Ασκήσεις ομίλου 1820α

Απέμειναν προς διευθέτηση από εσάς:

και

Πυθαγόρειες τριάδες και τελευταίο θεώρημα Φερμά σημειώσεις

mathcircle-a-2020-21-18a

και αποδείξεις πλήρεις:

mathcircle-a-1820b-apodeikseis

2021031443290- Εξίσωση και παράσταση.

https://mathematica.gr/forum/viewtopic.php?f=27&t=69043&fbclid=IwAR2mp_qmhIRqagKe7JOcNT_0G639jGd_7TCqXrisfX3NC7LBsCf12IidHUU#p335779

Έστω $a, b, c$ οι ρίζες της εξίσωσης $x^3-x-1=0$.
Να υπολογίσετε την τιμή της παράστασης:
$\frac{1-a}{1+a}+\frac{1-b}{1+b}+\frac{1-c}{1+c}$

Θέτουμε $t= \dfrac {1-x}{1+x}\,()$ , όπου $x$ ρίζα της δοθείσας τριτοβάθμιας. Λύνοντας την $()$ ως προς $x$ θα βρούμε $x= \dfrac {1-t}{1+t}$, οπότε θέτοντας στην τριτοβάθμια ισχύει

$\displaystyle{\left ( \dfrac {1-t}{1+t}\right )^3- \dfrac {1+t}{1-t} -1 =0}$

Πολλαπλασιάζοντας επί \((1-t)^3\) θα βρούμε μετά τις πράξεις $t^3-t^2+7t+1=0$. Από Vieta το άθροισμα των ριζών της τελευατίας είναι $1$. Αλλά από την $(*)$ οι ρίζες της τελευταίας είναι οι $\displaystyle{ \dfrac {1-a}{1+a}, \, \dfrac {1-b}{1+b},\, \dfrac {1-c}{1+c}}$. Συνεπώς

$\displaystyle{ \dfrac {1-a}{1+a}+ \dfrac {1-b}{1+b}+ \dfrac {1-c}{1+c}=1}$

Space Filling Curves

ergasia-fractal-Xasapis

Πρόκειται για εργασία που εκπονήθηκε ως φοιτητής.

Πηγή: ergasia fractal-Xasapis.pdf

The Shortest-Known Paper Published in a Serious Math Journal: Two Succinct Sentences | Open Culture

shortest math paper

Euler’s conjecture, a theory proposed by Leonhard Euler in 1769, hung in there for 200 years. Then L.J. Lander and T.R. Parkin came along in 1966, and debunked the conjecture in two swift sentences. Their article — which is now open access and can be downloaded here — appeared in the Bulletin of the American Mathematical Society. If you’re wondering what the conjecture and its refutation are all about, you might want to ask Cliff Pickover, the author of 45 books on math and science. He brought this curious document to the web last week.

Πηγή: The Shortest-Known Paper Published in a Serious Math Journal: Two Succinct Sentences | Open Culture

Εισαγωγική Θεωρία Αριθμών για διαγωνισμούς Γυμνασίου

Σύντομες σημειώσεις, με στοιχεία και μεγαλύτερων τάξεων, για τους μαθητές που ενδιαφέρονται να αναζητήσουν…

5065202102043290-Χασάπης-Σωτήριος-Θεωρία-Αριθμών-για-το-Γυμνάσιο-2014