Θέματα και λύσεις όλων των τάξεων.
Wordpress Συλλέκτης: Γρήγορη αρχειοθέτηση-δημοσίευση αντικειμένων και προσωπικών δημιουργιών από www.arithmoi.gr. Δίνει χρήσιμο υλικό διδασκαλίας εδώ: https://ylikodidaskalias.wordpress.com/ ΟΛΟ ΤΟ ΥΛΙΚΟ εδώ και σύνδεσμοι μόνο προς αυτό.
Κατεβάστε όλα τα θέματα και τις λύσεις από εδώ.
Θέματα μικρών
Πρόβλημα 1.
Πρόβλημα 2.
Θεωρούμε τετράγωνο πλευράς , το οποίο υποδιαιρούμε με ευθείες παράλληλες προς τις πλευρές του σε μικρά τετράγωνα πλευράς . Χρωματίζουμε μικρά τετράγωνα μαύρα, ενώ όλα τα υπόλοιπα τετράγωνα είναι λευκά. Υποθέτουμε ότι υπάρχει θετικός ακέραιος , τέτοιος ώστε, ανεξάρτητα από την θέση των μαύρων μικρών τετραγώνων, υπάρχει ορθογώνιο εμβαδού με πλευρές παράλληλες στις πλευρές του και με όλα τα μικρά τετράγωνα από τα οποία αποτελείται να είναι λευκά, που μπορεί να αποκοπεί από το τετράγωνο . Να βρεθεί η μέγιστη δυνατή τιμή του .
Πρόβλημα 3.
Θεωρούμε τους θετικούς ακεραίους έτσι ώστε ο αριθμός , όπου να είναι ακέραιος. Να αποδείξετε ότι, αν ο είναι περιττός, τότε ο είναι τέλειο τετράγωνο.
Πρόβλημα 4.
Δίνεται τρίγωνο με , εγγεγραμμένο σε κύκλο με κέντρο και ακτίνα . Ονομάζουμε το αντιδιαμετρικό σημείο της κορυφής . Θεωρούμε επίσης τον κύκλο , του οποίου το κέντρο βρίσκεται επάνω στο τμήμα και περνάει από τα σημεία και . Αν ο κύκλος τέμνει την στο σημείο , να αποδείξετε ότι ο περιγεγραμμένος κύκλος του τριγώνου , έστω , εφάπτεται του περιγεγραμμένου κύκλου του τριγώνου .
——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————–
Θέματα μεγάλων
Πρόβλημα 1.
Θεωρούμε την ακολουθία που ορίζεται αναδρομικά από την σχέση με , όπου είναι θετικοί ακέραιοι και ο δεν διαιρεί τον ακέραιο . Αν για κάποιο θετικό ακέραιο ο είναι τέλειο τετράγωνο ρητού αριθμού, να αποδείξετε ότι και ο είναι τέλειο τετράγωνο ρητού αριθμού.
Πρόβλημα 2.
Δίνονται οξυγώνιο τρίγωνο με και ο περιγεγραμμένος κύκλος του με κέντρο και ακτίνα . Στα μικρά τόξα και θεωρούμε τα σημεία και αντίστοιχα. Έστω είναι το σημείο τομής των και είναι το δεύτερο κοινό σημείο των περιγεγραμμένων κύκλων των τριγώνων , έστω , και , έστω . Να αποδείξετε ότι : τα σημεία , , είναι συνευθειακά, αν και μόνο αν, το σημείο ανήκει στην συμμετροδιάμεσο του τριγώνου , που αντιστοιχεί στην κορυφή .
Σημείωση: Συμμετροδιάμεσος τριγώνου είναι η συμμετρική ευθεία της διαμέσου, ως προς την διχοτόμο, που περνάει από την ίδια κορυφή με την διάμεσο.
Πρόβλημα 3.
Πρόβλημα 4.
Θεωρούμε σημεία στο επίπεδο, , ανά τρία μη-συνευθειακά. Ονομάζουμε το πλήθος των παραλληλογράμμων εμβαδού που σχηματίζονται με κορυφές αυτά τα σημεία. Να αποδείξετε ότι για κάθε .