Έχει νόημα η δεύτερη πράξη;
ΠΡΟΦΑΝΩΣ και έχει νόημα, απλά δεν ορίζεται στο σχολικό βιβλίο κατεύθυνσης της β΄λυκείου. Στην εικόνα από το επισυναπτόμενο βιβλίο του Hungerford, Algebra, η τελευταία υπογραμμισμένη πρόταση αναφέρει:
Εκτός κι αν διευκρινίζεται διαφορετικά, κάθε πρότυπο επί ενός μεταθετικού δακτυλίου R, όπως είναι οι πραγματικοί αριθμοί, θα θεωρείται ότι αποτελεί αριστερό και δεξί πρότυπο με ra=ar, για κάθε r στο R , a στο A.
Αυτή είναι και η γενική τακτική, μεταξύ «αλγεβριστών» νομίζω…
Ένα πρότυπο (module) αποτελεί γενίκευση του διανυσματικού χώρου, αφού τα βαθμωτά θεωρούνται από έναν δακτύλιο γενικότερα και όχι απαραίτητα από το σώμα των πραγματικών αριθμών , όπως στο διανυσματικό χώρο. Αυτό που χαλάει είναι η προσεταιριστικότητα, γι αυτό και σε ασκήσεις που εμφανίζονται γενικά σε διάφορα βιβλία ζητείται να βρεθεί πχ αν ή πότε (ab)c = a(bc), όπου τα a,b,c είναι διανύσματα και θεωρούμε ότι η πράξη διάνυσμα επί αριθμό δίνει και έχει τις ίδιες ιδιότητες με την αριθμό επί διάνυσμα.