Να αποδειχθεί ότι το τετράγωνο ενός περιττού αριθμού είναι της μορφής \( 8k + 1, k \in \mathbb{Z} \).
Μήνας: Οκτώβριος 2022
«Τριωνυμική…μηχανή» παραγωγής πρώτων αριθμών
Ε2001γ4
Θ2007Α4 – Μία Διοφαντική…
Θ2001Α1
Αν για τους πραγματικούς αριθμούς \( \displaystyle{x, y, z} \) ισχύει ότι \( \displaystyle{xyz = 1} \), να υπολογίσετε την τιμή της παράστασης
\( \displaystyle{K=\frac{1}{y+1-\displaystyle\frac{y}{x+1}}+ \frac{1}{z+1-\displaystyle\frac{z}{y+1}} + \frac{1}{x+1-\displaystyle\frac{x}{z+1}}} . \)