Μπουκάλι Klein bottle

https://www.facebook.com/photo/?fbid=10227080267209389&set=gm.3226794440965931&idorvanity=1567682496877142

https://el.wikipedia.org/wiki/%CE%A6%CE%B9%CE%AC%CE%BB%CE%B7_%CF%84%CE%BF%CF%85_%CE%9A%CE%BB%CE%AC%CE%B9%CE%BD

Στην τοπολογία, ένα κλάδο των μαθηματικών, η Φιάλη του Κλάιν ή το Μπουκάλι του Κλάιν, είναι ένα παράδειγμα μιας μη-προσανατολιζόμενης επιφάνειας. Είναι μια δισδιάστατη πολλαπλότητα πάνω στην οποία δεν μπορεί να οριστεί ένα σύστημα για τον προσδιορισμό ενός κάθετου διανύσματος. Με απλά λόγια, είναι μια μονόπλευρη επιφάνεια στην οποία, αν περπατήσει κανείς επάνω της, θα μπορούσε να φτάσει στο σημείο στο οποίο ξεκίνησε, αλλά ανάποδος, δηλαδή με το κεφάλι να είναι προς την κατεύθυνση την οποία ήταν τα πόδια του. Άλλα μη-προσανατολιζόμενα αντικείμενα περιλαμβάνουν τη λωρίδα του Μέμπιους και το πραγματικό προβολικό επίπεδο. Ενώ μια λωρίδα του Μέμπιους είναι μια επιφάνεια με σύνορο, η φιάλη του Κλάιν δεν έχει σύνορο (για σύγκριση, μια σφαίρα είναι μια προσανατολιζόμενη επιφάνεια χωρίς σύνορο).

Η φιάλη του Κλάιν περιγράφηκε για πρώτη φορά το 1882 από τον Γερμανό μαθηματικό Φέλιξ Κλάιν. Είναι πιθανό να είχε ονομαστεί αρχικά ως η επιφάνεια του Κλάιν (“Kleinsche Fläche“) και στη συνέχεια να παρερμηνεύτηκε ως η φιάλη του Κλάιν (“Kleinsche Flasche“), η οποία μπορεί να οδήγησε τελικά στην υιοθέτηση αυτού του όρου και στη γερμανική γλώσσα.[1]

In topology, a branch of mathematics, the Klein bottle is an example of a non-orientable surface; it is a two-dimensional manifold against which a system for determining a normal vector cannot be consistently defined.

In practical terms, they are remarkably difficult to fill with water!

Συνηθέστεροι Μαθηματικοί Τύποι και Μονάδες της Γεωργικής Μηχανικής

https://repository.kallipos.gr/bitstream/11419/3887/2/03_chapter_2.pdf

https://repository.kallipos.gr/bitstream/11419/3887/2/03_chapter_2.pdf

Ένα Ιδιότυπο μπιλιάρδο

του Νίκου Μαυρογιάννη από εδώ https://www.facebook.com/100009159791448/videos/489384459832332/

Έχουμε ένα σημείο Α(0,a) στον θετικό ημιάξονα των y. Μας ενδιαφέρει να βρούμε μια συνάρτηση ορισμένη στο R που παίρνει θετικές τιμές με την ακόλουθη ιδιότηταΑν από οποιοδήποτε σημείο X του άξονα των x σκοπεύσουμε το Α η ανακλώμενη στην γραφική παράστασαη της f να είναι κάθετη στον στον άξονα των x. Mια μερική απάντηση μπορεί να δοθεί με ύλη Β’ Λυκείου: Αρκει να πάρουμε μια παραβολή y=cx²+d (c, d θετικά) με εστία το A και να αξιοποιήσουμε την ανακλαστική ιδιότητα της. Η γενική απάντηση είναι πιο εκτεταμένη. Απαιτεί την επίλυση της διαφορικής εξισώσης x(y’)²-2yy’+2ay’-x=0 η οποία είναι τύπου Lagrange. Ωστόσο με κάποια “υποστηρίγματα” μπορεί να λυθεί με ύλη Γ Λυκείου. Ενδιαφέρον είναι ότι δημιουργείται με παιγνιώδη τρόπο η 1-1 και επί απεικόνιση Χ→Υ που απεικονίζει το R σε ένα ανοικτό διάστημα αποδεικνύοντας ότι είναι ισοπληθικά (φυσικά αυτό γίνεται και αλλιώς λ.χ. με την y=tanx η την y=x/(1+|x|)).Επίσης ενδιαφέρον παρουσιάζει και η κατασκευή του μπιλιάρδου στην Geobebra όπου κάποια ζητηματα με την ρύθμιση της τροχιάς και την ταχύτητα τη μπίλιας είναι διδακτικά. Θα μπορούσε να αποτελέσει βάση για σχολική εργασία όπου δίνεται η ευκαιρία να έλθουν τα παιδιά σε επαφή με ιδέες των εικονιζομένων (Απολλώνιος, Johann Bernoulli, Lagrange, Cantor).

https://www.facebook.com/nsmavrogiannis/videos/489384459832332/

82ος Διαγωνισμός ΕΜΕ – ΘΑΛΗΣ 2022

Θέματα Λυκείου

Βασικά στοιχεία θεωρίας αριθμών και διαιρετότητας για μαθητές γυμνασίου

Μηδέν: Τίποτα ή τα Πάντα;

των συναδέλφων Χρήστου Κυριαζή και Λευτέρη Πρωτοπαπά, από το συνέδριο της ΕΜΕ 2014