Προσβάσιμο υλικό (βιβλία, ταινίες) από την UNESCO

UNESCO had the great idea to give free access to the global digital library on the Internet.A beautiful gift to all mankind!Here’s the link: https://www.wdl.org/fr for France. It collects maps, texts, photos, records and films from all ages and explains the jewels and cultural relics of all the world’s libraries, available in seven languages.Enjoy it and make your circle enjoy it.And then several links that will be of interest to museum, opera and cinema lovers- The Fnac has put a selection of 500 free books to download, I’ll post the link: https://livre.fnac.com/n309183/Tous-les-Ebooks-gratuitsSome cultural sites or shows you can visit from home:- The Paris National Opera is uploading its shows for free on https://lnkd.in/gwdGY8n– The Metropolitan Opera in New York will air its shows for free https://bit.ly/2w2QXbP– La Cinémathèque Française offers its 800 masterclasses, essays & video lectures, 500 articles on its collections & programminghttps://lnkd.in/ghCcNKn– The Image Forum proposes to watch its meetings https://lnkd.in/gFbzp5q– Centre Pompidou: You can listen to podcasts dedicated to works thanks to the Centre Pompidu https://lnkd.in/gGifD3r– Museums: 10 online museums to visit from your couchhttps://lnkd.in/gV_S_Gq-1150 movies are available on https://lnkd.in/gspcqCm

Χριστουγεννιάτικες ευχές 2022-23

Κάρτες ευχετήριες από τον Όμιλο Μαθηματικών του Πειραματικού Λυκείου Πανεπιστημίου Μακεδονίας, από τον σύνδεσμο:


Στο πλαίσιο της συνεργασίας του Ομίλου Μαθηματικών του Πειραματικού Λυκείου του Πανεπιστημίου Μακεδονίας με το NOESIS-Κέντρο Διάδοσης Επιστημών και Μουσείο Τεχνολογίας, προσφέρουμε δωρεάν στην εκπαιδευτική κοινότητα και στο ευρύ κοινό χριστουγεννιάτικες κάρτες με μαθηματικές-εικαστικές δημιουργίες για να στείλετε τις χριστουγεννιάτικες ευχές σας.

Οι κάρτες βασίζονται σε έργα που σχεδιάστηκαν από τους μαθητές και τις μαθήτριες του Ομίλου Μαθηματικών και απεικονίζουν Χριστουγεννιάτικα δέντρα που είναι εμπνευσμένα από την τέχνη του ψηφιδωτού. Τα έργα αξιοποιούν στον σχεδιασμό τους τις μαθηματικές ιδέες των Ισομετριών και των Ψηφιδώσεων (πλακοστρώσεων/tessellations), που έπαιξαν σημαντικό ρόλο στις τέχνες όλων των πολιτισμών που άκμασαν στον πλανήτη από τις απαρχές του προϊστορικού ανθρώπου μέχρι σήμερα και είναι χρωματισμένα σε θερμούς φθινοπωρινούς, παγωμένους χειμωνιάτικους και λαμπερούς γιορτινούς χρωματικούς συνδυασμούς.

Τις κάρτες μπορείτε να κατεβάσετε από αυτή την ιστοσελίδα. Μπορείτε να τις χρησιμοποιήσετε σε ηλεκτρονική μορφή ή και να τις τυπώσετε. Κάνοντας κλικ πάνω στην κάρτα που σας αρέσει θα ανοίξει η κάρτα στο Drive και από εκεί μπορείτε να κάνετε Λήψη/Download. Οι κάρτες διατίθενται, είτε χωρίς κείμενα για να γράψετε εσείς τις ευχές που θέλετε, είτε με χριστουγεννιάτικες ευχές, στα ελληνικά και στα αγγλικά. Περιηγηθείτε στις διάφορες σελίδες και επιλέξτε ότι σας αρέσει και σας εκφράζει.

Παράγωγοι και μερικές παράγωγοι.

Η έννοια της παραγώγου για πραγματική συνάρτηση μίας μεταβλητής

Ο λόγος μεταβολής μίας συνάρτησης και η μέση ταχύτητα

Το όριο του λόγου μεταβολής και η στιγμιαία ταχύτητα

Συναρτήσεις πολλών μεταβλητών

Γεωμετρία πραγματικών συναρτήσεων πολλών μεταβλητών

Επιφάνειες δευτέρου βαθμού: https://www.esofia.net/sites/default/files/indicative-capital/ch1.pdf

Επίπεδο από το (0,0,2)


Γενική μορφή επιπέδου z = ax + by +c


3D plots Real part
Σφαίρα Κ(0,0,0), ρ =1



καμπύλες στάθμης

3D plot
Παραβολοειδές εκ περιστροφής




3D plot
Υπερβολικό παραβολοειδές (Σαμάρι – Σάγμα)



Κωνικές τομές


Ισοϋψείς καμπύλες

Κατευθυνόμενη παράγωγος

Η κατευθυνόμενη παράγωγος στη διεύθυνση ενός διανύσματος u είναι το εσωτερικό γινόμενο της κλίσης grad με το διάνυσμα u

Εύρεση κατεύθυνσης με μέγιστη πτώση…

Αν η κλίση είναι διαφορετική του 0, τότε δείχνει προς εκείνη την κατεύθυνση κατά μήκος της οποίας η συνάρτηση αυξάνεται ταχύτερα.

Ενώ η αντίθετη της κλίσης δείχνει την κατεύθυνση προς την οποία φθίνει γρηγορότερα.

ΕΦαπτόμενο επίπεδο

ΤΟ εφαπτόμενο επίπεδο στο (x0,y0) έχει εξίσωση:

κλίση f(x0,y0) . (x-x0 , y-y0) = 0

Εύρεση ακροτάτων

Δύο κορυφές


Παίζοντας Dodgem

Παίζοντας dodgem εδώ.


Δύο παίκτες σε έναν πίνακα 4Χ4 έχουν τρία καπάκια τοποθετημένα σε δύο διαδοχικές πλευρές του τετραγώνου με κενή τη γωνία που συνορεύουν, όπως στο σχήμα:

Μετακινούν στη σειρά του ο καθένας ένα καπάκι μπροστά ή δεξιά ή αριστερά (όχι πίσω) με στόχο να εξάγουν όλα τα καπάκια από την απέναντι πλευρά από την οποία εκίνησαν.

Dodgem is a simple abstract strategy game invented by Colin Vout in 1972 while he was a mathematics student at the University of Cambridge as described in the book Winning Ways. It is played on an n×n board with n-1 cars for each player—two cars each on a 3×3 board is enough for an interesting game, but larger sizes are also possible.


The board is initially set up with n-1 blue cars along the left edge and n-1 red cars along the bottom edge, the bottom left square remaining empty. Turns alternate: player 1 (“Left”)’s turn is to move any one of the blue cars one space forwards (right) or sideways (up or down). Player 2 (“Right”)’s turn is to move any one of the red cars one space forwards (up) or sideways (left or right).

Cars may not move onto occupied spaces. They may leave the board, but only by a forward move. A car which leaves the board is out of the game. There are no captures. A player must always leave their opponent a legal move or else forfeit the game.

The winner is the player who first gets all their pieces off the board, or has all their cars blocked in by their opponent.

The game can also be played in Misere, where you force your opponent to move their pieces off the board.[1]


The 3×3 game can be completely analyzed (strongly solved) and is a win for the first player—a table showing who wins from every possible position is given in Winning Ways, and given this information it is easy to read off a winning strategy.

David des Jardins showed in 1996 that the 4×4 and 5×5 games never end with perfect play—both players get stuck shuffling their cars from side to side to prevent the other from winning. He conjectures that this is true for all larger boards.

For a 3×3 board, there are 56 reachable positions. Out of the 56 reachable positions, 8 of them are winning, 4 of them are losing, and 44 are draws. [2]

Το φαινόμενο του ξερόλα: Το φαινόμενο Dunning-Kruger




Dunning-Kruger effect, in psychology, a cognitive bias whereby people with limited knowledge or competence in a given intellectual or social domain greatly overestimate their own knowledge or competence in that domain relative to objective criteria or to the performance of their peers or of people in general.


Μπουκάλι Klein bottle



Στην τοπολογία, ένα κλάδο των μαθηματικών, η Φιάλη του Κλάιν ή το Μπουκάλι του Κλάιν, είναι ένα παράδειγμα μιας μη-προσανατολιζόμενης επιφάνειας. Είναι μια δισδιάστατη πολλαπλότητα πάνω στην οποία δεν μπορεί να οριστεί ένα σύστημα για τον προσδιορισμό ενός κάθετου διανύσματος. Με απλά λόγια, είναι μια μονόπλευρη επιφάνεια στην οποία, αν περπατήσει κανείς επάνω της, θα μπορούσε να φτάσει στο σημείο στο οποίο ξεκίνησε, αλλά ανάποδος, δηλαδή με το κεφάλι να είναι προς την κατεύθυνση την οποία ήταν τα πόδια του. Άλλα μη-προσανατολιζόμενα αντικείμενα περιλαμβάνουν τη λωρίδα του Μέμπιους και το πραγματικό προβολικό επίπεδο. Ενώ μια λωρίδα του Μέμπιους είναι μια επιφάνεια με σύνορο, η φιάλη του Κλάιν δεν έχει σύνορο (για σύγκριση, μια σφαίρα είναι μια προσανατολιζόμενη επιφάνεια χωρίς σύνορο).

Η φιάλη του Κλάιν περιγράφηκε για πρώτη φορά το 1882 από τον Γερμανό μαθηματικό Φέλιξ Κλάιν. Είναι πιθανό να είχε ονομαστεί αρχικά ως η επιφάνεια του Κλάιν (“Kleinsche Fläche“) και στη συνέχεια να παρερμηνεύτηκε ως η φιάλη του Κλάιν (“Kleinsche Flasche“), η οποία μπορεί να οδήγησε τελικά στην υιοθέτηση αυτού του όρου και στη γερμανική γλώσσα.[1]

In topology, a branch of mathematics, the Klein bottle is an example of a non-orientable surface; it is a two-dimensional manifold against which a system for determining a normal vector cannot be consistently defined.

In practical terms, they are remarkably difficult to fill with water!