairs (x, y), where x +y\/§ =(1+ \/g)

Q2+5)2 or (11 + 5J5)2+

J5 )22

Since the common divisors of x, y
divide 4, the nonprimitive positive
solutions are the cases x and y are even.
This reduces to considering u? =502 =
-1, where we take u = x/2 and v = y/2.
The least positive solution for u® -
5v2=1is (2, 1). Sox+yv5=2(u+
ws)=2@2 +/5)" .

In attempt to combine these solutions, we
look at the powers of 1+ NG coming from

the least positive solutions (1, 1).
(continued on page 4)
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Problem Corner

We welcome readers to submit their
solutions to the problems posed below
for publication
Solutions should be preceded by the
solver’s name, home (or email)
address and school affiliation. Please
send submissions to Dr Kin Y Li,
Department of Mathematics, The Hong
Kong  University of Science &
Technology, Clear Water Bay, Kowloon.
The deadline for submitting solutions
is May 15, 2002.

consideration.

Problem 146. Is it possible to partition
a square into a number of congruent
right triangles each containing an
30° angle? (Source: 1994 Russian
Math Olympiad, 3™ Round)

Problem 147.  Factor x® +4x%+4
into two nonconstant polynomials with

integer coefficients.

Problem 148. Find all
prime numbers p, g, r, s such that their

distinct

sum is also prime and both p2 +gs,
p2 +qr are perfect square numbers.
(Source: 1994 Russian Math Olympiad,
4™ Round)

Problem 149. 1Ina2000x 2000 table,
every square is filled witha 1 or—1. It
is known that the sum of these numbers
is nonnegative. Prove that there are
1000 columns and 1000 rows such that
the sum of the numbers in these
intersection squares is at least 1000.
(Source: 1994 Russian Math Olympiad,
5™ Round)

Problem 150. Prove that in a convex
n-sided polygon, no more than n
diagonals can pairwise intersect. For
what n, can there be n pairwise
intersecting diagonals? (Here intersection
points may be vertices.) (Source: 1962
Hungarian Math Olympiad)

sk sfe st sk sk sk sk skeskosk sk skosk skoskoskosk

Solutions
s sk sk sk sk sk sk skoske sk sk skeskosk sk sk sk

Problem 141. Ninety-eight points are
given on a circle. Maria and José take
turns drawing a segment between two
of the points which have not yet been

joined by a segment. The game ends
when each point has been used as the
endpoint of a segment at least once. The
winner is the player who draws the last
segment. If José goes first, who has a
(Source: 1998
Iberoamerican Math Olympiad)

Solution. CHAO Khek Lun Harold (St.
Paul’s College, Form 7), CHUNG Tat Chi
(Queen Elizabeth School, Form 5), 47 % 8¢
(K AR £ %, Primary 5), LAM
Sze Yui (Carmel Divine Grace Foundation
Secondary School, Form 4), Antonio LEI
(Colchester Royal Grammar School, UK,
Year 12), LEUNG Chi Man (Cheung Sha
Wan Catholic Secondary School, Form 5),
LEUNG Wai Ying (Queen Elizabeth
School, Form 7), POON Yiu Keung
(HKUST, Math Major, Year 1), SIU Tsz
Hang (STFA Leung Kau Kui College,
Form 6), Ricky TANG (La Salle College,
Form 4), WONG Tsz Wai (Hong Kong
Chinese Women’s Club College, Form 6)
and WONG Wing Hong (La Salle College,
Form 4).

winning  strategy?

José has the following winning strategy.

He will let Maria be the first person to
use the ninety-sixth unused point. Since
there are C§5 =4465 segments joining
pairs of the first ninety-five points, if
Maria does not use the ninety-sixth point,
José does not have to use it either. Once
Maria starts using the ninety-sixth point,
Jos¢ can win by joining the
ninety-seventh and ninety-eighth points.

Problem 142. ABCD is a quadrilateral
with AB|| CD. P and Q are on sides AD
and BC respectively such that U4PB =

UCPD and O AQB= OCQD. Prove
that P and Q are equal distance from the
intersection point of the diagonals of the
quadrilateral. (Source: 1994 Russian Math
Olympiad, Final Round)

Solution. CHAO Khek Lun Harold (St.
Paul’s College, Form 7) and WONG Tsz
Wai (Hong Kong Chinese Women’s Club
College, Form 6).

Let O be the intersection point of the
diagonals. Since AAOB, ACOD are similar,
AO:CO = AB:CD = BO:DO. By sine law,

AB _sin04PB _sinOCPD _ CD
BP sin0BAP sin(0CDP CP’

So AB:CD = BP:CP. Let Sbe on BC so that
SPOAD and R be on AD so that
RO OBC. Then SP bisects UBPC ,
BS:CS =BP:CP =AB:CD = A0:CO. This
implies OS||4B. Then AB:0S = CA:CO.

Similarly, AB:RO = DB:DO. However,

CA _,A40 _, BO _DB
Cco Cco DO DO’

So OS = RO. Since O is the midpoint
of RS and ASPR, ARQS are right
triangles, PO = OS = QO.

Other commended solvers: CHUNG Tat
Chi (Queen Elizabeth School, Form 5),
LEUNG Wai Ying (Queen Elizabeth
School, Form 7) and SIU Tsz Hang
(STFA Leung Kau Kui College, Form 6).

=1

Problem 143. Solve the equation cos
COS €Os COs x = sin sin sin sin x. (Source:
1994 Russian Math Olympiad, 4" Round)

Solution. CHAO Khek Lun Harold
(St. Paul’s College, Form 7).

Let f{x) = sin sin x and g(x) = cos cos x.
Now

gx)—-f(x)= sin@ - cost— sinsin x
02 O

zzcosail_cosx + s1an
4 2 20

XsinBE _cosx _ sian
4 2 2 0O

and

|cos x % sin x| _ \/5|sin(x * %)| I
2| 2 4’
So g(x) = f(x)>0 (hence g(x) > fix))
for all x. Since sin x, f(x), g(x) O[-1,1]
D[—7/, %] and sin x is strictly
increasing in [—%,%] , SO f(x) is
strictly increasing in [—%, %] and

Fr@)< flg@)< gleg)

for all x. Therefore, the equation has

no solution.

Other commended solvers: Antonio LEI
(Colchester Royal Grammar School, UK,
Year 12), LEUNG Wai Ying (Queen
Elizabeth School, Form 7), OR Kin
(HKUST, Year 1) and SIU Tsz Hang
(STFA Leung Kau Kui College, Form 6).

Problem 144. (Proposed by José Luis
Diaz-Barrero, Universitat Politécnica
de Catalunya, Barcelona, Spain) Find
all (non-degenerate) triangles ABC
with consecutive integer sides a, b, ¢
and such that C =24.

Solution. CHAO Khek Lun Harold
(St. Paul’s College, Form 7), CHUNG
Tat Chi (Queen Elizabeth School,
Form 5), KWOK Tik Chun (STFA

Leung Kau Kui College, Form 4),
LAM Wai Pui Billy (STFA Leung
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Kau Kui College, Form 4), Antonio
LEI (Colchester Royal Grammar
School, UK, Year 12), LEUNG Wai
Ying (Queen Elizabeth School, Form
7), POON Ming Fung (STFA Leung
Kau Kui College, Form 4), WONG
Chun Ho (STFA Leung Kau Kui
College, Form 7), WONG Tsz Wai
(Hong Kong Chinese Women’s Club
College, Form 6) and YEUNG Wing
Fung (STFA Leung Kau Kui College).

Let a=BC, b=CA, c=AB. By sine and
cosine laws,

. 2 2 2
¢ sinC b +c“—a
— == =2cosA=———.
a sinA bc
This  gives be? =ab® +ac® -a°.

Factoring, we get (a —b)(c2 -a? —ab)
= 0. Since the sides are consecutive
integers and C > 4 implies ¢ > a, we
have (@, b,c)=(n,n—1,n+1),(n—1,
n+1,n)or(n—1,nn+ 1) for some
positive integer n>1. Putting these
into ¢ —a* —ab =0, the first case
leads to —n* +3n+1=0, which has
no integer solution. The second case
leads to 2n —n’ =0, which yields a
degenerate triangle with sides 1, 2, 3.
The last case leads to 51 —n> = 0,
which gives (a, b, ¢) = (4, 5, 6).

Other commended solvers: CHENG Ka
Wai (STFA Leung Kau Kui College, Form
4), Clark CHONG Fan Fei (Queen’s
College, Form 5), SIU Tsz Hang (STFA
Leung Kau Kui College, Form 6), WONG
Chun Ho (STFA Leung Kau Kui College,

Form 7) and WONG Wing Hong (La
Salle College, Form 4).

Problem 145. Determine all natural
numbers £ > 1 such that, for some
distinct natural numbers m and n, the
numbers £ + 1 and k" + 1 can be
obtained from each other by reversing
the order of the digits in their decimal
representations. (Source: 1992 CIS
Math Olympiad)

Solution. CHAO Khek Lun Harold (St.

Paul’s College, Form 7), LEUNG Wai
Ying (Queen Elizabeth School, Form 7),
Ricky TANG (La Salle College, Form 4)
and WONG Tsz Wai (Hong Kong
Chinese Women'’s Club College, Form 6).
Without loss of generality, suppose
such numbers exist and n >m. By the
required property, both numbers are
not power of 10. So k" and k™ have
the same number of digits. Then 10 >
kn
—— =k"""™ > k. Since every number
km

and the sum of its digits are congruent
(mod 9), we get k" +1=k™ +1 (mod 9).
Then k" k" = k""" - 1) is

divisible by 9. Since the two factors are

relatively prime, 10>k and 9> k""" —1,

we can only have k=3, 6 or 9.

Now 3% +1=28 and 3* +1=82 show k
= 3 is an answer. The case k = 6 cannot
work as numbers of the form 6’ +1 end in
7 so that both k™ +1 and k" +1 would
begin and end with 7, which makes
k™ /k™ = k impossible. Finally, the case k
=9 also cannot work as numbers of the form
9" +1 end in 0 or 2 so that both numbers
would begin and end with 2, which again
makes k" /k™ = k impossible.

Other commended solvers: SIU Tsz Hang
(STFA Leung Kau Kui College, Form 6).

OO~

Olympiad Corner

(continued from page 1)

Problem 4. Determine all real valued
functions f{x) in one real variable for which
U@+ () =xf (x)+y

holds for all real numbers x and y.

Problem 5.

for which all solutions of the equation
3x3 -3x2 +m=0

are rational.

Determine all integers m

Problem 6.  We are given a semicircle
with diameter 4B. Points C and D are
marked on the semicircle, such that AC =
CD holds. The tangent of the semicircle
in C and the line joining B and D interect
in a point £, and the line joining 4 and £
intersects the semicircle in a point F.
Show that CF < FD must hold.

O~
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Pell’s Equation (IT)

(continued from page 2)

The powers are 1 + \/g, 6+ 2\/5, 16

+ 85 =82+ /5), 56 + 2445, 176

+804/5 =16(11+54/5), ... . Thus, the

primitive positive solutions are (x, y)
n—>5

with x + y\/g = Zﬁ%ﬁg or

n—1
2 +2‘Eg . The nonprimitive

positive solutions are (x, y) with x

n=3
+y\/_= 2%#% . So the general

positive solutions are (x, y) with

X+ yﬁzzg;—ﬁﬁ for odd k.
Then

e
where Fj is the k-th term of the
famous Fibonacci sequence. Finally,
y? =1 (mod 19) and k should be odd.
The smallest such y = F; = 1597,
which leads to n = 127—1)/19 =
134232.

Comments: For the readers not
familiar with the Fibonacci sequence, it
is defined by Fi=1, F,=1 and F,,,
= F,+ F, for n > 1. By math
induction, we can check that they
satisfy  Binets formula F, =
(’"1 —rz)/\/_ where ’”1—(1"'\/_)/2
and r, —(1—\/_)/2 are the roots of
the characteristic equation x*=x+1.
(Check cases n = 1, 2 and in the
induction step, just use "l =

1
n n-1
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Problem 1. Let S be a set with 2002
elements, and let N be an integer with 0
< N <2292 Prove that it is possible to
color every subset of S either black or

white so that the following conditions hold:

(a) the union of any two white subsets
is white;
(b)

the union of any two black subsets is
black;

there are exactly N white subsets.

(©)

Problem 2. Let ABC be a triangle such
that

AN BY ey _(6s)
cot— | +|2cot— | +|3cot— | =|— |,
2 2 2 r

where s and » denote its semiperimeter
and its inradius, respectively. Prove that
triangle ABC is similar to a triangle T
whose side lengths are all positive
integers with no common divisor and
determine these integers.

(continued on page 4)
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Problem Solving 1

Kin-Yin LI

George Polya’s famous book How
to Solve It is a book we highly
recommend every student who is
interested in problem solving to read. In
solving a difficult problem, Polya
teaches us to ask the following questions.
What is the condition to be satisfied?
Have you seen a similar problem? Can
you restate the problem in another way or
in arelated way? Where is the difficulty?
If you cannot solve it, can you solve a
part of the problem if the condition is
relaxed. Can you solve special cases? Is
there any pattern you can see from the
special cases? Can you guess the
answer? What clues can you get from
the answer or the special cases? Below
we will provide some examples to guide

the student in analyzing problems.

Example 1. (Polya, How to Solve It, pp.
23-25)  Given AABC with AB the
longest side. Construct a square having
two vertices on side AB and one vertex
on each of sides BC and CA using a
compass and a straightedge (i.e. a ruler
without markings).

Analysis. (Where is the difficulty?) The
difficulty lies in requiring all four
vertices on the sides of the triangle. If we
relax four to three, the problem becomes
much easier. On CA4, take a point P close
to A. Draw the perpendicular from P to
AB and let the foot be Q. With Q as
center and PQ as radius, draw a circle
and let it intersect AB at R. Draw the
perpendicular line to 4B through R and
let S be the point on the line which is PQ
units from R and on the same side of 4B
as P. Then PQORS is a square with P on
CA and Q, R on AB.

(What happens if you move the
point P on side CA?) You get a square

similar to PORS. (What happens in the
special case P = A?) You get a point.
(What happens to S if you move P from A
toward C?) As P moves along AC, the
triangles APQ will be similar to each
other. Then the triangles APS will also
be similar to each other and S will trace a
line segment from 4. This line A4S
intersects BC at a point S', which is the
fourth vertex we need. From §', we can
find the three other vertices dropping
perpendicular lines and rotating points.

Example 2. (/1995 Russian Math
Olympiad) There are n > 1 seats at a
merry-go-around. A boy takes n rides.
Between each ride, he moves clockwise a
certain number (less than n) of places to a
new horse. [Each time he moves a
different number of places. Find all n for

which the boy ends up riding each horse.

Analysis. (Can you solve special
cases?) The cases n =2, 4, 6 work, but
the cases n =3, 5 do not work. (Can you
guess the answer?) The answer should
be n is even. (What clues can you get
from the special cases?) From
experimenting with cases, we see that if
n > 1 is odd, then the last ride seems to
always repeat the first horse. (Why?)
From the first to the last ride, the boy
moved 1 +2+ ---+(n—1)=n(n-1)/2
places. If n> 1 is odd, this is a multiple

of n and so we repeat the first horse.

(Is there any pattern you can see
from the special cases when n is even?)
Name the horses 1, 2, ..., n in the
clockwise direction. For n = 2, we can
ride horses 1, 2 in that order and the
move sequence is 1. For n =4, we can
ride horses 1, 2, 4, 3 in that order and the
move sequence is 1, 2, 3. Forn =6, we

can ride horses 1, 2, 6, 3, 5, 4 and the
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move sequence is 1, 4, 3, 2, 5. Then for
the general even cases n, we can ride
horses 1,2,n,3,n—1, ..., (n/2)+ 1 in that
order with move sequence 1,n—2,3,n—
4, ...,2,n—1. The numbers in the move
sequence are all distinct as it is the result
of merging odd numbers 1, 3, ..., n — 1
with even numbersn —2,n—4, ..., 2.

Example 3. (1982 Putnam Exam) Let K
(, ¥, z) be the area of a triangle with sides
X, y, z. For any two triangles with sides a,
b, c and a', b', ¢' respectively, show that

\/K(a,b,c) +\/K(a',b',c')
S\/K(a +a',b+b',c+c")

and determine the case of equality.

Analysis. (Can you restate the problem
in another way?) As the problem is about
the area and sides of a triangle, we bring
out Heron’s formula, which asserts the
area of a triangle with sides x, y, z is given
by

K(x,y,2)= yJs(s =x)(s =¥)(s = 2) ,

where s is half the perimeter, i.e. s = % (x

+» + z). Using this formula, the problem
becomes showing
4

stuv +s'tu'y'

<4f(s +s)(t +)u +u)v+v')
where s = ;(a +bto),t=s—a,u=s—

b,v =5 —c and similarly for s',¢',u',v".

(Have you seen a similar problem or
can you relax the condition?) For those
who saw the forward-backward induction
proof of the AM-GM inequality before,
this is similar to the proof of the case n =4
from the case n = 2. For the others,
having groups of four variables are
difficult to work with. We may consider
the more manageable case n = 2. If we
replace 4 by 2, we get a simpler inequality

oy +xy <@+ )+ ).

This is easier. Squaring both sides,

canceling common terms, then factoring,

this turns out to be just (,/xy' —,lx'y)2 p

0. Equality holds if and only if x:x'=
y:y'. Applying this simpler inequality
twice, we easily get the required inequality

4\/stuv +4\/s't'u'v'
<(Wst +Js )N +uv)
<5+ +1)u +u)Hv).

Tracing the equality case back to the
simpler inequality, we see equality holds if
and only if a:b:c=a"b"c', ie. the
triangles are similar.

Example 4. Is there a way to pack 250
1x1x4 bricks into a 10x10x10 box?

Analysis. (Where is the difficulty?) 10 is
large for a 3 dimensional cube. We can